Sample records for waste retrieval operations

  1. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner. Retrieval of SST waste in accordance with HFFACO requirements was initiated at the Hanford Site in April 2003. New and innovative tank waste retrieval methods that minimize and control the use of liquids are being implemented for the first time. These tank waste retrieval methods replace Past Practice Hydraulic Sluicing and employ modified sluicing, vacuum retrieval, and in-tank vehicle techniques. Waste retrieval has been completed in seven Hanford Site SSTs (C-106, C-103, C-201, C-202, C-203, C-204, and S-112) in accordance with HFFACO requirements. Three additional tanks are currently in the process of being retrieved (C-108, C-109 and S-102) Preparation for retrieval of two additional SSTs (C-104 and C-110) is ongoing with retrieval operations forecasted to start in calendar year 2008. Tank C-106 was retrieved to a residual waste volume of 470 ft{sup 3} using oxalic acid dissolution and modified sluicing. An Appendix H exception request for Tank C-106 is undergoing review. Tank C-103 was retrieved to a residual volume of 351 ft{sup 3} using a modified sluicing technology. This approach was successful at reaching the TPA limits for this tank of less than 360 ft{sup 3}and the limits of the technology. Tanks C-201, C-202, C-203, and C-204 are smaller (55,000 gallon) tanks and waste removal was completed in accordance with HFFACO requirements using a vacuum retrieval system. Residual waste volumes in each of these four tanks were less than 25 ft{sup 3}. Tank S-112 retrieval was completed February 28, 2007, meeting the TPA Limits of less than 360 cu ft using salt-cake dissolution, modified sluicing, in-tank vehicle with high pressure water spray and caustic dissolution. Tanks C-108 and C-109 have been retrieved to 90% and 85% respectively. Modified sluicing was no longer effective at retrieving the remaining 5,000 to 10,000 gallons of residual. A Mobile Retrieval Tool (FoldTrac) is scheduled for installation early in 2008 to assist in breaking up chunks of waste and mobilizing the waste for transfer. Lessons learned from application of new tank waste retrieval methods are being documented and incorporated into future retrieval operations. They address all phases of retrieval including process design, equipment procurement and installation, supporting documentation, and system operations. Information is obtained through interviews with retrieval project personnel, focused workshops, review of problem evaluation requests, and evaluation of retrieval performance data. This paper presents current retrieval successes and lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met. (authors)« less

  2. EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.

    EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information.more » The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.« less

  3. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, K.A.; Milner, T.N.

    2006-07-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This papermore » will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)« less

  4. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  5. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be usedmore » during qualification testing and acceptance testing to verify operability.« less

  6. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance ofmore » the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIRKBRIDE, R.A.

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  8. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Trent, D.S.

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less

  9. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayancsik, B.A.

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less

  10. EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellinger, A.

    2010-02-16

    The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval optionsmore » and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River, Idaho, and Oak Ridge. The meeting was arranged by the Retrieval Knowledge Center (RKC), which is a technology development project sponsored by the Office of Technology Innovation & Development - formerly the Office of Engineering and Technology - within the DOE Office of Environmental Management (EM).« less

  11. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less

  13. Graphite Waste Tank Cleanup and Decontamination under the Marcoule UP1 D and D Program - 13166

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomasset, Philippe; Chabeuf, Jean-Michel; Thiebaut, Valerie

    2013-07-01

    The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pits had to be retrieved and transferred into a newer and safer pit. After an extensive R and D program, the equipment and process necessary for retrieval operations were designed, built and tested. Themore » innovative process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. The retrieval of the most irradiating fragments was a challenge. Today, the first pit is totally empty and its stainless steel walls have been decontaminated using gels. In the second pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. After more than 6 years of operations in sludge retrieval, a lot of experience was acquired from which important 'lessons learned' could be shared. (authors)« less

  14. Innovative technology summary report: Houdini{trademark} I and II remotely operated vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    The US Department of Energy (DOE) is responsible for cleaning up and closing 273 large, aging, underground tanks the department has used for storing approximately 1 million gal of high- and low-level radioactive and mixed waste. The waste`s radioactivity precludes humans from working in the tanks. A remote-controlled retrieval method must be used. The Houdini robot addresses the need for vehicle-based, rugged, remote manipulation systems that can perform waste retrieval, characterization, and inspection tasks. Houdini-I was delivered to ORNL in September 1996, deployed in a cold test facility in November, and first deployed in the gunite tanks in June 1997.more » Since then, it has seen continuous (still on-going) service at ORNL, providing a critical role in the cleanup of two gunite tanks, W-3 and W-4, in the GAAT NTF. Houdini-I has proven rugged, capable of waste retrieval, and able to withstand high reaction force operations such as wall core sampling. It`s even able to operate while hanging, which was the case when Houdini was used to cut and remove cables and steel pipes hanging below manways in Tank W-3. Based upon the lessons learned at ORNL, Houdini`s design has been completely overhauled. A second generation system, Houdini-II, is now being built.« less

  15. 10 CFR 60.111 - Performance of the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... retrieval throughout the period during which wastes are being emplaced and, thereafter, until the completion of a preformance confirmation program and Commission review of the information obtained from such a... retrievability. (3) For purposes of this paragraph, a reasonable schedule for retrieval is one that would permit...

  16. 10 CFR 60.111 - Performance of the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... retrieval throughout the period during which wastes are being emplaced and, thereafter, until the completion of a preformance confirmation program and Commission review of the information obtained from such a... retrievability. (3) For purposes of this paragraph, a reasonable schedule for retrieval is one that would permit...

  17. 10 CFR 60.111 - Performance of the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... retrieval throughout the period during which wastes are being emplaced and, thereafter, until the completion of a preformance confirmation program and Commission review of the information obtained from such a... retrievability. (3) For purposes of this paragraph, a reasonable schedule for retrieval is one that would permit...

  18. 10 CFR 60.111 - Performance of the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... retrieval throughout the period during which wastes are being emplaced and, thereafter, until the completion of a preformance confirmation program and Commission review of the information obtained from such a... retrievability. (3) For purposes of this paragraph, a reasonable schedule for retrieval is one that would permit...

  19. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less

  20. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)« less

  1. Feasibility study of tank leakage mitigation using subsurface barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treat, R.L.; Peters, B.B.; Cameron, R.J.

    1994-09-21

    The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulatingmore » air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.« less

  2. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive andmore » extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be received by the TF when required to support 2016 production of immobilized low-activity waste (ILAW). - Ensure the required baseline and additional funding is provided beginning in fiscal year 2011. - Modify TF and WTP contracts to adequately address this vision. The 2020 Vision provides a summary of strategies and key actions that optimize the approach to startup, commissioning, and turnover of WTP facilities. This vision focuses on the legally enforceable requirement to achieve the Consent Decree milestones of starting radioactive operations in 2019, and achieving initial WTP operations in 2022. (authors)« less

  3. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less

  4. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERPENBECK EG; LESHIKAR GA

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less

  5. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, E.J.

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination.more » Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.« less

  6. Deep Sludge Gas Release Event Analytical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environmentmore » from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.« less

  7. Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less

  8. UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabeuf, Jean-Michel; Varet, Thierry

    The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for themore » definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to allow for construction which is scheduled to being during the first semester of 2013. The elaboration of the final waste package is still undergoing and expected to be completed by then end of 2013, following some final elements of R and D required to demonstrate the full compatibility of the package with deep geological repository. The HAO legacy waste retrieval project is so far the largest such project entering operational phase on the site of La Hague. It is on schedule, under budget, and in conformity with the delivery requirements set by the French Safety Authority, as well as other stakeholders. This project paves the way for the successful completion of AREVA La Hague other legacy waste retrieval projects, which are currently being drafted or already in active R and D phase. (authors)« less

  9. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  10. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-23

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive designmore » package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization.« less

  11. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-02-14

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoringmore » equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.« less

  12. Process test plan, phase II: waste retrieval sluicing system emissions collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, R.L.

    1999-06-01

    This Process Test Plan is prepared to continue from HNF-3733 which was Phase I of the test. Supplemental operational controls and sampling requirements are defined to safely obtain gas samples from the 296-C-006 ventilation system stack during active operation of the sluicing equipment.

  13. Environmental Factor(tm) system: RCRA hazardous waste handler information (on cd-rom). Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    Environmental Factor(tm) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information - dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  14. Environmental Factor{trademark} system: RCRA hazardous waste handler information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  15. Integrated Management of all Historical, Operational and Future Decomissioning Solid ILW at Dounreay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, D.

    This paper describes major components of the Dounreay Site Restoration Plan, DSRP to deal with the site's solid intermediate level waste, ILW legacy. Historic solid ILW exists in the Shaft (disposals between 1959 and 1977), the Wet Silo (operated between 1973 and 1998), and in operating engineered drummed storage. Significant further arisings are expected from future operations, post-operations clean out and decommissioning through to the completion of site restoration, expected to be complete by about 2060. The raw waste is in many solid forms and also incorporates sludge, some fissile material and hazardous chemical components. The aim of the Solidmore » ILW Project is to treat and condition all this waste to make it passively safe and in a form which can be stored for a substantial period, and then transported to the planned U.K. national deep repository for ILW disposal. The Solid ILW Project involves the construction of head works for waste retrieval operations at the Shaft and Wet Silo, a Waste Treatment Plant and a Conditioned Waste Store to hold the conditioned waste until the disposal facilities become available. In addition, there are infrastructure activities to enable the new construction: contaminated ground remediation, existing building demolition, underground and overground services diversion, sea cliff stabilization, and groundwater isolation at the Shaft.« less

  16. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Timothy; Nelson, Roger

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes atmore » the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)« less

  18. Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, J.; Gonzales, W.

    2007-07-01

    The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, andmore » to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)« less

  19. Development of integrated radioactive waste packaging and conditioning solutions in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, Peter; Butter, Kevin; Zimmerman, Ian

    2013-07-01

    In order to offer a more cost effective, safer and efficient Intermediate Level Waste (ILW) management service, EnergySolutions EU Ltd. and Gesellschaft fur Nuklear-Service mbH (GNS) have been engaged in the development of integrated radioactive waste retrieval, packaging and conditioning solutions in the UK. Recognising the challenges surrounding regulatory endorsement and on-site implementation in particular, this has resulted in an alternative approach to meeting customer, safety regulator and disposability requirements. By working closely with waste producers and the organisation(s) responsible for endorsing radioactive waste management operations in the UK, our proposed solutions are now being implemented. By combining GNS' off-the-shelf,more » proven Ductile Cast Iron Containers (DCICs) and water removal technologies, with EnergySolutions EU Ltd.'s experience and expertise in waste retrieval, safety case development and disposability submissions, a fully integrated service offering has been developed. This has involved significant effort to overcome technical challenges such as onsite equipment deployment, active commissioning, conditioning success criteria and disposability acceptance. Our experience in developing such integrated solutions has highlighted the importance of working in collaboration with all parties to achieve a successful and viable outcome. Ultimately, the goal is to ensure reliable, safe and effective delivery of waste management solutions. (authors)« less

  20. Transuranic Waste Test Facility Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looper, M.G.

    1987-05-05

    This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less

  1. Nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less

  2. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)« less

  3. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)« less

  4. Direct Encapsulation of Spent Ion-exchange Resins at the Dukovany Nuclear Power Plant, Czech Republic - 12367

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Paul; Rima, Steve

    2012-07-01

    At the Dukovany Nuclear Power Plant there are large amounts of spent ion exchange resins contained within storage tanks. These resins are a product of the operation of an Active Water Purification System within the Power Plant. Activity levels of the resins are in the range of 105 to 10{sup 6} Bq/l and the main isotopes present are Co-60, Cs-137, Mn-54 and Ag-110m. In order to maintain storage tank availability throughout the planned lifetime of the Power Plant these resins must be removed and disposed of safely. The storage tanks do not have an effective retrieval route for the resinsmore » and the installed agitation system is inoperable. A proven system for retrieving and directly encapsulating these resins to a standard required for the Czech repository is described, together with an overview of operational performance. Experience gained from this and other projects has highlighted some common challenges relating to the treatment of ion-exchange resins and sludges. There are common approaches that can assist in overcoming these challenges. 1. Transport resin / sludge type waste over as short a distance as possible to avoid issues with line plugging. 2. Transport these wastes once and once only wherever possible. 3. Try to keep the treatment process as simple as possible. With sludge or resin handling equipment consider the physical properties foremost - radiological issues can be addressed within any subsequent design. 4. Consider the use of dry-mix technologies. This avoids the requirement for expensive and complicated grouting plant. 5. Avoid the use of make up water for transport purposes if at all possible - it introduces secondary waste that needs to be treated at additional cost. 6. Consider alternative disposal techniques. SIAL{sup R} is AMEC's preferred technology as we developed it and understand it well - additionally the waste loading factors are much higher than for cement. 7. Consider final waste volumes when selecting the disposal technique. Disposal costs will probably make up the bulk of the total life-time cost for any retrieval / encapsulation project. 8. Have a selection of ion-exchange resin/sludge retrieval techniques available - it is difficult and time consuming to develop a technique that will cope with all eventualities, particularly when there are unknown conditions. It is much more productive to switch retrieval techniques as appropriate to deal with evolving conditions. (authors)« less

  5. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  6. Hanford Waste Physical and Rheological Properties: Data and Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less

  7. Transuranic Waste Program Framework Agreement - December Deliverable July 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Patricia

    Framework agreement deliverables are: (1) 'DOE/NNSA commits to complete removal of all non-cemented above-ground EM Legacy TRU and newly generated TRU currently-stored at Area G as of October 1, 2011, by no later than June 30, 2014. This inventory of above-ground TRU is defined as 3706 cubic meters of material.' (2) 'DOE commits to the complete removal of all newly generated TRU received in Area G during FY 2012 and 2013 by no later than December 31, 2014.' (3) 'Based on projected funding profiles, DOE/NNSA will develop by December 31, 2012, a schedule, including pacing milestones, for disposition of themore » below-ground TRU requiring retrieval at Area G.' Objectives are to: (1) restore the 'Core Team' to develop the December, 2012 deliverable; (2) obtain agreement on the strategy for below ground water disposition; and (3) establish timeline for completion of the deliverable. Below Grade Waste Strategy is to: (1) Perform an evaluation on below grade waste currently considered retrievable TRU; (2) Only commit to retrieve waste that must be retrieved; (3) Develop the Deliverable including Pacing Milestones based on planned commitments; (4) Align all Regulatory Documents for Consistency; and (5) answer these 3 primary questions, is the waste TRU; is the waste retrievable, can retrieval cause more harm than benefit?« less

  8. Initial retrieval sequence and blending strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemwell, D.L.; Grenard, C.E.

    1996-09-01

    This report documents the initial retrieval sequence and the methodology used to select it. Waste retrieval, storage, pretreatment and vitrification were modeled for candidate single-shell tank retrieval sequences. Performance of the sequences was measured by a set of metrics (for example,high-level waste glass volume, relative risk and schedule).Computer models were used to evaluate estimated glass volumes,process rates, retrieval dates, and blending strategy effects.The models were based on estimates of component inventories and concentrations, sludge wash factors and timing, retrieval annex limitations, etc.

  9. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less

  10. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job; Bryan, Samuel

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less

  11. Alternative disposal options for transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, G.G.

    1994-12-31

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lensmore » around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area.« less

  12. Deep Borehole Field Test Requirements and Controlled Assumptions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientificmore » characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.« less

  13. Tank waste remediation system tank waste retrieval risk management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  14. Operational test report -- Project W-320 cathodic protection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, T.J.

    1998-06-16

    Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31).more » WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.« less

  15. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  16. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  17. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  18. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...

  19. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  20. Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.

    1988-02-01

    In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less

  1. Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Robert; Seniow, Kendra

    The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with severalmore » important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known as the HTWOS Pitzer database. Using Microsoft Excel to formulate the Gibbs energy minimization method and the multi-component Pitzer ion interaction equations, several predictions of the solubility of solute mixtures at various temperatures were made using the HTWOS Pitzer database coefficients. Examples of these predictions are shown in Figure 3 and Figure 4. A listing of the entire HTWOS Pitzer database can be found in RPP-RPT-50703. Currently, work is underway to install the Pitzer ion interaction model in HTWOS as the mechanism for determining the solid-liquid phase distributions of select waste constituents during tank retrievals and subsequent washing and leaching of the waste. Validation of the Pitzer ion interaction model in HTWOS will be performed with analytical laboratory data of actual tank waste. This change in HTWOS is expected to elicit shifts in mission criteria, such as mission end date and quantity of high-level waste glass produced by WTP, as predicted by HTWOS. These improvements to the speciation calculations in HTWOS, however, will establish a better planning basis and facilitate more effective and efficient future operations of the WTP. (authors)« less

  2. Disposal of high-level nuclear waste above the water table in arid regions

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1983-01-01

    Locating a repository in the unsaturated zone of arid regions eliminates or simplifies many of the technological problems involved in designing a repository for operation below the water table and predicting its performance. It also offers possible accessibility and ease of monitoring throughout the operational period and possible retrieval of waste long after. The risks inherent in such a repository appear to be no greater than in one located in the saturated zone; in fact, many aspects of such a repository's performance will be much easier to predict and the uncertainties will be reduced correspondingly. A major new concern would be whether future climatic changes could produce significant consequences due to possible rise of the water table or increased flux of water through the repository. If spent fuel were used as a waste form, a second new concern would be the rates of escape of gaseous iodine-129 and carbon-14 to the atmosphere.

