Sample records for waste robotics program

  1. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER WM) operations at DOE sites to be safer,more » faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs.« less

  2. Robotics for mixed waste operations, demonstration description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less

  3. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less

  4. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER WM activities at the sites, including potentialmore » needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab.« less

  5. Robotics crosscutting program: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies becamemore » evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.« less

  6. Robotics Technology Crosscutting Program. Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had commonmore » (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.« less

  7. Dual benefit robotics programs at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.T.

    Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. Inmore » the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.« less

  8. Research on robotics by principal investigators of the Robotics Technology Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrigan, R.W.

    The U.S. Department of Energy`s Office of Technology Development has been developing robotics and automation technologies for the clean-up and handling of hazardous and radioactive waste through one of its major elements, Cross Cutting and Advanced Technology development. CC&AT university research and development programs recognize the strong technology, base resident in the university community and sponsor a focused technology research and development program which stresses close interaction between the university sector and the DOE community. This report contains a compilation of research articles by each of 14 principle investigators supported by CC&AT to develop robotics and automation technologies for themore » clean-up and handling of hazardous and radioactive waste. This research has led to innovative solutions for waste clean-up problems, and it has moved technology out of university laboratories into functioning systems which has allowed early evaluation by site technologists.« less

  9. Robots remove explosive waste from flooded site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    Explosive industrial waste can remain hazardous for years, making remediation extremely dangerous, particularly when using traditional methods involving people and manually operated equipment. The work is even more complex if the waste is submerged. Authorities in 1988 faced an unusual challenge when they decided to clean up a flooded area that had been used for more than 30 years as a dump for explosive materials. They devised an innovative but highly effective solution. Instead of using divers, two robots perform the cleanup while site personnel remain 600 feet away from the restricted area. The robots were developed by Sonsub Environmentalmore » Services Inc. (Houston), which is responsible for their operation. The robots initially located and cleared a small area underwater to set up a metal-processing system, which also was designed by Sonsub. The system is similar to a metal-recycling shredder. The robots then assembled the 25-foot-tall, 20-ton system 60 feet below the surface on the pit floor. A large, surface robot carried sections of the shredder to the cleared area and lowered them, while a smaller, submersible robot guided them into position. This required extreme precision by the smaller robot, which had to ensure that sections mated properly. Both robots now retrieve waste from the pit bottom and feed it into the shredder. The larger robot has a 40-foot jointed arm for lifting up to 1,000 pounds of debris, a manipulator hand for sorting through rock piles and removing small containers, and a grapple for picking up items from the pit floor.« less

  10. Developing a successful robotics program.

    PubMed

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  11. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  12. Integrating robotic partial nephrectomy to an existing robotic surgery program.

    PubMed

    Yuh, Bertram; Muldrew, Shantel; Menchaca, Anita; Yip, Wesley; Lau, Clayton; Wilson, Timothy; Josephson, David

    2012-04-01

    As more centers develop robotic proficiency, progressing to a successful robot-assisted partial nephrectomy (RAPN) program depends on a number of factors. We describe our technique, results, and analysis of program setup for RAPN. Between 2005 and 2011, 92 RAPNs were performed following maturation of a robotic prostatectomy program. Operating rooms and supply rooms were outfitted for efficient robotic throughput. Tilepro and intraoperative ultrasound were used for all cases. Training and experiential learning for surgeons, anesthesia and nursing staff was a high priority. An onsite robotic technician helped troubleshoot, prepare the room and staff prior to starting surgery, and provide assistance with different robotic models. Average operative time decreased over time from 235 min to 199 min (p = .03). Warm ischemia time decreased from 26 minutes to 23 minutes (p = .02) despite an increased complexity of tumors and operations on multiple tumors. Median estimated blood loss was 150 mL. Average length of hospital stay was 3 days (range 1-9). Average size of lesions was 2.7 cm (range 0.7-8.6). Final pathology demonstrated 71 (77%) malignant lesions and 21 (23%) benign lesions. The addition of a robot-assisted partial nephrectomy program to an institutional robotic program can be coordinated with several key steps. Outcomes from an operational, oncologic, and renal functional standpoint are acceptable. Despite increased complexity of tumors and treatment of multiple lesions, operative and warm ischemia times showed a decrease over time. An organizational model that involves the surgeons, anesthesia, nursing staff, and possibly a robotic technical specialist helps to overcome the learning curve.

  13. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  14. The academic differences between students involved in school-based robotics programs and students not involved in school-based robotics programs

    NASA Astrophysics Data System (ADS)

    Koumoullos, Michael

    This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N=121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these students was compared to a group of students who were members of school based sports teams and to a group of students who were not part of either of the first two groups. Academic record was defined as overall GPA, English grade, mathematics grade, mathematics-based standardized state exam scores, and attendance rates. All of the participants of this study were students in a large, urban career and technical education high school. As STEM (Science, Technology, Engineering, and Mathematics) has come to the forefront of educational focus, robotics programs have grown in quantity. Starting robotics programs requires a serious commitment of time, money, and other resources. The benefits of such programs have not been well analyzed. This research study had three major goals: to identify the academic characteristics of students who are drawn to robotics programs, to identify the academic impact of the robotics program during the robotics season, and to identify the academic impact of the robotics program at the end of the school year. The study was a non-experiment. The researchers ran MANOVS, repeated measures analyses, an ANOVA, and descriptive statistics to analyze the data. The data showed that students drawn to robotics were academically stronger than students who did not participate in robotics. The data also showed that grades and attendance did not significantly improve or degrade either during the robotics season or at year-end. These findings are significant because they show that robotics programs attract students who are academically strong. This information can be very useful in high school articulation programs

  15. Best Practices for Robotic Surgery Programs

    PubMed Central

    Goldenberg, David; Winder, Joshua S.; Juza, Ryan M.; Lyn-Sue, Jerome R.

    2017-01-01

    Background and Objectives: Robotic surgical programs are increasing in number. Efficient methods by which to monitor and evaluate robotic surgery teams are needed. Methods: Best practices for an academic university medical center were created and instituted in 2009 and continue to the present. These practices have led to programmatic development that has resulted in a process that effectively monitors leadership team members; attending, resident, fellow, and staff training; credentialing; safety metrics; efficiency; and case volume recommendations. Results: Guidelines for hospitals and robotic directors that can be applied to one's own robotic surgical services are included with examples of management of all aspects of a multispecialty robotic surgery program. Conclusion: The use of these best practices will ensure a robotic surgery program that is successful and well positioned for a safe and productive environment for current clinical practice. PMID:28729780

  16. Metalevel programming in robotics: Some issues

    NASA Technical Reports Server (NTRS)

    Kumarn, A.; Parameswaran, N.

    1987-01-01

    Computing in robotics has two important requirements: efficiency and flexibility. Algorithms for robot actions are implemented usually in procedural languages such as VAL and AL. But, since their excessive bindings create inflexible structures of computation, it is proposed that Logic Programming is a more suitable language for robot programming due to its non-determinism, declarative nature, and provision for metalevel programming. Logic Programming, however, results in inefficient computations. As a solution to this problem, researchers discuss a framework in which controls can be described to improve efficiency. They have divided controls into: (1) in-code and (2) metalevel and discussed them with reference to selection of rules and dataflow. Researchers illustrated the merit of Logic Programming by modelling the motion of a robot from one point to another avoiding obstacles.

  17. FIELD APPLICATIONS OF ROBOTIC SYSTEMS IN HAZARDOUS WASTE SITE OPERATIONS

    EPA Science Inventory

    The cleanup of hazardous waste sites is a challenging and complex field that offers numerous opportunities for the application of robotic technology. he contamination problem, long in the making, will take decades to resolve. ur ingenuity in developing robotic tools to assist in ...

  18. Robotics Programs: Automation Training in Disguise.

    ERIC Educational Resources Information Center

    Rehg, James A.

    1985-01-01

    Questions and answers from the book "Guidelines for Robotics Program Development" are presented, addressing some of the major issues confronted by the person setting the direction for a robotics training program. (CT)

  19. Students Learn Programming Faster through Robotic Simulation

    ERIC Educational Resources Information Center

    Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin

    2013-01-01

    Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…

  20. Development of monitoring and diagnostic methods for robots used in remediation of waste sites. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecza, J.

    1998-06-01

    'Safe and efficient clean up of hazardous and radioactive waste sites throughout the DOE complex will require extensive use of robots. This research effort focuses on developing Monitoring and Diagnostic (M and D) methods for robots that will provide early detection, isolation, and tracking of impending faults before they result in serious failure. The utility and effectiveness of applying M and D methods to hydraulic robots has never been proven. The present research program is utilizing seeded faults in a laboratory test rig that is representative of an existing hydraulically-powered remediation robot. This report summarizes activity conducted in the firstmore » 9 months of the project. The research team has analyzed the Rosie Mobile Worksystem as a representative hydraulic robot, developed a test rig for implanted fault testing, developed a test plan and agenda, and established methods for acquiring and analyzing the test data.'« less

  1. Humanoid Robotics: Real-Time Object Oriented Programming

    NASA Technical Reports Server (NTRS)

    Newton, Jason E.

    2005-01-01

    Programming of robots in today's world is often done in a procedural oriented fashion, where object oriented programming is not incorporated. In order to keep a robust architecture allowing for easy expansion of capabilities and a truly modular design, object oriented programming is required. However, concepts in object oriented programming are not typically applied to a real time environment. The Fujitsu HOAP-2 is the test bed for the development of a humanoid robot framework abstracting control of the robot into simple logical commands in a real time robotic system while allowing full access to all sensory data. In addition to interfacing between the motor and sensory systems, this paper discusses the software which operates multiple independently developed control systems simultaneously and the safety measures which keep the humanoid from damaging itself and its environment while running these systems. The use of this software decreases development time and costs and allows changes to be made while keeping results safe and predictable.

  2. Robotic acquisition programs: technical and performance challenges

    NASA Astrophysics Data System (ADS)

    Thibadoux, Steven A.

    2002-07-01

    The Unmanned Ground Vehicles/ Systems Joint Project Office (UGV/S JPO) is developing and fielding a variety of tactical robotic systems for the Army and Marine Corps. The Standardized Robotic System (SRS) provides a family of common components that can be installed in existing military vehicles, to allow unmanned operation of the vehicle and its payloads. The Robotic Combat Support System (RCSS) will be a medium sized unmanned system with interchangeable attachments, allowing a remote operator to perform a variety of engineering tasks. The Gladiator Program is a USMC initiative for a small to medium sized, highly mobile UGV to conduct scout/ surveillance missions and to carry various lethal and non-lethal payloads. Acquisition plans for these programs require preplanned evolutionary block upgrades to add operational capability, as new technology becomes available. This paper discusses technical and performance issues that must be resolved and the enabling technologies needed for near term block upgrades of these first generation robotic systems. Additionally, two Joint Robotics Program (JRP) initiatives, Robotic Acquisition through Virtual Environments and Networked Simulations (RAVENS) and Joint Architecture for Unmanned Ground Systems (JAUGS), will be discussed. RAVENS and JAUGS will be used to efficiently evaluate and integrate new technologies to be incorporated in system upgrades.

  3. Robot Programming.

    DTIC Science & Technology

    1982-12-01

    Paris, France, June, 1982, 519-530. Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d’avancement des recherches," Laboratoire...8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS ,. 545 Technology Square Cambridge

  4. Robot Task Commander with Extensible Programming Environment

    NASA Technical Reports Server (NTRS)

    Hart, Stephen W (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Yamokoski, John D. (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  5. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Burgess; M. Noakes; P. Spampinato

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilitiesmore » planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.« less

  6. Developing a multidisciplinary robotic surgery quality assessment program.

    PubMed

    Gonsenhauser, Iahn; Abaza, Ronney; Mekhjian, Hagop; Moffatt-Bruce, Susan D

    2012-01-01

    The objective of this study was to test the feasibility of a novel quality-improvement (QI) program designed to incorporate multiple robotic surgical sub-specialties in one health care system. A robotic surgery quality assessment program was developed by The Ohio State University College of Medicine (OSUMC) in conjunction with The Ohio State University Medical Center Quality Improvement and Operations Department. A retrospective review of cases was performed using data interrogated from the OSUMC Information Warehouse from January 2007 through August 2009. Robotic surgery cases (n=2200) were assessed for operative times, length of stay (LOS), conversions, returns to surgery, readmissions and cancellations as potential quality indicators. An actionable and reproducible framework for the quality measurement and assessment of a multidisciplinary and interdepartmental robotic surgery program was successfully completed demonstrating areas for improvement opportunities. This report supports that standard quality indicators can be applied to multiple specialties within a health care system to develop a useful quality tracking and assessment tool in the highly specialized area of robotic surgery. © 2012 National Association for Healthcare Quality.

  7. The KALI multi-arm robot programming and control environment

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Hayati, Samad; Hayward, Vincent; Tso, Kam

    1989-01-01

    The KALI distributed robot programming and control environment is described within the context of its use in the Jet Propulsion Laboratory (JPL) telerobot project. The purpose of KALI is to provide a flexible robot programming and control environment for coordinated multi-arm robots. Flexibility, both in hardware configuration and software, is desired so that it can be easily modified to test various concepts in robot programming and control, e.g., multi-arm control, force control, sensor integration, teleoperation, and shared control. In the programming environment, user programs written in the C programming language describe trajectories for multiple coordinated manipulators with the aid of KALI function libraries. A system of multiple coordinated manipulators is considered within the programming environment as one motion system. The user plans the trajectory of one controlled Cartesian frame associated with a motion system and describes the positions of the manipulators with respect to that frame. Smooth Cartesian trajectories are achieved through a blending of successive path segments. The manipulator and load dynamics are considered during trajectory generation so that given interface force limits are not exceeded.

  8. Developing a successful robotic surgery program in a rural hospital.

    PubMed

    Zender, John; Thell, Christina

    2010-07-01

    Robotic surgery has become a standard in many large hospitals across the United States and the world. The surgical robot offers the surgeon a three-dimensional view and increased dexterity in addition to providing the benefits of laparoscopic surgery to the patient (eg, shorter hospital stays, decreased pain, fewer postoperative complications). The next progression for robotic surgery is a move to rural venues. For many small, rural hospitals, however, obtaining a robot may be cost prohibitive, and these facilities may need to explore sources of funding for the program. Developing a robotics program requires intense training by surgeons and all surgical team members. Effective marketing of the program and the dedication and hard work of surgical team members and administrators are vital to ensure the success of the program. Copyright (c) 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  9. The NASA automation and robotics technology program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  10. Learning to Program with Personal Robots: Influences on Student Motivation

    ERIC Educational Resources Information Center

    McGill, Monica M.

    2012-01-01

    One of the goals of using robots in introductory programming courses is to increase motivation among learners. There have been several types of robots that have been used extensively in the classroom to teach a variety of computer science concepts. A more recently introduced robot designed to teach programming to novice students is the Institute…

  11. Developing a robotic pancreas program: the Dutch experience

    PubMed Central

    Nota, Carolijn L.; Zwart, Maurice J.; Fong, Yuman; Hagendoorn, Jeroen; Hogg, Melissa E.; Koerkamp, Bas Groot; Besselink, Marc G.

    2017-01-01

    Robot-assisted surgery has been developed to overcome limitations of conventional laparoscopy aiming to further optimize minimally invasive surgery. Despite the fact that robotics already have been widely adopted in urology, gynecology, and several gastro-intestinal procedures, like colorectal surgery, pancreatic surgery lags behind. Due to the complex nature of the procedure, surgeons probably have been hesitant to apply minimally invasive techniques in pancreatic surgery. Nevertheless, the past few years pancreatic surgery has been catching up. An increasing number of procedures are being performed laparoscopically and robotically, despite it being a highly complex procedure with high morbidity and mortality rates. Since the complex nature and extensiveness of the procedure, the start of a robotic pancreatic program should be properly prepared and should comply with several conditions within high-volume centers. Robotic training plays a significant role in the preparation. In this review we discuss the different aspects of preparation when working towards the start of a robotic pancreas program against the background of our nationwide experience in the Netherlands. PMID:29078666

  12. Developing a robotic pancreas program: the Dutch experience.

    PubMed

    Nota, Carolijn L; Zwart, Maurice J; Fong, Yuman; Hagendoorn, Jeroen; Hogg, Melissa E; Koerkamp, Bas Groot; Besselink, Marc G; Molenaar, I Quintus

    2017-01-01

    Robot-assisted surgery has been developed to overcome limitations of conventional laparoscopy aiming to further optimize minimally invasive surgery. Despite the fact that robotics already have been widely adopted in urology, gynecology, and several gastro-intestinal procedures, like colorectal surgery, pancreatic surgery lags behind. Due to the complex nature of the procedure, surgeons probably have been hesitant to apply minimally invasive techniques in pancreatic surgery. Nevertheless, the past few years pancreatic surgery has been catching up. An increasing number of procedures are being performed laparoscopically and robotically, despite it being a highly complex procedure with high morbidity and mortality rates. Since the complex nature and extensiveness of the procedure, the start of a robotic pancreatic program should be properly prepared and should comply with several conditions within high-volume centers. Robotic training plays a significant role in the preparation. In this review we discuss the different aspects of preparation when working towards the start of a robotic pancreas program against the background of our nationwide experience in the Netherlands.

  13. Starting a Robotics Program in Your County

    ERIC Educational Resources Information Center

    Habib, Maria A.

    2012-01-01

    The current mission mandates of the National 4-H Headquarters are Citizenship, Healthy Living, and Science. Robotics programs are excellent in fulfilling the Science mandate. Robotics engages students in STEM (Science, Engineering, Technology, and Mathematics) fields by providing interactive, hands-on, minds-on, cross-disciplinary learning…

  14. Application of industrial robots in automatic disassembly line of waste LCD displays

    NASA Astrophysics Data System (ADS)

    Wang, Sujuan

    2017-11-01

    In the automatic disassembly line of waste LCD displays, LCD displays are disassembled into plastic shells, metal shields, circuit boards, and LCD panels. Two industrial robots are used to cut metal shields and remove circuit boards in this automatic disassembly line. The functions of these two industrial robots, and the solutions to the critical issues of model selection, the interfaces with PLCs and the workflows were described in detail in this paper.

  15. Task-level robot programming: Integral part of evolution from teleoperation to autonomy

    NASA Technical Reports Server (NTRS)

    Reynolds, James C.

    1987-01-01

    An explanation is presented of task-level robot programming and of how it differs from the usual interpretation of task planning for robotics. Most importantly, it is argued that the physical and mathematical basis of task-level robot programming provides inherently greater reliability than efforts to apply better known concepts from artificial intelligence (AI) to autonomous robotics. Finally, an architecture is presented that allows the integration of task-level robot programming within an evolutionary, redundant, and multi-modal framework that spans teleoperation to autonomy.

  16. Seeking Teachers for Underwater Robotics PD Program

    ERIC Educational Resources Information Center

    McGrath, Beth; Sayres, Jason

    2012-01-01

    With funding from the National Science Foundation (NSF), ITEEA members will contribute to the development of a hybrid professional development program designed to facilitate the scale-up of an innovative underwater robotics curriculum. WaterBotics[TM] is an underwater robotics curriculum that targets students in middle and high school classrooms…

  17. Development of robotic program: an Asian experience.

    PubMed

    Sahabudin, R M; Arni, T; Ashani, N; Arumuga, K; Rajenthran, S; Murali, S; Patel, V; Hemal, A; Menon, M

    2006-06-01

    Robotic surgery was started in the Department of Urology, Hospital Kuala Lumpur, in April 2004. We present our experience in developing the program and report the results of our first 50 cases of robotic radical prostatectomy. A three-arm da Vinci robotic system was installed in our hospital in March 2004. Prior to installation, the surgeons underwent training at various centers in the United States and Paris. The operating theatre was renovated to house the system. Subsequently, the initial few cases were done with the help of proctors. Data were prospectively collected on all patients who underwent robot-assisted radical prostatectomy for localized carcinoma of the prostate. Fifty patients underwent robot assisted radical prostatectomy from March 2004 to June 2005. Their ages ranged from 52 to 75 years, (average age 60.2 years). PSA levels ranged from 2.5 to 35 ng/ml (mean 10.6 ng/ml). Prostate volume ranged from 18 to 130 cc (average 32.4 cc). Average operating time for the first 20 cases was 4 h and for the next 30 cases was 2.5 h. Patients were discharged 1-3 days post-operatively. Catheters were removed on the fifth day following a cystogram. The positive margin rate as defined by the presence of cancer cells at the inked margin was 30%. Twenty-one patients had T1c disease and one had T1b on clinical staging. Of these, two were apical margin positive. Twenty-six patients had T2 disease and eight of them were apical margin positive. Two patients had T3 disease, one of whom was apical margin positive. Five patients (10%) had PSA recurrence. Five patients had a poorly differentiated carcinoma and the rest had Gleason 6 or 7. Eighty percent of the patients were continent on follow-up at 3 months. Of those who were potent before the surgery, 50% were potent at 3-6 months. The robotic surgery program was successfully implemented at our center on the lines of a structured program, developed at Vattikuti Urology Institute (VUI). We succeeded in creating a team and

  18. Programming with the KIBO Robotics Kit in Preschool Classrooms

    ERIC Educational Resources Information Center

    Elkin, Mollie; Sullivan, Amanda; Bers, Marina Umaschi

    2016-01-01

    KIBO is a developmentally appropriate robotics kit for young children that is programmed using interlocking wooden blocks; no screens or keyboards are required. This study describes a pilot KIBO robotics curriculum at an urban public preschool in Rhode Island and presents data collected on children's knowledge of foundational programming concepts…

  19. Control Robotics Programming Technology. Technology Learning Activity. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This Technology Learning Activity (TLA) for control robotics programming technology in grades 6-10 is designed to teach students to construct and program computer-controlled devices using a LEGO DACTA set and computer interface and to help them understand how control technology and robotics affect them and their lifestyle. The suggested time for…

  20. Innovative Mobile Robot Method: Improving the Learning of Programming Languages in Engineering Degrees

    ERIC Educational Resources Information Center

    Ortiz, Octavio Ortiz; Pastor Franco, Juan Ángel; Alcover Garau, Pedro María; Herrero Martín, Ruth

    2017-01-01

    This paper describes a study of teaching a programming language in a C programming course by having students assemble and program a low-cost mobile robot. Writing their own programs to define the robot's behavior raised students' motivation. Working in small groups, students programmed the robots by using the control structures of structured…

  1. Off-line robot programming and graphical verification of path planning

    NASA Technical Reports Server (NTRS)

    Tonkay, Gregory L.

    1989-01-01

    The objective of this project was to develop or specify an integrated environment for off-line programming, graphical path verification, and debugging for robotic systems. Two alternatives were compared. The first was the integration of the ASEA Off-line Programming package with ROBSIM, a robotic simulation program. The second alternative was the purchase of the commercial product IGRIP. The needs of the RADL (Robotics Applications Development Laboratory) were explored and the alternatives were evaluated based on these needs. As a result, IGRIP was proposed as the best solution to the problem.

  2. Virtual collaborative environments: programming and controlling robotic devices remotely

    NASA Astrophysics Data System (ADS)

    Davies, Brady R.; McDonald, Michael J., Jr.; Harrigan, Raymond W.

    1995-12-01

    This paper describes a technology for remote sharing of intelligent electro-mechanical devices. An architecture and actual system have been developed and tested, based on the proposed National Information Infrastructure (NII) or Information Highway, to facilitate programming and control of intelligent programmable machines (like robots, machine tools, etc.). Using appropriate geometric models, integrated sensors, video systems, and computing hardware; computer controlled resources owned and operated by different (in a geographic sense as well as legal sense) entities can be individually or simultaneously programmed and controlled from one or more remote locations. Remote programming and control of intelligent machines will create significant opportunities for sharing of expensive capital equipment. Using the technology described in this paper, university researchers, manufacturing entities, automation consultants, design entities, and others can directly access robotic and machining facilities located across the country. Disparate electro-mechanical resources will be shared in a manner similar to the way supercomputers are accessed by multiple users. Using this technology, it will be possible for researchers developing new robot control algorithms to validate models and algorithms right from their university labs without ever owning a robot. Manufacturers will be able to model, simulate, and measure the performance of prospective robots before selecting robot hardware optimally suited for their intended application. Designers will be able to access CNC machining centers across the country to fabricate prototypic parts during product design validation. An existing prototype architecture and system has been developed and proven. Programming and control of a large gantry robot located at Sandia National Laboratories in Albuquerque, New Mexico, was demonstrated from such remote locations as Washington D.C., Washington State, and Southern California.

  3. Setting up a pediatric robotic urology program: A USA institution experience.

    PubMed

    Murthy, Prithvi B; Schadler, Eric D; Orvieto, Marcelo; Zagaja, Gregory; Shalhav, Arieh L; Gundeti, Mohan S

    2018-02-01

    Implementing a robotic urological surgery program requires institutional support, and necessitates a comprehensive, detail-oriented plan that accounts for training, oversight, cost and case volume. Given the prevalence of robotic surgery in adult urology, in many instances it might be feasible to implement a pediatric robotic urology program within the greater context of adult urology. This involves, from an institutional standpoint, proportional distribution of equipment cost and operating room time. However, the pediatric urology team primarily determines goals for volume expansion, operative case selection, resident training and surgical innovation within the specialty. In addition to the clinical model, a robust economic model that includes marketing must be present. This review specifically highlights these factors in relationship to establishing and maintaining a pediatric robotic urology program. In addition, we share our data involving robot use over the program's first nine years (December 2007-December 2016). © 2017 The Japanese Urological Association.

  4. Automation and robotics for the National Space Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The emphasis on automation and robotics in the augmentation of the human centered systems as it concerns the space station is discussed. How automation and robotics can amplify the capabilities of humans is detailed. A detailed developmental program for the space station is outlined.

  5. Residency Training in Robotic General Surgery: A Survey of Program Directors.

    PubMed

    George, Lea C; O'Neill, Rebecca; Merchant, Aziz M

    2018-01-01

    Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. 20 program directors were surveyed, a majority being from medium-sized programs (4-7 graduating residents per year). Most respondents (73.68%) had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%), with simulation training prior to console use (84.21%). About two-thirds of the respondents (63.16%) believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%). A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training.

  6. The Academic Differences between Students Involved in School-Based Robotics Programs and Students Not Involved in School-Based Robotics Programs

    ERIC Educational Resources Information Center

    Koumoullos, Michael

    2013-01-01

    This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N = 121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these…

  7. Development of a task-level robot programming and simulation system

    NASA Technical Reports Server (NTRS)

    Liu, H.; Kawamura, K.; Narayanan, S.; Zhang, G.; Franke, H.; Ozkan, M.; Arima, H.; Liu, H.

    1987-01-01

    An ongoing project in developing a Task-Level Robot Programming and Simulation System (TARPS) is discussed. The objective of this approach is to design a generic TARPS that can be used in a variety of applications. Many robotic applications require off-line programming, and a TARPS is very useful in such applications. Task level programming is object centered in that the user specifies tasks to be performed instead of robot paths. Graphics simulation provides greater flexibility and also avoids costly machine setup and possible damage. A TARPS has three major modules: world model, task planner and task simulator. The system architecture, design issues and some preliminary results are given.