  3. Development of consistent hazard controls for DOE transuranic waste operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less

  4. Tank waste remediation system configuration management implementation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    1998-03-31

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from themore » life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.« less

  5. Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Denis; Adamovich, Dmitry; Klimenko, I.

    2012-07-01

    Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWSmore » tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the liquid: < 2 mg/l; overall gamma-activity: < 3,7 x10{sup 5} Bq/l. (authors)« less

  6. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Jim G.

    2013-03-27

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Enderlin, Carl W.

    Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less

  8. Deep Borehole Field Test Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest L.

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less

  9. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on themore » various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.« less

  10. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1986-02-01

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect tomore » existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs.« less

  11. Conservaton and retrieval of information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, M.

    This is a summary of the findings of a Nordic working group formed in 1990 and given the task of establishing a basis for a common Nordic view of the need for information conservation for nuclear waste repositories by investigating the following: (1) the type of information that should be conserved; (2) the form in which the information should be kept; (3) the quality of the information as regards both type and form; and (4) the problems of future retrieval of information, including retrieval after very long periods of time. High-level waste from nuclear power generation will remain radioactive formore » very long times even though the major part of the radioactivity will have decayed within 1000 yr. Certain information about the waste must be kept for long time periods because future generations may-intentionally or inadvertently-come into contact with the radioactive waste. Current day waste management would benefit from an early identification of documents to be part of an archive for radioactive waste repositories. The same reasoning is valid for repositories for other toxic wastes.« less

  12. Issues associated with manipulator-based waste retrieval from Hanford underground storage tanks with a preliminary review of commercial concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, E.J.

    1996-09-17

    Westinghouse Hanford Company (WHC) is exploring commercial methods for retrieving waste from the underground storage tanks at the Hanford site in south central Washington state. WHC needs data on commercial retrieval systems equipment in order to make programmatic decisions for waste retrieval. Full system testing of retrieval processes is to be demonstrated in phases through September 1997 in support of programs aimed to Acquire Commercial Technology for Retrieval (ACTR) and at the Hanford Tanks Initiative (HTI). One of the important parts of the integrated testing will be the deployment of retrieval tools using manipulator-based systems. WHC requires an assessment ofmore » a number of commercial deployment systems that have been identified by the ACTR program as good candidates to be included in an integrated testing effort. Included in this assessment should be an independent evaluation of manipulator tests performed to date, so that WHC can construct an integrated test based on these systems. The objectives of this document are to provide a description of the need, requirements, and constraints for a manipulator-based retrieval system; to evaluate manipulator-based concepts and testing performed to date by a number of commercial organizations; and to identify issues to be resolved through testing and/or analysis for each concept.« less

  13. U.S. Department of Energy Nevada Operations Office Environmental Monitoring Program summary data report, second calendar quarter 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, S.C.; Townsend, Y.E.

    1997-02-01

    The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less

  14. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of themore » Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.« less

  15. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  16. Pit 9 Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth M.

    2014-01-08

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP).This report summarizes available information on the origin, configuration, and composition of the waste containers within Pit 9, their physical and radiological characteristics, and issues that may be encountered in their retrieval and processing. Review of the available information indicates that Pit 9 should present no major issues in retrieval and processing, and most drums contain TRU waste that can be shipped to WIPP. The primary concern in retrieval is the integrity of containers that have been stored below-ground for 35 to 40 years. The most likely issue that will be encountered in processing containers retrieved from Pit 9 is the potential for items that are prohibited at WIPP such as sealed containers greater than four liters in size and free liquids that exceed limits for WIPP.« less

  17. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  18. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  19. Description of waste pretreatment and interfacing systems dynamic simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, E.

    A new class of grout material based on molten wax offers a dramatic improvement in permeation grouting performance. This new material makes a perfect in situ containment of buried radioactive waste both feasible and cost effective. This paper describes various ways the material can be used to isolate buried waste in situ. Potential applications described in the paper include buried radioactive waste in deep trenches, deep shafts, Infiltration trenches, and large buried objects. Use of molten wax for retrieval of waste is also discussed. Wax can also be used for retrieval of air sensitive materials or drummed waste. This papermore » provides an analysis of the methods of application and the expected performance and cost of several potential projects. (authors)« less

  1. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  2. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  3. Methods for Heel Retrieval for Tanks C-101, C-102, and C-111 at the Hanford Site - 13064

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, T.L.; Kirch, N.W.; Reynolds, J.H.

    The purpose of this paper is to evaluate the prospects of using bulk waste characteristics to determine the most appropriate heel retrieval technology. If the properties of hard to remove heels can be determined before bulk retrieval, then a heel retrieval technology can be selected before bulk retrieval is complete. This would save substantially on sampling costs and would allow the deployment of the heel retrieval technology immediately after bulk retrieval. The latter would also accelerate the heel removal schedule. A number of C-farm retrievals have been fully or partially completed at the time of this writing. Thus, there ismore » already substantial information on the success of different technologies and the composition of the heels. There is also substantial information on the waste types in each tank based on historical records. Therefore, this study will correlate the performance of technologies used so far and compare them to the known waste types in the tanks. This will be used to estimate the performance of future C Farm heel retrievals. An initial decision tree is developed and employed on tanks C-101, C-102, and C 111. An assumption of this study is that no additional characterization information would be available, before or after retrieval. Note that collecting additional information would substantially increase the probability of success. Deploying some in-situ testing technologies, such as a water lance or an in-situ Raman probe, might substantially increase the probability of successfully selecting the process conditions without having to take samples from the tanks for laboratory analysis. (authors)« less

  4. Methods for heel retrieval for tanks C-101, C-102, and C-111 at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, Terry L.; Kirch, N. W.; Reynolds, Jacob G.

    The purpose of this paper is to evaluate the prospects of using bulk waste characteristics to determine the most appropriate heel retrieval technology. If the properties of hard to remove heels can be determined before bulk retrieval, then a heel retrieval technology can be selected before bulk retrieval is complete. This would save substantially on sampling costs and would allow the deployment of the heel retrieval technology immediately after bulk retrieval. The latter would also accelerate the heel removal schedule. A number of C-farm retrievals have been fully or partially completed at the time of this writing. Thus, there ismore » already substantial information on the success of different technologies and the composition of the heels. There is also substantial information on the waste types in each tank based on historical records. Therefore, this study will correlate the performance of technologies used so far and compare them to the known waste types in the tanks. This will be used to estimate the performance of future C Farm heel retrievals. An initial decision tree is developed and employed on tanks C-101, C-102, and C 111. An assumption of this study is that no additional characterization information would be available, before or after retrieval. Note that collecting additional information would substantially increase the probability of success. Deploying some in-situ testing technologies, such as a water lance or an in-situ Raman probe, might substantially increase the probability of successfully selecting the process conditions without having to take samples from the tanks for laboratory analysis.« less

  5. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  6. Development and Deployment of the Mobile Arm Retrieval System (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Christopher A.; Landon, Matthew R.; Hanson, Carl E.

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012. (authors)« less

  7. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  8. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEFIGH PRICE, C.

    2000-09-25

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initialmore » retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.« less

  9. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  10. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-01-10

    Describes the hardware and software for the AZ-101 Mixer Pump Data Acquisition System. The purpose of the tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste (NCAW), and eventual disposal as glass via the Hanford Waste Vitrification Plant.

  11. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-12

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase I : Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activitymore » Waste and High-Level Waste Feed Data Quality Objectives (L and H DQO) (Patello et al. 1999), and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  12. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  13. Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implementedmore » to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.« less

  14. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less

  15. Final Inventory Work-Off Plan for ORNL transuranic wastes (1986 version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, L.S.

    1988-05-01

    The Final Inventory Work-Off Plan (IWOP) for ORNL Transuranic Wastes addresses ORNL's strategy for retrieval, certification, and shipment of its stored and newly generated contact-handled (CH) and remote-handled (RH) transuranic (TRU) wastes to the Waste Isolation Pilot Plant (WIPP), the proposed geologic repository near Carlsbad, New Mexico. This document considers certification compliance with the WIPP waste acceptance criteria (WAC) and is consistent with the US Department of Energy's Long-Range Master Plan for Defense Transuranic Waste Management. This document characterizes Oak Ridge National Laboratory's (ORNL's) TRU waste by type and estimates the number of shipments required to dispose of it; describesmore » the methods, facilities, and systems required for its certification and shipment; presents work-off strategies and schedules for retrieval, certification, and transportation; discusses the resource needs and additions that will be required for the effort and forecasts costs for the long-term TRU waste management program; and lists public documentation required to support certification facilities and strategies. 22 refs., 6 figs., 10 tabs.« less

  16. Granite disposal of U.S. high-level radioactive waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, basedmore » on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.« less

  17. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  18. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  19. Methods and system for subsurface stabilization using jet grouting

    DOEpatents

    Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.

    1999-01-01

    Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.

  20. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)« less

  1. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-05-19

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy ''Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO)' (Nguyen 1999a), ''Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Butch X (LAW DQO) (Nguyen 1999b)'', ''Low Activity Wastemore » and High-Level Waste Feed Data Quality Objectives (L&H DQO)'' (Patello et al. 1999), and ''Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO)'' (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide sub-samples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  2. Crawler Acquisition and Testing Demonstration Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEFIGH-PRICE, C.

    2000-10-23

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support finalmore » design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan includes the following: (1) Identification of acquisition strategy and plan to obtain a crawler based retrieval system; (2) Plan for sufficient cold testing to make a decision for W-523 and to comply with TPA Milestone M-45-03H; (3) Cost and schedule for path forward; (4) Responsibilities of the participants; and (5) The plan is supported by updated Level 1 logics, a Relative Order of Magnitude cost estimate and preliminary project schedule.« less

  3. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.« less

  4. Optimisation of the Management of Higher Activity Waste in the UK - 13537

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Ciara; Buckley, Matthew

    2013-07-01

    The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interimmore » storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)« less

  5. Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval

    PubMed Central

    Zhang, Hui-Min; Xu, Wei; Li, Gang; Liu, Zhan-Meng; Wu, Zu-Cheng; Li, Bo-Geng

    2016-01-01

    Energy extraction from waste has attracted much interest nowadays. Herein, a coupled redox fuel cell (CRFC) device using heavy metals, such as copper, as an electron acceptor is assembled to testify the recoveries of both electricity and the precious metal without energy consumption. In this study, a NaBH4-Cu(II) CRFC was employed as an example to retrieve copper from a dilute solution with self-electricity production. The properties of the CRFC have been characterized, and the open circuit voltage was 1.65 V with a maximum power density of 7.2 W m−2 at an initial Cu2+ concentration of 1,600 mg L−1 in the catholyte. 99.9% of the 400 mg L−1 copper was harvested after operation for 24 h, and the product formed on the cathode was identified as elemental copper. The CRFC demonstrated that useful chemicals were recovered and the electricity contained in the chemicals was produced in a self-powered retrieval process. PMID:26877144

  6. Assessing the costs of disposable and reusable supplies wasted during surgeries.

    PubMed

    Chasseigne, V; Leguelinel-Blache, G; Nguyen, T L; de Tayrac, R; Prudhomme, M; Kinowski, J M; Costa, P

    2018-05-01

    The management of disposable and reusable supplies might have an impact on the cost efficiency of the Operating Room (OR). This study aimed to evaluate the cost and reasons for wasted supplies in the OR during surgical procedures. We conducted an observational and prospective study in a French university hospital. We assessed the cost of wasted supplies in the OR (defined by opened unused devices), the reasons for the wastage, and the circulator retrievals. At the end, we assessed the perception of surgeons and nurses relative to the supply wastage. Fifty routine procedures and five non-scheduled procedures were observed in digestive (n = 20), urologic (n = 20) and gynecologic surgery (n = 15). The median cost [IQR] of open unused devices was €4.1 [0.5; 10.5] per procedure. Wasted supplies represented up to 20.1% of the total cost allocated to surgical supplies. Considering the 8000 surgical procedures performed in these three surgery departments, the potential annual cost savings were 100 000€. The most common reason of wastage was an anticipation of the surgeon's needs. The circulating nurse spent up to 26.3% of operative time outside of the OR, mainly attending to an additional demand from the surgeon (30%). Most of the survey respondents (68%) agreed that knowing supply prices would change their behavior. This study showed the OR is a major source of wasted hospital expenditure and an area wherein an intervention would have a significant impact. Reducing wasted supplies could improve the cost efficiency of the OR and also decrease its ecological impact. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  8. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastesmore » for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.« less

  9. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  10. Mission analysis for cross-site transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.

    1995-11-01

    The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ``initial state`` (or current cross-site transfer system) to meet the requirements and constraints.

  11. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  12. Solid Waste Management: Abstracts From the Literature - 1964.

    ERIC Educational Resources Information Center

    Connolly, John A.; Stainback, Sandra E.

    The Solid Waste Disposal Act of 1965 (Public Law 89-272, Title II) and its amending legislation, the Resource Recovery Act of 1970 (Public Law 91-512, Title I), authorize collection, storage, and retrieval of information relevant to all aspects of solid-waste management. As part of this effort, the U.S. Environmental Protection Agency's…

  13. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, TJ

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75more » ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement device, did not operate effectively. Consequently, it is not suitable for application to the AWR process. (4) Initially, the spray ring (operated at approximately 2300 psi) and the nozzles provided by the pump vendor did not perform acceptably. The nozzles were replaced with a more robust model, and the performance was then acceptable. (5) The average solids concentration achieved in the slurry before Bentogrout addition was approximately 16% by weight. The solids concentration of the slurry after Bentogrout addition ranged from 26% to approximately 40%. The slurry pump and ITL system performed well at every concentration. No line plugging or other problems were noted. The results of the CTL runs and later ITL testing are summarized in an appendix to this report.« less

  15. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examinesmore » the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.« less

  16. Buried waste integrated demonstration human engineered control station. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  17. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    NASA Astrophysics Data System (ADS)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at 30 and 60 meters from the drill site, suggests that reestablishment of the foraminiferal fauna likely commenced shortly after cessation of drilling activity.

  18. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, E.J.

    1997-07-31

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in themore » Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.« less

  19. Managing Waste Inventory and License Limits at the Perma-Fix Northwest Facility to Meet CH2M Hill Plateau Remediation Company (CHPRC) American Recovery and Reinvestment Act (ARRA) Deliverables - 12335

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moak, Don J.; Grondin, Richard L.; Triner, Glen C.

    CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less

  20. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  1. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. Themore » Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team Final Report and the Internal Assessment Final Report.« less

  2. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Crawford, C.; Cozzi, A.

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less

  3. Robots remove explosive waste from flooded site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    Explosive industrial waste can remain hazardous for years, making remediation extremely dangerous, particularly when using traditional methods involving people and manually operated equipment. The work is even more complex if the waste is submerged. Authorities in 1988 faced an unusual challenge when they decided to clean up a flooded area that had been used for more than 30 years as a dump for explosive materials. They devised an innovative but highly effective solution. Instead of using divers, two robots perform the cleanup while site personnel remain 600 feet away from the restricted area. The robots were developed by Sonsub Environmentalmore » Services Inc. (Houston), which is responsible for their operation. The robots initially located and cleared a small area underwater to set up a metal-processing system, which also was designed by Sonsub. The system is similar to a metal-recycling shredder. The robots then assembled the 25-foot-tall, 20-ton system 60 feet below the surface on the pit floor. A large, surface robot carried sections of the shredder to the cleared area and lowered them, while a smaller, submersible robot guided them into position. This required extreme precision by the smaller robot, which had to ensure that sections mated properly. Both robots now retrieve waste from the pit bottom and feed it into the shredder. The larger robot has a 40-foot jointed arm for lifting up to 1,000 pounds of debris, a manipulator hand for sorting through rock piles and removing small containers, and a grapple for picking up items from the pit floor.« less

  4. Dealing with Historical Discrepancies: The Recovery of National Research Experiment (NRX) Reactor Fuel Rods at Chalk River Laboratories (CRL) - 13324

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vickerd, Meggan

    2013-07-01

    Following the 1952 National Research Experiment (NRX) Reactor accident, fuel rods which had short irradiation histories were 'temporarily' buried in wooden boxes at the 'disposal grounds' during the cleanup effort. The Nuclear Legacy Liabilities Program (NLLP), funded by Natural Resources Canada (NRCan), strategically retrieves legacy waste and restores lands affected by Atomic Energy of Canada Limited (AECL) early operations. Thus under this program the recovery of still buried NRX reactor fuel rods and their relocation to modern fuel storage was identified as a priority. A suspect inventory of NRX fuels was compiled from historical records and various research activities. Sitemore » characterization in 2005 verified the physical location of the fuel rods and determined the wooden boxes they were buried in had degraded such that the fuel rods were in direct contact with the soil. The fuel rods were recovered and transferred to a modern fuel storage facility in 2007. Recovered identification tags and measured radiation fields were used to identify the inventory of these fuels. During the retrieval activity, a discrepancy was discovered between the anticipated number of fuel rods and the number found during the retrieval. A total of 32 fuel rods and cans of cut end pieces were recovered from the specified site, which was greater than the anticipated 19 fuel rods and cans. This discovery delayed the completion of the project, increased the associated costs, and required more than anticipated storage space in the modern fuel storage facility. A number of lessons learned were identified following completion of this project, the most significant of which was the potential for discrepancies within the historical records. Historical discrepancies are more likely to be resolved by comprehensive historical record searches and site characterizations. It was also recommended that a complete review of the wastes generated, and the total affected lands as a result of this historic 1952 NRX accident be undertaken. These lessons and recommendations have lead to changes in how the NLLP is executed in the CRL waste management areas. (authors)« less

  5. Reversed mining and reversed-reversed mining: the irrational context of geological disposal of nuclear waste

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2000-06-01

    Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.