  8. Residency Training in Robotic General Surgery: A Survey of Program Directors

    PubMed Central

    George, Lea C.; O'Neill, Rebecca

    2018-01-01

    Objective Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. Methods An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. Results 20 program directors were surveyed, a majority being from medium-sized programs (4–7 graduating residents per year). Most respondents (73.68%) had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%), with simulation training prior to console use (84.21%). About two-thirds of the respondents (63.16%) believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%). Conclusion A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training. PMID:29854454

  9. Space missions for automation and robotics technologies (SMART) program

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Lum, H., Jr.

    1985-01-01

    The motivations, features and expected benefits and applications of the NASA SMART program are summarized. SMART is intended to push the state of the art in automation and robotics, a goal that Public Law 98-371 mandated be an inherent part of the Space Station program. The effort would first require tests of sensors, manipulators, computers and other subsystems as seeds for the evolution of flight-qualified subsystems. Consideration is currently being given to robotics systems as add-ons to the RMS, MMU and OMV and a self-contained automation and robotics module which would be tended by astronaut visits. Probable experimentation and development paths that would be pursued with the equipment are discussed, along with the management structure and procedures for the program. The first hardware flight is projected for 1989.

  10. Pyro: A Python-Based Versatile Programming Environment for Teaching Robotics

    ERIC Educational Resources Information Center

    Blank, Douglas; Kumar, Deepak; Meeden, Lisa; Yanco, Holly

    2004-01-01

    In this article we describe a programming framework called Pyro, which provides a set of abstractions that allows students to write platform-independent robot programs. This project is unique because of its focus on the pedagogical implications of teaching mobile robotics via a top-down approach. We describe the background of the project, its…

  11. Robot-Assisted Thoracic Surgery (RATS): Perioperative Nursing Professional Development Program.

    PubMed

    Sarmanian, Julie D

    2015-09-01

    Robot-assisted surgery continues to grow in popularity worldwide. Competency and training of personnel for robot-assisted thoracic surgery (RATS) is less established compared with other robot-assisted specialties. Major differences between minimally invasive approaches to thoracic surgery (eg, video-assisted thoracoscopic surgery) and RATS are presented to address a paucity of literature on the subject. Although perioperative nursing considerations are universal to all robot-assisted procedures, there are nursing consideration specific to RATS. This article provides a RATS perioperative nursing development program for RN circulators and scrub personnel. Development of perioperative nursing knowledge and skills through implementation of targeted training programs enables nurses to provide a safe surgical experience for patients undergoing RATS. Copyright © 2015 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  12. Automatic programming of arc welding robots

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Srikanth

    Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described

  13. Web Environment for Programming and Control of a Mobile Robot in a Remote Laboratory

    ERIC Educational Resources Information Center

    dos Santos Lopes, Maísa Soares; Gomes, Iago Pacheco; Trindade, Roque M. P.; da Silva, Alzira F.; de C. Lima, Antonio C.

    2017-01-01

    Remote robotics laboratories have been successfully used for engineering education. However, few of them use mobile robots to to teach computer science. This article describes a mobile robot Control and Programming Environment (CPE) and its pedagogical applications. The system comprises a remote laboratory for robotics, an online programming tool,…

  14. Tips on establishing a robotics program in an academic setting.

    PubMed

    Steers, William D

    2006-02-17

    Over the past 5 years, robotic-assisted laparoscopic surgery has gone from being a novelty to an accepted approach for intra-abdominal and pelvic surgery. Driving this trend has been the large number of robotic-assisted laparoscopic prostatectomies performed throughout the U.S. Nearly a quarter of the prostatectomies done for prostate cancer in the U.S. in 2006 will use robotic assistance, yet reports fail to confirm cost effectiveness. The most important predictor of a successful program is a champion at the institution. Studies have demonstrated safety and immediate benefits with regard to reduced surgical morbidity such as pain, loss of work, quality of life, and blood loss for a variety of surgeries patients. Specific to prostatectomy for cancer, long-term data on biochemical (PSA) failures and cancer cures, as well as validated secondary outcomes for continence and potency, are still unavailable. Benefits accrue for the surgeon as well with improved ergonomics and potential extension of a surgical career. Yet, enthusiasm for robotics must be tempered by this lack of data and economic limitations. However, if a thoughtful and thorough process in initiating a robotic program is undertaken, the risks to the institution can be minimized. With proper training, the risk to the patient is reduced and with due diligence with regard to market and operative resources, the risk to the surgeon can be eliminated. This report reviews the steps to assess, plan, initiate, and maintain a robotics program at an academic institution with the hope that other programs can benefit from lessons acquired by early adopters of this expensive technology.

  15. Tips on Establishing a Robotics Program in an Academic Setting

    PubMed Central

    Steers, William D.

    2006-01-01

    Over the past 5 years, robotic-assisted laparoscopic surgery has gone from being a novelty to an accepted approach for intra-abdominal and pelvic surgery. Driving this trend has been the large number of robotic-assisted laparoscopic prostatectomies performed throughout the U.S. Nearly a quarter of the prostatectomies done for prostate cancer in the U.S. in 2006 will use robotic assistance, yet reports fail to confirm cost effectiveness. The most important predictor of a successful program is a champion at the institution. Studies have demonstrated safety and immediate benefits with regard to reduced surgical morbidity such as pain, loss of work, quality of life, and blood loss for a variety of surgeries patients. Specific to prostatectomy for cancer, long-term data on biochemical (PSA) failures and cancer cures, as well as validated secondary outcomes for continence and potency, are still unavailable. Benefits accrue for the surgeon as well with improved ergonomics and potential extension of a surgical career. Yet, enthusiasm for robotics must be tempered by this lack of data and economic limitations. However, if a thoughtful and thorough process in initiating a robotic program is undertaken, the risks to the institution can be minimized. With proper training, the risk to the patient is reduced and with due diligence with regard to market and operative resources, the risk to the surgeon can be eliminated. This report reviews the steps to assess, plan, initiate, and maintain a robotics program at an academic institution with the hope that other programs can benefit from lessons acquired by early adopters of this expensive technology. PMID:17619728

  16. Automated Manufacturing/Robotics Technology: Certificate and Associate Degree Programs.

    ERIC Educational Resources Information Center

    McQuay, Paul L.

    A description is provided of the Automated Manufacturing/Robotics program to be offered at Delaware County Community College beginning in September 1984. Section I provides information on the use of reprogramable industrial robots in manufacturing and the rapid changes in production that can be effected through the application of automated…

  17. Adoption of robotics in a general surgery residency program: at what cost?

    PubMed

    Mehaffey, J Hunter; Michaels, Alex D; Mullen, Matthew G; Yount, Kenan W; Meneveau, Max O; Smith, Philip W; Friel, Charles M; Schirmer, Bruce D

    2017-06-01

    Robotic technology is increasingly being utilized by general surgeons. However, the impact of introducing robotics to surgical residency has not been examined. This study aims to assess the financial costs and training impact of introducing robotics at an academic general surgery residency program. All patients who underwent laparoscopic or robotic cholecystectomy, ventral hernia repair (VHR), and inguinal hernia repair (IHR) at our institution from 2011-2015 were identified. The effect of robotic surgery on laparoscopic case volume was assessed with linear regression analysis. Resident participation, operative time, hospital costs, and patient charges were also evaluated. We identified 2260 laparoscopic and 139 robotic operations. As the volume of robotic cases increased, the number of laparoscopic cases steadily decreased. Residents participated in all laparoscopic cases and 70% of robotic cases but operated from the robot console in only 21% of cases. Mean operative time was increased for robotic cholecystectomy (+22%), IHR (+55%), and VHR (+61%). Financial analysis revealed higher median hospital costs per case for robotic cholecystectomy (+$411), IHR (+$887), and VHR (+$1124) as well as substantial associated fixed costs. Introduction of robotic surgery had considerable negative impact on laparoscopic case volume and significantly decreased resident participation. Increased operative time and hospital costs are substantial. An institution must be cognizant of these effects when considering implementing robotics in departments with a general surgery residency program. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Robotic platform for traveling on vertical piping network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  19. Robotic Literacy Learning Companions: Exploring Student Engagement with a Humanoid Robot in an Afterschool Literacy Program

    ERIC Educational Resources Information Center

    Levchak, Sofia

    2016-01-01

    This study was an investigation of the use of a NAO humanoid robot as an effective tool for engaging readers in an afterschool program as well as to find if increasing engagement using a humanoid robot would affect students' reading comprehension when compared to traditional forms of instruction. The targeted population of this study was…

  20. Tribal Waste Management Program

    EPA Pesticide Factsheets

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  1. An Interdisciplinary Field Robotics Program for Undergraduate Computer Science and Engineering Education

    ERIC Educational Resources Information Center

    Kitts, Christopher; Quinn, Neil

    2004-01-01

    Santa Clara University's Robotic Systems Laboratory conducts an aggressive robotic development and operations program in which interdisciplinary teams of undergraduate students build and deploy a wide range of robotic systems, ranging from underwater vehicles to spacecraft. These year-long projects expose students to the breadth of and…

  2. The Affordance Template ROS Package for Robot Task Programming

    NASA Technical Reports Server (NTRS)

    Hart, Stephen; Dinh, Paul; Hambuchen, Kimberly

    2015-01-01

    This paper introduces the Affordance Template ROS package for quickly programming, adjusting, and executing robot applications in the ROS RViz environment. This package extends the capabilities of RViz interactive markers by allowing an operator to specify multiple end-effector waypoint locations and grasp poses in object-centric coordinate frames and to adjust these waypoints in order to meet the run-time demands of the task (specifically, object scale and location). The Affordance Template package stores task specifications in a robot-agnostic XML description format such that it is trivial to apply a template to a new robot. As such, the Affordance Template package provides a robot-generic ROS tool appropriate for building semi-autonomous, manipulation-based applications. Affordance Templates were developed by the NASA-JSC DARPA Robotics Challenge (DRC) team and have since successfully been deployed on multiple platforms including the NASA Valkyrie and Robonaut 2 humanoids, the University of Texas Dreamer robot and the Willow Garage PR2. In this paper, the specification and implementation of the affordance template package is introduced and demonstrated through examples for wheel (valve) turning, pick-and-place, and drill grasping, evincing its utility and flexibility for a wide variety of robot applications.

  3. Robotics Programming Competition Spheres, Russian Part

    NASA Astrophysics Data System (ADS)

    Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia

    2016-07-01

    Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.

  4. Virtual Reality Based Support System for Layout Planning and Programming of an Industrial Robotic Work Cell

    PubMed Central

    Yap, Hwa Jen; Taha, Zahari; Md Dawal, Siti Zawiah; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell. PMID:25360663

  5. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    PubMed

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  6. La Vida Robot - High School Engineering Program Combats Engineering Brain Drain

    ScienceCinema

    Cameron, Allan; Lajvardi, Fredi

    2018-05-04

    Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunity to 'do real engineering.'

  7. La Vida Robot - High School Engineering Program Combats Engineering Brain Drain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Allan; Lajvardi, Fredi

    Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunitymore » to 'do real engineering.'« less

  8. Modelling of industrial robot in LabView Robotics

    NASA Astrophysics Data System (ADS)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  9. Exploring types of play in an adapted robotics program for children with disabilities.

    PubMed

    Lindsay, Sally; Lam, Ashley

    2018-04-01

    Play is an important occupation in a child's development. Children with disabilities often have fewer opportunities to engage in meaningful play than typically developing children. The purpose of this study was to explore the types of play (i.e., solitary, parallel and co-operative) within an adapted robotics program for children with disabilities aged 6-8 years. This study draws on detailed observations of each of the six robotics workshops and interviews with 53 participants (21 children, 21 parents and 11 programme staff). Our findings showed that four children engaged in solitary play, where all but one showed signs of moving towards parallel play. Six children demonstrated parallel play during all workshops. The remainder of the children had mixed play types play (solitary, parallel and/or co-operative) throughout the robotics workshops. We observed more parallel and co-operative, and less solitary play as the programme progressed. Ten different children displayed co-operative behaviours throughout the workshops. The interviews highlighted how staff supported children's engagement in the programme. Meanwhile, parents reported on their child's development of play skills. An adapted LEGO ® robotics program has potential to develop the play skills of children with disabilities in moving from solitary towards more parallel and co-operative play. Implications for rehabilitation Educators and clinicians working with children who have disabilities should consider the potential of LEGO ® robotics programs for developing their play skills. Clinicians should consider how the extent of their involvement in prompting and facilitating children's engagement and play within a robotics program may influence their ability to interact with their peers. Educators and clinicians should incorporate both structured and unstructured free-play elements within a robotics program to facilitate children's social development.

  10. Resident training in a new robotic thoracic surgery program.

    PubMed

    White, Yasmine N; Dedhia, Priya; Bergeron, Edward J; Lin, Jules; Chang, Andrew A; Reddy, Rishindra M

    2016-03-01

    The volume of robot-assisted operations has drastically increased over the past decade. New programs have focused on training surgeons, whereas resident training has lagged behind. The objective of this study was to evaluate our institutional experience with resident participation in thoracic robotic surgery cases since the initiation of our program. The first 100 robotic thoracic surgery cases at our institution were retrospectively reviewed and categorized into three sequential cohorts. Procedure type, patient and operative characteristics, level of resident participation (primary surgeon [PS] or assistant), and postoperative variables were evaluated. Of the first 100 cases, 38% were lung resections, 23% were esophageal operations, and 20% were sympathectomies. The distribution of cases changed over time with the proportion of pulmonary resections significantly increasing. Patient age (P < 0.05), body mass index (P = not significant [NS]), and comorbidities (P = NS) increased over time. Resident participation as PS increased from 33%-59% between the early and late cohorts (P < 0.05). A subset analysis of the 20 lobectomies (7 attending PS, 13 residents) showed similar patient characteristics (P = NS): age (67 versus 69), body mass index (29.5 versus 26.1), and American Society of Anesthesiologists category (2.8 versus 2.8). Operative and postoperative characteristics were also similar (P = NS) regardless of PS: operative time (260 versus 249 min), estimated blood loss (187 versus 203 mL), and length of stay (4.8 versus 4.7 d). Residents can participate as the PS in a variety of thoracic operations during the implementation of a robotics program. Operative time, estimated blood loss, and length of stay were similar regardless of level of resident participation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Evolutionary programming-based univector field navigation method for past mobile robots.

    PubMed

    Kim, Y J; Kim, J H; Kwon, D S

    2001-01-01

    Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.

  12. Control Program for an Optical-Calibration Robot

    NASA Technical Reports Server (NTRS)

    Johnston, Albert

    2005-01-01

    A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.

  13. Model of a training program in robotic surgery and its initial results.

    PubMed

    Madureira, Fernando Athayde Veloso; Varela, José Luís Souza; Madureira, Delta; D'Almeida, Luis Alfredo Vieira; Madureira, Fábio Athayde Veloso; Duarte, Alexandre Miranda; Vaz, Otávio Pires; Ramos, José Reinan

    2017-01-01

    to describe the implementation of a training program in robotic surgery and to point the General Surgery procedures that can be performed with advantages using the robotic platform. we conducted a retrospective analysis of data collected prospectively from the robotic surgery group in General and Colo-Retal Surgery at the Samaritan Hospital (Rio de Janeiro, Brazil), from October 2012 to December 2015. We describe the training stages and particularities. two hundred and ninety three robotic operations were performed in general surgery: 108 procedures for morbid obesity, 59 colorectal surgeries, 55 procedures in the esophago-gastric transition area, 16 cholecystectomies, 27 abdominal wall hernioplasties, 13 inguinal hernioplasties, two gastrectomies with D2 lymphadenectomy, one vagotomy, two diaphragmatic hernioplasties, four liver surgeries, two adrenalectomies, two splenectomies, one pancreatectomy and one bilio-digestive anastomosis. The complication rate was 2.4%, with no major complications. the robotic surgery program of the Samaritan Hospital was safely implemented and with initial results better than the ones described in the current literature. There seems to be benefits in using the robotic platform in super-obese patients, re-operations of obesity surgery and hiatus hernias, giant and paraesophageal hiatus hernias, ventral hernias with multiple defects and rectal resections.

  14. Robot Handcontroller

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.

  15. An Approach to Self-Assembling Swarm Robots Using Multitree Genetic Programming

    PubMed Central

    An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach. PMID:23861655

  16. An approach to self-assembling swarm robots using multitree genetic programming.

    PubMed

    Lee, Jong-Hyun; Ahn, Chang Wook; An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach.

  17. Adapting a robotics program to enhance participation and interest in STEM among children with disabilities: a pilot study.

    PubMed

    Lindsay, Sally; Hounsell, Kara Grace

    2017-10-01

    Youth with disabilities are under-represented in science, technology, engineering, and math (STEM) in school and in the workforce. One encouraging approach to engage youth's interest in STEM is through robotics; however, such programs are mostly for typically developing youth. The purpose of this study was to understand the development and implementation of an adapted robotics program for children and youth with disabilities and their experiences within it. Our mixed methods pilot study (pre- and post-workshop surveys, observations, and interviews) involved 41 participants including: 18 youth (aged 6-13), 12 parents and 11 key informants. The robotics program involved 6, two-hour workshops held at a paediatric hospital. Our findings showed that several adaptations made to the robotics program helped to enhance the participation of children with disabilities. Adaptations addressed the educational/curriculum, cognitive and learning, physical and social needs of the children. In regards to experiences within the adapted hospital program, our findings highlight that children enjoyed the program and learned about computer programming and building robots. Clinicians and educators should consider engaging youth with disabilities in robotics to enhance learning and interest in STEM. Implications for Rehabilitation Clinicians and educators should consider adapting curriculum content and mode of delivery of LEGO ® robotics programs to include youth with disabilities. Appropriate staffing including clinicians and educators who are knowledgeable about youth with disabilities and LEGO ® robotics are needed. Clinicians should consider engaging youth with disabilities in LEGO ® to enhance learning and interest in STEM.

  18. [Implementation of a robotic video-assisted thoracic surgical program].

    PubMed

    Baste, J-M; Riviera, C; Nouhaud, F-X; Rinieri, P; Melki, J; Peillon, C

    2016-03-01

    Recent publications from North America have shown the benefits of robot-assisted thoracic surgery. We report here the process of setting up such a program in a French university centre and early results in a unit with an average treatment volume. Retrospective review of a single institution database. The program was launched after a 6-month preparation period. From January 2012 to January 2013, totally endoscopic, full robot-assisted procedures were performed on 30 patients (17 males). Median age was 54 [Q1-Q3, 48-63] years and ASA score 2 [1,2]. Operative procedures included thymectomy (9 ; 30%), lobectomy with nodes resection (11 ; 38%), segmentectomy (4 ; 14%), lymphadenectomy (3 ; 10%), Bronchogenic cyst (2, 5%) and posterior mediastinal mass resection (1 ; 3%). No conversion was required. Median blood loss was 50mL [10-100]. Median operating time was 135 min (105-165) including 30 min [20-40] for docking, 90min for robot-assisted operating [70-120] and 15 min [10-15] for lesion extraction. CO2 insufflation was used in 28 cases (93%). Hospital stay was 4 days [4-6] with 6 minor complications (20%) (Grade 1 according to the Clavien-Dindo classification). After a median 4 months follow-up [2-7], all patients were alive and demonstrated a good quality of life. This series suggests that full robotic thoracic procedures are safe and effective treatment for various pathologies, with low morbidity and without a significant learning curve, even in a lower volume centre. This technology should accompany the development of minimally invasive thoracic surgery. The importance of robotic training should be emphasized to optimize procedures and costs. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  19. Easy robot programming for beginners and kids using augmented reality environments

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Nishiguchi, Masahiro

    2010-11-01

    The authors have developed the mobile robot which can be programmed by command and instruction cards. All you have to do is to arrange cards on a table and to shot the programming stage by a camera. Our card programming system recognizes instruction cards and translates icon commands into the motor driver program. This card programming environment also provides low-level structure programming.

  20. Outcomes and cost comparisons after introducing a robotics program for endometrial cancer surgery.

    PubMed

    Lau, Susie; Vaknin, Zvi; Ramana-Kumar, Agnihotram V; Halliday, Darron; Franco, Eduardo L; Gotlieb, Walter H

    2012-04-01

    To evaluate the effect of introducing a robotic program on cost and patient outcome. This was a prospective evaluation of clinical outcome and cost after introducing a robotics program for the treatment of endometrial cancer and a retrospective comparison to the entire historical cohort. Consecutive patients with endometrial cancer who underwent robotic surgery (n=143) were compared with all consecutive patients who underwent surgery (n=160) before robotics. The rate of minimally invasive surgery increased from 17% performed by laparoscopy to 98% performed by robotics in 2 years. The patient characteristics were comparable in both eras, except for a higher body mass index in the robotics era (median 29.8 compared with 27.6; P<.005). Patients undergoing robotics had longer operating times (233 compared with 206 minutes), but fewer adverse events (13% compared with 42%; P<.001), lower estimated median blood loss (50 compared with 200 mL; P<.001), and shorter median hospital stay (1 compared with 5 days; P<.001). The overall hospital costs were significantly lower for robotics compared with the historical group (Can$7,644 compared with Can$10,368 [Canadian dollars]; P<.001) even when acquisition and maintenance cost were included (Can$8,370 compared with Can$10,368; P=.001). Within 2 years after surgery, the short-term recurrence rate appeared lower in the robotics group compared with the historic cohort (11 recurrences compared with 19 recurrences; P<.001). Introduction of robotics for endometrial cancer surgery increased the proportion of patients benefitting from minimally invasive surgery, improved short-term outcomes, and resulted in lower hospital costs. II.

  1. THREAD: A programming environment for interactive planning-level robotics applications

    NASA Technical Reports Server (NTRS)

    Beahan, John J., Jr.

    1989-01-01

    THREAD programming language, which was developed to meet the needs of researchers in developing robotics applications that perform such tasks as grasp, trajectory design, sensor data analysis, and interfacing with external subsystems in order to perform servo-level control of manipulators and real time sensing is discussed. The philosophy behind THREAD, the issues which entered into its design, and the features of the language are discussed from the viewpoint of researchers who want to develop algorithms in a simulation environment, and from those who want to implement physical robotics systems. The detailed functions of the many complex robotics algorithms and tools which are part of the language are not explained, but an overall impression of their capability is given.

  2. Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londe, L.; Seidler, W.K.; Bosgiraud, J.M.

    2007-07-01

    Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less

  3. The Robotic Lunar Exploration Program (RLEP): An Introduction to the Goals, Approach, and Architecture

    NASA Technical Reports Server (NTRS)

    Watzin, James G.; Burt, Joseph; Tooley, Craig

    2004-01-01

    The Vision for Space Exploration calls for undertaking lunar exploration activities to enable sustained human and robotic exploration of Mars and beyond, including more distant destinations in the solar system. In support of this vision, the Robotic Lunar Exploration Program (RLEP) is expected to execute a series of robotic missions to the Moon, starting in 2008, in order to pave the way for further human space exploration. This paper will give an introduction to the RLEP program office, its role and its goals, and the approach it is taking to executing the charter of the program. The paper will also discuss candidate architectures that are being studied as a framework for defining the RLEP missions and the context in which they will evolve.

  4. Control and applications of cooperating disparate robotic manipulators relevant to nuclear waste management

    NASA Technical Reports Server (NTRS)

    Lew, Jae Young; Book, Wayne J.

    1991-01-01

    Remote handling in nuclear waste management requires a robotic system with precise motion as well as a large workspace. The concept of a small arm mounted on the end of a large arm may satisfy such needs. However, the performance of such a serial configuration lacks payload capacity which is a crucial factor for handling a massive object. Also, this configuration induces more flexibility on the structure. To overcome these problems, the topology of bracing the tip of the small arm (not the large arm) and having an end effector in the middle of the chain is proposed in this paper. Also, control of these cooperating disparate manipulators is accomplished in computer simulations. Thus, this robotic system can have the accuracy of the small arm, and at the same time, it can have the payload capacity and large workspace of the large arm.

  5. Preparing for High Technology: Robotics Programs. Research & Development Series No. 233.

    ERIC Educational Resources Information Center

    Ashley, William; And Others

    This guide is one of three developed to provide guidelines, information, and resources useful in planning and developing postsecondary technician training programs in high technology. It is specifically intended for program planners and developers in the initial stages of planning a new program or specialized option in robotics. (Two companion…

  6. Starting a robotic program in general thoracic surgery: why, how, and lessons learned.

    PubMed

    Cerfolio, Robert J; Bryant, Ayesha S; Minnich, Douglas J

    2011-06-01

    We report our experience in starting a robotic program in thoracic surgery. We retrospectively reviewed our experience in starting a robotic program in general thoracic surgery on a consecutive series of patients. Between February 2009 and September 2010, 150 patients underwent robotic operations. Types of procedures were lobectomy in 62, thymectomy in 30, and benign esophageal procedures in 6. No thymectomy or esophageal procedures required conversion. One conversion was needed for suspected bleeding for a mediastinal mass. Twelve patients were converted for lobectomy (none for bleeding, 1 in the last 24). Median operative time for robotic thymectomy was 119 minutes, and median length of stay was 1 day. The median time for robotic lobectomy was 185 minutes, and median length of stay was 2 days. There were no operative deaths. Morbidity occurred in 23 patients (15%). All patients with cancer had R0 resections and resection of all visible mediastinal and hilar lymph nodes. Robotic surgery is safe and oncologically sound. It requires training of the entire operating room team. The learning curve is steep, involving port placement, availability of the proper instrumentation, use of the correct robotic arms, and proper patient positioning. The robot provides an ideal surgical approach for thymectomy and other mediastinal tumors. Its advantage over thoracoscopy for pulmonary resection is unproven; however, we believe complete thoracic lymph node dissection and teaching is easier. Importantly, defined credentialing for surgeons and cost analysis studies are needed. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Gender, Interest, and Prior Experience Shape Opportunities to Learn Programming in Robotics Competitions

    ERIC Educational Resources Information Center

    Witherspoon, Eben B.; Schunn, Christian D.; Higashi, Ross M.; Baehr, Emily C.

    2016-01-01

    Background: Robotics competitions are increasingly popular and potentially provide an on-ramp to computer science, which is currently highly gender imbalanced. However, within competitive robotics teams, student participation in programming is not universal. This study gathered surveys from over 500 elementary, middle, and high school robotics…

  8. Outside the operating room: How a robotics program changed resource utilization on the inpatient Ward.

    PubMed

    Leung, Annie; Abitbol, Jeremie; Ramana-Kumar, Agnihotram V; Fadlallah, Bassam; Kessous, Roy; Cohen, Sabine; Lau, Susie; Salvador, Shannon; Gotlieb, Walter H

    2017-04-01

    To analyze the changes in the composition of the gynecologic oncology inpatient ward following the implementation of a robotic surgery program and its impact on inpatient resource utilization and costs. Retrospective review of the medical charts of patients admitted onto the gynecologic oncology ward the year prior to and five years after the implementation of robotics. The following variables were collected: patient characteristics, hospitalization details (reason for admission and length of hospital stay), and resource utilization (number of hospitalization days, consultations, and imaging). Following the introduction of robotic surgery, there were more admissions for elective surgery yet these accounted for only 21% of the inpatient ward in terms of number of hospital days, compared to 36% prior to the robotic program. This coincided with a sharp increase in the overall number of patients operated on by a minimally invasive approach (15% to 76%, p<0.0001). The cost per surgical admission on the inpatient ward decreased by 59% ($9827 vs. $4058) in the robotics era. The robotics program contributed to a ward with higher proportion of patients with complex comorbidities (Charlson≥5: RR 1.06), Stage IV disease (RR 1.30), and recurrent disease (RR 1.99). Introduction of robotic surgery allowed for more patients to be treated surgically while simultaneously decreasing inpatient resource use. With more patients with non-surgical oncological issues and greater medical complexity, the gynecologic oncology ward functions more like a medical rather than surgical ward after the introduction of robotics, which has implications for hospital-wide resource planning. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Final Report, University Research Program in Robotics (URPR), Nuclear Facilities Clean-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, Delbert; Kapoor, Chetan; Pryor, Mitch

    This final report describes the research activity at the University of Texas at Austin with application to EM needs at DOE. This research activity is divided in to two major thrusts and contributes to the overall University Research Program in Robotics (URPR) thrust by providing mechanically oriented robotic solutions based on modularity and generalized software. These thrusts are also the core strengths of the UTA program that has a 40-year history in machine development, 30 years specifically devoted to robotics. Since 1975, much of this effort has been to establish the general analytical and design infrastructure for an open (modular)more » architecture of systems with many degrees of freedom that are able to satisfy a broad range of applications for future production machines. This work has coalesced from two principal areas: standardized actuators and generalized software.« less

  10. The Effect of a Classroom-Based Intensive Robotics and Programming Workshop on Sequencing Ability in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Sullivan, Amanda; Bers, Marina U.

    2013-01-01

    This paper examines the impact of programming robots on sequencing ability during a 1-week intensive robotics workshop at an early childhood STEM magnet school in the Harlem area of New York City. Children participated in computer programming activities using a developmentally appropriate tangible programming language CHERP, specifically designed…

  11. Solid Waste Assurance Program Implementation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irons, L.G.

    1995-06-19

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less

  12. The TangibleK Robotics Program: Applied Computational Thinking for Young Children

    ERIC Educational Resources Information Center

    Bers, Marina U.

    2010-01-01

    This article describes the TangibleK robotics program for young children. Based on over a decade of research, this program is grounded on the belief that teaching children about the human-made world, the realm of technology and engineering, is as important as teaching them about the natural world, numbers, and letters. The TangibleK program uses…

  13. Manipulation and handling processes off-line programming and optimization with use of K-Roset

    NASA Astrophysics Data System (ADS)

    Gołda, G.; Kampa, A.

    2017-08-01

    Contemporary trends in development of efficient, flexible manufacturing systems require practical implementation of modern “Lean production” concepts for maximizing customer value through minimizing all wastes in manufacturing and logistics processes. Every FMS is built on the basis of automated and robotized production cells. Except flexible CNC machine tools and other equipments, the industrial robots are primary elements of the system. In the studies, authors look for wastes of time and cost in real tasks of robots, during manipulation processes. According to aspiration for optimization of handling and manipulation processes with use of the robots, the application of modern off-line programming methods and computer simulation, is the best solution and it is only way to minimize unnecessary movements and other instructions. The modelling process of robotized production cell and offline programming of Kawasaki robots in AS-Language will be described. The simulation of robotized workstation will be realized with use of virtual reality software K-Roset. Authors show the process of industrial robot’s programs improvement and optimization in terms of minimizing the number of useless manipulator movements and unnecessary instructions. This is realized in order to shorten the time of production cycles. This will also reduce costs of handling, manipulations and technological process.

  14. Reprogramming the articulated robotic arm for glass handling by using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Kadir, Mohd Asmadi Akmal; Daud, Mohd Hisam

    2017-09-01

    The application of articulated robotic arm in industries is raised due to the expansion of using robot to replace human task, especially for the harmful tasks. However a few problems happen with the program use to schedule the arm, Thus the purpose of this project is to design, fabricate and integrate an articulated robotic arm by using Arduino microcontroller for handling glass sorting system. This project was designed to segregate glass and non-glass waste which would be pioneer step for recycling. This robotic arm has four servo motors to operate as a whole; three for the body and one for holding mechanism. This intelligent system is controlled by Arduino microcontroller and build with optical sensor to provide the distinguish objects that will be handled. Solidworks model was used to produce the detail design of the robotic arm and make the mechanical properties analysis by using a CAD software.

  15. Transuranic Waste Test Facility Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looper, M.G.

    1987-05-05

    This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less

  16. Off-line programming motion and process commands for robotic welding of Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.

    1987-01-01

    The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.

  17. Gender Differences in Kindergarteners' Robotics and Programming Achievement

    ERIC Educational Resources Information Center

    Sullivan, Amanda; Bers, Marina Umaschi

    2013-01-01

    Early childhood is a critical period for introducing girls to traditionally masculine fields of science and technology before more extreme gender stereotypes surface in later years. This study looks at the TangibleK Robotics Program in order to determine whether kindergarten boys and girls were equally successful in a series of building and…

  18. Waste treatability guidance program. User`s guide. Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, C.

    1995-12-21

    DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatabilitymore » groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.« less

  19. Ground Robotic Hand Applications for the Space Program study (GRASP)

    NASA Astrophysics Data System (ADS)

    Grissom, William A.; Rafla, Nader I.

    1992-04-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  20. Ground Robotic Hand Applications for the Space Program study (GRASP)

    NASA Technical Reports Server (NTRS)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  1. How to successfully implement a robotic pediatric surgery program: lessons learned after 96 procedures.

    PubMed

    de Lambert, Guénolée; Fourcade, Laurent; Centi, Joachim; Fredon, Fabien; Braik, Karim; Szwarc, Caroline; Longis, Bernard; Lardy, Hubert

    2013-06-01

    Both our teams were the first to implement pediatric robotic surgery in France. The aim of this study was to define the key points we brought to light so other pediatric teams that want to set up a robotic surgery program will benefit. We reviewed the medical records of all children who underwent robotic surgery between Nov 2007 and June 2011 in both departments, including patient data, installation and changes, operative time, hospital stay, intraoperative complications, and postoperative outcome. The department's internal organization, the organization within the hospital complex, and cost were evaluated. A total of 96 procedures were evaluated. There were 38 girls and 56 boys with average age at surgery of 7.6 years (range, 0.7-18 years) and average weight of 26 kg (range, 6-77 kg). Thirty-six patients had general surgery, 57 patients urologic surgery, and 1 thoracic surgery. Overall average operative time was 189 min (range, 70-550 min), and average hospital stay was 6.4 days (range, 2-24 days). The procedures of 3 patients were converted. Median follow-up was 18 months (range, 0.5-43 months). Robotic surgical procedure had an extra cost of 1934 compared to conventional open surgery. Our experience was similar to the findings described in the literature for feasibility, security, and patient outcomes; we had an overall operative success rate of 97 %. Three main actors are concerned in the implementation of a robotic pediatric surgery program: surgeons and anesthetists, nurses, and the administration. The surgeon is at the starting point with motivation for minimally invasive surgery without laparoscopic constraints. We found that it was possible to implement a long-lasting robotic surgery program with comparable quality of care.

  2. Waste certification program plan for Oak Ridge National Laboratory. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrin, R.C.

    1997-05-01

    This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less

  3. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  4. A Pre-Engineering Program Using Robots to Attract Underrepresented High School and Community College Students

    ERIC Educational Resources Information Center

    Mosley, Pauline Helen; Liu, Yun; Hargrove, S. Keith; Doswell, Jayfus T.

    2010-01-01

    This paper gives an overview of a new pre-engineering program--Robotics Technician Curriculum--that uses robots to solicit underrepresented students pursuing careers in science, technology, engineering, and mathematics (STEM). The curriculum uses a project-based learning environment, which consists of part lecture and part laboratory. This program…

  5. LANL robotics site overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beugelsdijk, T.J.

    1990-11-01

    This paper reports on robotics applications at the Los Alamos National Laboratory. The topics of the paper include the ROBOCAL project to assay all nuclear materials entering and leaving the process floor at the Los Alamos Plutonium Facility, the isotope detector fabrication project, a plutonium dissolution robotic system, a safeguards waste automated measurement instrument, and DNA filter array construction. This report consists of overheads only.

  6. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  7. Software for Secondary-School Learning About Robotics

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.

    2005-01-01

    The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.

  8. Establishing the Learning Curve of Robotic Sacral Colpopexy in a Start-up Robotics Program.

    PubMed

    Sharma, Shefali; Calixte, Rose; Finamore, Peter S

    2016-01-01

    To determine the learning curve of the following segments of a robotic sacral colpopexy: preoperative setup, operative time, postoperative transition, and room turnover. A retrospective cohort study to determine the number of cases needed to reach points of efficiency in the various segments of a robotic sacral colpopexy (Canadian Task Force II-2). A university-affiliated community hospital. Women who underwent robotic sacral colpopexy at our institution from 2009 to 2013 comprise the study population. Patient characteristics and operative reports were extracted from a patient database that has been maintained since the inception of the robotics program at Winthrop University Hospital and electronic medical records. Based on additional procedures performed, 4 groups of patients were created (A-D). Learning curves for each of the segment times of interest were created using penalized basis spline (B-spline) regression. Operative time was further analyzed using an inverse curve and sequential grouping. A total of 176 patients were eligible. Nonparametric tests detected no difference in procedure times between the 4 groups (A-D) of patients. The preoperative and postoperative points of efficiency were 108 and 118 cases, respectively. The operative points of proficiency and efficiency were 25 and 36 cases, respectively. Operative time was further analyzed using an inverse curve that revealed that after 11 cases the surgeon had reached 90% of the learning plateau. Sequential grouping revealed no significant improvement in operative time after 60 cases. Turnover time could not be assessed because of incomplete data. There is a difference in the operative time learning curve for robotic sacral colpopexy depending on the statistical analysis used. The learning curve of the operative segment showed an improvement in operative time between 25 and 36 cases when using B-spline regression. When the data for operative time was fit to an inverse curve, a learning rate of 11 cases

  9. Project based, Collaborative, Algorithmic Robotics for High School Students: Programming Self Driving Race Cars at MIT

    DTIC Science & Technology

    2017-02-19

    software systems: the students design and build robotics software towards real-world applications, without being distracted by hardware issues; (ii) it...high school students require the students to focus on building and integrating the hardware that make up the robot, at the expense of designing and...robotics programs focus on the mechanics; as a result, they do not have room for students to design and implement relatively complex software systems, as

  10. A Program on Hazardous Waste Management.

    ERIC Educational Resources Information Center

    Kummler, Ralph H.; And Others

    1989-01-01

    Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)

  11. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.

    PubMed

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-11-24

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled.

  12. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots

    PubMed Central

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-01-01

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled. PMID:26650051

  13. The Baltimore City Schools Middle School STEM Summer Program with VEX Robotics

    ERIC Educational Resources Information Center

    Mac Iver, Martha Abele; Mac Iver, Douglas J.

    2015-01-01

    In 2011 Baltimore City Schools submitted a successful proposal for an Investing in Innovations (i3) grant to offer a three year (2012-2014) summer program designed to expose rising sixth through eighth grade students to VEX robotics. The i3-funded Middle School Science, Technology, Engineering and Mathematics (STEM) Summer Learning Program was…

  14. Joint Robotics Program

    DTIC Science & Technology

    2008-04-23

    Kotler , P.M. (1997). Marketing management: Analysis, planning, implementation, and control. Upper Saddle River, NJ: Prentice Hall...needed to provide needed items. Production needed to be stable so suppliers could more easily meet demand ( Kotler , 1997, pp. 214-215). The Robotics

  15. Five Years of the RoBOT "Rocks Beneath Our Toes" High School Outreach Program

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.

    2011-12-01

    The "Rocks Beneath Our Toes" or RoBOT Program began in 2006 as part of an NSF CAREER award through the Geochemistry and Petrology Program. The educational outreach program engages Boston area high school students in a hands on study of rocks and minerals collected in their communities. The goal is to provide high school students a unique window into modern scientific methods of geochemistry and mineralogy and create a higher level of interest and awareness of geoscience amongst Massachusetts secondary school students who are less often exposed to earth science coursework. Beginning with a joint field trip to sampling sites identified by participants, high school students work with Boston University undergraduates enrolled in Mineralogy to analyze their samples in thin section. During the field trip, each BU undergraduate is paired with a high school student. The assignment of student pairings (started in year 2) dramatically increased student interactions and enjoyment. The program culminates with a visit by the high school group to tour BU's lab facilities and work with the undergraduates using the petrographic microscopes to explore their rock. At this visit, BU undergraduates present their semester's work in one-on-one powerpoint presentations from which discussion and microscope work follow. Thus far, >50 high school students, >40 undergraduates, and 7 high school educators were involved in the program. This included participants from three different suburban Boston area high schools and with students enrolled in the BU "Upward Bound" program: an existing program designed to enhance educational opportunities for Boston inner city high school students. Participant reviews indicate great success in achieving the program's goals. Notably, both BU undergraduates and high school students rated the opportunities for interaction with eachother among the best aspects of RoBOT. On a scale of 1 to 10, BU undergraduates rated the following four categories highest

  16. Waste certification program plan for Oak Ridge National Laboratory. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1997-09-01

    This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous [including polychlorinated biphenyls (PCB)] waste. Program activities will be conducted according to ORNL Level 1 document requirements.

  17. Robotic Surgery Simulator: Elements to Build a Training Program.

    PubMed

    Tillou, Xavier; Collon, Sylvie; Martin-Francois, Sandrine; Doerfler, Arnaud

    2016-01-01

    Face, content, and construct validity of robotic surgery simulators were confirmed in the literature by several studies, but elements to build a training program are still lacking. The aim of our study was to validate a progressive training program and to assess according to prior surgical experience the amount of training needed with a robotic simulator to complete the program. Exercises using the Da Vinci Skill Simulator were chosen to ensure progressive learning. A new exercise could only be started if a minimal score of 80% was achieved in the prior one. The number of repetitions to achieve an exercise was not limited. We devised a "performance index" by calculating the ratio of the sum of scores for each exercise over the number of repetitions needed to complete the exercise with at least an 80% score. The study took place at the François Baclesse Cancer Center. Participants all work at the primary care university Hospital located next to the cancer center. A total of 32 surgeons participated in the study- 2 experienced surgeons, 8 junior and 8 senior residents in surgery, 6 registrars, and 6 attending surgeons. There was no difference between junior and senior residents, whereas the registrars had better results (p < 0.0001). The registrars performed less exercise repetitions compared to the junior or senior residents (p = 0.012). Attending surgeons performed significantly more repetitions than registrars (p = 0.024), but they performed fewer repetitions than junior or senior residents with no statistical difference (p = 0.09). The registrars had a performance index of 50, which is the best result among all novice groups. Attending surgeons were between senior and junior residents with an index at 33.85. Choice of basic exercises to manipulate different elements of the robotic surgery console in a specific and progressive order enables rapid progress. The level of prior experience in laparoscopic surgery affects outcomes. More advanced laparoscopic expertise

  18. UNIVERSITY RESEARCH PROGRAM IN ROBOTICS, Final Technical Annual Report, Project Period: 9/1/04 - 8/31/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane III

    The University Research Program in Robotics (URPR) Implementation Plan is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities of robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  19. Robot vision system programmed in Prolog

    NASA Astrophysics Data System (ADS)

    Batchelor, Bruce G.; Hack, Ralf

    1995-10-01

    This is the latest in a series of publications which develop the theme of programming a machine vision system using the artificial intelligence language Prolog. The article states the long-term objective of the research program of which this work forms part. Many but not yet all of the goals laid out in this plan have already been achieved in an integrated system, which uses a multi-layer control hierarchy. The purpose of the present paper is to demonstrate that a system based upon a Prolog controller is capable of making complex decisions and operating a standard robot. The authors chose, as a vehicle for this exercise, the task of playing dominoes against a human opponent. This game was selected for this demonstration since it models a range of industrial assembly tasks, where parts are to be mated together. (For example, a 'daisy chain' of electronic equipment and the interconnecting cables/adapters may be likened to a chain of dominoes.)

  20. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  1. Generic command interpreter for robot controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, J.

    1991-04-09

    Generic command interpreter programs have been written for robot controllers at Sandia National Laboratories (SNL). Each interpreter program resides on a robot controller and interfaces the controller with a supervisory program on another (host) computer. We call these interpreter programs monitors because they wait, monitoring a communication line, for commands from the supervisory program. These monitors are designed to interface with the object-oriented software structure of the supervisory programs. The functions of the monitor programs are written in each robot controller's native language but reflect the object-oriented functions of the supervisory programs. These functions and other specifics of the monitormore » programs written for three different robots at SNL will be discussed. 4 refs., 4 figs.« less

  2. "I Want My Robot to Look for Food": Comparing Kindergartner's Programming Comprehension Using Tangible, Graphic, and Hybrid User Interfaces

    ERIC Educational Resources Information Center

    Strawhacker, Amanda; Bers, Marina U.

    2015-01-01

    In recent years, educational robotics has become an increasingly popular research area. However, limited studies have focused on differentiated learning outcomes based on type of programming interface. This study aims to explore how successfully young children master foundational programming concepts based on the robotics user interface (tangible,…

  3. An iconic programming language for sensor-based robots

    NASA Technical Reports Server (NTRS)

    Gertz, Matthew; Stewart, David B.; Khosla, Pradeep K.

    1993-01-01

    In this paper we describe an iconic programming language called Onika for sensor-based robotic systems. Onika is both modular and reconfigurable and can be used with any system architecture and real-time operating system. Onika is also a multi-level programming environment wherein tasks are built by connecting a series of icons which, in turn, can be defined in terms of other icons at the lower levels. Expert users are also allowed to use control block form to define servo tasks. The icons in Onika are both shape and color coded, like the pieces of a jigsaw puzzle, thus providing a form of error control in the development of high level applications.

  4. Effects of Using Model Robots in the Education of Programming

    ERIC Educational Resources Information Center

    Pásztor, Attila; Pap-Szigeti, Róbert; Lakatos Török, Erika

    2010-01-01

    In this article we try to show how new devices and methods can help in the education of programming. At Kecskemét College programmable mobile robots and instead of behavioral, the constructivist pedagogical methods were used. Our experiments have proved our hypothesis as the improved new methodical education using devices can give more practical…

  5. The University of Georgia Chemical Waste Disposal Program.

    ERIC Educational Resources Information Center

    Dreesen, David W.; Pohlman, Thomas J.

    1980-01-01

    Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)

  6. Australian Waste Wise Schools Program: Its Past, Present, and Future

    ERIC Educational Resources Information Center

    Cutter-Mackenzie, Amy

    2010-01-01

    The Waste Wise Schools program has a longstanding history in Australia. It is an action-based program that encourages schools to move toward zero waste through their curriculum and operating practices. This article provides a review of the program, finding that it has had notable success in reducing schools' waste through a "reduce, reuse,…

  7. Fifth Grade Students' Understanding of Ratio and Proportion in an Engineering Robotics Program

    ERIC Educational Resources Information Center

    Ortiz, Araceli Martinez

    2010-01-01

    The research described in this dissertation explores the impact of utilizing a LEGO-robotics integrated engineering and mathematics program to support fifth grade students' learning of ratios and proportion in an extracurricular program. The research questions guiding this research study were (1) how do students' test results compare for students…

  8. Robots as Language Learning Tools

    ERIC Educational Resources Information Center

    Collado, Ericka

    2017-01-01

    Robots are machines that resemble different forms, usually those of humans or animals, that can perform preprogrammed or autonomous tasks (Robot, n.d.). With the emergence of STEM programs, there has been a rise in the use of robots in educational settings. STEM programs are those where students study science, technology, engineering and…

  9. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    PubMed

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  10. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  11. New methods of measuring and calibrating robots

    NASA Astrophysics Data System (ADS)

    Janocha, Hartmut; Diewald, Bernd

    1995-10-01

    ISO 9283 and RIA R15.05 define industrial robot parameters which are applied to compare the efficiency of different robots. Hitherto, however, no suitable measurement systems have been available. ICAROS is a system which combines photogrammetrical procedures with an inertial navigation system. For the first time, this combination allows the high-precision static and dynamic measurement of the position as well as of the orientation of the robot endeffector. Thus, not only the measuring data for the determination of all industrial robot parameters can be acquired. By integration of a new over-all-calibration procedure, ICAROS also allows the reduction of the absolute robot pose errors to the range of its repeatability. The integration of both system components as well as measurement and calibration results are presented in this paper, using a six-axes robot as example. A further approach also presented here takes into consideration not only the individual robot errors but also the tolerances of workpieces. This allows the adjustment of off-line programs of robots based on inexact or idealized CAD data in any pose. Thus the robot position which is defined relative to the workpiece to be processed, is achieved as required. This includes the possibility to transfer teached robot programs to other devices without additional expenditure. The adjustment is based on the measurement of the robot position using two miniaturized CCD cameras mounted near the endeffector which are carried along by the robot during the correction phase. In the area viewed by both cameras, the robot position is determined in relation to prominent geometry elements, e.g. lines or holes. The scheduled data to be compared therewith can either be calculated in modern off-line programming systems during robot programming, or they can be determined at the so-called master robot if a transfer of the robot program is desired.

  12. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  13. Dynamic photogrammetric calibration of industrial robots

    NASA Astrophysics Data System (ADS)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  14. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  15. Simulation and animation of sensor-driven robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Trivedi, M.M.; Bidlack, C.R.

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less

  16. Development and Application of the STEAM Education Program Based on the Soccer Robot for Elementary Students

    ERIC Educational Resources Information Center

    Yoon, Ma-byong; Baek, Je-eun

    2018-01-01

    The purpose of this article was to develop an elementary school robot STEAM program and explore the possibility of field applications. To this end, the authors extracted the contents related to school achievement standards for 5th and 6th grade curricula around the topic of robot soccer, incorporating a relevant curriculum based on the extracted…

  17. Space Missions for Automation and Robotics Technologies (SMART) Program

    NASA Technical Reports Server (NTRS)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  18. Solid Waste Program technical baseline description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  19. The analysis of the program to develop the Nuclear Waste Management System: Allocated requirements for the Office of Civilian Radioactive Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, T.W.

    1991-09-01

    This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)

  20. WIPP waste characterization program sampling and analysis guidance manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastesmore » at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.« less

  1. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanksmore » (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.« less

  2. Enhancing Practice and Achievement in Introductory Programming with a Robot Olympics

    ERIC Educational Resources Information Center

    Scott, Michael James; Counsell, Steve; Lauria, Stanislao; Swift, Stephen; Tucker, Allan; Shepperd, Martin; Ghinea, Gheorghita

    2015-01-01

    Computer programming is notoriously difficult to learn. To this end, regular practice in the form of application and reflection is an important enabler of student learning. However, educators often find that first-year B.Sc. students do not readily engage in such activities. Providing each student with a programmable robot, however, could be used…

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  4. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  5. Does It "Want" or "Was It Programmed to..."? Kindergarten Children's Explanations of an Autonomous Robot's Adaptive Functioning

    ERIC Educational Resources Information Center

    Levy, Sharona T.; Mioduser, David

    2008-01-01

    This study investigates young children's perspectives in explaining a self-regulating mobile robot, as they learn to program its behaviors from rules. We explore their descriptions of a robot in action to determine the nature of their explanatory frameworks: psychological or technological. We have also studied the role of an adult's intervention…

  6. The climbing crawling robot (a unique cable robot for space and Earth)

    NASA Technical Reports Server (NTRS)

    Kerley, James J.; May, Edward; Eklund, Wayne

    1991-01-01

    Some of the greatest concerns in robotic designs have been the high center of gravity of the robot, the irregular or flat surface that the robot has to work on, the weight of the robot that has to handle heavy weights or use heavy forces, and the ability of the robot to climb straight up in the air. This climbing crawling robot handles these problems well with magnets, suction cups, or actuators. The cables give body to the robot and it performs very similar to a caterpillar. The computer program is simple and inexpensive as is the robot. One of the important features of this system is that the robot can work in pairs or triplets to handle jobs that would be extremely difficult for single robots. The light weight of the robot allows it to handle quite heavy weights. The number of feet give the robot many roots where a simple set of feet would give it trouble.

  7. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...

  8. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...

  9. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  10. How Robotics Programs Influence Young Women's Career Choices: A Grounded Theory Model

    ERIC Educational Resources Information Center

    Craig, Cecilia Dosh-Bluhm

    2014-01-01

    The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced…

  11. Mindstorms Robots and the Application of Cognitive Load Theory in Introductory Programming

    ERIC Educational Resources Information Center

    Mason, Raina; Cooper, Graham

    2013-01-01

    This paper reports on a series of introductory programming workshops, initially targeting female high school students, which utilised Lego Mindstorms robots. Cognitive load theory (CLT) was applied to the instructional design of the workshops, and a controlled experiment was also conducted investigating aspects of the interface. Results indicated…

  12. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  13. A graphical, rule based robotic interface system

    NASA Technical Reports Server (NTRS)

    Mckee, James W.; Wolfsberger, John

    1988-01-01

    The ability of a human to take control of a robotic system is essential in any use of robots in space in order to handle unforeseen changes in the robot's work environment or scheduled tasks. But in cases in which the work environment is known, a human controlling a robot's every move by remote control is both time consuming and frustrating. A system is needed in which the user can give the robotic system commands to perform tasks but need not tell the system how. To be useful, this system should be able to plan and perform the tasks faster than a telerobotic system. The interface between the user and the robot system must be natural and meaningful to the user. A high level user interface program under development at the University of Alabama, Huntsville, is described. A graphical interface is proposed in which the user selects objects to be manipulated by selecting representations of the object on projections of a 3-D model of the work environment. The user may move in the work environment by changing the viewpoint of the projections. The interface uses a rule based program to transform user selection of items on a graphics display of the robot's work environment into commands for the robot. The program first determines if the desired task is possible given the abilities of the robot and any constraints on the object. If the task is possible, the program determines what movements the robot needs to make to perform the task. The movements are transformed into commands for the robot. The information defining the robot, the work environment, and how objects may be moved is stored in a set of data bases accessible to the program and displayable to the user.

  14. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...

  15. Program Planning Concepts in Solid Waste Management

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1972-01-01

    Presents a brief review of the program planning process, and uses the example of a solid waste program to illustrate what has or has not been accomplished through the use of the planning process. (LK)

  16. TRU Waste Management Program cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    1985-10-01

    The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementationmore » would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)« less

  17. The positive effects of the FIRST high school robotics program

    NASA Astrophysics Data System (ADS)

    McIntyre, Nancy

    The essence of the FIRST Robotics Program comes from the explanation of the acronym, which means For Inspiration and Recognition in Science and Technology. Their vision is to inspire young people, their schools, and communities, an appreciation of science and technology and an understanding that mastering these can enrich the lives of all. Last year I began our school's association with this program. I secured funding from NASA/JPL, attended a workshop and kickoff event, encouraged a team of students, parents, community members, and engineers to come together to design and construct a working, competitive robot in a six week time span. This year I expanded our participation to our 6th grade students. They competed in the FIRST Lego League. As part of my 9th grade science curriculum my students designed and built Panda II in class. The after-school team will submit a 30 second animation, an autocad design, and a team website for competition as well. Our AP art students have been charged with painting our travel crate. I couldn't have been successful without the help and support of a very dedicated JPL engineer who volunteers his time to come to our school to teach our team the technical components.

  18. Land Application of Wastes: An Educational Program - Introduction and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This is the introductory module to the Land Application of Wastes educational program. The module contains information on the content, structure, and dynamics of the program. Also included with the module is a script to accompany a slide presentation. The Land Application of Wastes program consists of twenty-five modules and audio-visual…

  19. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  20. The Canonical Robot Command Language (CRCL).