  6. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  7. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  8. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, B.D.

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  9. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less

  10. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  11. An Optical Disk-Based Information Retrieval System.

    ERIC Educational Resources Information Center

    Bender, Avi

    1988-01-01

    Discusses a pilot project by the Nuclear Regulatory Commission to apply optical disk technology to the storage and retrieval of documents related to its high level waste management program. Components and features of the microcomputer-based system which provides full-text and image access to documents are described. A sample search is included.…

  12. Geotechnical Field Data and Analysis Report, July 1991--June 1992. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Geotechnical Field Data and Analysis Report documents the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The data are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the underground excavations during operations. The data are obtained as part of a routine monitoring program and do not include data from tests performed by Sandia National Laboratories (SNL), the Scientific Advisor to the project, in support of performance assessment studies. The purpose of the geomechanical monitoring program is to provide in situ data to supportmore » continuing assessments of the design for the underground facilities. Specifically, the program provides: Early detection of conditions that could compromise operational safety; evaluation of room closure to ensure retrievability of waste; guidance for design modifications and remedial actions; and data for interpreting the actual behavior of underground openings, in comparison with established design criteria. This Geotechnical Field Data and Analysis Report covers the period July 1, 1991 to June 30, 1992. Volume 1 provides an interpretation of the field data while Volume 2 describes and presents the data itself.« less

  13. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Jim G.

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

  14. Investigation of Tank 241-AN-101 Floating Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Douglas P.; Meznarich, H. K.

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less

  15. Accession Bulletin, Volume 1 Number 1, January 1970.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Solid Waste Management Office.

    The purpose of this Bulletin is to list both what is being published in the world literature pertaining to solid waste management and being abstracted for input into the Solid Waste Information Retrieval System (SWIRS). SWIRS accessions cannot be all-inclusive; the holdings represent only that portion of the massive literature rapidly being…

  16. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  17. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  18. Radiation streaming and skyshine evaluation for a proposed low-level radioactive waste assured isolation facility.

    PubMed

    Arno, Matthew; Hamilton, Ian S

    2003-10-01

    Texas is investigating the idea of building a long term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground, retrievable low-level radioactive waste storage facility. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using MCNP to model the facility in greater detail. Using bounding source term assumptions, the radiation doses and dose rates are found to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma" rooms where the waste with greatest gamma radiation intensity is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is less than the 1 mSv annual limit for exposure of the public. Within the site perimeter, modifying the roof results in an order of magnitude drop in the dose rate for personnel outside the facility and on the facility roof, as well as a significant drop inside the facility. Radiation streaming inside the facility can be lowered almost two orders of magnitude by placing operational restrictions to keep at least two rows of waste containers in front of the high-gamma room to cut down on the size of the path for streaming.

  19. Hanford immobilized low-activity tank waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less

  20. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 1. Initialization, operation, and documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the first of four volumes of the description of the CIRMIS Data System.« less

  1. 42 CFR 433.116 - FFP for operation of mechanized claims processing and information retrieval systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and information retrieval systems. 433.116 Section 433.116 Public Health CENTERS FOR MEDICARE... FISCAL ADMINISTRATION Mechanized Claims Processing and Information Retrieval Systems § 433.116 FFP for operation of mechanized claims processing and information retrieval systems. (a) Subject to paragraph (j) of...

  2. 42 CFR 433.116 - FFP for operation of mechanized claims processing and information retrieval systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and information retrieval systems. 433.116 Section 433.116 Public Health CENTERS FOR MEDICARE... FISCAL ADMINISTRATION Mechanized Claims Processing and Information Retrieval Systems § 433.116 FFP for operation of mechanized claims processing and information retrieval systems. (a) Subject to paragraph (j) of...

  3. 42 CFR 433.116 - FFP for operation of mechanized claims processing and information retrieval systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and information retrieval systems. 433.116 Section 433.116 Public Health CENTERS FOR MEDICARE... FISCAL ADMINISTRATION Mechanized Claims Processing and Information Retrieval Systems § 433.116 FFP for operation of mechanized claims processing and information retrieval systems. (a) Subject to paragraph (j) of...

  4. 42 CFR 433.116 - FFP for operation of mechanized claims processing and information retrieval systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and information retrieval systems. 433.116 Section 433.116 Public Health CENTERS FOR MEDICARE... FISCAL ADMINISTRATION Mechanized Claims Processing and Information Retrieval Systems § 433.116 FFP for operation of mechanized claims processing and information retrieval systems. (a) Subject to paragraph (j) of...

  5. Retrieving for Rehearsal: An Analysis of Active Rehearsal in Children's Memory.

    ERIC Educational Resources Information Center

    Ornstein, Peter A.; And Others

    1985-01-01

    Experiments were conducted to explore the operation of retrieval processes in elementary age children's active rehearsal strategies. Using free-recall tasks, subjects were given instructions in active rehearsal as well as supports that might facilitate retrieval operation. Findings suggested that retrieval per se was not necessary for beneficial…

  6. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year tomore » maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.« less

  7. 42 CFR 433.116 - FFP for operation of mechanized claims processing and information retrieval systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and information retrieval systems. 433.116 Section 433.116 Public Health CENTERS FOR MEDICARE... FISCAL ADMINISTRATION Mechanized Claims Processing and Information Retrieval Systems § 433.116 FFP for operation of mechanized claims processing and information retrieval systems. (a) Subject to 42 CFR 433.113(c...

  8. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical analyses, and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AZ-102 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plan.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, Wing K.; Pegg, Ian L.; Brandys, Marek

    One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less

  10. Operant conditioning of autobiographical memory retrieval.

    PubMed

    Debeer, Elise; Raes, Filip; Williams, J Mark G; Craeynest, Miet; Hermans, Dirk

    2014-01-01

    Functional avoidance is considered as one of the key mechanisms underlying overgeneral autobiographical memory (OGM). According to this view OGM is regarded as a learned cognitive avoidance strategy, based on principles of operant conditioning; i.e., individuals learn to avoid the emotionally painful consequences associated with the retrieval of specific negative memories. The aim of the present study was to test one of the basic assumptions of the functional avoidance account, namely that autobiographical memory retrieval can be brought under operant control. Here 41 students were instructed to retrieve personal memories in response to 60 emotional cue words. Depending on the condition, they were punished with an aversive sound for the retrieval of specific or nonspecific memories in an operant conditioning procedure. Analyzes showed that the course of memory specificity significantly differed between conditions. After the procedure participants punished for nonspecific memories retrieved significantly more specific memories compared to participants punished for specific memories. However, whereas memory specificity significantly increased in participants punished for specific memories, it did not significantly decrease in participants punished for nonspecific memories. Thus, while our findings indicate that autobiographical memory retrieval can be brought under operant control, they do not support a functional avoidance view on OGM.

  11. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  12. A Tropospheric Emission Spectrometer HDO/H2O Retrieval Simulator for Climate Models

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Risi, C.; Schmidt, G. A.; Worden, J.; Voulgarakis, A.; LeGrande, A. N.; Sobel, A. H.; Healy, R. J.

    2012-01-01

    Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the model meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, categorical approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and model meteorology at short time scales. To test this approach, nudged simUlations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the D fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30 over the ocean and decreases of up to 40 over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had D biases of 8 over ocean and 34 over land compared to TES D, which were less than the biases using raw model D fields.

  13. Robotics Technology Crosscutting Program. Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had commonmore » (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.« less

  14. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  15. Field Test to Evaluate Deep Borehole Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan

    The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors. For such nations the cost for disposing of volumetrically limited waste streams could be lower than mined geologic repositories.« less

  16. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  17. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Operative costs, reasons for operative waste, and vendor credit replacement in spinal surgery.

    PubMed

    Epstein, Nancy E; Roberts, Rita; Collins, John

    2015-01-01

    In 2012, Epstein et al. documented that educating spinal surgeons reduced the cost of operative waste (explanted devices: placed but removed prior to closure) occurring during anterior cervical diskectomy/fusion from 20% to 5.8%.[5] This prompted the development of a two-pronged spine surgeon-education program (2012-2014) aimed at decreasing operative costs for waste, and reducing the nine reasons for operative waste. The spine surgeon-education program involved posting the data for operative costs of waste and the nine reasons for operative waste over the neurosurgery/orthopedic scrub sinks every quarter. These data were compared for 2012 (latter 10 months), 2013 (12 months), and 2014 (first 9 months) (e.g. data were normalized). Savings from a 2013 Vendor Credit Replacement program were also calculated. From 2012 to 2013 and 2014, spinal operative costs for waste were, respectively reduced by 64.7% and 61% for orthopedics, and 49.4% and 45.2% for neurosurgery. Although reduced by the program, the major reason for operative waste for all 3 years remained surgeon-related factors (e.g. 159.6, to 67, and 96, respectively). Alternatively, the eight other reasons for operative waste were reduced from 68.4 (2012) to 12 (2013) and finally to zero by 2014. Additionally, the Vendor Replacement program for 2013 netted $78,564. The spine surgeon-education program reduced the costs/reasons for operative waste for 2012 to lower levels by 2013 and 2014. Although the major cost/reasons for operative waste were attributed to surgeon-related factors, these declined while the other eight reasons for operative waste were reduced to zero by 2014.

  19. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technicalmore » Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  20. FFTF disposable solid waste cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less

  1. Estimation of Plutonium-240 Mass in Waste Tanks Using Ultra-Sensitive Detection of Radioactive Xenon Isotopes from Spontaneous Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, Theodore W.; Gesh, Christopher J.; Haas, Daniel A.

    This report details efforts to develop a technique which is able to detect and quantify the mass of 240Pu in waste storage tanks and other enclosed spaces. If the isotopic ratios of the plutonium contained in the enclosed space is also known, then this technique is capable of estimating the total mass of the plutonium without physical sample retrieval and radiochemical analysis of hazardous material. Results utilizing this technique are reported for a Hanford Site waste tank (TX-118) and a well-characterized plutonium sample in a laboratory environment.

  2. Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londe, L.; Seidler, W.K.; Bosgiraud, J.M.

    2007-07-01

    Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less

  3. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in waysmore » that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.« less

  4. Safeguards and retrievability from waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for anymore » planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.« less

  5. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.

    PubMed

    Wang, Kuen-Sheng; Lin, Kae-Long; Lee, Ching-Hwa

    2009-02-15

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe.

  6. Annual report to Congress, FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-07-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from its defense activities in a cost-effective manner that protects the health and safety of the public and workers and the quality of the environment. To accomplish this mission OCRWM is developing a waste management system consisting of a geologic repository, a facility for monitored retrievable storage, and a system for transporting the waste. This is the ninth annual report submitted by the OCRWM to Congress. The OCRWM submits this report to informmore » Congress of its activities and expenditures during fiscal year 1992 (October 1, 1991 through September 30, 1992).« less

  7. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24more » figures, 60 tables.« less

  8. Spent sealed radium sources conditioning in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourao, R.P.

    1999-06-01

    The management of spent sealed sources is considered by the International Atomic Energy Agency (IAEA) one of the greatest challenges faced by nuclear authorities today, especially in developing countries. One of the Agency`s initiatives to tackle this problem is the Spent Radium Sources Conditioning Project, a worldwide project relying on the regional co-operation between countries. A team from the Brazilian nuclear research institute Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) was chosen as the expert team to carry out the operations in Latin America; since December 1996 radium sources have been safely conditioned in Uruguay, Nicaragua, Guatemala, Ecuador and Paraguay.more » A Quality Assurance Program was established, encompassing the qualification of the capsule welding process, written operational procedures referring to all major steps of the operation, calibration of monitors and information retrievability. A 200L carbon steel drum-based packaging concept was used to condition the sources, its cavity being designed to receive the lead shield device containing stainless steel capsules with the radium sources. As a result of these operations, a total amount of 2,897 mg of needles, tubes, medical applicators, standard sources for calibration, lightning rods, secondary wastes and contaminated objects were stored in proper conditions and are now under control of the nuclear authorities of the visited countries.« less

  9. 40 CFR 264.110 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post... and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface....115 (which concern closure) apply to the owners and operators of all hazardous waste management...

  10. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations,more » work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  11. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.

  12. 40 CFR 265.110 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... the owners and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...

  13. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less

  14. Mathematics and Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, Gerald

    1979-01-01

    Examines the main mathematical approaches to information retrieval, including both algebraic and probabilistic models, and describes difficulties which impede formalization of information retrieval processes. A number of developments are covered where new theoretical understandings have directly led to improved retrieval techniques and operations.…

  15. 78 FR 68431 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    .... FOR FURTHER INFORMATION CONTACT: Kimberly Ballinger, Federal Coordinator, Department of Energy...-6332; or Email: [email protected] . SUPPLEMENTARY INFORMATION: Purpose of the Board: The... DOE Presentation on the Hanford Tank Waste Retrieval, Treatment, and Disposition Framework DOE...

  16. LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS

    2000-09-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less

  17. Case report on the non-operative management of a retrievable inferior vena cava filter perforating the duodenum.

    PubMed

    Fernandez-Moure, Joseph S; Kim, Keemberly; Zubair, M Haseeb; Rosenberg, Wade R

    2017-01-01

    Deep vein thrombosis (DVT) continues to be a significant source of morbidity for surgical patients. Placement of a retrievable inferior vena cava (IVC) filter is used when patients have contraindications to anticoagulation or recurrent pulmonary embolism despite therapeutic anticoagulation. Although retrievable IVC filters are often used, they carry a unique set of risks. A 67-year-old man presents to the Emergency Room (ER) following large volume melena and complaining of syncope. One year prior, the patient had been diagnosed with Glioblastoma multiforme, for which he underwent a craniotomy with near-total resection of the mass. He subsequently developed a deep vein thrombosis and underwent placement of a retrievable inferior vena cava (IVC) filter. Computerized tomography (CT) and esophagogastroduodenoscopy showed duodenal perforation by the retrievable IVC filter. The filter was successfully retrieved through an endovascular approach. Retrievable IVC filter placement is the preferred method of pulmonary embolism prevention in patients with significant risk for bleeding. Duodenal perforation by a retrievable IVC filter is a rare and serious complication. It is usually managed surgically, but can also be managed non-operatively. For patients with significant comorbidities or patients who are poor surgical candidates, non-operative management with close monitoring can serve as an initial approach to the patient with a caval enteric perforation secondary to a retrievable IVC filter. Copyright © 2017. Published by Elsevier Ltd.

  18. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  19. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  20. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  1. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  2. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  3. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; hide

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  4. Tanks focus area multiyear program plan FY97-FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. Themore » focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.« less

  5. Dilution physics modeling: Dissolution/precipitation chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less

  6. Reducing the carbon footprint of the operating theatre: a multicentre quality improvement report.

    PubMed

    Southorn, T; Norrish, A R; Gardner, K; Baxandall, R

    2013-06-01

    Currently, there are very few provisions for recycling in theatres. We measured the weight of clinical waste for several orthopaedic operations. This waste was then examined and sorted into domestic waste and clinical waste. With staff education it is possible to reduce the amount of clinical waste generated by the operating theatre by roughly 50%. A greater awareness of disposal options leads to a reduction in waste disposed of by incineration.

  7. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  8. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  9. MUNICIPAL WASTE COMBUSTION ASSESSMENT: MEDICAL WASTE COMBUSTION PRACTICES AT MUNICIPAL WASTE COMBUSTION FACILITIES

    EPA Science Inventory

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...

  10. 40 CFR 265.254 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...

  11. Current and potential uses of bioactive molecules from marine processing waste.

    PubMed

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  12. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  13. Left Posterior Parietal Cortex Participates in Both Task Preparation and Episodic Retrieval

    PubMed Central

    Phillips, Jeffrey S.; Velanova, Katerina; Wolk, David A.; Wheeler, Mark E.