    PubMed

    Proctor, Frederick M; Balakirsky, Stephen B; Kootbally, Zeid; Kramer, Thomas R; Schlenoff, Craig I; Shackleford, William P

    2016-01-01

    Industrial robots can perform motion with sub-millimeter repeatability when programmed using the teach-and-playback method. While effective, this method requires significant up-front time, tying up the robot and a person during the teaching phase. Off-line programming can be used to generate robot programs, but the accuracy of this method is poor unless supplemented with good calibration to remove systematic errors, feed-forward models to anticipate robot response to loads, and sensing to compensate for unmodeled errors. These increase the complexity and up-front cost of the system, but the payback in the reduction of recurring teach programming time can be worth the effort. This payback especially benefits small-batch, short-turnaround applications typical of small-to-medium enterprises, who need the agility afforded by off-line application development to be competitive against low-cost manual labor. To fully benefit from this agile application tasking model, a common representation of tasks should be used that is understood by all of the resources required for the job: robots, tooling, sensors, and people. This paper describes an information model, the Canonical Robot Command Language (CRCL), which provides a high-level description of robot tasks and associated control and status information.

  1. The Canonical Robot Command Language (CRCL)

    PubMed Central

    Proctor, Frederick M.; Balakirsky, Stephen B.; Kootbally, Zeid; Kramer, Thomas R.; Schlenoff, Craig I.; Shackleford, William P.

    2017-01-01

    Industrial robots can perform motion with sub-millimeter repeatability when programmed using the teach-and-playback method. While effective, this method requires significant up-front time, tying up the robot and a person during the teaching phase. Off-line programming can be used to generate robot programs, but the accuracy of this method is poor unless supplemented with good calibration to remove systematic errors, feed-forward models to anticipate robot response to loads, and sensing to compensate for unmodeled errors. These increase the complexity and up-front cost of the system, but the payback in the reduction of recurring teach programming time can be worth the effort. This payback especially benefits small-batch, short-turnaround applications typical of small-to-medium enterprises, who need the agility afforded by off-line application development to be competitive against low-cost manual labor. To fully benefit from this agile application tasking model, a common representation of tasks should be used that is understood by all of the resources required for the job: robots, tooling, sensors, and people. This paper describes an information model, the Canonical Robot Command Language (CRCL), which provides a high-level description of robot tasks and associated control and status information. PMID:28529393

  2. Implementing a robotics curriculum at an academic general surgery training program: our initial experience.

    PubMed

    Winder, Joshua S; Juza, Ryan M; Sasaki, Jennifer; Rogers, Ann M; Pauli, Eric M; Haluck, Randy S; Estes, Stephanie J; Lyn-Sue, Jerome R

    2016-09-01

    The robotic surgical platform is being utilized by a growing number of hospitals across the country, including academic medical centers. Training programs are tasked with teaching their residents how to utilize this technology. To this end, we have developed and implemented a robotic surgical curriculum, and share our initial experience here. Our curriculum was implemented for all General Surgical residents for the academic year 2014-2015. The curriculum consisted of online training, readings, bedside training, console simulation, participating in ten cases as bedside first assistant, and operating at the console. 20 surgical residents were included. Residents were provided the curriculum and notified the department upon completion. Bedside assistance and operative console training were completed in the operating room through a mix of biliary, foregut, and colorectal cases. During the fiscal years of 2014 and 2015, there were 164 and 263 robot-assisted surgeries performed within the General Surgery Department, respectively. All 20 residents completed the online and bedside instruction portions of the curriculum. Of the 20 residents trained, 13/20 (65 %) sat at the Surgeon console during at least one case. Utilizing this curriculum, we have trained and incorporated residents into robot-assisted cases in an efficient manner. A successful curriculum must be based on didactic learning, reading, bedside training, simulation, and training in the operating room. Each program must examine their caseload and resident class to ensure proper exposure to this platform.

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less

  4. Waste Minimization Program. Air Force Plant 6.

    DTIC Science & Technology

    1986-02-01

    coolant’s life, it can cause the formation of gummy residues on machines and parts and cause corrosion of the machine and work tools . i 3-91e 0 _ b-4 LA...2-9 3.0 Waste Minimization Program, AFP 6 3-1 3.1 Machine Coolant Waste 3-1 3.2 Engine Oil and Hydraulic Fluid Waste 3-12 3.3 Paint Sludge 3-14 3.4...Incineration 3-54 LIST OF FIGURES Figure Page 3-1 Annual Machine Coolant Use 3-5 n 3-2 oily Industrial Waste Treatment System 3-7 3-3 Schematic of Paint

  5. A pilot outreach program for small quantity generators of hazardous waste.

    PubMed Central

    Brown, M S; Kelley, B G; Gutensohn, J

    1988-01-01

    The Massachusetts Department of Environmental Management initiated a pilot project to improve compliance with hazardous waste regulations and management of hazardous wastes with auto body shops around the state. The program consisted of mass mailings, a series of workshops throughout the state, a coordinated inspection program by the state regulatory agency, and technology transfer. At the start of the program in January 1986, approximately 650 of the estimated 2,350 auto body shops in the state had notified EPA of their waste generating activities; by January 1987, approximately 1,200 shops had done so. Suggestions for improving program efforts include tailoring the outreach effort to the industry, government-sponsored research and development directed at the needs of small firms, mandatory participation in hazardous waste transportation programs, and better coordination by EPA of its information collection and distribution program. PMID:3421393

  6. How robotics programs influence young women's career choices : a grounded theory model

    NASA Astrophysics Data System (ADS)

    Craig, Cecilia Dosh-Bluhm

    The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced young women's career decisions and the program's effect on engineering, physics, and computer science career interests. To test this, a study was mounted to explore how the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition (FRC) program influenced young women's college major and career choices. Career theories suggested that experiential programs coupled with supportive relationships strongly influence career decisions, especially for science, technology, engineering, and mathematics careers. The study explored how and when young women made career decisions and how the experiential program and! its mentors and role models influenced career choice. Online focus groups and interviews (online and face-to-face) with 10 female FRC alumnae and GT processes (inductive analysis, open coding, categorizations using mind maps and content clouds) were used to generate a general systems theory style model of the career decision process for these young women. The study identified gender stereotypes and other career obstacles for women. The study's conclusions include recommendations to foster connections to real-world challenges, to develop training programs for mentors, and to nurture social cohesion, a mostly untapped area. Implementing these recommendations could help grow a critical mass of women in engineering, physics, and computer science careers, a social change worth pursuing.

  7. Robotic/virtual reality intervention program individualized to meet the specific sensorimotor impairments of an individual patient: a case study.

    PubMed

    Fluet, Gerard G; Merians, Alma S; Qiu, Qinyin; Saleh, Soha; Ruano, Viviana; Delmonico, Andrea R; Adamovich, Sergei V

    2014-09-01

    A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. This study will describe a virtually simulated, robot-based intervention customized to match the goals and clinical presentation of a gentleman with upper extremity hemiparesis secondary to stroke. MP, the subject of this case, is an 85-year-old man with left hemiparesis secondary to an intracerebral hemorrhage 5 years prior to examination. Outcomes were measured before and after a 1-month period of home therapy and after a 1-month virtually simulated, robotic intervention. The intervention was designed to address specific impairments identified during his PT examination. When necessary, activities were modified based on MP's response to his first week of treatment. MP's home training program produced a 3-s decline in Wolf Motor Function Test (WMFT) time and a 5-s improvement in Jebsen Test of Hand Function (JTHF) time. He demonstrated an additional 35-s improvement in JTHF and an additional 44-s improvement in WMFT subsequent to the robotic training intervention. A 24-h activity measurement and the Hand and Activities of Daily Living scales of the Stroke Impact Scale improved following the robotic intervention. Based on his responses to training we feel that we have established that a customized program of virtually simulated, robotically facilitated rehabilitation was feasible and resulted in larger improvements than an intensive home training program in several measurements of upper extremity function in our patient with chronic hemiparesis.

  8. Air Force construction automation/robotics

    NASA Technical Reports Server (NTRS)

    Nease, AL; Dusseault, Christopher

    1994-01-01

    The Air Force has several unique requirements that are being met through the development of construction robotic technology. The missions associated with these requirements place construction/repair equipment operators in potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible and that more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL to develop robotic teleoperation, telerobotics, robotic vehicle communications, automated damage assessment, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of robotic repair capability operating at the level of supervised autonomy. The authors of this paper will discuss current and planned efforts in construction/repair, explosive ordnance disposal, hazardous waste cleanup, fire fighting, and space construction.

  9. The Summer Robotic Autonomy Course

    NASA Technical Reports Server (NTRS)

    Nourbakhsh, Illah R.

    2002-01-01

    We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the

  10. Real World Robotics.

    ERIC Educational Resources Information Center

    Clark, Lisa J.

    2002-01-01

    Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)

  11. A Mini-Curriculum for Robotics Education.

    ERIC Educational Resources Information Center

    Jones, Preston K.

    This practicum report documents the development of a four-lesson multimedia program for robotics instruction for fourth and seventh grade students. The commercial film "Robot Revolution" and the videocassette tape "Robotics" were used, along with two author-developed slide/audiotape presentations and 14 overhead transparency foils. Two robots,…

  12. Study of robotics systems applications to the space station program

    NASA Technical Reports Server (NTRS)

    Fox, J. C.

    1983-01-01

    Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed.

  13. Sandia National Laboratories California Waste Management Program Annual Report February 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynildson, Mark E.

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  14. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the systemmore » and discussed the procedures used to conduct the tests.« less

  15. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...

  16. 77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous waste program changes submitted by the...

  17. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...

  18. Experimental determination of dynamic parameters of an industrial robot

    NASA Astrophysics Data System (ADS)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    In an industry increasingly used are industrial robots. Commonly used are two basic methods of programming, on-line programming and off-line programming. In both cases, the programming consists in getting to the selected points record this position, and set the order of movement of the robot, and the introduction of logical tests. Such a program is easy to write, and it is suitable for most industrial applications. Especially when the process is known, respectively slow and unchanging. In this case, the program is being prepared for a universal model of the robot with the appropriate geometry and are checked only collisions. Is not taken into account the dynamics of the robot and how it will really behave while in motion. For this reason, the robot programmed to be tested at a reduced speed, which is raised gradually to the final value. Depending on the complexity of the move and the proximity of the elements it takes a lot of time. It is easy to notice that the robot at different speeds have different trajectories and behaves differently.

  19. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  20. Human-Robot Interaction: Status and Challenges.

    PubMed

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  1. RHOBOT: Radiation hardened robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  2. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  3. Intelligent robotics can boost America's economic growth

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.

  4. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  5. Dummy Cup Helps Robot-Welder Programmers

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.

    1990-01-01

    Dummy gas cup used on torch of robotic welder during programming and practice runs. Made of metal or plastic, dummy cup inexpensive and durable. Withstands bumps caused by programming errors, and is sized for special welding jobs within limited clearances. After robot satisfactorily programmed, replaced by ceramic cup of same dimensions for actual welding.

  6. Human-like robots for space and hazardous environments

    NASA Technical Reports Server (NTRS)

    Cogley, Allen; Gustafson, David; White, Warren; Dyer, Ruth; Hampton, Tom (Editor); Freise, Jon (Editor)

    1990-01-01

    The three year goal for this NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of rough terrain crossing, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation and path planning skills. These goals came from the concept that the robot should have the abilities of both a planetary rover and a hazardous waste site scout.

  7. Human-like robots for space and hazardous environments

    NASA Astrophysics Data System (ADS)

    Cogley, Allen; Gustafson, David; White, Warren; Dyer, Ruth; Hampton, Tom; Freise, Jon

    The three year goal for this NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of rough terrain crossing, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation and path planning skills. These goals came from the concept that the robot should have the abilities of both a planetary rover and a hazardous waste site scout.

  8. 76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... implement the RCRA hazardous waste management program. We granted authorization for changes to their program..., 06/ 62-730.185(1) F.A.C. Universal Waste Management. 29/07. State Initiated Changes to the 62-730.210...

  9. Modelling cooperation of industrial robots as multi-agent systems

    NASA Astrophysics Data System (ADS)

    Hryniewicz, P.; Banas, W.; Foit, K.; Gwiazda, A.; Sekala, A.

    2017-08-01

    Nowadays, more and more often in a cell is more than one robot, there is also a dual arm robots, because of this cooperation of two robots in the same space becomes more and more important. Programming robotic cell consisting of two or more robots are currently performed separately for each element of the robot and the cell. It is performed only synchronization programs, but no robot movements. In such situations often placed industrial robots so they do not have common space so the robots are operated separately. When industrial robots are a common space this space can occupy only one robot the other one must be outside the common space. It is very difficult to find applications where two robots are in the same workspace. It was tested but one robot did not do of movement when moving the second and waited for permission to move from the second when it sent a permit - stop the move. Such programs are very difficult and require a lot of experience from the programmer and must be tested separately at the beginning and then very slowly under control. Ideally, the operator takes care of exactly one robot during the test and it is very important to take special care.

  10. Robotics Algorithms Provide Nutritional Guidelines

    NASA Technical Reports Server (NTRS)

    2009-01-01

    On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child s wagon, NASA s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner - largely remote controlled by NASA operators on Earth - transmitted photos and data unlike any previously collected. Sojourner was perhaps the crowning achievement of the NASA Space Telerobotics Program, an Agency initiative designed to push the limits of robotics in space. Telerobotics - devices that merge the autonomy of robotics with the direct human control of teleoperators - was already a part of NASA s efforts; probes like the Viking landers that preceded Sojourner on Mars, for example, were telerobotic applications. The Space Telerobotics Program, a collaboration between Ames Research Center, Johnson Space Center, Jet Propulsion Laboratory (JPL), and multiple universities, focused on developing remote-controlled robotics for three main purposes: on-orbit assembly and servicing, science payload tending, and planetary surface robotics. The overarching goal was to create robots that could be guided to build structures in space, monitor scientific experiments, and, like Sojourner, scout distant planets in advance of human explorers. While telerobotics remains a significant aspect of NASA s efforts, as evidenced by the currently operating Spirit and Opportunity Mars rovers, the Hubble Space Telescope, and many others - the Space Telerobotics Program was dissolved and redistributed within the Agency the same year as Sojourner s success. The program produced a host of remarkable technologies and surprising inspirations, including one that is changing the way people eat

  11. Survey of robotic surgery training in obstetrics and gynecology residency.

    PubMed

    Gobern, Joseph M; Novak, Christopher M; Lockrow, Ernest G

    2011-01-01

    To examine the status of resident training in robotic surgery in obstetrics and gynecology programs in the United States, an online survey was emailed to residency program directors of 247 accredited programs identified through the Accreditation Council for Graduate Medical Education website. Eighty-three of 247 program directors responded, representing a 34% response rate. Robotic surgical systems for gynecologic procedures were used at 65 (78%) institutions. Robotic surgery training was part of residency curriculum at 48 (58%) residency programs. Half of respondents were undecided on training effectiveness. Most program directors believed the role of robotic surgery would increase and play a more integral role in gynecologic surgery. Robotic surgery was widely reported in residency training hospitals with limited availability of effective resident training. Robotic surgery training in obstetrics and gynecology residency needs further assessment and may benefit from a structured curriculum. Published by Elsevier Inc.

  12. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.

    PubMed

    Gagnon, Dany H; Vermette, Martin; Duclos, Cyril; Aubertin-Leheudre, Mylène; Ahmed, Sara; Kairy, Dahlia

    2017-12-19

    The main objectives of this study were to quantify clients' satisfaction and perception upon completion of a locomotor training program with an overground robotic exoskeleton. A group of 14 wheelchair users with a spinal cord injury, who finished a 6-8-week locomotor training program with the robotic exoskeleton (18 training sessions), were invited to complete a web-based electronic questionnaire. This questionnaire encompassed 41 statements organized around seven key domains: overall satisfaction related to the training program, satisfaction related to the overground robotic exoskeleton, satisfaction related to the program attributes, perceived learnability, perceived health benefits and risks and perceived motivation to engage in physical activity. Each statement was rated using a visual analogue scale ranging from "0 = totally disagree" to "100 = completely agree". Overall, respondents unanimously considered themselves satisfied with the locomotor training program with the robotic exoskeleton (95.7 ± 0.7%) and provided positive feedback about the robotic exoskeleton itself (82.3 ± 6.9%), the attributes of the locomotor training program (84.5 ± 6.9%) and their ability to learn to perform sit-stand transfers and walk with the robotic exoskeleton (79.6 ± 17%). Respondents perceived some health benefits (67.9 ± 16.7%) and have reported no fear of developing secondary complications or of potential risk for themselves linked to the use of the robotic exoskeleton (16.7 ± 8.2%). At the end of the program, respondents felt motivated to engage in a regular physical activity program (91.3 ± 0.1%). This study provides new insights on satisfaction and perceptions of wheelchair users while also confirming the relevance to continue to improve such technologies, and informing the development of future clinical trials. Implications for Rehabilitation All long-term manual wheelchair users with a spinal cord injury who participated in the

  13. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  14. INL Generic Robot Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  15. FY 2017 Hazardous Waste Management Grant Program for Tribes

    EPA Pesticide Factsheets

    This notice announces the availability of funds and solicits proposals from federally-recognized tribes or intertribal consortia for the development and implementation of hazardous waste programs and for building capacity to address hazardous waste

  16. Introducing Robotics at the Undergraduate Level.

    ERIC Educational Resources Information Center

    Thangiah, Sam R.; Joshi, Sharad W.

    1997-01-01

    Outlines how a course in robotics can be taught at the undergraduate level with specific experiments that can be used for incremental learning in programming a mobile robot or by simulating the actions of a robot. Contains 14 references. (Author/ASK)

  17. WIPP Remote-Handled TRU Waste Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W.; Kehrman, B.

    2006-07-01

    There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH

  18. FY 2018 Hazardous Waste Management Grant Program For Tribes

    EPA Pesticide Factsheets

    This notice announces the availability of funds and solicits proposals from federally-recognized tribes or intertribal consortia for the development and implementation of hazardous waste programs and for building capacity to address hazardous waste managem

  19. [Initiating a Robotic Program for Abdominal Surgery - Experiences from a Centre in Germany].

    PubMed

    Brunner, Maximilian; Matzel, Klaus; Aladashvili, Archil; Krautz, Christian; Grützmann, Robert; Croner, Roland

    2018-05-18

    Robotic systems are becoming increasingly important in abdominal surgery. We describe the implementation of a robotic program at a German centre for abdominal surgery, with focus on feasibility, safety, patient selection, learning curves, financial aspects and the lessons learned. This retrospective analysis covered data on patient demographics, intra- and postoperative parameters, oncological results and costs of all robotic-assisted abdominal operations performed at our institution between August 2012 to December 2016. It was also evaluated how possible factors for preoperative patient selection might influence intra- or postoperative outcome and learning parameters. 81 operations were performed - mostly colorectal resections (n = 35), ventral mesh rectopexy (n = 23) and liver resections (n = 18). The conversion rate was 7%. All oncological patients underwent R0 resection. Mean postoperative hospitalisation was 8.8 days; mean morbidity was 24%, with major complications (Clavien-Dindo > II) in 7%; mortality was 0%. BMI above 33.5 kg/m 2 was associated with significantly higher morbidity (p = 0.024) and rate of major complications (p = 0.046), as well as a significantly longer hospitalisation (p = 0.009). Patients older than 65 years had significantly higher morbidity (p = 0.025). With increasing numbers of operations, time of surgery decreased (p = 0.001). The average cost of a robot-assisted operation, including hospital stay, was 15,221 €. The costs of robotic sigmoid resections or liver resections were higher (compared to the open approach: 106.8 and 62.8% higher, respectively, compared to the laparoscopic approach 93.5 and 66.5% higher, respectively). Robotic surgery is a safe approach. A crucial factor in the successful and safe performance of robotic assisted operations is proper patient selection, especially during the implementation period. The inevitable learning curve and the higher costs compared to open and

  20. Education by Robot!

    ERIC Educational Resources Information Center

    Cobb, Cheryl

    2004-01-01

    This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…

  1. Mobile robot knowledge base

    NASA Astrophysics Data System (ADS)

    Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory

    2005-05-01

    Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.

  2. Robot Sequencing and Visualization Program (RSVP)

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C

    2013-01-01

    The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.

  3. Industrial Program of Waste Management - Cigeo Project - 13033

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less

  4. Software development to support sensor control of robot arc welding

    NASA Technical Reports Server (NTRS)

    Silas, F. R., Jr.

    1986-01-01

    The development of software for a Digital Equipment Corporation MINC-23 Laboratory Computer to provide functions of a workcell host computer for Space Shuttle Main Engine (SSME) robotic welding is documented. Routines were written to transfer robot programs between the MINC and an Advanced Robotic Cyro 750 welding robot. Other routines provide advanced program editing features while additional software allows communicatin with a remote computer aided design system. Access to special robot functions were provided to allow advanced control of weld seam tracking and process control for future development programs.

  5. U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985

    USGS Publications Warehouse

    Ragone, S.E.

    1986-01-01

    In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program ?? 1986 Springer-Verlag New York Inc.

  6. U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985

    NASA Astrophysics Data System (ADS)

    Ragone, Stephen E.

    1986-09-01

    In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program

  7. Robotics technology developments in the United States space telerobotics program

    NASA Technical Reports Server (NTRS)

    Lavery, David

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.

  8. Robotic Challenges: Robots Bring New Life to Gifted Classes, Teach Students Hands-On Problem Solving, Computer Skills.

    ERIC Educational Resources Information Center

    Smith, Ruth Baynard

    1994-01-01

    Intermediate level academically talented students learn essential elements of computer programming by working with robots at enrichment workshops at Dwight-Englewood School in Englewood, New Jersey. The children combine creative thinking and problem-solving skills to program the robots' microcomputers to perform a variety of movements. (JDD)

  9. A variational dynamic programming approach to robot-path planning with a distance-safety criterion

    NASA Technical Reports Server (NTRS)

    Suh, Suk-Hwan; Shin, Kang G.

    1988-01-01

    An approach to robot-path planning is developed by considering both the traveling distance and the safety of the robot. A computationally-efficient algorithm is developed to find a near-optimal path with a weighted distance-safety criterion by using a variational calculus and dynamic programming (VCDP) method. The algorithm is readily applicable to any factory environment by representing the free workspace as channels. A method for deriving these channels is also proposed. Although it is developed mainly for two-dimensional problems, this method can be easily extended to a class of three-dimensional problems. Numerical examples are presented to demonstrate the utility and power of this method.

  10. Savannah River Site Robotics

    ScienceCinema

    None

    2018-04-16

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  11. Savannah River Site Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  12. Robotics in space-age manufacturing

    NASA Technical Reports Server (NTRS)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  13. 76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S...

  14. 78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  15. 77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division...

  16. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...

  17. Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.

    PubMed

    Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo

    2016-11-01

    Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.

  18. Spider World: A Robot Language for Learning to Program. Assessing the Cognitive Consequences of Computer Environments for Learning (ACCCEL).

    ERIC Educational Resources Information Center

    Dalbey, John; Linn, Marcia

    Spider World is an interactive program designed to help individuals with no previous computer experience to learn the fundamentals of programming. The program emphasizes cognitive tasks which are central to programming and provides significant problem-solving opportunities. In Spider World, the user commands a hypothetical robot (called the…

  19. Transuranic solid waste management programs. Progress report, July--December 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-09-01

    Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less

  20. The effectiveness of simulated robots for supporting the learning of introductory programming: a multi-case case study

    NASA Astrophysics Data System (ADS)

    Major, Louis; Kyriacou, Theocharis; Brereton, Pearl

    2014-07-01

    This work investigates the effectiveness of simulated robots as tools to support the learning of programming. After the completion of a systematic review and exploratory research, a multi-case case study was undertaken. A simulator, named Kebot, was developed and used to run four 10-hour programming workshops. Twenty-three student participants (aged 16-18) in addition to 23 pre-service, and 3 in-service, teachers took part. The effectiveness of this intervention was determined by considering opinions, attitudes, and motivation as well as by analysing students' programming performance. Pre- and post-questionnaires, in- and post-workshop exercises, and interviews were used. Participants enjoyed learning using the simulator and believed the approach to be valuable and engaging. The performance of students indicates that the simulator aids learning as most completed tasks to a satisfactory standard. Evidence suggests robot simulators can offer an effective means of introducing programming. Recommendations to support the development of other simulators are provided.

  1. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  2. 78 FR 15299 - New York: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... Solid Waste Amendments of 1984 (HSWA). New Federal requirements and prohibitions imposed by Federal...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental...

  3. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  4. 78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... prohibitions imposed by Federal regulations that EPA promulgates pursuant to the Hazardous and Solid Waste...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...

  5. OVERVIEW OF MINE WASTE TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Mine Waste Technology Program (MWTP) is an interagency agreement with the DOE and has partnerships with Universities, Forest Service, BLM, Industry and states. The mission of the MWTP is to provide engineering solutions to national environmental issues resulting from the past...

  6. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    ERIC Educational Resources Information Center

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  7. A Survey of European Robotics Research.

    DTIC Science & Technology

    1984-01-27

    laboratory had an ASEA est in robotics began with kinetic robot, several machines for automatic sculpture design. He was looking at the forging, and an LSI 11...developed several tools which Davies had constructed two- and three- eased the programming of the ASEA robot. degrees-of-freedom hydraulic manipula

  8. Robotic Design for the Classroom

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Burns, Kaylynn

    2001-01-01

    This slide presentation reviews the use of robotic design to interest students in science and engineering. It describes one program, BEST, and resources that area available to design and create a robot. BEST is a competition for sixth and seventh graders that is designed to engage gifted and talented students. A couple of scenarios involving the use of a robot are outlined.

  9. Robotic Surgery Training in an OB/GYN Residency Program: A Survey Investigating the Optimal Training and Credentialing of OB/GYN Residents.

    PubMed

    Peterson, Shannon; Mayer, Allan; Nelson, Beth; Roland, Phillip

    2015-08-01

    Many community hospital gynecologic surgery training programs now include robotics.At St. Francis Hospital and Medical Center, we have integrated robotic surgical training since 2006. This study is designed to assess the success in training gynecology residents in robotic surgery. An anonymous web-based survey tool (www. survey monkey. com) was sent to all Ob/Gyn residency graduates from 2007-2010 (n = 17). From 2011-2014, we emailed three reevaluation questions to all 2007-2014 graduates (N = 32). Design Classification: II-3. The response rate was 95%, and 11 of 17 initial graduates (65%) indicated that they had received adequate robotic training. Currently, 24 of 32 (75%) graduates practice in hospitals with robotic availability. Twenty of the 32 graduates (63%) are using robotics in their surgical practices. Nine of these 20 graduates (45%) were fully credentialed following their residency. The other 11 graduates (55%)required further proctoring to obtain full robotic credentials. Robotic surgical training is a component of modern gynecologic surgical training. Postresidency robotic credentialing is a realistic graduation goal for residents who plan to practice gynecologic surgery.

  10. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  11. Industrial robots on the line

    NASA Astrophysics Data System (ADS)

    Ayres, R.; Miller, S.

    1982-06-01

    The characteristics, applications, and operational capabilities of currently available robots are examined. Designed to function at tasks of a repetitive, hazardous, or uncreative nature, robot appendages are controlled by microprocessors which permit some simple decision-making on-the-job, and have served for sample gathering on the Mars Viking lander. Critical developmental areas concern active sensors at the robot grappler-object interface, where sufficient data must be gathered for the central processor to which the robot is attached to conclude the state of completion and suitability of the workpiece. Although present robots must be programmed through every step of a particular industrial process, thus limiting each robot to specialized tasks, the potential for closed cells of batch-processing robot-run units is noted to be close to realization. Finally, consideration is given to methods for retraining the human workforce that robots replace

  12. Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device.

    PubMed

    Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D

    2011-01-01

    We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.

  13. Incorporating robotic-assisted telerehabilitation in a home program to improve arm function following stroke.

    PubMed

    Linder, Susan M; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Rosenfeldt, Anson B; Clark, Cindy; Wolf, Steven L; Alberts, Jay L

    2013-09-01

    After stroke, many individuals lack resources to receive the intensive rehabilitation that is thought to improve upper extremity motor function. This case study describes the application of a telerehabilitation intervention using a portable robotic device combined with a home exercise program (HEP) designed to improve upper extremity function. The participant was a 54-year-old man, 22 weeks following right medullary pyramidal ischemic infarct. At baseline, he exhibited residual paresis of the left upper extremity, resulting in impaired motor control consistent with a flexion synergistic pattern, scoring 22 of 66 on the Fugl-Meyer Assessment. The participant completed 85 total hours of training (38 hours of robotic device and 47 hours of HEP) over the 8-week intervention period. The participant demonstrated an improvement of 26 points on the Action Research Arm Test, 5 points on the Functional Ability Scale portion of the Wolf Motor Function Test, and 20 points on the Fugl-Meyer Assessment, all of which surpassed the minimal clinically important difference. Of the 17 tasks of the Wolf Motor Function Test, he demonstrated improvement on 11 of the 15 time-based tasks and both strength measures. The participant reported an overall improvement in his recovery from stroke on the Stroke Impact Scale quality-of-life questionnaire from 40 of 100 to 65 of 100. His score on the Center for Epidemiologic Studies Depression Scale improved by 19 points. This case demonstrates that robotic-assisted therapy paired with an HEP can be successfully delivered within a home environment to a person with stroke. Robotic-assisted therapy may be a feasible and efficacious adjunct to an HEP program to elicit substantial improvements in upper extremity motor function, especially in those persons with stroke who lack access to stroke rehabilitation centers.

  14. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  15. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  16. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  17. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    A programmable off-the-shelf Sphero robot is shown on a Mars mat at the Center for Space Education at NASA's Kennedy Space Center in Florida. The Spheros were available for students to practice their programming skills by navigating the robots around a challenge course on the mat. Students used the mat and Sphero robots during "loss of signal" times when the connection to the International Space Station was temporarily unavailable. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.

  18. Experiences in Developing an Experimental Robotics Course Program for Undergraduate Education

    ERIC Educational Resources Information Center

    Jung, Seul

    2013-01-01

    An interdisciplinary undergraduate-level robotics course offers students the chance to integrate their engineering knowledge learned throughout their college years by building a robotic system. Robotics is thus a core course in system and control-related engineering education. This paper summarizes the experience of developing robotics courses…

  19. AltiVec performance increases for autonomous robotics for the MARSSCAPE architecture program

    NASA Astrophysics Data System (ADS)

    Gothard, Benny M.

    2002-02-01

    One of the main tall poles that must be overcome to develop a fully autonomous vehicle is the inability of the computer to understand its surrounding environment to a level that is required for the intended task. The military mission scenario requires a robot to interact in a complex, unstructured, dynamic environment. Reference A High Fidelity Multi-Sensor Scene Understanding System for Autonomous Navigation The Mobile Autonomous Robot Software Self Composing Adaptive Programming Environment (MarsScape) perception research addresses three aspects of the problem; sensor system design, processing architectures, and algorithm enhancements. A prototype perception system has been demonstrated on robotic High Mobility Multi-purpose Wheeled Vehicle and All Terrain Vehicle testbeds. This paper addresses the tall pole of processing requirements and the performance improvements based on the selected MarsScape Processing Architecture. The processor chosen is the Motorola Altivec-G4 Power PC(PPC) (1998 Motorola, Inc.), a highly parallized commercial Single Instruction Multiple Data processor. Both derived perception benchmarks and actual perception subsystems code will be benchmarked and compared against previous Demo II-Semi-autonomous Surrogate Vehicle processing architectures along with desktop Personal Computers(PC). Performance gains are highlighted with progress to date, and lessons learned and future directions are described.

  20. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less

  1. Autonomous mobile robot research using the HERMIES-III robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, F.G.; Beckerman, M.; Spelt, P.F.

    1989-01-01

    This paper reports on the status and future directions in the research, development and experimental validation of intelligent control techniques for autonomous mobile robots using the HERMIES-III robot at the Center for Engineering Systems Advanced research (CESAR) at Oak Ridge National Laboratory (ORNL). HERMIES-III is the fourth robot in a series of increasingly more sophisticated and capable experimental test beds developed at CESAR. HERMIES-III is comprised of a battery powered, onmi-directional wheeled platform with a seven degree-of-freedom manipulator arm, video cameras, sonar range sensors, laser imaging scanner and a dual computer system containing up to 128 NCUBE nodes in hypercubemore » configuration. All electronics, sensors, computers, and communication equipment required for autonomous operation of HERMIES-III are located on board along with sufficient battery power for three to four hours of operation. The paper first provides a more detailed description of the HERMIES-III characteristics, focussing on the new areas of research and demonstration now possible at CESAR with this new test-bed. The initial experimental program is then described with emphasis placed on autonomous performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES- III). The paper concludes with a discussion of the integration problems and safety considerations necessarily arising from the set-up of an experimental program involving human-scale, multi-autonomous mobile robots performance. 10 refs., 3 figs.« less

  2. Robotics Workshop for High School and College Instructors

    NASA Astrophysics Data System (ADS)

    Holberg, Kathy; Reimers, Peggy

    2010-03-01

    Twenty-first century learners need critical thinking and effective communications skills. Practicing higher level cognitive skills are fun and engaging for students and teachers using LEGO Robotics. Come delve into the latest robotics technology from LEGO Education. Participants will construct and program robots with the new Technic Building System and NXT-G programming software. Attendees will take back instructional strategies and ideas on how to implement robotics into their classroom, school or district. Come, connect, explore, learn, enhance and have fun. Limited to 18 participants - 3 hours - Cost: 2.00

  3. Full autonomous microline trace robot

    NASA Astrophysics Data System (ADS)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  4. The Effectiveness of Simulated Robots for Supporting the Learning of Introductory Programming: A Multi-Case Case Study

    ERIC Educational Resources Information Center

    Major, Louis; Kyriacou, Theocharis; Brereton, Pearl

    2014-01-01

    This work investigates the effectiveness of simulated robots as tools to support the learning of programming. After the completion of a systematic review and exploratory research, a multi-case case study was undertaken. A simulator, named Kebot, was developed and used to run four 10-hour programming workshops. Twenty-three student participants…

  5. Programming in a Robotics Context in the Kindergarten Classroom: The Impact on Sequencing Skills

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth; Bers, Marina

    2012-01-01

    This paper examines the impact of computer programming of robots on sequencing ability in early childhood and the relationship between sequencing skills, class size, and teacher's comfort level and experience with technology. Fifty-eight children participated in the study, 54 of whom were included in data analysis. This study was conducted in two…

  6. The National Shipbuilding Research Program. 1995 Ship Production Symposium. Paper No. 10: Robot Technology in the Shipyard Production Environment

    DTIC Science & Technology

    1995-01-01

    CHALLENGE It is possible to divide the shipyard industry into three categories the yards which have no experience whatsoever with robot production...INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM January, 1995 NSRP 0439...1995 Ship Production Symposium Paper No . 10: Robot Technology in the Shipyard Production Environ- ment U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION

  7. Mars Robotics in the Elementary School

    NASA Astrophysics Data System (ADS)

    Bonett, D.

    2003-05-01

    Kenneth E. Little Elementary is a public school grades Pre-K to 5th in Bacliff, Texas. It has an ethnically diverse population of one-thousand boys and girls. It is a Title 1 school with eighty-six percent of the students receiving free or reduced meals. K.E. Little has a large at-risk population with a thirty-three percent transition rate. The Young Astronauts @ K.E. Little is an on-going afterschool space science program in it's third year of operation. Thirty students,fourth and fifth grade, were involved in our spring robotics program. Each co-operative group was assigned a LEGO robotics kit to inventory,organize, and familiarize themselves with. Each team made decisions, by consensus, concerning the robots design and capabilities. Students used the Dell Computer Lab on campus to program their robots. Although time did not permit the construction of a simulated Martian landscape, future Young Astronauts will continue this project in January 2004.

  8. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  9. First Robotics Competition

    NASA Image and Video Library

    2010-03-06

    Robots vie for position during the second day of the First Robotics Competition, Saturday, March 6, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology", or FIRST. The program was founded in 1989 by Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  10. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Program Manager for Centennial Challenges Sam Ortega help show a young visitor how to drive a rover as part of the interactive NASA Mars rover exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. ASI's space automation and robotics programs: The second step

    NASA Technical Reports Server (NTRS)

    Dipippo, Simonetta

    1994-01-01

    The strategic decisions taken by ASI in the last few years in building up the overall A&R program, represent the technological drivers for other applications (i.e., internal automation of the Columbus Orbital Facility in the ESA Manned Space program, applications to mobile robots both in space and non-space environments, etc...). In this context, the main area of application now emerging is the scientific missions domain. Due to the broad range of applications of the developed technologies, both in the in-orbit servicing and maintenance of space structures and scientific missions, ASI foresaw the need to have a common technological development path, mainly focusing on: (1) control; (2) manipulation; (3) on-board computing; (4) sensors; and (5) teleoperation. Before entering into new applications in the scientific missions field, a brief overview of the status of the SPIDER related projects is given, underlining also the possible new applications for the LEO/GEO space structures.

  13. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    NASA Technical Reports Server (NTRS)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  14. Air Force construction automation/robotics

    NASA Technical Reports Server (NTRS)

    Nease, A. D.; Alexander, E. F.

    1993-01-01

    The Air Force has several missions which generate unique requirements that are being met through the development of construction robotic technology. One especially important mission will be the conduct of Department of Defense (DOD) space activities. Space operations and other missions place construction/repair equipment operators in dangerous environments and potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible, and more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL, to develop robotic construction/repair equipment. This development effort involves the following technologies: teleoperation, telerobotics, construction operations (excavation, grading, leveling, tool change), robotic vehicle communications, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of a robotic repair capability operating at the level of supervised autonomy. This paper will discuss current and planned efforts in space construction/repair, explosive ordnance disposal, hazardous waste cleanup, and fire fighting.

  15. Monitoring robot actions for error detection and recovery

    NASA Technical Reports Server (NTRS)

    Gini, M.; Smith, R.

    1987-01-01

    Reliability is a serious problem in computer controlled robot systems. Although robots serve successfully in relatively simple applications such as painting and spot welding, their potential in areas such as automated assembly is hampered by programming problems. A program for assembling parts may be logically correct, execute correctly on a simulator, and even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real world uncertainties. Recovery from such errors is far more complicated than recovery from simple controller errors, since even expected errors can often manifest themselves in unexpected ways. Here, a novel approach is presented for improving robot reliability. Instead of anticipating errors, researchers use knowledge-based programming techniques so that the robot can autonomously exploit knowledge about its task and environment to detect and recover from failures. They describe preliminary experiment of a system that they designed and constructed.

  16. Configuration Synthesis and Efficient Motion Programming of Robot Manipulators

    DTIC Science & Technology

    1991-03-15

    Gupta and Ma 90- Robotica 8:81-84]. When a set of discrete stations are specified along a robot task path, it becomes necessary to find a related...velocity Jacobian relations for the manipulator [Singh 87-MS Thesis][Gupta and Singh 89- Robotica 7:159-1641 and [Cheng 89-PhD Thesis][Cheng and Gupta...1987; Robotica 7:159-164, 1989 (revised). K. C. Gupta, "Kinematics of a Robot with Continuous Roll Wrist," IEEE J. Robotics and Automation 4(4):440-443

  17. TRU Waste Management Program. Cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  18. Nutritional, Economic, and Environmental Costs of Milk Waste in a Classroom School Breakfast Program.

    PubMed

    Blondin, Stacy A; Cash, Sean B; Goldberg, Jeanne P; Griffin, Timothy S; Economos, Christina D

    2017-04-01

    To measure fluid milk waste in a US School Breakfast in the Classroom Program and estimate its nutritional, economic, and environmental effects. Fluid milk waste was directly measured on 60 elementary school classroom days in a medium-sized, urban district. The US Department of Agriculture nutrition database, district cost data, and carbon dioxide equivalent (CO 2 e) emissions and water footprint estimates for fluid milk were used to calculate the associated nutritional, economic, and environmental costs. Of the total milk offered to School Breakfast Program participants, 45% was wasted. A considerably smaller portion of served milk was wasted (26%). The amount of milk wasted translated into 27% of vitamin D and 41% of calcium required of School Breakfast Program meals. The economic and environmental costs amounted to an estimated $274 782 (16% of the district's total annual School Breakfast Program food expenditures), 644 893 kilograms of CO 2 e, and 192 260 155 liters of water over the school year in the district. These substantial effects of milk waste undermine the School Breakfast Program's capacity to ensure short- and long-term food security and federal food waste reduction targets. Interventions that reduce waste are urgently needed.

  19. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  20. Robotics Technician Training at Macomb Community College.

    ERIC Educational Resources Information Center

    Lynch, Edward J.

    Approved in 1979, the robotics technician training program at Macomb County Community College (MCC) in Warren (Michigan) provides students with training in hydraulics and electronics as well as with hands-on training in the area of robotics. Furthermore, the program faculty includes individuals with work experience in electronics, fluid power, and…

  1. The Power of Educational Robotics

    NASA Astrophysics Data System (ADS)

    Cummings, Timothy

    The purpose of this action research project was to investigate the impact a students' participation in educational robotics has on his or her performance in the STEM subjects. This study attempted to utilize educational robotics as a method for increasing student achievement and engagement in STEM subjects. Over the course of 12 weeks, an after-school robotics program was offered to students. Guided by the standards and principles of VEX IQ, a leading resource in educational robotics, students worked in collaboration on creating a design for their robot, building and testing their robot, and competing in the VEX IQ Crossover Challenge. Student data was gathered through a pre-participation survey, observations from the work they performed in robotics club, their performance in STEM subject classes, and the analysis of their end-of-the-year report card. Results suggest that the students who participate in robotics club experienced a positive impact on their performance in STEM subject classes.

  2. Pediatric robotic urologic surgery-2014

    PubMed Central

    Kearns, James T.; Gundeti, Mohan S.

    2014-01-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide. PMID:25197187

  3. Robotics and Industrial Arts.

    ERIC Educational Resources Information Center

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  4. Robotics training program: evaluation of the satisfaction and the factors that influence success of skills training in a resident robotics curriculum.

    PubMed

    Lucas, Steven M; Gilley, David A; Joshi, Shreyas S; Gardner, Thomas A; Sundaram, Chandru P

    2011-10-01

    We present our experience of training residents in a weekend robotic training program to assess its effectiveness and perceived usefulness. Bimonthly training sessions were arranged such that residents could sign up for hour-long, weekend training sessions. They are required to complete four training sessions. Five tasks were scored for time and accuracy: Peg-Board, checkerboard, string running, pattern cutting, and suturing. Participants completed surveys (5-point Likert scale) regarding program utility, ease of attendance, and interest in future weekend training sessions. Mean number of trials completed by 19 residents was >4, and 16 completed the trials within an average of 13.7±8.1 mos. Significant improvements (P<0.05) were seen in final trials for Peg-Board accuracy (95.8% vs 79.0%), checkerboard deviation (4.8% vs 18.2%), and time (293 s vs 404 s), pattern-cutting time (257 s vs 399 s), and suture time (203 s vs 305 s). Time to previous session correlated with relative improvement in Peg-Board and pattern-cutting time (r=0.300 and 0.277, P=0.021 and 0.041), but no specific training interval was predictive of improvement. Residents found the course easy to attend (3.6), noted skills improvement (4.1), and found it useful (4.0). Training in the weekend sessions improved performance of basic tasks on the robot. Training interval had a modest effect on some exercises and may be more important for difficult tasks. This training program is a useful supplement to resident training and would be easy to implement in most programs.

  5. The debate over robotics in benign gynecology.

    PubMed

    Rardin, Charles R

    2014-05-01

    The debate over the role of the da Vinci surgical robotic platform in benign gynecology is raging with increasing fervor and, as product liability issues arise, greater financial stakes. Although the best currently available science suggests that, in the hands of experts, robotics offers little in surgical advantage over laparoscopy, at increased expense, the observed decrease in laparotomy for hysterectomy is almost certainly, at least in part, attributable to the availability of the robot. In this author's opinion, the issue is not whether the robot has any role but rather to define the role in an institutional environment that also supports the safe use of vaginal and laparoscopic approaches in an integrated minimally invasive surgery program. Programs engaging robotic surgery should have a clear and self-determined regulatory process and should resist pressures in place that may preferentially support robotics over other forms of minimally invasive surgery. Copyright © 2014 Mosby, Inc. All rights reserved.

  6. EPA WASTE MINIMIZATION RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) has established a waste minimization research program within the Office of Research and Development's Risk Reduction Engineering Laboratory which is the primary contact for pollution prevention research efforts concentrating on source ...

  7. 78 FR 70225 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Department of Environmental Protection, (WVDEP), Division of Water and Waste Management, 601 57th Street SE...] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... for final authorization of revisions to its hazardous waste program under the Resource Conservation...

  8. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...

  9. Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.

    ERIC Educational Resources Information Center

    Richardson, John G.

    The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…

  10. Robots Are Taking Over--Who Does What.

    ERIC Educational Resources Information Center

    Garrison, H. Don

    Robots are machines designed to replace human labor. A fear of vast unemployment due to robots seems unfounded, however, since industrialization creates many more jobs and automation requires technologists to build, program, maintain, and operate sophisticated equipment. Robots possess an intelligence unit, a manipulator, and an end effector.…

  11. Feasibility and Acceptance of a Robotic Surgery Ergonomic Training Program

    PubMed Central

    Craven, Renatta; Mosaly, Prithima; Gehrig, Paola A.

    2014-01-01

    Background and Objectives: Assessment of ergonomic strain during robotic surgery indicates there is a need for intervention. However, limited data exist detailing the feasibility and acceptance of ergonomic training (ET) for robotic surgeons. This prospective, observational pilot study evaluates the implementation of an evidence-based ET module. Methods: A two-part survey was conducted. The first survey assessed robotic strain using the Nordic Musculoskeletal Questionnaire (NMQ). Participants were given the option to participate in either an online or an in-person ET session. The ET was derived from Occupational Safety and Health Administration guidelines and developed by a human factors engineer experienced with health care ergonomics. After ET, a follow-up survey including the NMQ and an assessment of the ET were completed. Results: The survey was sent to 67 robotic surgeons. Forty-two (62.7%) responded, including 18 residents, 8 fellows, and 16 attending physicians. Forty-five percent experienced strain resulting from performing robotic surgery and 26.3% reported persistent strain. Only 16.6% of surgeons reported prior ET in robotic surgery. Thirty-five (78%) surgeons elected to have in-person ET, which was successfully arranged for 32 surgeons (91.4%). Thirty-seven surgeons (88.1%) completed the follow-up survey. All surgeons participating in the in-person ET found it helpful and felt formal ET should be standard, 88% changed their practice as a result of the training, and 74% of those reporting strain noticed a decrease after their ET. Conclusion: Thus, at a high-volume robotics center, evidence-based ET was easily implemented, well-received, changed some surgeons' practice, and decreased self-reported strain related to robotic surgery. PMID:25489213

  12. Feasibility and acceptance of a robotic surgery ergonomic training program.

    PubMed

    Franasiak, Jason; Craven, Renatta; Mosaly, Prithima; Gehrig, Paola A

    2014-01-01

    Assessment of ergonomic strain during robotic surgery indicates there is a need for intervention. However, limited data exist detailing the feasibility and acceptance of ergonomic training (ET) for robotic surgeons. This prospective, observational pilot study evaluates the implementation of an evidence-based ET module. A two-part survey was conducted. The first survey assessed robotic strain using the Nordic Musculoskeletal Questionnaire (NMQ). Participants were given the option to participate in either an online or an in-person ET session. The ET was derived from Occupational Safety and Health Administration guidelines and developed by a human factors engineer experienced with health care ergonomics. After ET, a follow-up survey including the NMQ and an assessment of the ET were completed. The survey was sent to 67 robotic surgeons. Forty-two (62.7%) responded, including 18 residents, 8 fellows, and 16 attending physicians. Forty-five percent experienced strain resulting from performing robotic surgery and 26.3% reported persistent strain. Only 16.6% of surgeons reported prior ET in robotic surgery. Thirty-five (78%) surgeons elected to have in-person ET, which was successfully arranged for 32 surgeons (91.4%). Thirty-seven surgeons (88.1%) completed the follow-up survey. All surgeons participating in the in-person ET found it helpful and felt formal ET should be standard, 88% changed their practice as a result of the training, and 74% of those reporting strain noticed a decrease after their ET. Thus, at a high-volume robotics center, evidence-based ET was easily implemented, well-received, changed some surgeons' practice, and decreased self-reported strain related to robotic surgery.

  13. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.

  14. 78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R02-RCRA-2013-0144; FRL-9693-3] New York: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...

  15. 75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... authorized and that EPA will enforce under the Solid Waste Disposal Act, as amended and commonly referred to...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous...

  16. Robotics Competitions: The Choice Is up to You!

    ERIC Educational Resources Information Center

    Johnson, Richard T.; Londt, Susan E.

    2010-01-01

    Competitive robotics as an interactive experience can increase the level of student participation in technology education, inspire students to consider careers in technical fields, and enhance the visibility of technology education programs. Implemented correctly, a competitive robotics program can provide a stimulating learning environment for…

  17. Adequacy of a Small Quantity Site RH-TRU Waste Program in Meeting Proposed WIPP Characterization Objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedscheid, J.; Stahl, S.; Devarakonda, M.

    2002-02-26

    The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to

  18. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    NASA Technical Reports Server (NTRS)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  19. Robotics Team Lights Up New Year's Eve

    ERIC Educational Resources Information Center

    LeBlanc, Cheryl

    2011-01-01

    A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…

  20. Motion coordination and programmable teleoperation between two industrial robots

    NASA Technical Reports Server (NTRS)

    Luh, J. Y. S.; Zheng, Y. F.

    1987-01-01

    Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions.

  1. 76 FR 6594 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S. Environmental Protection...

  2. Industrial Robots For Measurement And Inspection Purposes

    NASA Astrophysics Data System (ADS)

    Ahlers, R.-J.

    1989-02-01

    The use of industrial robots for measuring and testing is becoming increasingly significant as a component of flexible production. In the early stages of their development robots were used mainly for monotonous and repetitive tasks such as handling and spot welding. Thanks to improvements in the precision with which they work and also in control and regulation technologies, it is possible today to employ robots as flexible, sensor-assisted and even "intellligent" tools for measuring and testing. As a result, however, much higher accuracy is demanded of the robots used for such purposes. In addition, robot measurement and acceptance test requirements have become more exacting. The present paper is based on recommendations that have been developed by cooperative work of the Association of German-Engineers (VDI/GMA). The appropriate working group is entitled "Industrial Robots -Measurement and Inspection". The author is the chairman of this working group. Apart from the technical equipment involved, the use of industrial robots for measuring purposes also calls for the devi-sing and programming of appropriate measuring strategies. In this context the planning and implementation of measuring projects have to be discussed along with software reliability and on-line/off-line programming strategies. Four different utilizations of robots for measuring and testing are presented and illustrated by examples.

  3. MINE WASTE TECHNOLOGY PROGRAM:HISTORICAL PERSPECTIVES. CURRENT HIGHLIGHTS, FUTURE OPPORTUNITIES

    EPA Science Inventory

    For the past 13 years, the Mine Waste Technology Program has been technically driven by the National Risk Management Research Lab. A portion of the MWTP funding has been used to perform field demonstrations of innovative technologies with the potential to address mine waste issue...

  4. Machine intelligence and robotics: Report of the NASA study group

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.

  5. Training in urological robotic surgery. Future perspectives.

    PubMed

    El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo

    2018-01-01

    As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.

  6. Mine Waste Technology Program Electrochemical Tailings Cover

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 40, Electrochemical Tailings Cover, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). MSE Technology A...

  7. General surgery residents' perception of robot-assisted procedures during surgical training.

    PubMed

    Farivar, Behzad S; Flannagan, Molly; Leitman, I Michael

    2015-01-01

    With the continued expansion of robotically assisted procedures, general surgery residents continue to receive more exposure to this new technology as part of their training. There are currently no guidelines or standardized training requirements for robot-assisted procedures during general surgical residency. The aim of this study was to assess the effect of this new technology on general surgery training from the residents' perspective. An anonymous, national, web-based survey was conducted on residents enrolled in general surgery training in 2013. The survey was sent to 240 Accreditation Council for Graduate Medical Education-approved general surgery training programs. Overall, 64% of the responding residents were men and had an average age of 29 years. Half of the responses were from postgraduate year 1 (PGY1) and PGY2 residents, and the remainder was from the PGY3 level and above. Overall, 50% of the responses were from university training programs, 32% from university-affiliated programs, and 18% from community-based programs. More than 96% of residents noted the availability of the surgical robot system at their training institution. Overall, 63% of residents indicated that they had participated in robotic surgical cases. Most responded that they had assisted in 10 or fewer robotic cases with the most frequent activities being assisting with robotic trocar placement and docking and undocking the robot. Only 18% reported experience with operating the robotic console. More senior residents (PGY3 and above) were involved in robotic cases compared with junior residents (78% vs 48%, p < 0.001). Overall, 60% of residents indicated that they received no prior education or training before their first robotic case. Approximately 64% of residents reported that formal training in robotic surgery was important in residency training and 46% of residents indicated that robotic-assisted cases interfered with resident learning. Only 11% felt that robotic-assisted cases

  8. If We Build It, We Will Come: Impacts of a Summer Robotics Program on Regular Year Attendance in Middle School. Policy Brief

    ERIC Educational Resources Information Center

    Mac Iver, Martha Abele; Mac Iver, Douglas J.

    2014-01-01

    Recognizing the importance of both keeping middle school students engaged and improving their math skills, Baltimore City Public Schools (City Schools) developed a summer school STEM program involving not only math and science instruction but also the experience of building a robot and competing with those robots in a city-wide tournament.…

  9. How to Build a Robot: Collaborating to Strengthen STEM Programming in a Citywide System

    ERIC Educational Resources Information Center

    Groome, Meghan; Rodríguez, Linda M.

    2014-01-01

    You have to stick with it. It takes time, patience, trial and error, failure, and persistence. It is almost never perfect or finished, but, with a good team, you can build something that works. These are the lessons youth learn when building a robot, as many do in the out-of-school time (OST) programs supported by the initiative described in this…

  10. Equipment and technology in surgical robotics.

    PubMed

    Sim, Hong Gee; Yip, Sidney Kam Hung; Cheng, Christopher Wai Sam

    2006-06-01

    Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master-slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.

  11. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  12. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  13. Development of intelligent robots - Achievements and issues

    NASA Astrophysics Data System (ADS)

    Nitzan, D.