    2012-01-01

    Optimal memory retrieval depends not only on the fidelity of stored information, but also on the attentional state of the subject. Factors such as mental preparedness to engage in stimulus processing can facilitate or hinder memory retrieval. The current study used functional magnetic resonance imaging (fMRI) to distinguish preparatory brain activity before episodic and semantic retrieval tasks from activity associated with retrieval itself. A catch-trial imaging paradigm permitted separation of neural responses to preparatory task cues and memory probes. Episodic and semantic task preparation engaged a common set of brain regions, including the bilateral intraparietal sulcus (IPS), left fusiform gyrus (FG), and the pre-supplementary motor area (pre-SMA). In the subsequent retrieval phase, the left IPS was among a set of frontoparietal regions that responded differently to old and new stimuli. In contrast, the right IPS responded to preparatory cues with little modulation during memory retrieval. The findings support a strong left-lateralization of retrieval success effects in left parietal cortex, and further indicate that left IPS performs operations that are common to both task preparation and memory retrieval. Such operations may be related to attentional control, monitoring of stimulus relevance, or retrieval. PMID:19285142

  14. Optimizing Anesthesia-Related Waste Disposal in the Operating Room: A Brief Report.

    PubMed

    Hubbard, Richard M; Hayanga, Jeremiah A; Quinlan, Joseph J; Soltez, Anita K; Hayanga, Heather K

    2017-10-01

    Misappropriation of noncontaminated waste into regulated medical waste (RMW) containers is a source of added expense to health care facilities. The operating room is a significant contributor to RMW waste production. This study sought to determine whether disposing of anesthesia-related waste in standard waste receptacles before patient entry into the operating room would produce a reduction in RMW. A median of 0.35 kg of waste was collected from 51 cases sampled, with a potential annual reduction of 13,800 kg of RMW to the host institution, and a cost savings of $2200.

  15. Auditing Operating Room Recycling: A Management Case Report.

    PubMed

    McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane

    2015-08-01

    Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints.

  16. 40 CFR 240.200-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...

  17. 40 CFR 240.200-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...

  18. Query-Time Optimization Techniques for Structured Queries in Information Retrieval

    ERIC Educational Resources Information Center

    Cartright, Marc-Allen

    2013-01-01

    The use of information retrieval (IR) systems is evolving towards larger, more complicated queries. Both the IR industrial and research communities have generated significant evidence indicating that in order to continue improving retrieval effectiveness, increases in retrieval model complexity may be unavoidable. From an operational perspective,…

  19. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  20. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor

    NASA Astrophysics Data System (ADS)

    Loyola, Diego G.; Gimeno García, Sebastián; Lutz, Ronny; Argyrouli, Athina; Romahn, Fabian; Spurr, Robert J. D.; Pedergnana, Mattia; Doicu, Adrian; Molina García, Víctor; Schüssler, Olena

    2018-01-01

    This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.

  1. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  2. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  3. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  4. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  5. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  6. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.« less

  7. An overview of waste crime, its characteristics, and the vulnerability of the EU waste sector.

    PubMed

    Baird, J; Curry, R; Cruz, P

    2014-02-01

    While waste is increasingly viewed as a resource to be globally traded, increased regulatory control on waste across Europe has created the conditions where waste crime now operates alongside a legitimate waste sector. Waste crime,is an environmental crime and a form of white-collar crime, which exploits the physical characteristics of waste, the complexity of the collection and downstream infrastructure, and the market opportunities for profit. This paper highlights some of the factors which make the waste sector vulnerable to waste crime. These factors include new legislation and its weak regulatory enforcement, the economics of waste treatment, where legal and safe treatment of waste can be more expensive than illegal operations, the complexity of the waste sector and the different actors who can have some involvement, directly or indirectly, in the movement of illegal wastes, and finally that waste can be hidden or disguised and creates an opportunity for illegal businesses to operate alongside legitimate waste operators. The study also considers waste crime from the perspective of particular waste streams that are often associated with illegal shipment or through illegal treatment and disposal. For each, the nature of the crime which occurs is shown to differ, but for each, vulnerabilities to waste crime are evident. The paper also describes some approaches which can be adopted by regulators and those involved in developing new legislation for identifying where opportunities for waste crime occurs and how to prevent it.

  8. On the retrieval efficiency of light storage in an EIT medium

    NASA Astrophysics Data System (ADS)

    Chough, Young-Tak

    2016-08-01

    We investigate the retrieval efficiency of light slowed and/or stored in a medium with electromagnetically-induced transparency (an EIT medium) by numerical simulations based on first principles. Starting from the master equation formulation, we derive the full dynamics of the system and then show how the approximations are applied to reduce the number of dynamical equations. While operating the system as an optical "retarder," a "reflector," and a "beam-splitter," we find that the total retrieval efficiency in the case of the "beam-splitter" operation is lower than that in either of the other two operations. Nevertheless, we find that (1) when an appropriate value of detuning is applied between the two counter-propagating " read"-fields, the retrieval efficiency in the latter case can be significantly improved, (2) storing the signal in the form of the atomic spin wave is more advantageous than storing it in the form of a stationary light pulse (SLP), and (3) the retrieval efficiency can be augmented by increasing the strengths of the " read"-fields.

  9. Retrieval-travel-time model for free-fall-flow-rack automated storage and retrieval system

    NASA Astrophysics Data System (ADS)

    Metahri, Dhiyaeddine; Hachemi, Khalid

    2018-03-01

    Automated storage and retrieval systems (AS/RSs) are material handling systems that are frequently used in manufacturing and distribution centers. The modelling of the retrieval-travel time of an AS/RS (expected product delivery time) is practically important, because it allows us to evaluate and improve the system throughput. The free-fall-flow-rack AS/RS has emerged as a new technology for drug distribution. This system is a new variation of flow-rack AS/RS that uses an operator or a single machine for storage operations, and uses a combination between the free-fall movement and a transport conveyor for retrieval operations. The main contribution of this paper is to develop an analytical model of the expected retrieval-travel time for the free-fall flow-rack under a dedicated storage assignment policy. The proposed model, which is based on a continuous approach, is compared for accuracy, via simulation, with discrete model. The obtained results show that the maximum deviation between the continuous model and the simulation is less than 5%, which shows the accuracy of our model to estimate the retrieval time. The analytical model is useful to optimise the dimensions of the rack, assess the system throughput, and evaluate different storage policies.

  10. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastesmore » for disposal.« less

  11. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  12. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  13. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  14. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  15. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  16. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  17. Nuclear Waste Management under Approaching Disaster: A Comparison of Decommissioning Strategies for the German Repository Asse II.

    PubMed

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans-Peter

    2017-07-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has resulted in the identification of three possible so-called decommissioning options: complete backfilling, relocation of the waste to deeper levels in the mine, and retrieval. The selection of a decommissioning strategy must compare expected investment costs with expected social damage costs (economic, environmental, and health damage costs) caused by flooding and subsequent groundwater contamination. We apply a cost minimization approach that accounts for the uncertainty regarding the stability of the rock formation and the risk of an uncontrollable brine intrusion. Since economic and health impacts stretch out into the far future, we examine the impact of different discounting methods and rates. Due to parameter uncertainty, we conduct a sensitivity analysis concerning key assumptions. We find that retrieval, the currently preferred option by policymakers, has the lowest expected social damage costs for low discount rates. However, this advantage is overcompensated by higher expected investment costs. Considering all costs, backfilling is the best option for all discounting scenarios considered. © 2016 Society for Risk Analysis.

  18. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  19. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  20. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  1. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  2. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  3. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  4. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  5. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  6. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  7. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  8. 40 CFR 264.194 - General operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....194 Section 264.194 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.194 General operating requirements. (a) Hazardous wastes or treatment reagents must...

  9. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order,more » also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m 2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for total constituents and durability tested as a granular waste form. A subset of the granular material was stabilized in a clay based geopolymer matrix at 42% and 65% FBSR loadings and durability tested as a monolith waste form. The 65 wt% FBSR loaded monolith made with clay (radioactive) was more durable than the 67-68 wt% FBSR loaded monoliths made from fly ash (non-radioactive) based on short term PCT testing. Long term, 90 to 107 day, ASTM C1308 testing (similar to ANSI/ANS 16.1 testing) was only performed on two fly ash geopolymer monoliths at 67-68 wt% FBSR loading and three clay geopolymer monoliths at 42 wt% FBSR loading. More clay geopolymers need to be made and tested at longer times at higher FBSR loadings for comparison to the fly ash monoliths. Monoliths made with metakaolin (heat treated) clay are of a more constant composition and are very reactive as the heat treated clay is amorphous and alkali activated. The monoliths made with fly ash are subject to the inherent compositional variation found in fly ash as it is a waste product from burning coal and it contains unreactive components such as mullite. However, both the fly ash and the clay based monoliths perform well in long term ASTM C1308 testing.« less

  10. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  11. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  12. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  13. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  14. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  15. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  16. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel Storage Installation or a Monitored Retrievable Storage Facility.'' This draft regulatory guide is proposed revision 2 of Regulatory Guide 3.50, which provides a format that the NRC considers acceptable for submitting the information for license applications to store spent nuclear fuel, high-level radioactive waste, and/or reactor-related Greater than Class C waste.

  17. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  18. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less

  19. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  20. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  1. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  2. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  3. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  4. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  5. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  6. 42 CFR 433.110 - Basis, purpose, and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Information Retrieval Systems § 433.110 Basis, purpose, and applicability. (a) This subpart... information retrieval systems and for the operation of certain systems. Additional HHS regulations and CMS... conditions on mechanized claims processing and information retrieval systems (including eligibility...

  7. 42 CFR 433.110 - Basis, purpose, and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Information Retrieval Systems § 433.110 Basis, purpose, and applicability. (a) This subpart... information retrieval systems and for the operation of certain systems. Additional HHS regulations and CMS... conditions on mechanized claims processing and information retrieval systems (including eligibility...

  8. 42 CFR 433.110 - Basis, purpose, and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Information Retrieval Systems § 433.110 Basis, purpose, and applicability. (a) This subpart... information retrieval systems and for the operation of certain systems. Additional HHS regulations and CMS... conditions on mechanized claims processing and information retrieval systems (including eligibility...

  9. 42 CFR 433.110 - Basis, purpose, and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Information Retrieval Systems § 433.110 Basis, purpose, and applicability. (a) This subpart... information retrieval systems and for the operation of certain systems. Additional HHS regulations and CMS... conditions on mechanized claims processing and information retrieval systems (including eligibility...

  10. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leist, K.J.

    1998-02-18

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processingmore » (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less

  11. Let's Waste Less Waste, Level 4. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  12. Consolidated Storage Facilities: Camel's Nose or Shared Burden? - 13112

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, James M.

    2013-07-01

    The Blue Ribbon Commission (BRC) made a strong argument why the reformulated nuclear waste program should make prompt efforts to develop one or more consolidated storage facilities (CSFs), and recommended the amendment of NWPA Section 145(b) 2 (linking 'monitored retrievable storage' to repository development) as an essential means to that end. However, other than recommending that the siting of CSFs should be 'consent-based' and that spent nuclear fuel (SNF) at stranded sites should be first-in-line for removal, the Commission made few recommendations regarding how CSF development should proceed. Working with three other key Senators, Jeff Bingaman attempted in the 112.more » Congress to craft legislation (S. 3469) to put the BRC recommendations into legislative language. The key reason why the Nuclear Waste Administration Act of 2012 did not proceed was the inability of the four senators to agree on whether and how to amend NWPA Section 145(b). A brief review of efforts to site consolidated storage since the Nuclear Waste Policy Amendments Act of 1987 suggests a strong and consistent motivation to shift the burden to someone (anyone) else. This paper argues that modification of NWPA Section 145(b) should be accompanied by guidelines for regional development and operation of CSFs. After review of the BRC recommendations regarding CSFs, and the 'camel's nose' prospects if implementation is not accompanied by further guidelines, the paper outlines a proposal for implementation of CSFs on a regional basis, including priorities for removal from reactor sites and subsequently from CSFs to repositories. Rather than allowing repository siting to be prejudiced by the location of a single remote CSF, the regional approach limits transport for off-site acceptance and storage, increases the efficiency of removal operations, provides a useful basis for compensation to states and communities that accept CSFs, and gives states with shared circumstances a shared stake in storage and disposal in an integrated national program. (authors)« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R.A.; Cron, J.

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existingmore » equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.« less

  14. Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.

    2013-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.

  15. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  16. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  17. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  18. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  19. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber...

  20. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber...

  1. Lean waste classification model to support the sustainable operational practice

    NASA Astrophysics Data System (ADS)

    Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.

    2018-04-01

    Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.

  2. A Study of Textile Information Systems. Final Report.

    ERIC Educational Resources Information Center

    Work, Robert W.; Phillips, Dennis M.

    The Textile Information Retrieval Program (TIRP), a study made at the Massachusetts Institute of Technology to develop an interactive information retrieval system operating on a time sharing computer, was demonstrated to and operated by research scientists, information specialists, and numerous other persons at North Carolina State University at…

  3. Subject Retrieval from Full-Text Databases in the Humanities

    ERIC Educational Resources Information Center

    East, John W.

    2007-01-01

    This paper examines the problems involved in subject retrieval from full-text databases of secondary materials in the humanities. Ten such databases were studied and their search functionality evaluated, focusing on factors such as Boolean operators, document surrogates, limiting by subject area, proximity operators, phrase searching, wildcards,…

  4. The French Geological Repository Project Cigeo - 12023

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harman, Alain; Labalette, Thibaud; Dupuis, Marie-Claude

    The French Agency for Radioactive Waste Management, ANDRA, was launched by law in 1991 to perform and develop the research programme for managing high level and intermediate level long-lived radioactive waste generated by the French nuclear fleet. After a 15-year intensive research programme, including the study of alternative solutions, an overall review and assessment of the results was organized, including a national public debate. As a result, the Parliament passed a Planning Act on radioactive waste management in 2006. Commissioning of a geological repository by 2025 was one of the most important decisions taken at that time. To reach thismore » goal, a license application must be submitted and reviewed by the competent authorities by 2015. A detailed review and consultation process is, as well, defined in the Planning Act. Beside the legal framework the project needs to progress on two fronts. The first one is on siting. A significant milestone was reached in 2009 with the definition of a defined area to locate the underground repository facilities. This area was approved in March 2010 by the Government, after having collected the opinions and positions of all the interested parties, at both National and local levels. A new phase of dialogue with local players began to refine the implementation scenarios of surface facilities. The final site selection will be approved after a public debate planned for 2013. The second one is the industrial organization, planning and costing. The industrial project of this geological repository was called Cigeo (Centre Industriel de Stockage Geologique). Given the amount of work to be done to comply with the given time framework, a detailed organization with well-defined milestones must be set-up. Cigeo will be a specific nuclear facility, built and operated underground for over a hundred years. The consequence of this long duration is that the development of the repository facilities will take place in successive operational phases. The characteristics of the first waste packages received will determine the work and the corresponding investments by 2025 on the repository site. One of the main challenges will be to accommodate both activities of mining and nuclear operations at the same time and at the same location. From the technical standpoint, ventilation and fire risk cannot be managed through a simple transposition from current nuclear industry practices. The reversibility demand also leads to concrete proposals with regard to repository management flexibility and waste package retrievability. These proposals contribute to the dialogue with stakeholders to prepare for the public debate and a future law which will determine the reversibility conditions. New design developments are expected to be introduced in the application from the current studies conducted until 2014. The possibility of optimization beyond 2015 will be kept open taking into account the one hundred years operating time as well as the capability to integrate feedback gained from the first construction and operation works. The industrial committed work aims to reach the application stage by 2015. The license application procedure was defined by the 2006 Act. Subject to authorization, the construction might begin in 2017. (authors)« less

  5. River Protection Project (RPP) Readiness to Proceed 2 Internal Independent Review Team Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    This report describes the results of an independent review team brought in to assess CH2M Hill Hanford Group's readiness and ability to support the RPP's move into its next major phase - retrieval and delivery of tank waste to the Privatization Contractor

  6. Retrieval of Au, Ag, Cu precious metals coupled with electric energy production via an unconventional coupled redox fuel cell reactor.