    1985-03-01

    A flexible, intelligent robot is regarded as a general purpose machine system that may include effectors, sensors, computers, and auxiliary equipment and, like a human, can perform a variety of tasks under unpredictable conditions. Development of intelligent robots is essential for increasing the growth rate of today's robot population in industry and elsewhere. Robotics research and development topics include manipulation, end effectors, mobility, sensing (noncontact and contact), adaptive control, robot programming languages, and manufacturing process planning. Past achievements and current issues related to each of these topics are described briefly.

  14. Mindstorms robots and the application of cognitive load theory in introductory programming

    NASA Astrophysics Data System (ADS)

    Mason, Raina; Cooper, Graham

    2013-12-01

    This paper reports on a series of introductory programming workshops, initially targeting female high school students, which utilised Lego Mindstorms robots. Cognitive load theory (CLT) was applied to the instructional design of the workshops, and a controlled experiment was also conducted investigating aspects of the interface. Results indicated that a truncated interface led to better learning by novice programmers as measured by test performance by participants, as well as enhanced shifts in self-efficacy and lowered perception of difficulty. There was also a transfer effect to another programming environment (Alice). It is argued that the results indicate that for novice programmers, the mere presence on-screen of additional (redundant) entities acts as a form of tacit distraction, thus impeding learning. The utility of CLT to analyse, design and deliver aspects of computer programming environments and instructional materials is discussed.

  15. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  16. Survey on Robot-Assisted Surgical Techniques Utilization in US Pediatric Surgery Fellowships.

    PubMed

    Maizlin, Ilan I; Shroyer, Michelle C; Yu, David C; Martin, Colin A; Chen, Mike K; Russell, Robert T

    2017-02-01

    Robotic technology has transformed both practice and education in many adult surgical specialties; no standardized training guidelines in pediatric surgery currently exist. The purpose of our study was to assess the prevalence of robotic procedures and extent of robotic surgery education in US pediatric surgery fellowships. A deidentified survey measured utilization of the robot, perception on the utility of the robot, and its incorporation in training among the program directors of Accreditation Council for Graduate Medical Education (ACGME) pediatric surgery fellowships in the United States. Forty-one of the 47 fellowship programs (87%) responded to the survey. While 67% of respondents indicated the presence of a robot in their facility, only 26% reported its utilizing in their surgical practice. Among programs not utilizing the robot, most common reasons provided were lack of clear supportive evidence, increased intraoperative time, and incompatibility of instrument size to pediatric patients. While 58% of program directors believe that there is a future role for robotic surgery in children, only 18% indicated that robotic training should play a part in pediatric surgery education. Consequently, while over 66% of survey respondents received training in robot-assisted surgical technique, only 29% of fellows receive robot-assisted training during their fellowship. A majority of fellowships have access to a robot, but few utilize the technology in their current practice or as part of training. Further investigation is required into both the technology's potential benefits in the pediatric population and its role in pediatric surgery training.

  17. Center of excellence for small robots

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Carroll, Daniel M.; Laird, Robin T.; Everett, H. R.

    2005-05-01

    The mission of the Unmanned Systems Branch of SPAWAR Systems Center, San Diego (SSC San Diego) is to provide network-integrated robotic solutions for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications, serving and partnering with industry, academia, and other government agencies. We believe the most important criterion for a successful acquisition program is producing a value-added end product that the warfighter needs, uses and appreciates. Through our accomplishments in the laboratory and field, SSC San Diego has been designated the Center of Excellence for Small Robots by the Office of the Secretary of Defense Joint Robotics Program. This paper covers the background, experience, and collaboration efforts by SSC San Diego to serve as the "Impedance-Matching Transformer" between the robotic user and technical communities. Special attention is given to our Unmanned Systems Technology Imperatives for Research, Development, Testing and Evaluation (RDT&E) of Small Robots. Active projects, past efforts, and architectures are provided as success stories for the Unmanned Systems Development Approach.

  18. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  19. Robotic missions for the moon

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Burke, J. D.

    1990-01-01

    In the course of the exploration and settlement of the moon, robotic missions will precede and accompany humans. These robotic missions are defined respectively as precursors and adjuncts. Their contribution is twofold: to generate information about the lunar environment (and system performance in that environment), and to emplace elements of infrastructure for subsequent use. This paper describes information that may be gathered by robotic missions and infrastructure elements that may be deployed by them during an early lunar program phase.

  20. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  1. FIRST Robotics Kickoff

    NASA Image and Video Library

    2007-01-06

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  2. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  3. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.

  4. A Demonstrator Intelligent Scheduler For Sensor-Based Robots

    NASA Astrophysics Data System (ADS)

    Perrotta, Gabriella; Allen, Charles R.; Shepherd, Andrew J.

    1987-10-01

    The development of an execution module capable of functioning as as on-line supervisor for a robot equipped with a vision sensor and tactile sensing gripper system is described. The on-line module is supported by two off-line software modules which provide a procedural based assembly constraints language to allow the assembly task to be defined. This input is then converted into a normalised and minimised form. The host Robot programming language permits high level motions to be issued at the to level, hence allowing a low programming overhead to the designer, who must describe the assembly sequence. Components are selected for pick and place robot movement, based on information derived from two cameras, one static and the other mounted on the end effector of the robot. The approach taken is multi-path scheduling as described by Fox pi. The system is seen to permit robot assembly in a less constrained parts presentation environment making full use of the sensory detail available on the robot.

  5. Resources for Underwater Robotics Education

    ERIC Educational Resources Information Center

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  6. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  7. Robotics for Computer Scientists: What's the Big Idea?

    ERIC Educational Resources Information Center

    Touretzky, David S.

    2013-01-01

    Modern robots, like today's smartphones, are complex devices with intricate software systems. Introductory robot programming courses must evolve to reflect this reality, by teaching students to make use of the sophisticated tools their robots provide rather than reimplementing basic algorithms. This paper focuses on teaching with Tekkotsu, an open…

  8. Capacity planning for waste management systems: an interval fuzzy robust dynamic programming approach.

    PubMed

    Nie, Xianghui; Huang, Guo H; Li, Yongping

    2009-11-01

    This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.

  9. Essential elements to the establishment and design of a successful robotic surgery programme.

    PubMed

    Patel, Vipul R

    2006-03-01

    The application of robotic assisted technology has created a new era in surgery, by addressing some of the limitations of conventional open and laparoscopic surgery. To optimize success the incorporation of robotics into a surgical program must be performed with a structured approach. We discuss the key factors for building a successful robotic surgery program. Prior to implementing a robotics program certain essential elements must be examined. One must assess the overall goals of the program, the initial applications of the technology and the time line for success. In addition a financial analysis of the potential impact of the technology must also be performed. Essential personnel should also be identified in order to form a cohesive robotic surgery team. These preparatory sets help coordinate the establishment of the program and help to prevent unrealistic expectations; while generating the best environment for success. Once the purchase of the robotic system has been approved a robotic surgery team is created with certain essential components. This staff includes: the surgeons, nursing staff, physician assistants, resident/fellows, program coordinator, marketing and a financial analysis team. This team will work together to achieve the common goals for the program. Robotic assisted surgery has grown tremendously over the last half decade in certain surgical fields such as urology. The success of programs has been variable and often related to the infrastructure of the program. The key factors appear to be creation of a sound financial plan, early identification of applicable specialties and a motivated surgical team. Copyright 2006 John Wiley & Sons, Ltd.

  10. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tankmore » inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.« less

  11. Status of DoD Robotic Programs

    DTIC Science & Technology

    1985-03-01

    planning or adhere to previously planned routes. 0 Control. Controls are micro electronics based which provide means of autonomous action directly...KEY No: I 11 1181 1431 OROJECT Titloi ISMART TERRAIN ANALYSIS FOR ROBOTIC SYSTEMS (STARS) PROJECT Not I I CLASSIFICATION: IUCI TASK Titles IAUTOMATIC

  12. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    NASA Technical Reports Server (NTRS)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  13. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    Students from McKinley Tech High School in Washington, D.C., work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  14. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    PubMed

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROOT, R.W.

    1999-05-18

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  16. Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1994-01-01

    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications.

  17. Machine intelligence and robotics: Report of the NASA study group. Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.

  18. Robot welding process control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  19. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Rochlis-Zumbado, Jennifer; Sandor, Aniko; Ezer, Neta

    2012-01-01

    Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularies

  20. SLFP: a stochastic linear fractional programming approach for sustainable waste management.

    PubMed

    Zhu, H; Huang, G H

    2011-12-01

    A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study ofmore » actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.« less

  2. Robotic surgical education: a collaborative approach to training postgraduate urologists and endourology fellows.

    PubMed

    Mirheydar, Hossein; Jones, Marklyn; Koeneman, Kenneth S; Sweet, Robert M

    2009-01-01

    Currently, robotic training for inexperienced, practicing surgeons is primarily done vis-à-vis industry and/or society-sponsored day or weekend courses, with limited proctorship opportunities. The objective of this study was to assess the impact of an extended-proctorship program at up to 32 months of follow-up. An extended-proctorship program for robotic-assisted laparoscopic radical prostatectomy was established at our institution. The curriculum consisted of 3 phases: (1) completing an Intuitive Surgical 2-day robotic training course with company representatives; (2) serving as assistant to a trained proctor on 5 to 6 cases; and (3) performing proctored cases up to 1 year until confidence was achieved. Participants were surveyed and asked to evaluate on a 5-point Likert scale their operative experience in robotics and satisfaction regarding their training. Nine of 9 participants are currently performing robotic-assisted laparoscopic radical prostatectomy (RALP) independently. Graduates of our program have performed 477 RALP cases. The mean number of cases performed within phase 3 was 20.1 (range, 5 to 40) prior to independent practice. The program received a rating of 4.2/5 for effectiveness in teaching robotic surgery skills. Our robotic program, with extended proctoring, has led to an outstanding take-rate for disseminating robotic skills in a metropolitan community.

  3. 2009 Ground Robotics Capabilities Conference and Exhibition

    DTIC Science & Technology

    2009-03-26

    adaptability to varying social cues and context – ARL via the Robotics Collaborative Technology Alliance program • Autonomy is “conditional” … largely...roadmaps, alliances and robotics organizations have been established to synchronize development efforts • Many emerging robotics capabilities can...Crossing Plan ( B2B ) 1. Target Customer 2. Compelling Reason to Buy 3. Whole Product 4. Partners & Allies 5. Distribution 6. Pricing 7. Competition 8

  4. Astrobee: Space Station Robotic Free Flyer

    NASA Technical Reports Server (NTRS)

    Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.

    2016-01-01

    Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.

  5. A Case Study on a Capsule Robot in the Gastrointestinal Tract to Teach Robot Programming and Navigation

    ERIC Educational Resources Information Center

    Guo, Yi; Zhang, Shubo; Ritter, Arthur; Man, Hong

    2014-01-01

    Despite the increasing importance of robotics, there is a significant challenge involved in teaching this to undergraduate students in biomedical engineering (BME) and other related disciplines in which robotics techniques could be readily applied. This paper addresses this challenge through the development and pilot testing of a bio-microrobotics…

  6. Automation and robotics technology for intelligent mining systems

    NASA Technical Reports Server (NTRS)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  7. Experimental Studies of Joint Flexibility for PUMA 560 Robot.

    DTIC Science & Technology

    1987-03-01

    the robot and plant equipment be set up prior to the programming. With the advent of higher level programming languages such as VAL II and the ...SCHOOL I Monterey, California THESIS EC" ft EXPERIMENTAL STUDIES OF JOINT FLEXIBILITY FOR PUNA 560 ROBOT by Dennis K. Gonyier March 1987 Thesis Advisor ...9ABSTRACT (ContInUe on revene ff neccual) and odent’ f by block num~ber) This paper investigates flexibility of the PUMA 560 industrial robot arm. The

  8. [Robotic laparoscopic cholecystectomy].

    PubMed

    Langer, D; Pudil, J; Ryska, M

    2006-09-01

    Laparoscopic approach profusely utilized in many surgical fields was enhanced by da Vinci robotic surgical system in range of surgery wards, imprimis in the United States today. There was multispecialized robotic centre program initiated in the Central Military Hospital in Prague in December 2005. Within the scope of implementing the da Vinci robotic system to clinical practice we executed robotic-assisted laparoscopic cholecystectomy. We have accomplished elective laparoscopic cholecystectomy using the da Vinci robotic surgical system. Operating working group (two doctors, two scrub nurses) had completed certificated foreign training. Both of the surgeons have many years experience of laparoscopic cholecystectomy. Operator controlled instruments from the surgeon's console, assistant placed clips on ends of cystic duct and cystic artery from auxiliary port after capnoperitoneum installation. We evacuated gallbladder in plastic bag from abdominal cavity in place of original paraumbilical port. We were exploiting three working arms in all our cases, holding surgical camera, electrocautery hook and Cadiere forceps. We had been observing procedure time, technical complications connected with robotic system, length of hospital stay and complication incidence rate. We managed to finish all operations in laparoscopic way. Group of our patients formed 11 male patients (35.5%) and 20 women (64.5%), mean aged 52.5 years in range of 27 77 years. The average operation procedure lasted 100 minutes, in the group of last 11 patients only 69 minutes. We recorded paraumbilical wound infections in 3 (9.7 %) patients. We had not experienced any technical problems with robotic surgical system. Length of hospital stay was 3 days. Considering our initial experience with robotic lasparoscopic cholecystectomy we evaluate da Vinci robotic surgical system to be safe and sophisticated operating manipulator which however does not substitute the surgeon key-role of controlling position and

  9. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    U.S. Senate Majority Leader Harry Reid, D-Nev., left, stands with Dean Kamen, the founder of First Robotics, as he talks about the importance of Science and Technology education during the First Robotics Competition, Friday March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition ofScience and Technology," or FIRST. The program was founded in 1989 by Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  10. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    Students from the Highland School in Warrenton, Va. work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers) Photo Credit: (NASA/Paul E. Alers)

  11. Robotic Precursor Missions for Mars Habitats

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-01-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  12. URobotics—Urology Robotics at Johns Hopkins

    PubMed Central

    Stoianovici, D

    2011-01-01

    URobotics (Urology Robotics) is a program of the Urology Department at the Johns Hopkins Medical Institutions dedicated to the development of new technology for urologic surgery (http://urology.jhu.edu/urobotics). The program is unique in that it is the only academic engineering program exclusively applied to urology. The program combines efforts and expertise from the medical and engineering fields through a close partnership of clinical and technical personnel. Since its creation in 1996, the URobotics lab has created several devices, instruments, and robotic systems, several of which have been successfully used in the operating room. This article reviews the technology developed in our laboratory and its surgical applications, and highlights our future directions. PMID:11954067

  13. Simulation tools for robotics research and assessment

    NASA Astrophysics Data System (ADS)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  14. Robotic joint experiments under ultravacuum

    NASA Technical Reports Server (NTRS)

    Borrien, A.; Petitjean, L.

    1988-01-01

    First, various aspects of a robotic joint development program, including gearbox technology, electromechanical components, lubrication, and test results, are discussed. Secondly, a test prototype of the joint allowing simulation of robotic arm dynamic effects is presented. This prototype is tested under vacuum with different types of motors and sensors to characterize the functional parameters: angular position error, mechanical backlash, gearbox efficiency, and lifetime.

  15. Human-robot skills transfer interfaces for a flexible surgical robot.

    PubMed

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. IT-Adventures: A Program to Spark IT Interest in High School Students Using Inquiry-Based Learning with Cyber Defense, Game Design, and Robotics

    ERIC Educational Resources Information Center

    Rursch, Julie A.; Luse, Andy; Jacobson, Doug

    2010-01-01

    The IT-Adventures program is dedicated to increasing interest in and awareness of information technology among high school students using inquiry-based learning focused on three content areas: cyber defense, game design programming, and robotics. The program combines secondary, post-secondary, and industry partnerships in educational programming,…

  17. 76 FR 6561 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... authorization during the comment period, the decision to authorize North Carolina's changes to its hazardous...

  18. System For Research On Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent

    1991-01-01

    Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.

  19. Graphite Waste Tank Cleanup and Decontamination under the Marcoule UP1 D and D Program - 13166

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomasset, Philippe; Chabeuf, Jean-Michel; Thiebaut, Valerie

    2013-07-01

    The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pits had to be retrieved and transferred into a newer and safer pit. After an extensive R and D program, the equipment and process necessary for retrieval operations were designed, built and tested. Themore » innovative process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. The retrieval of the most irradiating fragments was a challenge. Today, the first pit is totally empty and its stainless steel walls have been decontaminated using gels. In the second pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. After more than 6 years of operations in sludge retrieval, a lot of experience was acquired from which important 'lessons learned' could be shared. (authors)« less

  20. Anthropomorphic Robot Hand And Teaching Glove

    NASA Technical Reports Server (NTRS)

    Engler, Charles D., Jr.

    1991-01-01

    Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

  1. JOMAR: Joint Operations with Mobile Autonomous Robots

    DTIC Science & Technology

    2015-12-21

    AFRL-AFOSR-JP-TR-2015-0009 JOMAR: Joint Operations with Mobile Autonomous Robots Edwin Olson UNIVERSITY OF MICHIGAN Final Report 12/21/2015...SUBTITLE JOMAR: Joint Operations with Mobile Autonomous Robots 5a. CONTRACT NUMBER FA23861114024 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT Under this grant, we formulated and implemented a variety of novel algorithms that address core problems in multi- robot systems. These

  2. Robotics Competitions: An Overview of First© Events and VEX© Competitions

    ERIC Educational Resources Information Center

    Habib, Maria A.

    2012-01-01

    Robotics competitions generate excitement and raise the profile of a robotics program. This article provides an overview of robotics competitions, concentrating on those sponsored by FIRST (For Inspiration and Recognition of Science and Technology) and RECF (Robotics Education and Competition Foundation). FIRST® LEGO® League and VEX® robotics…

  3. Robotic Surgical Education: a Collaborative Approach to Training Postgraduate Urologists and Endourology Fellows

    PubMed Central

    Mirheydar, Hossein; Jones, Marklyn; Koeneman, Kenneth S.

    2009-01-01

    Objective: Currently, robotic training for inexperienced, practicing surgeons is primarily done vis-à-vis industry and/or society-sponsored day or weekend courses, with limited proctorship opportunities. The objective of this study was to assess the impact of an extended-proctorship program at up to 32 months of follow-up. Methods: An extended-proctorship program for robotic-assisted laparoscopic radical prostatectomy was established at our institution. The curriculum consisted of 3 phases: (1) completing an Intuitive Surgical 2-day robotic training course with company representatives; (2) serving as assistant to a trained proctor on 5 to 6 cases; and (3) performing proctored cases up to 1 year until confidence was achieved. Participants were surveyed and asked to evaluate on a 5-point Likert scale their operative experience in robotics and satisfaction regarding their training Results: Nine of 9 participants are currently performing robotic-assisted laparoscopic radical prostatectomy (RALP) independently. Graduates of our program have performed 477 RALP cases. The mean number of cases performed within phase 3 was 20.1 (range, 5 to 40) prior to independent practice. The program received a rating of 4.2/5 for effectiveness in teaching robotic surgery skills. Conclusion: Our robotic program, with extended proctoring, has led to an outstanding take-rate for disseminating robotic skills in a metropolitan community. PMID:19793464

  4. Certainty grids for mobile robots

    NASA Technical Reports Server (NTRS)

    Moravec, H. P.

    1987-01-01

    A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.

  5. Project InterActions: A Multigenerational Robotic Learning Environment

    NASA Astrophysics Data System (ADS)

    Bers, Marina U.

    2007-12-01

    This paper presents Project InterActions, a series of 5-week workshops in which very young learners (4- to 7-year-old children) and their parents come together to build and program a personally meaningful robotic project in the context of a multigenerational robotics-based community of practice. The goal of these family workshops is to teach both parents and children about the mechanical and programming aspects involved in robotics, as well as to initiate them in a learning trajectory with and about technology. Results from this project address different ways in which parents and children learn together and provide insights into how to develop educational interventions that would educate parents, as well as children, in new domains of knowledge and skills such as robotics and new technologies.

  6. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  7. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.

    1972-01-01

    The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.

  8. NASA's Lunar Robotic Architecture Study

    NASA Astrophysics Data System (ADS)

    Mulville, Daniel R.

    2006-07-01

    This report documents the findings and analysis of a 60-day agency-wide Lunar Robotic Architecture Study (LRAS) conducted by the National Aeronautics and Space Administration (NASA). Work on this study began in January 2006. Its purpose was to: Define a lunar robotics architecture by addressing the following issues: 1) Do we need robotic missions at all? If so, why and under what conditions? 2) How would they be accomplished and at what cost? Are they within budget? 3) What are the minimum requirements? What is the minimum mission set? 4) Integrate these elements together to show a viable robotic architecture. 5) Establish a strategic framework for a lunar robotics program. The LRAS Final Report presents analysis and recommendations concerning potential approaches related to NASA s implementation of the President's Vision for Space Exploration. Project and contract requirements will likely be derived in part from the LRAS analysis and recommendations contained herein, but these do not represent a set of project or contract requirements and are not binding on the U.S. Government unless and until they are formally and expressly adopted as such. Details of any recommendations offered by the LRAS Final Report will be translated into implementation requirements. Moreover, the report represents the assessments and projects of the report s authors at the time it was prepared; it is anticipated that the concepts in this report will be analyzed further and refined. By the time some of the activities addressed in this report are implemented, certain assumptions on which the report s conclusions are based will likely evolve as a result of this analysis. Accordingly, NASA, and any entity under contract with NASA, should not use the information in this report for final project direction. Since the conclusion of this study, there have been various changes to the Agency's current portfolio of lunar robotic precursor activities. First, the Robotic Lunar Exploration Program (RLEP

  9. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  10. WASTE REDUCTION OF TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM

    EPA Science Inventory

    The Waste Reduction Innovative Technology Evaluation (WRITE)Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial application. EPA's Risk Reduction Engineering Laborato...

  11. 77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ....1. Such wastes are termed ``oil and gas wastes.'' The TCEQ has responsibility to administer the RCRA program, however, hazardous waste generated at natural gas or natural gas liquids processing plants or... with the exploration, development, or production of oil or gas or geothermal resources and other...

  12. E-Learning System for Learning Virtual Circuit Making with a Microcontroller and Programming to Control a Robot

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2015-01-01

    This paper proposes a novel e-Learning system for learning electronic circuit making and programming a microcontroller to control a robot. The proposed e-Learning system comprises a virtual-circuit-making function for the construction of circuits with a versatile, Arduino microcontroller and an educational system that can simulate behaviors of…

  13. Interaction Challenges in Human-Robot Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  14. Sports Training Support Method by Self-Coaching with Humanoid Robot

    NASA Astrophysics Data System (ADS)

    Toyama, S.; Ikeda, F.; Yasaka, T.

    2016-09-01

    This paper proposes a new training support method called self-coaching with humanoid robots. In the proposed method, two small size inexpensive humanoid robots are used because of their availability. One robot called target robot reproduces motion of a target player and another robot called reference robot reproduces motion of an expert player. The target player can recognize a target technique from the reference robot and his/her inadequate skill from the target robot. Modifying the motion of the target robot as self-coaching, the target player could get advanced cognition. Some experimental results show some possibility as the new training method and some issues of the self-coaching interface program as a future work.

  15. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, David B.; Williams, Paul M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  16. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, D.B.; Williams, P.M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures.

  17. Building Bridges, Robots, and High Expectations

    ERIC Educational Resources Information Center

    Bennie, Fiona; Corbett, Charlotte; Palo, Angela

    2015-01-01

    This article describes an after-school program at the Horace Mann School for the Deaf (HMS), the oldest public day school for deaf students in the United States, where almost half of the student body imagined and created bridge and robotic machines. The Deaf Robotics Engineering and Math Team, or the DREAM Team club, included HMS students in…

  18. Factors Influencing Fluid Milk Waste in a Breakfast in the Classroom School Breakfast Program.

    PubMed

    Blondin, Stacy A; Goldberg, Jeanne P; Cash, Sean B; Griffin, Timothy S; Economos, Christina D

    2018-04-01

    To determine predictors of fluid milk waste in a Breakfast in the Classroom School Breakfast Program. Cross-sectional with 3 repeated measures/classroom. Elementary schools in a medium-sized, low-income, urban school district. Twenty third- through fourth-grade classrooms across 6 schools. Dependent variables include percentage of total and served milk wasted. Independent variables included observed daily menu offerings, program factors, and teacher and student behavior. Descriptive statistics were used to characterize variables across classrooms and schools. Multilevel mixed-effects models were used to test associations between predictors and outcomes of interest. P ≤ .05 was considered statistically significant. Total milk waste increased 12% when juice was offered and 3% for each additional carton of unserved milk. Teacher encouragement to take and/or consume breakfast was associated with a 5% and 9% increase in total and served milk waste, respectively. When students were engaged in other activities in addition to eating breakfast, total milk waste decreased 10%. Beverage offerings were predictive of greater total milk waste. Teacher and student behavior also appeared to influence milk consumption. Findings suggest that specific changes to School Breakfast Program implementation policies and practices could have an important role in waste mitigation. Copyright © 2018 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  19. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3

  20. 77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... revised program application, subject to the limitations of the Hazardous and Solid Waste Amendments of... under the authority of sections 2002(a), 3006, and 7004(b) of the Solid Waste Disposal Act as amended 42...

  1. Robotic pulmonary lobectomy for lung cancer treatment: program implementation and initial experience.

    PubMed

    Terra, Ricardo Mingarini; Araujo, Pedro Henrique Xavier Nabuco de; Lauricella, Leticia Leone; Campos, José Ribas Milanez de; Costa, Herbert Felix; Pego-Fernandes, Paulo Manuel

    2016-01-01

    To describe the implementation of a robotic thoracic surgery program at a public tertiary teaching hospital and to analyze its initial results. This was a planned interim analysis of a randomized clinical trial aimed at comparing video-assisted thoracoscopic surgery and robotic surgery in terms of the results obtained after pulmonary lobectomy. The robotic surgery program developed at the Instituto do Câncer do Estado de São Paulo, in the city of São Paulo, Brazil, is a multidisciplinary initiative involving various surgical specialties, as well as anesthesiology, nursing, and clinical engineering teams. In this analysis, we evaluated the patients included in the robotic lobectomy arm of the trial during its first three months (from April to June of 2015). Ten patients were included in this analysis. There were eight women and two men. The mean age was 65.1 years. All of the patients presented with peripheral tumors. We performed right upper lobectomy in four patients, right lower lobectomy in four, and left upper lobectomy in two. Surgical time varied considerably (range, 135-435 min). Conversion to open surgery or video-assisted thoracoscopic surgery was not necessary in any of the cases. Intraoperative complications were not found. Only the first patient required postoperative transfer to the ICU. There were no deaths or readmissions within the first 30 days after discharge. The only postoperative complication was chest pain (grade 3), in two patients. Pathological examination revealed complete tumor resection in all cases. When there is integration and proper training of all of the teams involved, the implementation of a robotic thoracic surgery program is feasible and can reduce morbidity and mortality. Descrever a implantação de um programa de cirurgia torácica robótica em um hospital terciário público universitário e analisar seus resultados iniciais. Este estudo é uma análise interina planejada de um ensaio clínico aleatorizado cujo objetivo

  2. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  3. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  4. A review of physical security robotics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roerig, S.C.

    1990-01-01

    As an outgrowth of research into physical security technologies, Sandia is investigating the role of robotics in security systems. Robotics may allow more effective utilization of guard forces, especially in scenarios where personnel would be exposed to harmful environments. Robots can provide intrusion detection and assessment functions for failed sensors or transient assets, can test existing fixed site sensors, and can gather additional intelligence and dispense delaying elements. The Robotic Security Vehicle (RSV) program for DOE/OSS is developing a fieldable prototype for an exterior physical security robot based upon a commercial four wheel drive vehicle. The RSV will be capablemore » of driving itself, being driven remotely, or being driven by an onboard operator around a site and will utilize its sensors to alert an operator to unusual conditions. The Remote Security Station (RSS) program for the Defense Nuclear Agency is developing a proof-of-principle robotic system which will be used to evaluate the role, and associated cost, of robotic technologies in exterior security systems. The RSS consists of an independent sensor pod, a mobile sensor platform and a control and display console. Sensor data fusion is used to optimize the system's intrusion detection performance. These programs are complementary, the RSV concentrates on developing autonomous mobility, while the RSS thrust is on mobile sensor employment. 3 figs.« less

  5. Sprint: The first flight demonstration of the external work system robots

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  6. Robotic nurse duties in the urology operative room: 11 years of experience.

    PubMed

    Abdel Raheem, Ali; Song, Hyun Jung; Chang, Ki Don; Choi, Young Deuk; Rha, Koon Ho

    2017-04-01

    The robotic nurse plays an essential role in a successful robotic surgery. As part of the robotic surgical team, the robotic nurse must demonstrate a high level of professional knowledge, and be an expert in robotic technology and dealing with robotic malfunctions. Each one of the robotic nursing team "nurse coordinator, scrub-nurse and circulating-nurse" has a certain job description to ensure maximum patient's safety and robotic surgical efficiency. Well-structured training programs should be offered to the robotic nurse to be well prepared, feel confident, and maintain high-quality of care.

  7. Performance standards for urban search and rescue robots

    NASA Astrophysics Data System (ADS)

    Messina, Elena; Jacoff, Adam

    2006-05-01

    In this paper, we describe work in performance standards for urban search and rescue (USAR) robots begun in 2004 by the Department of Homeland Security. This program is being coordinated by the National Institute of Standards and Technology and will result in consensus standards developed through ASTM International, under the Operational Equipment Subcommittee of their Homeland Security Committee. The first phase of the program involved definition of requirements by subject matter experts. Responders participated in a series of workshops to identify deployment categories for robots, performance categories, and ranges of acceptable or target performance in the various categories. Over one hundred individual requirements were identified, within main categories such as Human-System Interaction, Logistics, Operating Environment, and System (which includes Chassis, Communications, Mobility, Payload, Power, and Sensing). To ensure that the robot developers and eventual end users work closely together, "responders meet robots" events at situationally relevant sites are being held to refine and extend the performance requirements and develop standard test methods. The results of these standard performance tests will be captured in a compendium of existing and developmental robots with classifications and descriptors to differentiate particular robotic capabilities. This, along with ongoing efforts to categorize situational USAR constraints such as building collapse types or the presence of hazardous materials, will help responders match particular robotic capabilities to response needs. In general, these efforts will enable responders to effectively use robotic tools to enhance their effectiveness while reducing risk to personnel during disasters.

  8. Parallel Robot for Lower Limb Rehabilitation Exercises.

    PubMed

    Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.

  9. Parallel Robot for Lower Limb Rehabilitation Exercises

    PubMed Central

    Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727

  10. Peer-to-Peer Human-Robot Interaction for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  11. Detection And Classification Of Web Robots With Honeypots

    DTIC Science & Technology

    2016-03-01

    CLASSIFICATION OF WEB ROBOTS WITH HONEYPOTS by Sean F. McKenna March 2016 Thesis Advisor: Neil Rowe Second Reader: Justin P. Rohrer THIS...Master’s thesis 4. TITLE AND SUBTITLE DETECTION AND CLASSIFICATION OF WEB ROBOTS WITH HONEYPOTS 5. FUNDING NUMBERS 6. AUTHOR(S) Sean F. McKenna 7...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Web robots are automated programs that systematically browse the Web , collecting information. Although

  12. Electronics and Software Engineer for Robotics Project Intern

    NASA Technical Reports Server (NTRS)

    Teijeiro, Antonio

    2017-01-01

    I was assigned to mentor high school students for the 2017 First Robotics Competition. Using a team based approach, I worked with the students to program the robot and applied my electrical background to build the robot from start to finish. I worked with students who had an interest in electrical engineering to teach them about voltage, current, pulse width modulation, solenoids, electromagnets, relays, DC motors, DC motor controllers, crimping and soldering electrical components, Java programming, and robotic simulation. For the simulation, we worked together to generate graphics files, write simulator description format code, operate Linux, and operate SOLIDWORKS. Upon completion of the FRC season, I transitioned over to providing full time support for the LCS hardware team. During this phase of my internship I helped my co-intern write test steps for two networking hardware DVTs , as well as run cables and update cable running lists.

  13. ROMPS critical design review. Volume 2: Robot module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    The robot module design documentation for the Remote Operated Materials Processing in Space (ROMPS) experiment is compiled. This volume presents the following information: robot module modifications; Easylab commands definitions and flowcharts; Easylab program definitions and flowcharts; robot module fault conditions and structure charts; and C-DOC flow structure and cross references.

  14. A Multidisciplinary Industrial Robot Approach for Teaching Mechatronics-Related Courses

    ERIC Educational Resources Information Center

    Garduño-Aparicio, Mariano; Rodríguez-Reséndiz, Juvenal; Macias-Bobadilla, Gonzalo; Thenozhi, Suresh

    2018-01-01

    This paper presents a robot prototype for an undergraduate laboratory program designed to fulfill the criteria laid out by ABET. The main objective of the program is for students to learn some basic concepts of embedded systems and robotics, and apply them in practice. For that purpose, various practical laboratory exercises were prepared to teach…

  15. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovovic, Vladimir

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less

  16. Robotics

    NASA Astrophysics Data System (ADS)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  17. High-throughput mouse genotyping using robotics automation.

    PubMed

    Linask, Kaari L; Lo, Cecilia W

    2005-02-01

    The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.

  18. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    A trio of programmable off-the-shelf Sphero robots are shown at the Center for Space Education at NASA's Kennedy Space Center in Florida. The Spheros were available for students to practice their programming skills during "loss of signal" times when the connection to the International Space Station was temporarily unavailable. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.

  19. Collective search by mobile robots using alpha-beta coordination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, S.Y.; Robinett, R. III

    1998-04-01

    One important application of mobile robots is searching a geographical region to locate the origin of a specific sensible phenomenon. Mapping mine fields, extraterrestrial and undersea exploration, the location of chemical and biological weapons, and the location of explosive devices are just a few potential applications. Teams of robotic bloodhounds have a simple common goal; to converge on the location of the source phenomenon, confirm its intensity, and to remain aggregated around it until directed to take some other action. In cases where human intervention through teleoperation is not possible, the robot team must be deployed in a territory withoutmore » supervision, requiring an autonomous decentralized coordination strategy. This paper presents the alpha beta coordination strategy, a family of collective search algorithms that are based on dynamic partitioning of the robotic team into two complementary social roles according to a sensor based status measure. Robots in the alpha role are risk takers, motivated to improve their status by exploring new regions of the search space. Robots in the beta role are motivated to improve but are conservative, and tend to remain aggregated and stationary until the alpha robots have identified better regions of the search space. Roles are determined dynamically by each member of the team based on the status of the individual robot relative to the current state of the collective. Partitioning the robot team into alpha and beta roles results in a balance between exploration and exploitation, and can yield collective energy savings and improved resistance to sensor noise and defectors. Alpha robots waste energy exploring new territory, and are more sensitive to the effects of ambient noise and to defectors reporting inflated status. Beta robots conserve energy by moving in a direct path to regions of confirmed high status.« less

  20. Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Fong, Terrence

    2013-01-01

    Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.

  1. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of makingmore » those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis. (DC)« less

  2. Tour Robot Dance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Geoff

    2014-09-08

    This program exercises the robotic elements in Oracle Storage Tek tape libraries. This is useful for two known cases: 1.) shaking out marginal or new hardware by ensuring hardware robustness under high-duty usage. 2.) ensuring tape libraries are visually interesting during datacenter tours

  3. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    PubMed

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Robotic laparoscopic surgery: cost and training.

    PubMed

    Amodeo, A; Linares Quevedo, A; Joseph, J V; Belgrano, E; Patel, H R H

    2009-06-01

    developing a robotic surgical program: it is very important to show that robotics will add a dimension that will benefit the hospital, the patient care and institutional recognition. Another essential task to overcome is the important education of the operating room nursing staff, a significant difference between this modality and traditional surgery. Without operating room environment support, most surgeons will revert to traditional methods even after a few successful robotics cases. As the field of robotic surgery continues to grow, graduate medical education and continuing medical education programs that address the surgical robotic learning needs of residents and practicing surgeons need to be developed.

  5. 76 FR 26681 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly referred...: This action is issued under the authority of sections 2002(a), 3006 and 7004(b) of the Solid Waste and... of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA...

  6. MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  7. AN OVERVIEW OF THE MINE WASTE TECHNOLOGY PROGRAM PROJECTS

    EPA Science Inventory

    The Mine Waste Technology Program (MWTP) is an interagency agreement with the DOE and has partnerships with Universities, Forest Service, BLM, Industry and states. The mission of the MWTP is to provide engineering solutions to national environmental issues resulting from the past...

  8. Controlling multiple security robots in a warehouse environment

    NASA Technical Reports Server (NTRS)

    Everett, H. R.; Gilbreath, G. A.; Heath-Pastore, T. A.; Laird, R. T.

    1994-01-01

    The Naval Command Control and Ocean Surveillance Center (NCCOSC) has developed an architecture to provide coordinated control of multiple autonomous vehicles from a single host console. The multiple robot host architecture (MRHA) is a distributed multiprocessing system that can be expanded to accommodate as many as 32 robots. The initial application will employ eight Cybermotion K2A Navmaster robots configured as remote security platforms in support of the Mobile Detection Assessment and Response System (MDARS) Program. This paper discusses developmental testing of the MRHA in an operational warehouse environment, with two actual and four simulated robotic platforms.

  9. Socially assistive robotics for post-stroke rehabilitation

    PubMed Central

    Matarić, Maja J; Eriksson, Jon; Feil-Seifer, David J; Winstein, Carolee J

    2007-01-01

    Background Although there is a great deal of success in rehabilitative robotics applied to patient recovery post stroke, most of the research to date has dealt with providing physical assistance. However, new rehabilitation studies support the theory that not all therapy need be hands-on. We describe a new area, called socially assistive robotics, that focuses on non-contact patient/user assistance. We demonstrate the approach with an implemented and tested post-stroke recovery robot and discuss its potential for effectiveness. Results We describe a pilot study involving an autonomous assistive mobile robot that aids stroke patient rehabilitation by providing monitoring, encouragement, and reminders. The robot navigates autonomously, monitors the patient's arm activity, and helps the patient remember to follow a rehabilitation program. We also show preliminary results from a follow-up study that focused on the role of robot physical embodiment in a rehabilitation context. Conclusion We outline and discuss future experimental designs and factors toward the development of effective socially assistive post-stroke rehabilitation robots. PMID:17309795

  10. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    PubMed

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  11. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  12. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9834-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining... migration petition reissuance. SUMMARY: Notice is hereby given that a reissuance of an exemption to the land...

  13. 75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly...(b) of the Solid Waste and Disposal Act, as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: March...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection...

  14. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    NASA Technical Reports Server (NTRS)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  15. Dynamic Modelling Of A SCARA Robot

    NASA Astrophysics Data System (ADS)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  16. Development of Robotics Applications in a Solid Propellant Mixing Laboratory

    DTIC Science & Technology

    1988-06-01

    implementation of robotic hardware and software into a laboratory environment requires a carefully structured series of phases which examines, in...strategy. The general methodology utilized in this project is discussed in Appendix A. The proposed laboratory robotics development program was structured ...Accessibility - Potential modifications - Safety precautions e) Robot Transport - Slider mechanisms - Linear tracks - Gantry configuration - Mobility f

  17. NCRP Program Area Committee 5: Environmental Radiation and Radioactive Waste Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S. Y.; Napier, Bruce

    Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities. The Committee continues to identify such issues in the future.

  18. Robotics in Industrial Arts. Final Narrative Report for the Exemplary Project.

    ERIC Educational Resources Information Center

    Ascension Parish School Board, Donaldsonville, LA.

    To introduce students to the world of robotics and industrial automation, robotics was introduced to students enrolled in electronics classes in the industrial arts program at St. Amant High School (Louisiana). Three robots, three host microcomputers, and necessary software were purchased. The electronics instructor installed the three robots…

  19. Learning to Explain: The Role of Educational Robots in Science Education

    ERIC Educational Resources Information Center

    Datteri, Edoardo; Zecca, Luisa; Laudisa, Federico; Castiglioni, Marco

    2013-01-01

    Educational robotics laboratories typically involve building and programming robotic systems to perform particular tasks or solve problems. In this paper we explore the potential educational value of a form of robot-supported educational activity that has been little discussed in the literature. During these activities, primary school children are…

  20. Using Robotics and Game Design to Promote Pathways to STEM

    ERIC Educational Resources Information Center

    Leonard, Jacqueline; Buss, Alan; Unertl, Adrienne; Mitchell, Monica

    2016-01-01

    This research report presents the results of a STEM summer program on robotics and game design. The program was part of a three-year study funded by the National Science Foundation. Children in grades four through six participated in a two-week summer camp in 2015 to learn STEM by engaging in LEGO® EV3 robotics and computer-based games using…

  1. Robotics and Children: Science Achievement and Problem Solving.

    ERIC Educational Resources Information Center

    Wagner, Susan Preston

    1999-01-01

    Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…

  2. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.

  3. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  4. Design principles of a cooperative robot controller

    NASA Technical Reports Server (NTRS)

    Hayward, Vincent; Hayati, Samad

    1987-01-01

    The paper describes the design of a controller for cooperative robots being designed at McGill University in a collaborative effort with the Jet Propulsion Laboratory. The first part of the paper discusses the background and motivation for multiple arm control. Then, a set of programming primitives, which are based on the RCCL system and which permit a programmer to specify cooperative tasks are described. The first group of primitives are motion primitives which specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues will be discussed and the implementation described. A second set of primitives provides for the specification of spatial relationships. The relations between programming and control in the case of multiple robot are examined. Finally, the paper describes the allocation of various tasks among a set of microprocessors sharing a common bus.

  5. Robotics handbook. Version 1: For the interested party and professional

    NASA Astrophysics Data System (ADS)

    1993-12-01

    This publication covers several categories of information about robotics. The first section provides a brief overview of the field of Robotics. The next section provides a reasonably detailed look at the NASA Robotics program. The third section features a listing of companies and organization engaging in robotics or robotic-related activities; followed by a listing of associations involved in the field; followed by a listing of publications and periodicals which cover elements of robotics or related fields. The final section is an abbreviated abstract of referred journal material and other reference material relevant to the technology and science of robotics, including such allied fields as vision perception; three-space axis orientation and measurement systems and associated inertial reference technology and algorithms; and physical and mechanical science and technology related to robotics.

  6. Robotics handbook. Version 1: For the interested party and professional

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication covers several categories of information about robotics. The first section provides a brief overview of the field of Robotics. The next section provides a reasonably detailed look at the NASA Robotics program. The third section features a listing of companies and organization engaging in robotics or robotic-related activities; followed by a listing of associations involved in the field; followed by a listing of publications and periodicals which cover elements of robotics or related fields. The final section is an abbreviated abstract of referred journal material and other reference material relevant to the technology and science of robotics, including such allied fields as vision perception; three-space axis orientation and measurement systems and associated inertial reference technology and algorithms; and physical and mechanical science and technology related to robotics.

  7. Robot dynamics in reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Grisham, Tollie; Hinman, Elaine; Coker, Cindy

    1990-01-01

    Robot dynamics and control will become an important issue for productive platforms in space. Robotic operations will be necessary for both man tended stations and for the efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to safety concerns and an anticipated increase in acceleration levels due to manipulator motion. The robot used for the initial studies was a UMI RTX robot, which was adapted to operate in a materials processing workcell to simulate sample changing in a microgravity environment. The robotic cell was flown several times on the KC-135 aircraft at Ellington Field. The primary objective of the initial flights was to determine operating characteristics of both the robot and the operator in the variable gravity of the KC-135 during parabolic maneuvers. It was demonstrated that the KC-135 aircraft can be used for observing dynamics of robotic manipulators. The difficulties associated with humans performing teleoperation tasks during varying G levels were also observed and can provide insight into some areas in which the use of artificial techniques would provide improved system performance. Additionally a graphic simulation of the workcell was developed on a Silicon Graphics Workstation using the IGRIP simulation language from Deneb Robotics. The simulation is intended to be used for predictive displays of the robot operating on the aircraft. It is also anticipated that this simulation can be useful for off-line programming of tasks in the future.

  8. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9208-4] Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW... Petition. SUMMARY: Notice is hereby given that an exemption to the land disposal restrictions under the...

  9. Towards Supervising Remote Dexterous Robots Across Time Delay

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Wheeler, Kevin; Rabe, Ken

    2006-01-01

    The President s Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling dexterous robots under intermediate time delay is presented, in which software running within a ground control cockpit predicts the intention of an immersed robot supervisor, then the remote robot autonomously executes the supervisor s intended tasks. Initial results are presented.

  10. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  11. Robotic Surgical Training in an Academic Institution

    PubMed Central

    Chitwood, W. Randolph; Nifong, L. Wiley; Chapman, William H. H.; Felger, Jason E.; Bailey, B. Marcus; Ballint, Tara; Mendleson, Kim G.; Kim, Victor B.; Young, James A.; Albrecht, Robert A.

    2001-01-01

    Objective To detail robotic procedure development and clinical applications for mitral valve, biliary, and gastric reflux operations, and to implement a multispecialty robotic surgery training curriculum for both surgeons and surgical teams. Summary Background Data Remote, accurate telemanipulation of intracavitary instruments by general and cardiac surgeons is now possible. Complex technologic advancements in surgical robotics require well-designed training programs. Moreover, efficient robotic surgical procedures must be developed methodically and safely implemented clinically. Methods Advanced training on robotic systems provides surgeon confidence when operating in tiny intracavitary spaces. Three-dimensional vision and articulated instrument control are essential. The authors’ two da Vinci robotic systems have been dedicated to procedure development, clinical surgery, and training of surgical specialists. Their center has been the first United States site to train surgeons formally in clinical robotics. Results Established surgeons and residents have been trained using a defined robotic surgical educational curriculum. Also, 30 multispecialty teams have been trained in robotic mechanics and electronics. Initially, robotic procedures were developed experimentally and are described. In the past year the authors have performed 52 robotic-assisted clinical operations: 18 mitral valve repairs, 20 cholecystectomies, and 14 Nissen fundoplications. These respective operations required 108, 28, and 73 minutes of robotic telemanipulation to complete. Procedure times for the last half of the abdominal operations decreased significantly, as did the knot-tying time in mitral operations. There have been no deaths and few complications. One mitral patient had postoperative bleeding. Conclusion Robotic surgery can be performed safely with excellent results. The authors have developed an effective curriculum for training teams in robotic surgery. After training, surgeons

  12. The robotized workstation "MASTER" for users with tetraplegia: description and evaluation.

    PubMed

    Busnel, M; Cammoun, R; Coulon-Lauture, F; Détriché, J M; Le Claire, G; Lesigne, B

    1999-07-01

    The rehabilitation robotics MASTER program was developed by the French Atomic Energy Commission (CEA) and evaluated by the APPROCHE Rehabilitation centers. The aim of this program is to increase the autonomy and quality of life of persons with tetraplegia in domestic and vocational environments. Taking advantage of its experience in nuclear robotics, the CEA has supported studies dealing with the use of such technical aids in the medical area since 1975 with the SPARTACUS project, followed by MASTER 10 years later, and its European extension in the framework of the TIDE/RAID program. The present system is composed of a fixed robotized workstation that includes a six-axis SCARA robot mounted on a rail to allow horizontal movement and is equipped with tools for various tasks. The Operator Interface (OI) has been carefully adapted to the most severe tetraplegia. Results are given following a 2-year evaluation in real-life situations.

  13. Robots that can adapt like animals.

    PubMed

    Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste

    2015-05-28

    Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles

  14. Robots that can adapt like animals

    NASA Astrophysics Data System (ADS)

    Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste

    2015-05-01

    Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot `think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles

  15. Robotics Intern Retrofits Home Appliance to Operate in New, More-Efficient

    Science.gov Websites

    Ways | News | NREL Robotics Intern Retrofits Home Appliance to Operate in New, More-Efficient Ways Robotics Intern Retrofits Home Appliance to Operate in New, More-Efficient Ways November 2, 2017 Energy's Energy Efficiency and Renewable Energy Robotics Internship Program. Photo courtesy of Jamie Santos

  16. Distributed Automated Medical Robotics to Improve Medical Field Operations

    DTIC Science & Technology

    2010-04-01

    ROBOT PATIENT INTERFACE Robotic trauma diagnosis and intervention is performed using instruments and tools mounted on the end of a robotic manipulator...manipulator to respond quickly enough to accommodate for motion due to high inertia and inaccuracies caused by low stiffness at the tool point. Ultrasonic...program was licensed to Intuitive Surgical, Inc and subsequently morphed into the daVinci surgical system. The daVinci has been widely applied in

  17. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018572 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  18. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018486 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  19. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018466 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  20. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018383 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  1. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018390 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  2. SPHERES Zero Robotics

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018417 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  3. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  4. A Practical Solution Using A New Approach To Robot Vision

    NASA Astrophysics Data System (ADS)

    Hudson, David L.

    1984-01-01

    Up to now, robot vision systems have been designed to serve both application development and operational needs in inspection, assembly and material handling. This universal approach to robot vision is too costly for many practical applications. A new industrial vision system separates the function of application program development from on-line operation. A Vision Development System (VDS) is equipped with facilities designed to simplify and accelerate the application program development process. A complimentary but lower cost Target Application System (TASK) runs the application program developed with the VDS. This concept is presented in the context of an actual robot vision application that improves inspection and assembly for a manufacturer of electronic terminal keyboards. Applications developed with a VDS experience lower development cost when compared with conventional vision systems. Since the TASK processor is not burdened with development tools, it can be installed at a lower cost than comparable "universal" vision systems that are intended to be used for both development and on-line operation. The VDS/TASK approach opens more industrial applications to robot vision that previously were not practical because of the high cost of vision systems. Although robot vision is a new technology, it has been applied successfully to a variety of industrial needs in inspection, manufacturing, and material handling. New developments in robot vision technology are creating practical, cost effective solutions for a variety of industrial needs. A year or two ago, researchers and robot manufacturers interested in implementing a robot vision application could take one of two approaches. The first approach was to purchase all the necessary vision components from various sources. That meant buying an image processor from one company, a camera from another and lens and light sources from yet others. The user then had to assemble the pieces, and in most instances he had to write

  5. Health Care Robotics: A Progress Report

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Ali, Khaled; Seraji, Homayoun

    1997-01-01

    This paper describes the approach followed in the design of a service robot for health care applications. Under the auspices of the NASA Technology Transfer program, a partnership was established between JPL and RWI, a manufacturer of mobile robots, to design and evaluate a mobile robot for health care assistance to the elderly and the handicapped. The main emphasis of the first phase of the project is on the development on a multi-modal operator interface and its evaluation by health care professionals and users. This paper describes the architecture of the system, the evaluation method used, and some preliminary results of the user evaluation.

  6. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  7. OVERVIEW OF THE MINE WASTE TECHNOLOGY PROGRAM; INTERAGENCY COORDINATION MEETING ON MINING

    EPA Science Inventory

    The Mine Waste Technology Program is a Congressionally-mandated research program jointly administered by the EPA Office of Research and Development (for technical direction) and by the DoE Western Environmental Technology Office (administrative direction). The goal of the resear...

  8. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack D. Law; Julia L. Tripp; Tara E. Smith

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample systemmore » and identified system modifications to optimize performance.« less

  9. 77 FR 42625 - Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or Captive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... No. 00-108-9] Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or... final rule that will establish a herd certification program to control chronic wasting disease (CWD) in..., elk, and moose that are otherwise eligible for interstate movement. This action will allow interested...

  10. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  11. Robot flow, clogging and jamming in confined spaces

    NASA Astrophysics Data System (ADS)

    Monaenkova, Daria; Linevich, Vadim; Goodisman, Michael A. D.; Goldman, Daniel I.

    We hypothesized that when a collection of robots operate in confined space, maximization of individual effort could negatively affect the collective performance by impeding the mobility of the individuals. To test our hypothesis, we built and programmed groups of 1-4 autonomous robotic diggers to construct a tunnel in a model cohesive soil. The robots' mobility, defined in terms of the residence time (T) required for a robot to move one body-length within the tunnel, was compared between groups of maximally active robots (mode 1), groups with different levels of activity between individuals (mode 2), and maximally active robots with a ``giving up'' behavior (mode 3), in which the robot ceased the attempt to excavate in a crowded tunnel. In small groups of two robots, T was ~3 sec and did not depend on the mode of operation. However, an increase in the number of robots caused an increase in T which depended upon mode. The residence time in groups of four robots in mode 1 (~9 sec) significantly exceeded the residence time in mode 2 and 3 (~4 sec), indicating that crowding was causing slower movement of individuals, particularly under maximum effort (mode 1). We will use our robophysical studies to discover principles of collective construction in subterranean social animals.

  12. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  13. Formalization, implementation, and modeling of institutional controllers for distributed robotic systems.

    PubMed

    Pereira, José N; Silva, Porfírio; Lima, Pedro U; Martinoli, Alcherio

    2014-01-01

    The work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets. We define executable Petri nets-an extension of Petri nets that takes into account robot actions and sensing-to design, program, and execute institutional controllers. We use a generalized stochastic Petri net view of the robot team controlled by the institutional controllers to model and analyze the stochastic performance of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity, and successfully compare our model predictions and simulation results with previously reported results, obtained by using finite state automaton models and controllers.

  14. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  15. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robotics

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an objective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  16. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    NASA Technical Reports Server (NTRS)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  17. 78 FR 79654 - Vermont: Proposed Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...EPA proposes to grant final authorization to the State of Vermont for changes to its hazardous waste program. In the ``Rules and Regulations'' section of this Federal Register we are authorizing the changes to the Vermont hazardous waste program under the Resource Conservation and Recovery Act (RCRA) as a direct final rule without prior proposed rule. EPA has determined that these changes satisfy all requirements needed to qualify for final authorization. If we receive no adverse comment, we will not take further action on this proposed rule.

  18. Impact of robotics on the outcome of elderly patients with endometrial cancer.

    PubMed

    Lavoue, Vincent; Zeng, Xing; Lau, Susie; Press, Joshua Z; Abitbol, Jeremie; Gotlieb, Raphael; How, Jeffrey; Wang, Yifan; Gotlieb, Walter H

    2014-06-01

    To evaluate the impact of introducing a robotics program on clinical outcome of elderly patients with endometrial cancer. Evaluation and comparison of peri-operative morbidity and disease-free interval in 163 consecutive elderly patients (≥70years) with endometrial cancer undergoing staging procedure with traditional open surgery compared to robotic surgery. All consecutive patients ≥70years of age with endometrial cancer who underwent robotic surgery (n=113) were compared with all consecutive patients ≥70years of age (n=50) before the introduction of a robotic program in December 2007. Baseline patient characteristics were similar in both eras. Patients undergoing robotic surgery had longer mean operating times (244 compared with 217minutes, p=0.009) but fewer minor adverse events (17% compared with 60%, p<0.001). The robotics cohort had less estimated mean blood loss (75 vs 334mL, p<0.0001) and shorter mean hospital stay (3 vs 6days, p<0.0001). There was no difference in disease-free survival (p=0.61) during the mean follow-up time of 2years. Transitioning from open surgery to a robotics program for the treatment of endometrial cancer in the elderly has significant benefits, including lower minor complication rate, less operative blood loss and shorter hospitalization without compromising 2-year disease-free survival. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The solid waste dilemma

    USGS Publications Warehouse

    Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.