    PubMed

    Zhang, Hui-Min; Fan, Zheng; Xu, Wei; Feng, Xiao; Wu, Zu-Cheng

    2017-09-15

    The recovery of heavy metals from aqueous solutions or e-wastes is of upmost importance. Retrieval of Au, Ag, and Cu with electricity generation through building an ethanol-metal coupled redox fuel cells (CRFCs) is demonstrated. The cell was uniquely assembled on PdNi/C anode the electro-oxidation of ethanol takes place to give electrons and then go through the external circuit reducing metal ions to metallic on the cathode, metals are recovered. Taking an example of removal of 100mgL -1 gold in 0.5M HAc-NaAc buffer solution as the catholyte, 2.0M ethanol in 1.0M alkaline solution as the anolyte, an open circuit voltage of 1.4V, more than 96% of gold removal efficiency in 20h, and equivalent energy production of 2.0kWhkg -1 of gold can be readily achieved in this system. When gold and copper ions coexist, it was confirmed that metallic Cu is formed on the cathodic electrode later than metallic Au formation by XPS analysis. Thus, this system can achieve step by step electrodeposition of gold and copper while the two metal ions coexisting. This work develops a new approach to retrieve valuable metals from aqueous solution or e-wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 40 CFR 265.254 - Design and operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each new waste pile on which construction commences after January 29, 1992, each lateral expansion of a waste pile unit on which construction commences after July 29, 1992, and each such replacement of an...

  8. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  9. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  10. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  11. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  12. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  13. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  14. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  15. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  16. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  17. MRNIDX - Marine Data Index: Database Description, Operation, Retrieval, and Display

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1982-01-01

    A database referencing the location and content of data stored on magnetic medium was designed to assist in the indexing of time-series and spatially dependent marine geophysical data collected or processed by the U. S. Geological Survey. The database was designed and created for input to the Geologic Retrieval and Synopsis Program (GRASP) to allow selective retrievals of information pertaining to location of data, data format, cruise, geographical bounds and collection dates of data. This information is then used to locate the stored data for administrative purposes or further processing. Database utilization is divided into three distinct operations. The first is the inventorying of the data and the updating of the database, the second is the retrieval of information from the database, and the third is the graphic display of the geographical boundaries to which the retrieved information pertains.

  18. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE.more » The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.« less

  19. Solid waste management in Abuja, Nigeria.

    PubMed

    Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R

    2008-01-01

    The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.

  20. Contextual Match and Cue-Independence of Retrieval-Induced Forgetting: Testing the Prediction of the Model by Norman, Newman, and Detre (2007)

    ERIC Educational Resources Information Center

    Hanczakowski, Maciej; Mazzoni, Giuliana

    2013-01-01

    Retrieval-induced forgetting (RIF) is the finding of impaired memory performance for information stored in long-term memory due to retrieval of a related set of information. This phenomenon is often assigned to operations of a specialized mechanism recruited to resolve interference during retrieval by deactivating competing memory representations.…

  1. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less

  2. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment.

    PubMed

    Sun, Daquan; Hale, Lauren; Kar, Gourango; Soolanayakanahally, Raju; Adl, Sina

    2018-03-01

    Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.M.; Geshay, R.J.

    In 1980, Phillips Petroleum Company faced a situation that was to typify similar experiences by many in the industry. An EPA Certified waste disposal firm, with whom Phillips had contracted for disposal of hazardous waste material, had failed to comply with applicable regulations and entered bankruptcy. Phillips, while fortunate in being able to identify and retrieve the waste it had sent to this facility, did have to help pay for the cleanup of a superfund site. The incident served as a clear reminder of the potential liabilities and risks that large, responsible corporations are exposed to when sending hazardous wastemore » off to distant third parties. Faced with this concern, Phillips Petroleum Company decided to embark on a program to develop the technology and expertise necessary to manage its own hazardous waste in a safe and responsible manner. The result is their rotary kiln incinerator system which is presented in this book.« less

  5. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  6. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  7. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  8. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  9. 40 CFR 267.111 - What general standards must I meet when I stop operating the unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to protect human health and the environment, post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products to the ground or... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  10. 40 CFR 267.111 - What general standards must I meet when I stop operating the unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to protect human health and the environment, post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products to the ground or... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  11. 40 CFR 267.31 - What are the general design and operation standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...

  12. CHARACTERIZATION OF AIR EMISSIONS AND RESIDUAL ASH FROM OPEN BURNING OF ELECTRONIC WASTES DURING SIMULATED RUDIMENTALRY RECYCLING OPERATIONS

    EPA Science Inventory

    Air emissions and residual ash measurements were made from open, uncontrolled combustion of electronic waste (e-waste) during simulations of practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were separately burned to simulate p...

  13. 40 CFR 265.120 - Certification of completion of post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... each hazardous waste disposal unit, the owner or operator must submit to the Regional Administrator, by registered mail, a certification that the post-closure care period for the hazardous waste disposal unit was...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...

  14. 40 CFR 267.54 - When must I amend the contingency plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency. (d) You change the list of emergency coordinators. (e) You change the...

  15. 40 CFR 267.54 - When must I amend the contingency plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency. (d) You change the list of emergency coordinators. (e) You change the...

  16. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...

  17. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...

  18. Use of information-retrieval languages in automated retrieval of experimental data from long-term storage

    NASA Technical Reports Server (NTRS)

    Khovanskiy, Y. D.; Kremneva, N. I.

    1975-01-01

    Problems and methods are discussed of automating information retrieval operations in a data bank used for long term storage and retrieval of data from scientific experiments. Existing information retrieval languages are analyzed along with those being developed. The results of studies discussing the application of the descriptive 'Kristall' language used in the 'ASIOR' automated information retrieval system are presented. The development and use of a specialized language of the classification-descriptive type, using universal decimal classification indices as the main descriptors, is described.

  19. Activities of information retrieval in Daicel Corporation : The roles and efforts of information retrieval team

    NASA Astrophysics Data System (ADS)

    Yamazaki, Towako

    In order to stabilize and improve quality of information retrieval service, the information retrieval team of Daicel Corporation has given some efforts on standard operating procedures, interview sheet for information retrieval, structured format for search report, and search expressions for some technological fields of Daicel. These activities and efforts will also lead to skill sharing and skill tradition between searchers. In addition, skill improvements are needed not only for a searcher individually, but also for the information retrieval team totally when playing searcher's new roles.

  20. Environmental analysis burial of offsite low-level waste at SRP

    NASA Astrophysics Data System (ADS)

    Poe, W. L.; Moyer, R. A.

    1980-12-01

    The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.

  1. 216-B-3 expansion ponds closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steammore » condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.« less

  2. 42 CFR 433.110 - Basis, purpose, and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Information Retrieval Systems § 433.110 Basis, purpose, and applicability. (a) This subpart... information retrieval systems and for the operation of certain systems. Additional HHS regulations and CMS... mechanized claims processing and information retrieval system or if the system fails to meet certain...

  3. Advanced Feedback Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1985-01-01

    In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…

  4. A cheap minimally painful and widely usable alternative for retrieving ureteral stents.

    PubMed

    Söylemez, Haluk; Sancaktutar, Ahmet Ali; Bozkurt, Yaşar; Atar, Murat; Penbegül, Necmettin; Yildirim, Kadir

    2011-01-01

    To describe a cheap, minimally painful and widely usable method for retrieving ureteral stents by using an ureteroscope. Sixty-seven patients with ureteral stents were enrolled in this study. The patients were randomized into a cystoscopic (35 patients) and a ureteroscopic (32 patients) group. All stents were retrieved by a flexible cystoscope in the first group and by a ureteroscope in the second group under local anesthesia. Patients in each group were assessed for stented time, stent side, cause of stent placement, operative time, peroperative pain, postoperative pain, irritative voiding symptoms and hematuria. Also costs of instruments were calculated. Stents were successfully retrieved in 67 patients. There were no statistical differences in the two groups regarding patient gender and age or stent side, operative time, stented time, mean operative pain score, irritative voiding symptom scores and hematuria. Total selling price was USD 20.399 for flexible instruments and USD 10.516 for rigid ones. Total maintenance price was higher in flexible instruments than in the rigid ones (USD 197.8 and 51.7 per use, respectively). Ureteroscopic stent retrieval is a minimally painful, safe and highly tolerable method under local anesthesia as well as flexible cystoscopic retrieval. Also, it is a cheap and widely usable method. Copyright © 2011 S. Karger AG, Basel.

  5. Operator priming and generalization of practice in adults' simple arithmetic.

    PubMed

    Chen, Yalin; Campbell, Jamie I D

    2016-04-01

    There is a renewed debate about whether educated adults solve simple addition problems (e.g., 2 + 3) by direct fact retrieval or by fast, automatic counting-based procedures. Recent research testing adults' simple addition and multiplication showed that a 150-ms preview of the operator (+ or ×) facilitated addition, but not multiplication, suggesting that a general addition procedure was primed by the + sign. In Experiment 1 (n = 36), we applied this operator-priming paradigm to rule-based problems (0 + N = N, 1 × N = N, 0 × N = 0) and 1 + N problems with N ranging from 0 to 9. For the rule-based problems, we found both operator-preview facilitation and generalization of practice (e.g., practicing 0 + 3 sped up unpracticed 0 + 8), the latter being a signature of procedure use; however, we also found operator-preview facilitation for 1 + N in the absence of generalization, which implies the 1 + N problems were solved by fact retrieval but nonetheless were facilitated by an operator preview. Thus, the operator preview effect does not discriminate procedure use from fact retrieval. Experiment 2 (n = 36) investigated whether a population with advanced mathematical training-engineering and computer science students-would show generalization of practice for nonrule-based simple addition problems (e.g., 1 + 4, 4 + 7). The 0 + N problems again presented generalization, whereas no nonzero problem type did; but all nonzero problems sped up when the identical problems were retested, as predicted by item-specific fact retrieval. The results pose a strong challenge to the generality of the proposal that skilled adults' simple addition is based on fast procedural algorithms, and instead support a fact-retrieval model of fast addition performance. (c) 2016 APA, all rights reserved).

  6. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary

    Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of themore » subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to transfer to a separate storage and shipping facility. (6) Handling of vapor, condensate, and other waste streams generated by the process. Each of these steps is discussed in the paper, together with the current state of progress in developing the technology and requirements for continued development. A schematic of the recommended baseline WWO treatment process is given below. (authors)« less

  7. The Development and Implementation of a Management Information System for an Education Information Retrieval Center.

    ERIC Educational Resources Information Center

    Jegi, John

    A management information system was developed for the Contra Costa County, California, Department of Education's Educational Information Retrieval Center. The system was designed to determine needed operational changes, to measure the effects of these changes, to monitor the center's operation, and to obtain information for dissemination. Data…

  8. Retrieval operations with SPARTAN 201

    NASA Image and Video Library

    1994-09-15

    STS064-74-052 (9-20 Sept. 1994) --- Astronauts onboard the space shuttle Discovery used a 70mm camera to capture this photograph of the retrieval operations with the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN 201). A gibbous moon can be seen in the background. Photo credit: NASA or National Aeronautics and Space Administration

  9. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  10. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  11. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  12. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  13. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  14. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and emergency...

  15. DETERMINATION OF AMMONIA MASS EMISSION FLUX FROM HOG WASTE EFFLUENT SPRAYING OPERATION USING OPEN PATH TUNABLE DIODE LASER SPECTROSCOPY WITH VERTICAL RADIAL PLUME MAPPING ANALYSIS

    EPA Science Inventory

    Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...

  16. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  17. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  18. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  19. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  20. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  1. Quantifying construction and demolition waste: an analytical review.

    PubMed

    Wu, Zezhou; Yu, Ann T W; Shen, Liyin; Liu, Guiwen

    2014-09-01

    Quantifying construction and demolition (C&D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C&D waste generation at both regional and project levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C&D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Effects of Scavenging on Waste Methoxyflurane Concentrations in Veterinary Operating Room Air

    DTIC Science & Technology

    1981-01-01

    Afl-AO5 572 AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL H4EALTH LAS -ETC F/S 6120 TIE EFFECTS OF SCAVENGING ON WASTE METHOXYFLURANE CONCENTRATIOH-ETC...REPRINT The Effects of Scavenging on Waste Methoxyflurane Concentrations in Veterinary Operating Room Air Approved for public release; distribution...Waste Methoxyflurane Fnal y t Concentrations ir Veterinary Operating Room Air, 6.PROMN _6._PERFORMIN oIG. REPORT NUMBER 7. AUTOR~s)B. CONTRACT OR GRANT

  3. Information Retrieval (SPIRES) and Library Automation (BALLOTS) at Stanford University.

    ERIC Educational Resources Information Center

    Ferguson, Douglas, Ed.

    At Stanford University, two major projects have been involved jointly in library automation and information retrieval since 1968: BALLOTS (Bibliographic Automation of Large Library Operations) and SPIRES (Stanford Physics Information Retrieval System). In early 1969, two prototype applications were activated using the jointly developed systems…

  4. An Expressive and Efficient Language for XML Information Retrieval.

    ERIC Educational Resources Information Center

    Chinenyanga, Taurai Tapiwa; Kushmerick, Nicholas

    2002-01-01

    Discusses XML and information retrieval and describes a query language, ELIXIR (expressive and efficient language for XML information retrieval), with a textual similarity operator that can be used for similarity joins. Explains the algorithm for answering ELIXIR queries to generate intermediate relational data. (Author/LRW)

  5. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  6. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  7. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  8. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... Standards for municipal waste combustor operator training and certification. (a) No later than the date 6...

  9. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor operating practices. (a) On and after the date on which the initial performance...

  10. Human factors in telemanipulation: Perspectives from the Oak Ridge National Laboratory experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.

    1994-01-01

    Personnel at the Robotics and Process Systems Division (RPSD) of the Oak Ridge National Laboratory (ORNL) have extensive experience designing, building, and operating teleoperators for a variety of settings, including space, battlefields, nuclear fuel reprocessing plants, and hazardous waste retrieval. In the course of the last decade and a half, the RPSD designed, built, and operated 4 telemanipulators (M-2, ASM, LTM, CESAR arm) and operated another half dozen (M-8, Model 50, TOS SM-229, RM-10, PaR 5000, BilArm 83A). During this period, human factors professionals have been closely integrated with RPSD design teams, investigating telemanipulator feedback and feed forward, designing cockpitsmore » and control rooms, training users and designers, and helping to develop performance specifications for telemanipulators. This paper presents a brief review of this and other work, with an aim towards providing perspectives on some of the human factors aspects of telemanipulation. The first section of the paper examines user tasks during supervisory control and discusses how telemanipulator responsiveness determines the appropriate control metaphor for continuous manual control. The second section provides an ecological perspective on telemanipulator feedback and feed-forward. The third section briefly describes the RPSD control room design approach and how design projects often serve as systems integrators.« less

  11. Day-night variation in operationally retrieved TOVS temperature biases

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Achtemeier, Gary L.

    1986-01-01

    Several authors have reported that operationally retrieved TOVS (TIROS Operational Vertical Sounder) temperatures are biased with respect to rawinsonde temperatures or temperature analyses. This note reports a case study from which it is concluded that, at least for the time period Mar. 26 through Apr. 8, 1979, there was a significant day-night variation in TOVS mean layer virtual temperature biases with respect to objective analyses of rawinsonde data over the U.S.

  12. In-Situ Characterization of Underwater Radioactive Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    A fundamental requirement underpinning safe clean-up technologies for legacy spent nuclear fuel (SNF) ponds, pools and wet silos is the ability to characterize the radioactive waste form prior to retrieval. The corrosion products resulting from the long term underwater storage of spent nuclear fuel, reactor components and reprocessing debris present a major hazard to facility decontamination and decommissioning in terms of their radioactive content and physical / chemical reactivity. The ability to perform in-situ underwater non-destructive characterization of sludge and debris in a safe and cost-effective manner offers significant benefits over traditional destructive sampling methods. Several techniques are available formore » underwater measurements including (i) Gross gamma counting, (ii) Low-, Medium- and High- Resolution Gamma Spectroscopy, (iii) Passive neutron counting and (iv) Active Neutron Interrogation. The optimum technique depends on (i) the radioactive inventory (ii) mechanical access restrictions for deployment of the detection equipment, interrogation sources etc. (iii) the integrity of plant records and (iv) the extent to which Acceptable Knowledge which may be used for 'fingerprinting' the radioactive contents to a marker nuclide. Prior deployments of underwater SNF characterization equipment around the world have been reviewed with respect to recent developments in gamma and neutron detection technologies, digital electronics advancements, data transfer techniques, remote operation capabilities and improved field ruggedization. Modeling and experimental work has been performed to determine the capabilities, performance envelope and operational limitations of the future generation of non-destructive underwater sludge characterization techniques. Recommendations are given on the optimal design of systems and procedures to provide an acceptable level of confidence in the characterization of residual sludge content of legacy wet storage facilities such that retrieval and repackaging of SNF sludges may proceed safely and efficiently with support of the regulators and the public. (author)« less

  13. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    USGS Publications Warehouse

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  14. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    PubMed

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  15. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2018-04-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  16. A New Methodology for Simultaneous Multi-layer Retrievals of Ice and Liquid Water Cloud Properties

    NASA Astrophysics Data System (ADS)

    Sourdeval, O.; Labonnote, L.; Baran, A. J.; Brogniez, G.

    2014-12-01

    It is widely recognized that the study of clouds has nowadays become one of the major concern of the climate research community. Consequently, a multitude of retrieval methodologies have been developed during the last decades in order to obtain accurate retrievals of cloud properties that can be supplied to climate models. Most of the current methodologies have proven to be satisfactory for separately retrieving ice or liquid cloud properties, but very few of them have attempted simultaneous retrievals of these two cloud types. Recent studies nevertheless show that the omission of one of these layers can have strong consequences on the retrievals and their accuracy. In this study, a new methodology that simultaneously retrieves the properties of ice and liquid clouds is presented. The optical thickness and the effective radius of up to two liquid cloud layers and the ice water path of one ice cloud layer are simultaneously retrieved, along with an accurate estimation of their uncertainties. Radiometric measurements ranging from the visible to the thermal infrared are used for performing the retrievals. In order to quantify the capabilities and limitations of our methodology, the results of a theoretical information content analysis are first presented. This analysis allows obtaining an a priori understanding of how much information should be expected on each of the retrieval parameters in different atmospheric conditions, and which set of channels is likely to provide this information. After such theoretical considerations, global retrievals corresponding to several months of A-Train data are presented. Comparisons of our retrievals with operational products from active and passive instruments are effectuated and show good global agreements. These comparisons are useful for validating our retrievals but also for testing how operational products can be influenced by multi-layer configurations.

  17. 42 CFR 432.50 - FFP: Staffing and training costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... directly in the operation of mechanized claims processing and information retrieval systems, the rate is 75... processing and information retrieval systems, the rate is 50 percent for training and 90 percent for all... information retrieval systems (paragraphs (b)(2) and (3) of this section) are applicable only if the design...

  18. 42 CFR 432.50 - FFP: Staffing and training costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... directly in the operation of mechanized claims processing and information retrieval systems, the rate is 75... processing and information retrieval systems, the rate is 50 percent for training and 90 percent for all... information retrieval systems (paragraphs (b)(2) and (3) of this section) are applicable only if the design...

  19. 42 CFR 432.50 - FFP: Staffing and training costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... directly in the operation of mechanized claims processing and information retrieval systems, the rate is 75... processing and information retrieval systems, the rate is 50 percent for training and 90 percent for all... information retrieval systems (paragraphs (b)(2) and (3) of this section) are applicable only if the design...

  20. 42 CFR 432.50 - FFP: Staffing and training costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... directly in the operation of mechanized claims processing and information retrieval systems, the rate is 75... processing and information retrieval systems, the rate is 50 percent for training and 90 percent for all... information retrieval systems (paragraphs (b)(2) and (3) of this section) are applicable only if the design...

  1. 42 CFR 432.50 - FFP: Staffing and training costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... directly in the operation of mechanized claims processing and information retrieval systems, the rate is 75... processing and information retrieval systems, the rate is 50 percent for training and 90 percent for all... information retrieval systems (paragraphs (b)(2) and (3) of this section) are applicable only if the design...

  2. SPIRES (Stanford Public Information REtrieval System). Annual Report (2d, 1968).

    ERIC Educational Resources Information Center

    Parker, Edwin B.; And Others

    During 1968 the name of the project was changed from Stanford Physics Information Retrieval System" to "Stanford Public Information Retrieval System" to reflect the broadening of perspective and goals due to formal collaboration with Project BALLOTS (Bibliographic Automation of Large Library Operations using a Time-Sharing System).…

  3. 13. SIDE VIEW OF THE STACKERRETRIEVER CRANE FROM THE TRANSFER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SIDE VIEW OF THE STACKER-RETRIEVER CRANE FROM THE TRANSFER BAY. THE STACKER-RETRIEVER IS A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM FOR RETRIEVING PLUTONIUM CONTAINERS FROM THE STORAGE VAULT. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  4. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    PubMed

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  5. 10 CFR 51.20 - Criteria for and identification of licensing and regulatory actions requiring environmental...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for and identification of licensing and regulatory actions requiring environmental impact statements. 51.20 Section 51.20 Energy NUCLEAR REGULATORY... radioactive waste in a monitored retrievable storage installation (MRS). (10) Issuance of a license for a...

  6. An Operational Utility Assessment: Measuring the Effectiveness of the Experimental Forward Operating Base Program

    DTIC Science & Technology

    2014-06-01

    SPACES product brochure . Retrieved from https://www.iristechnology.com/manuals/BR-Iris-SPACES.pdf Jameson, LLC. (2014, April 11). EMI hardened LED...Army. (2010). TRADOC generating force study (TRADOC Pamphlet 525-8-1). Retrieved from http://www.tradoc.army.mil/tpubs/pams/tp525-8-1.pdf U.S. Army

  7. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with §§ 257.7 through 257.30 prior to the receipt of CESQG hazardous waste. (b) Definitions.... Waste management unit boundary means a vertical surface located at the hydraulically downgradient limit.../operators of non-municipal non-hazardous waste disposal units that receive Conditionally Exempt Small...

  8. Waste Out of Place, Level 1. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  9. 40 CFR Table 3 to Subpart Cb of... - Municipal Waste Combustor Operating Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Municipal Waste Combustor Operating... and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20, 1994 Pt. 60, Subpt. Cb, Table 3 Table 3 to Subpart Cb of Part 60—Municipal Waste Combustor...

  10. Conditioning Procedure for Spent Cs-137 Sealed Sources in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.

    2006-07-01

    It is the duty of the Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority to mange the radioactive waste generated from any user for radioactive materials in Egypt. The most hazardous or dangerous radioactive waste we collect is spent radioactive sealed sources that have to be managed safely to protect human, workers and environment from any undue burden for radiation. Through the Integrated Management Program Of Radioactive Sealed Sources In Egypt, IMPRSS all spent Cs-137 sources with low activity will be retrievable conditioned in 200 L drum with special lead shield to keep the surface dose rate lowermore » than 200 merm/h according to US regulations and IAEA guidelines. Using this procedure the EAEA will condition about 243 sources in 9 drums. (authors)« less

  11. Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions.

    PubMed

    Torres, Robinson; Lapidus, Gretchen T

    2017-02-01

    An integral closed circuit hydrometallurgical process is presented for base metal recovery from electronic waste. The leaching medium consists of a sodium citrate solution, from which base metals are retrieved by direct electrowinning, and the barren solution is recycled back to the leaching stage. This leaching-electrowinning cycle was repeated four times. The redox properties of the fresh citrate solution, as well as the leach liquors, were characterized by cyclic voltammetry to determine adequate conditions for metal reduction, as well as to limit citrate degradation. The leaching efficiency of electronic waste, employing the same solution after four complete cycles was 71, 83 and 94% for copper, iron and lead, respectively, compared to the original leach with fresh citrate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 40 CFR 265.110 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...

  13. 40 CFR 264.110 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post....115 (which concern closure) apply to the owners and operators of all hazardous waste management...

  14. 40 CFR 267.72 - Manifest discrepancies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the discrepancy with the waste generator or transporter (e.g., with telephone conversations). If the... 267.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT...

  15. 40 CFR 267.72 - Manifest discrepancies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the discrepancy with the waste generator or transporter (e.g., with telephone conversations). If the... 267.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT...

  16. 40 CFR 267.72 - Manifest discrepancies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the discrepancy with the waste generator or transporter (e.g., with telephone conversations). If the... 267.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT...

  17. 40 CFR 267.72 - Manifest discrepancies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the discrepancy with the waste generator or transporter (e.g., with telephone conversations). If the... 267.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT...

  18. 40 CFR 267.72 - Manifest discrepancies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the discrepancy with the waste generator or transporter (e.g., with telephone conversations). If the... 267.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT...

  19. 40 CFR 264.279 - Recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...

  20. 40 CFR 264.279 - Recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...

  1. 40 CFR 264.279 - Recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...

  2. 40 CFR 264.279 - Recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...

  3. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less

  4. Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval

    PubMed Central

    Miller, Brian T.; D'Esposito, Mark

    2012-01-01

    Memory operations such as encoding and retrieval require the coordinated interplay of cortical regions with distinct functional contributions. The mechanistic nature of these interactions, however, remains unspecified. During the performance of a face memory task during fMRI scanning, we measured the magnitude (a measure of the strength of coupling between areas) and phase (a measure of the relative timing across areas) of coherence between regions of interest and the rest of the brain. The fusiform face area (FFA) showed robust coherence with a distributed network of subregions in the prefrontal cortex (PFC), posterior parietal cortex (PPC), precuneus, and hippocampus across both memory operations. While these findings reveal significant overlap in the cortical networks underlying mnemonic encoding and retrieval, coherence phase analyses revealed context-dependent differences in cortical dynamics. During both encoding and retrieval, PFC and PPC exhibited earlier activity than in the FFA and hippocampus. Also, during retrieval, PFC activity preceded PPC activity. These findings are consistent with prior physiology studies suggesting an early contribution of PFC and PPC in mnemonic control. Together, these findings contribute to the growing literature exploring the spatio-temporal dynamics of basic memory operations. PMID:22557959

  5. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRAmore » regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.« less

  6. Re-engaging with the past: recapitulation of encoding operations during episodic retrieval

    PubMed Central

    Morcom, Alexa M.

    2014-01-01

    Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection. PMID:24904386

  7. Construction data and retrieval procedures for selected wells drilled from 1985 through 1987 at Oak Ridge National Laboratory, Tennessee

    USGS Publications Warehouse

    Zehner, H.H.

    1989-01-01

    Twenty-eight wells were constructed by the U. S. Geological Survey for use in describing the groundwater flow system in Melton Valley, at the Oak Ridge National Laboratory in eastern Tennessee. The wells were installed at 18 locations in Melton Valley and along the Clinch River during the period 1985 through 1987. During the same period, 19 wells were constructed by Oak Ridge National Laboratory at 7 locations in or near radioactive-waste burial grounds in Melton Valley. Construction data for all 47 wells are in the U.S. Geological Survey Groundwater Site Inventory data system, where information is also stored for 450 wells that were completed at the laboratory in earlier years. The data can be electronically retrieved by personnel who have access to the U.S. Geological Survey Prime computer located in Nashville, Tennessee, and retrieval procedures are given in the report. (USGS)

  8. 2007 SB14 Source Reduction Plan/Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L

    2007-07-24

    Aqueous solutions (mixed waste) generated from various LLNL operations, such as debris washing, sample preparation and analysis, and equipment maintenance and cleanout, were combined for storage in the B695 tank farm. Prior to combination the individual waste streams had different codes depending on the particular generating process and waste characteristics. The largest streams were CWC 132, 791, 134, 792. Several smaller waste streams were also included. This combined waste stream was treated at LLNL's waste treatment facility using a vacuum filtration and cool vapor evaporation process in preparation for discharge to sanitary sewer. Prior to discharge, the treated waste streammore » was sampled and the results were reviewed by LLNL's water monitoring specialists. The treated solution was discharged following confirmation that it met the discharge criteria. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. Quarterly waste generation data prepared by the Environmental Protection Department's P2 Team are regularly provided to engineering shops as well as other facilities so that generators can track the effectiveness of their waste minimization efforts.« less

  9. 40 CFR 258.25 - Access requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes by using artificial barriers, natural barriers, or both, as appropriate to protect human health....25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.25 Access requirements. Owners or operators of all...

  10. 40 CFR 265.228 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.228 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... or operator must: (1) Remove or decontaminate all waste residues, contaminated containment system...

  11. Radioactive waste storage issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Daniel E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal)more » of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.« less

  12. Operating manual for the R200 downhole recorder with husky hunter retriever

    USGS Publications Warehouse

    Johnson, Roy A.; Rorabaugh, James I.

    1988-01-01

    The R200 Downhole Recorder is a battery-powered device that, when placed in a well casing, monitors water levels for a period of up to 1 year. This instrument measures a 1- to 70-foot range of water levels. These water-level data can be retrieved through use of a commercially available portable microcomputer. The R200 Downhole Recorder was developed at the U.S. Geological Survey 's Hydrologic Instrumentation Facility, Stennis Space Center, Mississippi. This operating manual describes the R200 Downhole Recorder, provides initial set-up instructions, and gives directions for on-site operation. Design specifications and routine maintenance steps are included. The R200 data-retriever program is a user-friendly, menu-driven program. The manual guides the user through the procedures required to perform specific operations. Numerous screens are reproduced in the text with a discussion of user input for desired responses. Help is provided for specific problems. (USGS)

  13. Operating manual for the R200 downhole recorder with Tandy 102 retriever

    USGS Publications Warehouse

    Johnson, Roy A.; Rorabaugh, James I.

    1988-01-01

    The R200 Downhole Recorder is a battery-powered device that, when placed in a well casing, monitors water levels for a period of up to 1 year. This instrument measures a 1- to 70-ft range of water levels. These water level data can be retrieved through use of a commercially available portable microcomputer. The R200 Downhole Recorder was developed at the U. S. Geological Survey 's Hydrologic Instrumentation Facility, Stennis Space Center, Mississippi. This operating manual describes the R200 Downhole Recorder, provides initial set-up instructions, and gives directions for on-site operation. Design specifications and routine maintenance steps are included. The R200 data-retriever program is a user-friendly, menu-driven program. The manual guides the user through the procedures required to perform specific operations. Numerous screens are reproduced in the text with a discussion of user input for desired responses. Help is provided for specific problems. (USGS)

  14. Interaction Between Encoding and Retrieval Operations in Cued Recall

    ERIC Educational Resources Information Center

    Fisher, Ronald P.; Craik, Fergus I. M.

    1977-01-01

    Three experiments are described in which the qualitative nature of memorial processing was manipulated at both input (encoding) and output (retrieval). As in earlier research, it was found that retention levels were highest when the same type of information was used as a retrieval cue. Concludes that the notions of encoding specificity and depth…

  15. Neural Correlates of Individual Differences in Strategic Retrieval Processing

    ERIC Educational Resources Information Center

    Bridger, Emma K.; Herron, Jane E.; Elward, Rachael L.; Wilding, Edward L.

    2009-01-01

    Processes engaged when information is encoded into memory are an important determinant of whether that information will be recovered subsequently. Also influential, however, are processes engaged at the time of retrieval, and these were investigated here by using event-related potentials (ERPs) to measure a specific class of retrieval operations.…

  16. Anaerobic digestion of organic waste in Japan: the first demonstration plant at Kyoto City.

    PubMed

    Komatsu, T; Kimura, T; Kuriyama, Y; Isshiki, Y; Kawano, T; Hirao, T; Masuda, M; Yokoyama, K; Matsumoto, T; Takeda, M

    2002-01-01

    Recycling of Municipal Solid Waste is vigorously promoted in Japan and the necessity of energy recovery from organic waste is increasing. An anaerobic digestion demonstration plant for organic waste in Kyoto City, Japan has been operated for about two years. Three kinds of wastes (garbage and leftovers from hotels, yard waste and used paper) mixed at various ratios are used. The plant has maintained stable operations with each mixture, generating biogas by the decomposition of VS at the rate of about 820 m3N/ton-VS.

  17. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less

  18. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific community. (authors)« less

  19. Community Solutions for Solid Waste Pollution, Level 6. Teacher Guide. Operation Waste Watch.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, G.D.

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of thismore » waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.« less

  1. Hazardous-waste analysis plan for LLNL operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.S.

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less

  2. 42 CFR 433.15 - Rates of FFP for administration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...).) (3) Design, development, or installation of mechanized claims processing and information retrieval...) Operation of mechanized claims processing and information retrieval systems: 75 percent. (Section 1903(a) (3...

  3. 42 CFR 433.15 - Rates of FFP for administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...).) (3) Design, development, or installation of mechanized claims processing and information retrieval...) Operation of mechanized claims processing and information retrieval systems: 75 percent. (Section 1903(a) (3...

  4. 42 CFR 433.15 - Rates of FFP for administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...).) (3) Design, development, or installation of mechanized claims processing and information retrieval...) Operation of mechanized claims processing and information retrieval systems: 75 percent. (Section 1903(a) (3...

  5. 42 CFR 433.15 - Rates of FFP for administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...).) (3) Design, development, or installation of mechanized claims processing and information retrieval...) Operation of mechanized claims processing and information retrieval systems: 75 percent. (Section 1903(a) (3...

  6. 42 CFR 433.15 - Rates of FFP for administration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...).) (3) Design, development, or installation of mechanized claims processing and information retrieval...) Operation of mechanized claims processing and information retrieval systems: 75 percent. (Section 1903(a) (3...

  7. Design of a Shadowband Spectral Radiometer for the Retrieval of Thin Cloud Optical Depth, Liquid Water Path, and the Effective Radius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomew M. J.; Reynolds, R. M.; Vogelmann, A. M.

    2011-11-01

    The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, and liquid water path. The instrument consists of photodiode sensors positioned beneath two narrow metal bands that occult the sun by moving alternately from horizon to horizon. Measurements from the narrowband 415-nm channel were used to demonstrate a retrieval of the cloud properties of interest. With the proven operation of the relatively inexpensive TCRSR instrument, its usefulness for retrieving aerosol properties under cloud-free skiesmore » and for ship-based observations is discussed.« less

  8. Retrieval medicine: a review and guide for UK practitioners. Part 2: safety in patient retrieval systems

    PubMed Central

    Hearns, S; Shirley, P J

    2006-01-01

    Retrieval and transfer of critically ill and injured patients is a high risk activity. Risk can be minimised with robust safety and clinical governance systems in place. This article describes the various governance systems that can be employed to optimise safety and efficiency in retrieval services. These include operating procedure development, equipment management, communications procedures, crew resource management, significant event analysis, audit and training. PMID:17130608

  9. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  10. 40 CFR 258.25 - Access requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes by using artificial barriers, natural barriers, or both, as appropriate to protect human health... 258.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.25 Access requirements. Owners or operators of all...

  11. 40 CFR 258.25 - Access requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes by using artificial barriers, natural barriers, or both, as appropriate to protect human health... 258.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.25 Access requirements. Owners or operators of all...

  12. 40 CFR 258.24 - Air criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.24 Air criteria. (a) Owners or operators of all MSWLFs... Act, as amended. (b) Open burning of solid waste, except for the infrequent burning of agricultural...

  13. 40 CFR 258.24 - Air criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.24 Air criteria. (a) Owners or operators of all MSWLFs... Act, as amended. (b) Open burning of solid waste, except for the infrequent burning of agricultural...

  14. 40 CFR 258.25 - Access requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 258.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.25 Access requirements. Owners or operators of all... wastes by using artificial barriers, natural barriers, or both, as appropriate to protect human health...

  15. 40 CFR 258.25 - Access requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 258.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.25 Access requirements. Owners or operators of all... wastes by using artificial barriers, natural barriers, or both, as appropriate to protect human health...

  16. SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES

    EPA Science Inventory

    The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...

  17. Study on ice cloud optical thickness retrieval with MODIS IR spectral bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jun

    2005-01-01

    The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.

  18. 40 CFR 265.1101 - Design and operating standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastes to which they are exposed; climatic conditions; and the stresses of daily operation, including the... the waste management operation to take place in the unit, an exception to the structural strength...

  19. 40 CFR 265.1101 - Design and operating standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes to which they are exposed; climatic conditions; and the stresses of daily operation, including the... the waste management operation to take place in the unit, an exception to the structural strength...

  20. Waste Generation Overview, Course 23263

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less

  1. Controlling changes - lessons learned from waste management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less

  2. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Shuman, Rob

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a mannermore » that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficient utilization of the pit and ensures continued compliance with DOE Order 435.1 performance objectives. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3. The disposal plan for pit 38 is provided in Section 4 and the conclusions of the investigation are provided in Section 5. Throughout the report, pit 38 is used to refer to the entire disposal unit, including the existing pit and the extension that is currently under construction. Where a distinction between the two portions of the pit is necessary, the existing unit is referred to as pit 38 proper and the new portion of the pit as the pit 38 extension or, more simply, the extension.« less

  3. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less

  4. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  5. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  6. Hazardous Waste Cleanup: Triumvirate Environmental Incorporated in Astoria, New York

    EPA Pesticide Factsheets

    Triumvirate Environmental, Inc. (TEI) is located at 42-14 19th Avenue in Astoria, New York. This location has been in continuous operation as a waste storage and transfer facility since 1964. The site was formerly owned and operated by Chemical Waste

  7. 40 CFR 258.21 - Cover material requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 258.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.21 Cover material requirements. (a... cover disposed solid waste with six inches of earthen material at the end of each operating day, or at...

  8. 40 CFR 258.21 - Cover material requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 258.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.21 Cover material requirements. (a... cover disposed solid waste with six inches of earthen material at the end of each operating day, or at...

  9. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  10. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)« less

  11. Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.

    PubMed

    Haughey, R D

    2001-02-01

    Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space and operating costs of ADC use.

  12. Analysis of the United States Defense and Civilian Contracting Workforce’s Training on Procurement Fraud, Waste and Abuse

    DTIC Science & Technology

    2013-09-01

    Federal Acquisition Institute. (2013a). FAC-C certification requirements. Retrieved from http://www.fai.gov/ drupal /certification/fac-c-certification...www.fai.gov/ drupal /sites/default/files/pdfs/FY%202011%20Annual%20Re port%20on%20the%20Federal%20Acquisition%20Workforce.pdf. Federal Acquisition

  13. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  14. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  15. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  16. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  17. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  18. Quantifying construction and demolition waste: An analytical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zezhou; Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Shen, Liyin

    2014-09-15

    Highlights: • Prevailing C and D waste quantification methodologies are identified and compared. • One specific methodology cannot fulfill all waste quantification scenarios. • A relevance tree for appropriate quantification methodology selection is proposed. • More attentions should be paid to civil and infrastructural works. • Classified information is suggested for making an effective waste management plan. - Abstract: Quantifying construction and demolition (C and D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C and D waste generation at both regional and projectmore » levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C and D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested.« less

  19. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  20. Effects of Immediate Testing on Delayed Retrieval: Search and Recovery Operations with Four Types of Cue

    ERIC Educational Resources Information Center

    Bartlett, James Craig

    1977-01-01

    An experiment examined the mnemonic effects of initial testing with semantic, orthographic, temporal, and recognition cues. Results were interpreted within a levels-of-processing framework in which the nature of the information used in retrieval, rather than the speed or difficulty of retrieval determines subsequent accessibility. (Editor/RK)

  1. DESIGN PRINCIPLES FOR AN ON-LINE INFORMATION RETRIEVAL SYSTEM. TECHNICAL REPORT.

    ERIC Educational Resources Information Center

    LOWE, THOMAS C.

    AREAS INVESTIGATED INCLUDE SLOW MEMORY DATA STORAGE, THE PROBLEM OF DECODING FROM AN INDEX TO A SLOW MEMORY ADDRESS, THE STRUCTURE OF DATA LISTS AND DATA LIST OPERATORS, COMMUNICATIONS BETWEEN THE HUMAN USER AND THE SYSTEM, PROCESSING OF RETRIEVAL REQUESTS, AND THE USER'S CONTROL OVER THE RETURN OF INFORMATION RETRIEVED. LINEAR, LINKED AND…

  2. Impact of spatial resolution on cirrus infrared satellite retrievals in the presence of cloud heterogeneity

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.

    2015-12-01

    Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.

  3. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  4. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  5. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  6. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  7. 40 CFR 62.15135 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...

  8. 10 CFR 2.1027 - Sua sponte.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... construction authorization for a high-level radioactive waste repository at a geologic repository operations...-level radioactive waste at a geologic repository operations area under parts 60 or 63 of this chapter...

  9. 40 CFR 265.401 - General operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, the process or equipment must be equipped with a means to stop this inflow (e.g., a waste feed....401 Section 265.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk; Wright, D.G.; Dey, P.K.

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supplymore » chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management.« less

  11. Convection and thermal radiation analytical models applicable to a nuclear waste repository room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-17

    Time-dependent temperature distributions in a deep geologic nuclear waste repository have a direct impact on the physical integrity of the emplaced canisters and on the design of retrievability options. This report (1) identifies the thermodynamic properties and physical parameters of three convection regimes - forced, natural, and mixed; (2) defines the convection correlations applicable to calculating heat flow in a ventilated (forced-air) and in a nonventilated nuclear waste repository room; and (3) delineates a computer code that (a) computes and compares the floor-to-ceiling heat flow by convection and radiation, and (b) determines the nonlinear equivalent conductivity table for a repositorymore » room. (The tables permit the use of the ADINAT code to model surface-to-surface radiation and the TRUMP code to employ two different emissivity properties when modeling radiation exchange between the surface of two different materials.) The analysis shows that thermal radiation dominates heat flow modes in a nuclear waste repository room.« less

  12. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less

  13. Implications of theories of asteroid and comet impact for policy options for management of spent nuclear fuel and high-level radioactive wastes

    USGS Publications Warehouse

    Trask, Newell J.

    1994-01-01

    Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors.

  14. 40 CFR 265.254 - Design and operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating requirements. 265.254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...

  15. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  16. After flow control: The steps taken by Dade County to ensure continued operation of its solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauriello, P.J.; Ragbeer, D.

    1997-12-01

    In the wake of the U.S. Supreme Court decision in the Carbone vs. Clarkstown case striking down waste flow control as unconstitutional, Dade County, Florida, one of the most severely impacted communities in the nation, has managed to stabilize its waste stream and balance its solid waste department finances; although the road taken to restabilization has been a difficult one. At its peak in 1995, Dade County experienced an annual loss of solid waste in excess of 1,000,000 tons, or over 40 percent of the waste stream normally handled by the County. This diversion of waste was accompanied by amore » net revenue loss of $30 million per year. The County lost its ability to plan for future capacity needs, or to assure sufficient future waste flows to meet its put-or-pay obligation to the County`s Resources Recovery plant operator. The County`s solid waste management system bonds were downgraded by Moody`s Investors Service and Standard and Poors. With the help of a special solid waste management team, appointed by the County Manager, the department was able to rightsize its waste disposal operations to fit its reduced waste flows, stabilize its waste stream, and develop strategies to solve its long-term funding shortfall.« less

  17. Implementation of a multi-variable regression analysis in the assessment of the generation rate and composition of hospital solid waste for the design of a sustainable management system in developing countries.

    PubMed

    Al-Khatib, Issam A; Abu Fkhidah, Ismail; Khatib, Jumana I; Kontogianni, Stamatia

    2016-03-01

    Forecasting of hospital solid waste generation is a critical challenge for future planning. The composition and generation rate of hospital solid waste in hospital units was the field where the proposed methodology of the present article was applied in order to validate the results and secure the outcomes of the management plan in national hospitals. A set of three multiple-variable regression models has been derived for estimating the daily total hospital waste, general hospital waste, and total hazardous waste as a function of number of inpatients, number of total patients, and number of beds. The application of several key indicators and validation procedures indicates the high significance and reliability of the developed models in predicting the hospital solid waste of any hospital. Methodology data were drawn from existent scientific literature. Also, useful raw data were retrieved from international organisations and the investigated hospitals' personnel. The primal generation outcomes are compared with other local hospitals and also with hospitals from other countries. The main outcome, which is the developed model results, are presented and analysed thoroughly. The goal is this model to act as leverage in the discussions among governmental authorities on the implementation of a national plan for safe hospital waste management in Palestine. © The Author(s) 2016.

  18. Double shell tanks (DST) chemistry control data quality objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-10-09

    One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less

  19. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.; Pagano, Thomas S.; Aumann, Hartmut H.; Atlas, Robert; Barnet, Christopher; Blaisdell, John; Chen, Luke; Divakarla, Murty; Fetzer, Eric J.; Goldberg, Mitch; hide

    2006-01-01

    This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

  20. A Protocol for a Prospective Study of Pregnancy Outcomes of Operating Room Nurses and Nurse Anesthetists Occupationally Exposed to Waste Anesthetic Gases as Compared to Psychiatric Nurses in the United States Air Force.

    DTIC Science & Technology

    1980-06-01

    PROSPECTIVE STUDY OF PREGNANCY’ OUTCOMES OF OPERATING ROOM NURSES AND NURSE ANESTHETISTS OCCUPATIONALLY EXPOSED TO WASTE ANESTHETIC GASES AS COMPARED O TO...tionally Exposed to Waste Anesthetic Gases 6 Pt NFONMING 0 i REP"ORT NUMBER as Cor - p4~~ oP ciar~_Njssi Ruth L. Nancarrow 9 PERFONMtNG OI-GANIZATION...human factors involved in the control of waste anesthetic gases in the operating room; Lt. Colonel Phyllis Goins, Chief, Educa- tional Methodology

  1. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  2. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  3. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  4. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  5. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  6. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Design and operation of facility. 264.31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  7. Guides to Pollution Prevention: Research and Educational Institutions.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Cincinnati, OH. Office of Research and Development.

    This guide provides an overview of waste generating processes and operations that occur in educational or research institutions and presents options for minimizing waste generation through source reduction and recycling. A broad spectrum of waste chemicals in laboratories, art studios, print shops, maintenance, and other operations can be…

  8. WRAP low level waste (LLW) glovebox operational test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into anothermore » 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less

  9. Greening of orthopedic surgery.

    PubMed

    Lee, Rushyuan J; Mears, Simon C

    2012-06-01

    Every year, 4 billion pounds of waste are produced by health care facilities, and the amount continues to increase annually. In response, a movement toward greening health care has been building, with a particular focus on the operating room. Between 20% and 70% of health care waste originates from a hospital's operating room, and up to 90% of operating room waste is improperly sorted and sent for costly and unneeded hazardous waste processing. Recent successful changes include segregation of hospital waste, substitution of the ubiquitous polypropylene plastic wrap used for the sterilization and handling of surgical equipment with metal cases, and the reintroduction of reusable surgical gowns. Orthopedic-related changes include the successful reprocessing and reuse of external fixators, shavers, blades, burs, and tourniquets. These changes have been shown to be environmentally and economically beneficial. Early review indicates that these changes are feasible, but a need exists for further evaluation of the effect on the operating room and flow of the surgical procedure and of the risks to the surgeons and operating room staff. Other key considerations are the effects of reprocessed and reused equipment on patient care and outcome and the role of surgeons in helping patients make informed decisions regarding surgical care. The goals of this study were to summarize the amount and types of waste produced in hospitals and operating rooms, highlight the methods of disposal used, review disposal methods that have been developed to reduce waste and improve recycling, and explore future developments in greening health care. Copyright 2012, SLACK Incorporated.

  10. 40 CFR 62.14105 - Requirements for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of an affected facility must develop and update on a yearly basis a site-specific operating manual... subpart; (2) A description of basic combustion theory applicable to a municipal waste combustor unit; (3...

  11. On the Antecedents of an Electrophysiological Signature of Retrieval Mode.

    PubMed

    Williams, Angharad N; Evans, Lisa H; Herron, Jane E; Wilding, Edward L

    2016-01-01

    It has been proposed that people employ a common set of sustained operations (retrieval mode) when preparing to remember different kinds of episodic information. In two experiments, however, there was no evidence for the pattern of brain activity commonly assumed to index these operations. In both experiments event-related potentials (ERPs) were recorded time-locked to alternating preparatory cues signalling that participants should prepare for different retrieval tasks. One cue signalled episodic retrieval: remember the location where the object was presented in a prior study phase. The other signalled semantic retrieval: identify the location where the object is most commonly found (Experiment 1) or identify the typical size of the object (Experiment 2). In both experiments, only two trials of the same task were completed in succession. This enabled ERP contrasts between 'repeat' trials (the cue on the preceding trial signalled the same retrieval task), and 'switch' trials (the cue differed from the preceding trial). There were differences between the ERPs elicited by the preparatory task cues in Experiment 1 only: these were evident only on switch trials and comprised more positive-going activity over right-frontal scalp for the semantic than for the episodic task. These findings diverge from previous outcomes where the activity differentiating cues signalling preparation for episodic or semantic retrieval has been restricted to right-frontal scalp sites, comprising more positive-going activity for the episodic than for the semantic task. While these findings are consistent with the view that there is not a common set of operations engaged when people prepare to remember different kinds of episodic information, an alternative account is offered here, which is that these outcomes are a consequence of structural and temporal components of the experiment designs.

  12. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    NASA Technical Reports Server (NTRS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  13. Vena cava filter retrieval in therapeutically anticoagulated patients.

    PubMed

    Schmelzer, Thomas M; Christmas, A Britton; Taylor, Dennis A; Heniford, B Todd; Sing, Ronald F

    2008-12-01

    Vena cava filters (VCFs) are indicated in patients with active venous thromboembolism and are a contraindication to therapeutic anticoagulation. When patients can be anticoagulated, VCFs can be removed; however, patients often have anticoagulation discontinued during the retrieval procedure, leaving them at risk for pulmonary embolism (PE). The authors evaluated their experience with retrieving VCFs in therapeutically anticoagulated patients. Data from a prospectively collected database of patients with VCFs placed between January 2005 and September 2007 were reviewed. The retrievals in therapeutically anticoagulated patients (international normalized ratio, 2.0-3.4) were performed using a strict protocol, including preretrieval and postretrieval cavograms. All retrievals were performed in the operating room, and patients were discharged home the same day and examined within 7 to 14 days. Descriptive statistics including means and counts were calculated. One hundred thirteen VCF removals occurred during the study period; 62 were attempted on anticoagulated patients (42 male and 20 female patients; mean age, 36.5 years). Thirty-five patients (56%) had VCFs placed for prophylaxis, 22 (35%) had deep venous thromboses or PEs but had contraindications to anticoagulation, and 5 (8%) were on anticoagulation, which was discontinued perioperatively for major surgical operations. The mean time the filters were in place was 153.7 days (range, 22-684 days). No extravasation was seen on postretrieval cavography. Eight of 62 removal attempts in anticoagulated patients were unsuccessful. One patient had a postoperative pneumothorax that was successfully managed without intervention. There were no operative bleeding complications, and no hematomas or contusions were seen at follow-up. The retrieval of VCFs in therapeutically anticoagulated patients can be performed without complication. Given the perioperative risk for PE, anticoagulation should not be discontinued for VCF retrieval.

  14. Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS

    NASA Astrophysics Data System (ADS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-12-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff, aA retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R > 0.970. However, for partially cloudy pixels there are significant differences between reff, aA and the MODIS results which can exceed 10 µm. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  15. Feasibility Study of the Superconducting Gravity Gradiometer (SGG) Flight Test on the European Retrievable Carrier (EURECA)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.

  16. Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed significant emphasis on the following areas: fire protection, emergency preparedness, radiological protection, nuclear safety, and operations. The identification of specific focus areas was not intended to diminish the importance of other areas of the review, but to ensure that these areas received a particularly thorough and in-depth evaluation due to their significance with respect to the safe operation of the facility.« less

  17. Projected environmental impacts of radioactive material transportation to the first US repository site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.

    1986-12-31

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with bothmore » the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the "natural background" of risks of the same type. 3 refs., 6 tabs.« less

  18. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  19. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  20. Residents' behaviors, attitudes, and willingness to pay for recycling e-waste in Macau.

    PubMed

    Song, Qingbin; Wang, Zhishi; Li, Jinhui

    2012-09-15

    Large quantities of e-waste are presently being generated in Macau, but since recycling facilities and laws on e-waste still need to be developed, most e-waste cannot currently be properly treated. Moreover, little is known about residents' behaviors, attitudes, and their willingness to pay (WTP) for recycling e-waste. These issues are discussed in this study, based on a questionnaire survey on household electronic product usage. In 2010, "Life span completed" was the primary reason respondents abandoned their electronic products, accounting for about 37.97% of responses; the main disposal methods of e-waste in Macau were "Retailers retrieve from consumer" and "Sale to a recycling corporation." While having little understanding of e-waste disposal issues, most residents were still willing to hand their e-waste into the government for centralized collection. In addition, the respondents gave "telephone reservation" as their preferred collection method. Finally, the residents' WTP in Macau was estimated by the logistic regression method. It was found that education level, age and household income were the significant factors affecting residents' WTP. The monthly mean WTP was 20.03MOP (2.50 US dollar) per household, and the annual WTP was approximately 40,185,067 MOP (5,023,133 US dollar) for all of Macau. The results of our study can help managers develop more effective environmental management policies for e-waste disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmel, J.C.; Loomis, D.; Mauro, J.

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less

  2. Conversion of MSW (municipal solids waste) to methane in the SOLCON (solids-concentrating) digester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Srivastava, V.J.; Isaacson, H.R.

    1988-01-01

    The Institute of Gas Technology (IGT) has been operating a 1200- gallon, anaerobic solids-concentrating (SOLCON) digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida since January of 1984. This digester development work is part of a larger effort, sponsored by the Gas Research Institute (GRI) Southern California Edison, that provides effective community waste treatment and disposal options while recovering a valuable methane resource from these wastes. Excellent conversions to methane have been obtained in the SOLCON digester during 4 years of uninterrupted operation. Data were collected on: (1) Wastes from experimental municipal wastewater treatment applications. Watermore » hyacinths were harvested from secondary wastewater treatment channels and combined with sludge from primary clarifiers to maximize potential methane recoveries in the digester. (2) Wastes from agricultural operations. Sorghum was selected as a candidate because it represents both a potential energy crop, as well as, a waste resource if only portions of the plant are converted after grain production. (3) Wastes from municipal waste collection.« less

  3. MUNICIPAL WASTE COMBUSTION ASSESSMENT ...

    EPA Pesticide Factsheets

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information

  4. 46 CFR 525.2 - Terminal schedules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... scrap, new assembled motor vehicles, waste paper and paper waste in terminal schedules. (2) Marine... MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE MARINE TERMINAL OPERATOR SCHEDULES § 525.2 Terminal schedules. (a) Marine terminal operator schedules. A marine terminal operator, at...

  5. 46 CFR 525.2 - Terminal schedules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scrap, new assembled motor vehicles, waste paper and paper waste in terminal schedules. (2) Marine... MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE MARINE TERMINAL OPERATOR SCHEDULES § 525.2 Terminal schedules. (a) Marine terminal operator schedules. A marine terminal operator, at...

  6. Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397

    DTIC Science & Technology

    1994-06-01

    radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of

  7. Benzene waste operations NESHAP. Waiver guidance document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    Subpart FF of 40 CFR Part 61 addresses benzene emissions from waste operations at petroleum refineries, chemical manufacturing plants, coke by-product plants, and waste management units that manage wastes from these facilities. Subpart FF, also known as the benzene waste operations national emission standards for hazardous air pollutants (NESHAP), was amended and published in the Federal Register on January 7, 1993. Facilities unable to comply with the NESHAP by April 7, 1993, may apply for a waiver of compliance for a period that shall not extend beyond January 7, 1995. As a condition of the waiver, facilities will be requiredmore » to mitigate benzene air emissions that result from the delay in compliance with the NESHAP. The document outlines the goals and objectives of the benzene waste NESHAP waiver policy, and provides guidance for preparing, reviewing and evaluating waiver requests.« less

  8. User's operating procedures. Volume 1: Scout project information programs

    NASA Technical Reports Server (NTRS)

    Harris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the Scout Project Automatic Data System, called SPADS is given. SPADS is the result of the past seven years of software development on a Prime minicomputer located at the Scout Project Office. SPADS was developed as a single entry, multiple cross reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. The instructions to operate the Scout Project Information programs in data retrieval and file maintenance via the user friendly menu drivers is presented.

  9. User's operating procedures. Volume 3: Projects directorate information programs

    NASA Technical Reports Server (NTRS)

    Haris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the scout project automatic data system, called SPADS is presented. SPADS is the results of the past seven years of software development on a prime mini-computer. SPADS was developed as a single entry, multiple cross-reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. This volume, three of three, provides the instructions to operate the projects directorate information programs in data retrieval and file maintenance via the user friendly menu drivers.

  10. Using Induction to Refine Information Retrieval Strategies

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Pell, Barney; Kedar, Smadar

    1994-01-01

    Conceptual information retrieval systems use structured document indices, domain knowledge and a set of heuristic retrieval strategies to match user queries with a set of indices describing the document's content. Such retrieval strategies increase the set of relevant documents retrieved (increase recall), but at the expense of returning additional irrelevant documents (decrease precision). Usually in conceptual information retrieval systems this tradeoff is managed by hand and with difficulty. This paper discusses ways of managing this tradeoff by the application of standard induction algorithms to refine the retrieval strategies in an engineering design domain. We gathered examples of query/retrieval pairs during the system's operation using feedback from a user on the retrieved information. We then fed these examples to the induction algorithm and generated decision trees that refine the existing set of retrieval strategies. We found that (1) induction improved the precision on a set of queries generated by another user, without a significant loss in recall, and (2) in an interactive mode, the decision trees pointed out flaws in the retrieval and indexing knowledge and suggested ways to refine the retrieval strategies.

  11. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... determining: (1) Whether hazardous waste or hazardous waste constituents have entered the ground water; (2... water; and (3) The concentrations of hazardous waste or hazardous waste constituents in the ground water...

  12. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... determining: (1) Whether hazardous waste or hazardous waste constituents have entered the ground water; (2... water; and (3) The concentrations of hazardous waste or hazardous waste constituents in the ground water...

  13. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  14. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  15. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  16. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... storage of non-liquid PCB/ radioactive wastes must be designed to prevent the buildup of liquids if such... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents...

  17. 76 FR 48182 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    .... Designated pollutants would be associated with camp operations [typically air emissions and waste water... (NSF) has received a waste management permit application for operation of a field research camp located...: NSF's Antarctic Waste Regulation, 45 CFR part 671, requires all U.S. citizens and entities to obtain a...

  18. 40 CFR 270.24 - Specific part B information requirements for process vents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...., identify the hazardous waste management units on a facility plot plan). (2) Information and data supporting... concentrations) that represent the conditions that exist when the waste management unit is operating at the... when the hazardous waste management unit is or would be operating at the highest load or capacity level...

  19. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  20. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  1. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  2. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  3. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  4. 25 CFR 213.33 - Diligence and prevention of waste.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Diligence and prevention of waste. 213.33 Section 213.33... LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.33 Diligence and prevention of waste. The lessee shall exercise diligence in drilling and operating wells for oil and gas on...

  5. Deep rock nuclear waste disposal test: design and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, Robert D.

    1974-09-01

    An electrically heated test of nuclear waste simulants in granitic rock was conducted to demonstrate the feasibility of the concept of deep rock nuclear waste disposal and to obtain design data. This report describes the deep rock disposal sytstems study and the design and operation of the first concept feasibility test.

  6. The conversion of community-derived wastes to methane in a high-rate digester. La conversion des dechets solides municipaux en methane dans un digesteur a rendement eleve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Srivastava, V.J.; Punwani, D.V.

    1988-01-01

    The Institute of Gas Technology (IGT) has been operating a 4.5-m/sup 3/, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida, since January 1984. This digester development work is part of a larger effort that provides effective community waste treatment and disposal options while recovering a valuable methane resources from these wastes. Excellent conversions to methane have been obtained in the digester during 4 years of uninterrupted operation. Data were collected on wastes from experimental municipal wastewater treatment applications, that is, water hyacinths were harvested from secondary wastewater treatment channels and combined with sludgemore » from primary clarifiers to maximize potential methane recoveries in the digester; wastes from agricultural operations, that is, sorghum was selected as a candidate because it represents both a potential energy crop, as well as a waste resource if only portions of the plant are converted after grain production; and wastes from municipal waste collection. Municipal solids waste (MSW) from a commercial resource recovery center was selected. 3 refs., 4 figs., 5 tabs.« less

  7. The effect of dynamic scheduling and routing in a solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, Ola M.

    2006-07-01

    Solid waste collection and hauling account for the greater part of the total cost in modern solid waste management systems. In a recent initiative, 3300 Swedish recycling containers have been fitted with level sensors and wireless communication equipment, thereby giving waste collection operators access to real-time information on the status of each container. In this study, analytical modeling and discrete-event simulation have been used to evaluate different scheduling and routing policies utilizing the real-time data. In addition to the general models developed, an empirical simulation study has been performed on the downtown recycling station system in Malmoe, Sweden. From themore » study, it can be concluded that dynamic scheduling and routing policies exist that have lower operating costs, shorter collection and hauling distances, and reduced labor hours compared to the static policy with fixed routes and pre-determined pick-up frequencies employed by many waste collection operators today. The results of the analytical model and the simulation models are coherent, and consistent with experiences of the waste collection operators.« less

  8. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used for both validation of satellite measurements as well as regional aerosol and ultraviolet transmission studies.

  9. Increased functional connectivity between dorsal posterior parietal and ventral occipitotemporal cortex during uncertain memory decisions.

    PubMed

    Hutchinson, J Benjamin; Uncapher, Melina R; Wagner, Anthony D

    2015-01-01

    Retrieval of episodic memories is a multi-component act that relies on numerous operations ranging from processing the retrieval cue, evaluating retrieved information, and selecting the appropriate response given the demands of the task. Motivated by a rich functional neuroimaging literature, recent theorizing about various computations at retrieval has focused on the role of posterior parietal cortex (PPC). In a potentially promising line of research, recent neuroimaging findings suggest that different subregions of dorsal PPC respond distinctly to different aspects of retrieval decisions, suggesting that better understanding of their contributions might shed light on the component processes of retrieval. In an attempt to understand the basic operations performed by dorsal PPC, we used functional MRI and functional connectivity analyses to examine how activation in, and connectivity between, dorsal PPC and ventral temporal regions representing retrieval cues varies as a function of retrieval decision uncertainty. Specifically, participants made a five-point recognition confidence judgment for a series of old and new visually presented words. Consistent with prior studies, memory-related activity patterns dissociated across left dorsal PPC subregions, with activity in the lateral IPS tracking the degree to which participants perceived an item to be old, whereas activity in the SPL increased as a function of decision uncertainty. Importantly, whole-brain functional connectivity analyses further revealed that SPL activity was more strongly correlated with that in the visual word-form area during uncertain relative to certain decisions. These data suggest that the involvement of SPL during episodic retrieval reflects, at least in part, the processing of the retrieval cue, perhaps in service of attempts to increase the mnemonic evidence elicited by the cue. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A better understanding of POLDER's cloud droplet size retrieval: impact of cloud horizontal inhomogeneity and directional sampling

    NASA Astrophysics Data System (ADS)

    Shang, H.; Chen, L.; Bréon, F.-M.; Letu, H.; Li, S.; Wang, Z.; Su, L.

    2015-07-01

    The principles of the Polarization and Directionality of the Earth's Reflectance (POLDER) cloud droplet size retrieval requires that clouds are horizontally homogeneous. Nevertheless, the retrieval is applied by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using the POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval, and then analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-scale variability in droplet effective radius (CDR) can mislead both the CDR and effective variance (EV) retrievals. Nevertheless, the sub-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval is accurate using limited observations and is largely independent of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, the measurements in the primary rainbow region (137-145°) are used to ensure accurate large droplet (> 15 μm) retrievals and reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data for June 2008, the new CDR results are compared with the operational CDRs. The comparison show that the operational CDRs tend to be underestimated for large droplets. The reason is that the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Lastly, a sub-scale retrieval case is analyzed, illustrating that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size parameters from POLDER measurements.

  11. Waste retrieval sluicing system data acquisition system acceptance test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevins, R.R.

    1998-07-31

    This document describes the test procedure for the Project W-320 Tank C-106 Sluicing Data Acquisition System (W-320 DAS). The Software Test portion will test items identified in the WRSS DAS System Description (SD), HNF-2115. Traceability to HNF-2115 will be via a reference that follows in parenthesis, after the test section title. The Field Test portion will test sensor operability, analog to digital conversion, and alarm setpoints for field instrumentation. The W-320 DAS supplies data to assist thermal modeling of tanks 241-C-106 and 241-AY-102. It is designed to be a central repository for information from sources that would otherwise have tomore » be read, recorded, and integrated manually. Thus, completion of the DAS requires communication with several different data collection devices and output to a usable PC data formats. This test procedure will demonstrate that the DAS functions as required by the project requirements stated in Section 3 of the W-320 DAS System Description, HNF-2115.« less

  12. The Strength of Ethical Matrixes as a Tool for Normative Analysis Related to Technological Choices: The Case of Geological Disposal for Radioactive Waste.

    PubMed

    Kermisch, Céline; Depaus, Christophe

    2018-02-01

    The ethical matrix is a participatory tool designed to structure ethical reflection about the design, the introduction, the development or the use of technologies. Its collective implementation, in the context of participatory decision-making, has shown its potential usefulness. On the contrary, its implementation by a single researcher has not been thoroughly analyzed. The aim of this paper is precisely to assess the strength of ethical matrixes implemented by a single researcher as a tool for conceptual normative analysis related to technological choices. Therefore, the ethical matrix framework is applied to the management of high-level radioactive waste, more specifically to retrievable and non-retrievable geological disposal. The results of this analysis show that the usefulness of ethical matrixes is twofold and that they provide a valuable input for further decision-making. Indeed, by using ethical matrixes, implicit ethically relevant issues were revealed-namely issues of equity associated with health impacts and differences between close and remote future generations regarding ethical impacts. Moreover, the ethical matrix framework was helpful in synthesizing and comparing systematically the ethical impacts of the technologies under scrutiny, and hence in highlighting the potential ethical conflicts.

  13. Dioxins from medical waste incineration: Normal operation and transient conditions.

    PubMed

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  14. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less

  15. Type B drum packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, J.C.

    1994-08-01

    The Type B drum packages (TBD) are conceptualized as a family of containers in which a single 208 L or 114 L (55 gal or 30 gal) drum containing Type B quantities of radioactive material (RAM) can be packaged for shipment. The TBD containers are being developed to fill a void in the packaging and transportation capabilities of the U.S. Department of Energy as no container packaging single drums of Type B RAM exists offering double containment. Several multiple-drum containers currently exist, as well as a number of shielded casks, but the size and weight of these containers present manymore » operational challenges for single-drum shipments. As an alternative, the TBD containers will offer up to three shielded versions (light, medium, and heavy) and one unshielded version, each offering single or optional double containment for a single drum. To reduce operational complexity, all versions will share similar design and operational features where possible. The primary users of the TBD containers are envisioned to be any organization desiring to ship single drums of Type B RAM, such as laboratories, waste retrieval activities, emergency response teams, etc. Currently, the TBD conceptual design is being developed with the final design and analysis to be completed in 1995 to 1996. Testing and certification of the unshielded version are planned to be completed in 1996 to 1997 with production to begin in 1997 to 1998.« less

  16. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  17. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  18. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  19. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

  20. 40 CFR 267.1105 - What do I do if my containment building contains areas both with and without secondary containment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating log a written description of the operating procedures used to maintain the integrity of areas... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Containment...

Top