    1996-01-01

    In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.

  20. 30-day hospital readmission after robotic partial nephrectomy--are we prepared for Medicare readmission reduction program?

    PubMed

    Brandao, Luis Felipe; Zargar, Homayoun; Laydner, Humberto; Akca, Oktay; Autorino, Riccardo; Ko, Oliver; Samarasekera, Dinesh; Li, Jianbo; Rabets, John; Krishnan, Jayram; Haber, Georges-Pascal; Kaouk, Jihad; Stein, Robert J

    2014-09-01

    After CMS introduced the concept of the Hospital Readmissions Reduction Program, hospitals and health care centers became financially penalized for exceeding specific readmission rates. We retrospectively reviewed our institutional review board approved database of patients undergoing robotic partial nephrectomy at our institution and included in our analysis patients who were readmitted to any hospital as an inpatient stay within 30 days from discharge home after robotic partial nephrectomy. From March 2006 to March 2013 a total of 627 patients underwent robotic partial nephrectomy at our center and 28 (4.46%) were readmitted within 30 days of surgery. Postoperative bleeding was responsible for 8 (28.5%) readmissions. Pulmonary embolism was reported in 3 cases and retroperitoneal abscess was diagnosed in 2. Urinary leak requiring surgical intervention developed in 2 patients, pneumonia was diagnosed in 2 and 2 patients were readmitted for chest pain. Overall 9 (32.1%) patients presented with major complications requiring intervention. On multivariable analysis Charlson comorbidity index score was the only factor significantly associated with a higher 30-day readmission rate (p = 0.03). If the Charlson score was 5 or greater the chance of hospital readmission would be 2.7 times higher. Increased comorbidity, specifically a Charlson score of 5 or greater, was the only significant predictor of a higher incidence of 30-day readmission. This information can be useful in counseling patients regarding robotic partial nephrectomy and in determining baseline rates if CMS expands the number of conditions they evaluate for excess 30-day readmissions. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. Origami-based earthworm-like locomotion robots.

    PubMed

    Fang, Hongbin; Zhang, Yetong; Wang, K W

    2017-10-16

    Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.

  3. Liquid-handling Lego robots and experiments for STEM education and research

    PubMed Central

    Gerber, Lukas C.; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday

    2017-01-01

    Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research. PMID:28323828

  4. Liquid-handling Lego robots and experiments for STEM education and research.

    PubMed

    Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H

    2017-03-01

    Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  5. Hexapod Robot

    NASA Technical Reports Server (NTRS)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  6. Robotic versus laparoscopic adrenalectomy for pheochromocytoma.

    PubMed

    Aliyev, Shamil; Karabulut, Koray; Agcaoglu, Orhan; Wolf, Katherine; Mitchell, Jamie; Siperstein, Allan; Berber, Eren

    2013-12-01

    Although initial reports demonstrated the safety and feasibility of robotic adrenalectomy (RA), there are scant data on the use of this approach for pheochromocytoma. The aim of this study is to compare perioperative outcomes and efficacy of RA versus laparoscopic adrenalectomy (LA) for pheochromocytoma. Within 3 years, 25 patients underwent 26 RA procedures for pheochromocytoma. These patients were compared with 40 patients who underwent 42 LA procedures before the start of the robotic program. Data were retrospectively reviewed from a prospectively maintained, IRB-approved adrenal database. Demographic and clinical parameters at presentation were similar between the groups, except for a larger tumor size in the robotic group. In both groups, skin-to-skin operative time, estimated blood loss less, and intraoperative hemodynamic parameters were similar. The conversion to open rate was 3.9 % in the robotic and 7.5 % in the laparoscopic group (p = .532). There was no morbidity or mortality in the robotic group; morbidity was 10 % (p = .041) and mortality 2.5 % in the laparoscopic group. The pain score on postoperative day 1 was lower, and the length of hospital stay shorter in the robotic group (1.2 ± .1 vs. 1.7 ± .1 days, p = .036). To our knowledge, this is the first study comparing robotic versus laparoscopic resection of pheochromocytoma. Our results show that the robotic approach is similar to the laparoscopic regarding safety and efficacy. The lower morbidity, less immediate postoperative pain, and shorter hospital stay observed in the robotic approach warrant further investigation in future larger studies.

  7. Mobile robotics application in the nuclear industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.L.; White, J.R.

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Somemore » of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.« less

  8. NASA's Lunar Robotic Architecture Study. Volume 1

    NASA Technical Reports Server (NTRS)

    Mulville, Daniel R.

    2006-01-01

    This report documents the findings and analysis of a 60-day agency-wide Lunar Robotic Architecture Study (LRAS) conducted by the National Aeronautics and Space Administration (NASA). Work on this study began in January 2006. Its purpose was to: Define a lunar robotics architecture by addressing the following issues: 1) Do we need robotic missions at all? If so, why and under what conditions? 2) How would they be accomplished and at what cost? Are they within budget? 3) What are the minimum requirements? What is the minimum mission set? 4) Integrate these elements together to show a viable robotic architecture. 5) Establish a strategic framework for a lunar robotics program. The LRAS Final Report presents analysis and recommendations concerning potential approaches related to NASA s implementation of the President's Vision for Space Exploration. Project and contract requirements will likely be derived in part from the LRAS analysis and recommendations contained herein, but these do not represent a set of project or contract requirements and are not binding on the U.S. Government unless and until they are formally and expressly adopted as such. Details of any recommendations offered by the LRAS Final Report will be translated into implementation requirements. Moreover, the report represents the assessments and projects of the report s authors at the time it was prepared; it is anticipated that the concepts in this report will be analyzed further and refined. By the time some of the activities addressed in this report are implemented, certain assumptions on which the report s conclusions are based will likely evolve as a result of this analysis. Accordingly, NASA, and any entity under contract with NASA, should not use the information in this report for final project direction. Since the conclusion of this study, there have been various changes to the Agency's current portfolio of lunar robotic precursor activities. First, the Robotic Lunar Exploration Program (RLEP

  9. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  10. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-06-28

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

  11. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  12. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  13. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  14. The 1991-1992 walking robot design

    NASA Technical Reports Server (NTRS)

    Azarm, Shapour; Dayawansa, Wijesurija; Tsai, Lung-Wen; Peritt, Jon

    1992-01-01

    The University of Maryland Walking Machine team designed and constructed a robot. This robot was completed in two phases with supervision and suggestions from three professors and one graduate teaching assistant. Bob was designed during the Fall Semester 1991, then machined, assembled, and debugged in the Spring Semester 1992. The project required a total of 4,300 student hours and cost under $8,000. Mechanically, Bob was an exercise in optimization. The robot was designed to test several diverse aspects of robotic potential, including speed, agility, and stability, with simplicity and reliability holding equal importance. For speed and smooth walking motion, the footpath contained a long horizontal component; a vertical aspect was included to allow clearance of obstacles. These challenges were met with a leg design that utilized a unique multi-link mechanism which traveled a modified tear-drop footpath. The electrical requirements included motor, encoder, and voice control circuitry selection, manual controller manufacture, and creation of sensors for guidance. Further, there was also a need for selection of the computer, completion of a preliminary program, and testing of the robot.

  15. Coordinated Research in Robotics and Integrated Manufacturing.

    DTIC Science & Technology

    1983-07-31

    of three research divisions: Robot Systems, Management Systems, and Integrated Design and Manufacturing, and involves about 40 faculty spanning the...keystone of their program. A relatively smaller level of effort is being supported within the Management Systems Division. This is the first annual...SYSTEMS MANAGEMENT 0 DESIGN DATABASES " ROBOT-BASED 0 HUMAN FACTORSMANUFACTURING • CAD CELL* PRODUCTIONMUCR LANNING * INTEGRATION LANGUAGE AND VIA LOCAL

  16. A remote assessment system with a vision robot and wearable sensors.

    PubMed

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  17. Fostering Innovation Through Robotics Exploration

    DTIC Science & Technology

    2015-06-01

    16 Jan 09. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This effort enhanced Robotics STEM activities by incorporating Cognitive tutors at key points to...make important mathematical decision or implement critical calculations. Program utilized Cognitive Tutor Authoring tools for designing problem...activities by incorporating cognitive tutors at key points to make important mathematical decision or implement critical calculations. The program

  18. Generative Representations for Automated Design of Robots

    NASA Technical Reports Server (NTRS)

    Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2007-01-01

    A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance

  19. USEPA'S SITE PROGRAM IMPACT ON THE DEVELOPMENT AND USE OF INNOVATIVE HAZARDOUS WASTE TREATMENT

    EPA Science Inventory

    The USEPA's SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. The SITE Program has two components: The Demonstration Program and ...

  20. Theseus: tethered distributed robotics (TDR)

    NASA Astrophysics Data System (ADS)

    Digney, Bruce L.; Penzes, Steven G.

    2003-09-01

    The Defence Research and Development Canada's (DRDC) Autonomous Intelligent System's program conducts research to increase the independence and effectiveness of military vehicles and systems. DRDC-Suffield's Autonomous Land Systems (ALS) is creating new concept vehicles and autonomous control systems for use in outdoor areas, urban streets, urban interiors and urban subspaces. This paper will first give an overview of the ALS program and then give a specific description of the work being done for mobility in urban subspaces. Discussed will be the Theseus: Thethered Distributed Robotics (TDR) system, which will not only manage an unavoidable tether but exploit it for mobility and navigation. Also discussed will be the prototype robot called the Hedgehog, which uses conformal 3D mobility in ducts, sewer pipes, collapsed rubble voids and chimneys.

  1. An anatomy of industrial robots and their controls

    NASA Astrophysics Data System (ADS)

    Luh, J. Y. S.

    1983-02-01

    The modernization of manufacturing facilities by means of automation represents an approach for increasing productivity in industry. The three existing types of automation are related to continuous process controls, the use of transfer conveyor methods, and the employment of programmable automation for the low-volume batch production of discrete parts. The industrial robots, which are defined as computer controlled mechanics manipulators, belong to the area of programmable automation. Typically, the robots perform tasks of arc welding, paint spraying, or foundary operation. One may assign a robot to perform a variety of job assignments simply by changing the appropriate computer program. The present investigation is concerned with an evaluation of the potential of the robot on the basis of its basic structure and controls. It is found that robots function well in limited areas of industry. If the range of tasks which robots can perform is to be expanded, it is necessary to provide multiple-task sensors, or special tooling, or even automatic tooling.

  2. Megasessions for Robotic Hair Restoration.

    PubMed

    Pereira, Joa O Carlos; Pereira Filho, Joa O Carlos; Cabrera Pereira, Joa O Pedro

    2016-11-01

    A robotic system can select and remove individual hair follicles from the donor area with great precision and without fatigue. This report describes the use of the robotic system in a megasession for hair restoration. Patients were instructed to cut their hair to 1.0 to 1.2 mm before surgery. The robot selected and removed 600 to 800 grafts per hour so the follicular units (FU)s could be transplanted manually to recipient sites. The robot arm consists of a sharp inner punch and a blunt outer punch which together separate FUs from the sur- rounding tissue. Stereoscopic cameras controlled by image processing software allow the system to identify the angle and direction of hair growth. The physician and one assistant control the harvesting with a hand-held remote control and computer monitor while the patient is positioned in an adjustable chair. When the robot has harvested all the FUs they are removed by technicians with small forceps. Hairline design, creation of recipient sites, and graft placement are performed manually by the physician. Clinical photographs before and after surgery show that patients experience excellent outcomes with the robotic megasession. Phy- sician fatigue during graft extraction is reduced because the robot performs the repetitive movements without fatigue. Variability of graft extraction is minimized because the robot's optical system can be programmed to choose the best FUs. The transection rate is reduced because the robot's graft extraction system uses two needles, a sharp one to piece the skin and a blunt needle to dissect the root without trauma. A robotic megasession for hair restoration is minimally invasive, does not result in linear scars in the donor area, and is associated with minimal fatigue and discomfort for both patient and physician. Healing is rapid and patients experience a high level of satisfaction with the results. J Drugs Dermatol. 2016;15(11):1407-1412..

  3. RoMPS concept review automatic control of space robot

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Robot operated Material Processing in Space (RoMPS) experiment is being performed to explore the marriage of two emerging space commercialization technologies: materials processing in microgravity and robotics. This concept review presents engineering drawings and limited technical descriptions of the RoMPS programs' electrical and software systems.

  4. Application of External Axis in Robot-Assisted Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Fang, Dandan; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2012-12-01

    Currently, industrial robots are widely used in the process of thermal spraying because of their high efficiency, security, and repeatability. Although robots are found suitable for use in industrial productions, they have some natural disadvantages because of their six-axis mechanical linkages. When a robot performs a series of stages of production, it could be hard to move from one to another because a few axes reach their limit value. For this reason, an external axis should be added to the robot system to extend the reachable space of the robots. This article concerns the application of external axis on ABB robots in thermal spraying and the different methods of off-line programming with external axis in the virtual environment. The developed software toolkit was applied to coat real workpiece with a complex geometry in atmospheric plasma spraying).

  5. Robotic System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A complicated design project, successfully carried out by New York manufacturing consultant with help from NERAC, Inc., resulted in new type robotic system being marketed for industrial use. Consultant Robert Price, operating at E.S.I, Inc. in Albany, NY, sought help from NERAC to develop an automated tool for deburring the inside of 8 inch breech ring assemblies for howitzers produced by Watervliet Arsenal. NERAC conducted a search of the NASA data base and six others. From information supplied, Price designed a system consisting of a standard industrial robot arm, with a specially engineered six-axis deburring tool fitted to it. A microcomputer and computer program direct the tool on its path through the breech ring. E.S.I. markets the system to aerospace and metal cutting industries for deburring, drilling, routing and refining machined parts.

  6. Robotic Lunar Landers For Science And Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.

  7. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.

    PubMed

    Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K

    2015-11-25

    Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives.

  8. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  9. Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...

  10. MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT

    EPA Science Inventory

    This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...

  11. Robotic surgery start-up with a fellow as the console surgeon.

    PubMed

    Reinhardt, Susanne; Ifaoui, Inge Boetker; Thorup, Jorgen

    2017-08-01

    Owing to the encouraging data on fellowship training in robotic pyeloplasty and the documented benefits of robotic pyeloplasty, the aim of this study was to test the feasibility of starting up pediatric urological robotic surgery in a center with a limited case volume. The operative parameters and clinical outcome of the first 25 robotic pyeloplasties performed were compared to data on open and laparoscopic procedures from the previous 5 year period. The fellow was the only console surgeon. An experienced non-robotic pediatric urologist was supervising at the patient site. The learning curve was in accordance with previously published data on fellows. The median operating time in robotic surgery was 182 min and was significantly shorter than in laparoscopic surgery (median 250 min) and the postoperative inpatient length of stay was significantly shorter after robotic surgery (median 1 day) than after both laparoscopic (median 2 days) and open surgery (median 3.5 days). For robotic cases, postoperative renography showed either stable or increased function of the hydronephrotic kidney. The only complication was in one case with ureteral orifice edema after JJ-stent removal, requiring nephrostomy for 6 weeks. The benefits of overall shorter postoperative hospital stay after robotic pyeloplasty and faster operating time compared to the laparoscopic procedure are clearly in accordance with data from the recent literature. The fast learning curve for robotic pyeloplasty will allow pediatric urology fellowship programs to be integrated in the start-up phase of a pediatric robotic program even though the case material is limited. Operative success rates were in accordance with the gold standard of open surgery.

  12. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  13. Automated Planning Enables Complex Protocols on Liquid-Handling Robots.

    PubMed

    Whitehead, Ellis; Rudolf, Fabian; Kaltenbach, Hans-Michael; Stelling, Jörg

    2018-03-16

    Robotic automation in synthetic biology is especially relevant for liquid handling to facilitate complex experiments. However, research tasks that are not highly standardized are still rarely automated in practice. Two main reasons for this are the substantial investments required to translate molecular biological protocols into robot programs, and the fact that the resulting programs are often too specific to be easily reused and shared. Recent developments of standardized protocols and dedicated programming languages for liquid-handling operations addressed some aspects of ease-of-use and portability of protocols. However, either they focus on simplicity, at the expense of enabling complex protocols, or they entail detailed programming, with corresponding skills and efforts required from the users. To reconcile these trade-offs, we developed Roboliq, a software system that uses artificial intelligence (AI) methods to integrate (i) generic formal, yet intuitive, protocol descriptions, (ii) complete, but usually hidden, programming capabilities, and (iii) user-system interactions to automatically generate executable, optimized robot programs. Roboliq also enables high-level specifications of complex tasks with conditional execution. To demonstrate the system's benefits for experiments that are difficult to perform manually because of their complexity, duration, or time-critical nature, we present three proof-of-principle applications for the reproducible, quantitative characterization of GFP variants.

  14. Developing Creative Behavior in Elementary School Students with Robotics

    ERIC Educational Resources Information Center

    Nemiro, Jill; Larriva, Cesar; Jawaharlal, Mariappan

    2017-01-01

    The School Robotics Initiative (SRI), a problem-based robotics program for elementary school students, was developed with the objective of reaching students early on to instill an interest in Science, Technology, Engineering, and Math disciplines. The purpose of this exploratory, observational study was to examine how the SRI fosters student…

  15. Big Robots for Little Kids: Investigating the Role of Scale in Early Childhood Robotics Kits

    NASA Astrophysics Data System (ADS)

    Vizner, Miki Z.

    Couch fort and refrigerator box constructions are staples of early childhood play in American culture. Can this this large-scale fantasy type of play be leveraged to facilitate computational thinking? This thesis looks at the ways Kindergarteners (age 5-6) use two variations of the KIBO robotics platform in their play and learning. The first is the standard KIBO kit developed at the DevTech research group at Tufts University and commercialized by Kinderlab robotics. The second, created by the author, is 100 times bigger and can be ridden by children and adults. Specifically this study addresses the research question "How are children's experiences with big-KIBO different from KIBO?" To do so this thesis presents two analytical tools that were assembled conceptually from literature and the authors experiences with KIBO, examined using the data collected in this study, refined, and used as frameworks for understanding the data. They are a developmental model of programming with KIBO and an operationalization of Bers's (2018) powerful ideas of computational thinking when using KIBO. Vignettes from the data are presented and analyzed using these frameworks. Content and structural play themes are extracted from additional vignettes with each robot. In this study there are no clear differences in the ways children engage in computational thinking or develop their ability to program. There appear to be differences in the ways children play with the robots. Suggesting that a larger robot offers new opportunities and pathways for children to engage in computational thinking tasks. This study makes a case for the importance of thinking developmentally about computational thinking. Connections to literature and theory as well as suggestions for future work, both for children and designers, are discussed.

  16. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  17. Retention of fundamental surgical skills learned in robot-assisted surgery.

    PubMed

    Suh, Irene H; Mukherjee, Mukul; Shah, Bhavin C; Oleynikov, Dmitry; Siu, Ka-Chun

    2012-12-01

    Evaluation of the learning curve for robotic surgery has shown reduced errors and decreased task completion and training times compared with regular laparoscopic surgery. However, most training evaluations of robotic surgery have only addressed short-term retention after the completion of training. Our goal was to investigate the amount of surgical skills retained after 3 months of training with the da Vinci™ Surgical System. Seven medical students without any surgical experience were recruited. Participants were trained with a 4-day training program of robotic surgical skills and underwent a series of retention tests at 1 day, 1 week, 1 month, and 3 months post-training. Data analysis included time to task completion, speed, distance traveled, and movement curvature by the instrument tip. Performance of the participants was graded using the modified Objective Structured Assessment of Technical Skills (OSATS) for robotic surgery. Participants filled out a survey after each training session by answering a set of questions. Time to task completion and the movement curvature was decreased from pre- to post-training and the performance was retained at all the corresponding retention periods: 1 day, 1 week, 1 month, and 3 months. The modified OSATS showed improvement from pre-test to post-test and this improvement was maintained during all the retention periods. Participants increased in self-confidence and mastery in performing robotic surgical tasks after training. Our novel comprehensive training program improved robot-assisted surgical performance and learning. All trainees retained their fundamental surgical skills for 3 months after receiving the training program.

  18. An overview of the program to place advanced automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  19. 75 FR 43409 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ..., nickel-cadmium batteries or lithium batteries. Rhode Island has decided to regulate circuit boards, as... universal waste program, Rhode Island regulates certain dry cell batteries (i.e., waste-nickel cadmium, mercuric oxide, and lead acid dry cell batteries), used electronics, mercury containing equipment and...

  20. Hazardous waste management programs; Florida: authorization for interim authorization phase I--Environmental Protection Agency. Notice of final determination.

    PubMed

    1982-05-07

    The State of Florida has applied for interim Authorization Phase I. EPA has reviewed Florida's application for Phase I and has determined that Florida's hazardous waste program is substantially equivalent to the Federal program covered by Phase I. The State of Florida is, hereby, granted Interim Authorization for Phase I to operate the State 's hazardous waste program, in lieu of the Federal program.

  1. A Case Study: Motivational Attributes of 4-H Participants Engaged in Robotics

    ERIC Educational Resources Information Center

    Smith, Mariah Lea

    2013-01-01

    Robotics has gained a great deal of popularity across the United States as a means to engage youth in science, technology, engineering, and math. Understanding what motivates youth and adults to participate in a robotics project is critical to understanding how to engage others. By developing a robotics program built on a proper understanding of…

  2. NCRP Program Area Committee 5: Environmental Radiation and Radioactive Waste Issues.

    PubMed

    Chen, S Y; Napier, Bruce

    2016-02-01

    Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. The Committee completed a number of reports in these subject areas, most recently NCRP Report No. 175, Decision Making for Late-Phase Recovery from Major Nuclear or Radiological Incidents. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities.

  3. Progress Report for the Robotic Intelligence Evaluation. Program Year 1: Developing Test Methodology for Anti-Rollover Systems

    DTIC Science & Technology

    2006-06-01

    Scientific Research. 5PAM-Crash is a trademark of the ESI Group . 6MATLAB and SIMULINK are registered trademarks of the MathWorks. 14 maneuvers...Laboratory (ARL) to develop methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots...methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots acting as a team to perform a

  4. Robots, Jobs, and Education. State-of-the-Art Paper.

    ERIC Educational Resources Information Center

    Benton, Oliver; Branch, Charles W.

    The purpose of this paper is to assist those in education, government, and industry who are responsible for managing vocational and technical training in their decisions about what programs should be initiated to accommodate the growing use of robots. Section 1 describes robot characteristics (type of drive, method of teaching, lifting capacity,…

  5. A 5-year perspective over robotic general surgery: indications, risk factors and learning curves.

    PubMed

    Sgarbură, O; Tomulescu, V; Blajut, C; Popescu, I

    2013-01-01

    Robotic surgery has opened a new era in several specialties but the diffusion of medical innovation is slower indigestive surgery than in urology due to considerations related to cost and cost-efficiency. Studies often discuss the launching of the robotic program as well as the technical or clinical data related to specific procedures but there are very few articles evaluating already existing robotic programs. The aims of the present study are to evaluate the results of a five-year robotic program and to assess the evolution of indications in a center with expertise in a wide range of thoracic and abdominal robotic surgery. All consecutive robotic surgery cases performed in our center since the beginning of the program and prior to the 31st of December 2012 were included in this study, summing up to 734 cases throughout five years of experience in the field. Demographic, clinical, surgical and postoperative variables were recorded and analyzed.Comparative parametric and non-parametric tests, univariate and multivariate analyses and CUSUM analysis were performed. In this group, the average age was 50,31 years. There were 60,9% females and 39,1% males. 55,3% of all interventions were indicated for oncological disease. 36% of all cases of either benign or malignant etiology were pelvic conditions whilst 15,4% were esogastric conditions. Conversion was performed in 18 cases (2,45%). Mean operative time was 179,4Â+-86,06 min. Mean docking time was 11,16Â+-2,82 min.The mean hospital length of stay was 8,54 (Â+-5,1) days. There were 26,2% complications of all Clavien subtypes but important complications (Clavien III-V) only represented 6,2%.Male sex, age over 65 years old, oncological cases and robotic suturing were identified as risk factors for unfavorable outcomes. The present data support the feasibility of different and complex procedures in a general surgery department as well as the ascending evolution of a well-designed and well-conducted robotic program. From

  6. ROBOSIM, a simulator for robotic systems

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  7. Robotic missions to Mars - Paving the way for humans

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.; Bourke, R. D.; Cunningham, G. E.; Golombek, M. P.; Sturms, F. M.; Kahl, R. C.; Lance, N.; Martin, J. S.

    1990-01-01

    NASA is in the planning stages of a program leading to the human exploration of Mars. A critical element in that program is a set of robotic missions that will acquire information on the Martian environment and test critical functions (such as aerobraking) at the planet. This paper presents some history of Mars missions, as well as results of recent studies of the Mars robotic missions that are under consideration as part of the exploration program. These missions include: (1) global synoptic geochemical and climatological characterization from orbit (Mars Observer), (2) global network of small meteorological and seismic stations, (3) sample returns, (4) reconnaissance orbiters and (5) rovers.

  8. Development and validation of a low-cost mobile robotics testbed

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Hayes, Martin J.

    2012-03-01

    This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.

  9. Manifold traversing as a model for learning control of autonomous robots

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F.; Schenker, Paul S.

    1992-01-01

    This paper describes a recipe for the construction of control systems that support complex machines such as multi-limbed/multi-fingered robots. The robot has to execute a task under varying environmental conditions and it has to react reasonably when previously unknown conditions are encountered. Its behavior should be learned and/or trained as opposed to being programmed. The paper describes one possible method for organizing the data that the robot has learned by various means. This framework can accept useful operator input even if it does not fully specify what to do, and can combine knowledge from autonomous, operator assisted and programmed experiences.

  10. Robotic Mining Competition - Media Day

    NASA Image and Video Library

    2017-05-25

    Lilliana Villareal, Spacecraft and Offline Operations manager in the Ground Systems Development and Operations Program, is interviewed on-camera by Al Feinberg, with the Communications and Public Engagement Directorate, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  11. Robotic Mining Competition - Media Day

    NASA Image and Video Library

    2017-05-25

    Stan Starr, branch chief for Applied Physics in the Exploration Research and Technology Programs, is interviewed on-camera by Sarah McNulty, with the Communication and Public Engagement Directorate, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  12. Robotic Variable Polarity Plasma Arc (VPPA) Welding

    NASA Technical Reports Server (NTRS)

    Jaffery, Waris S.

    1993-01-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  13. Robotic Variable Polarity Plasma Arc (VPPA) welding

    NASA Astrophysics Data System (ADS)

    Jaffery, Waris S.

    1993-02-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  14. Fault-Tolerant Control For A Robotic Inspection System

    NASA Technical Reports Server (NTRS)

    Tso, Kam Sing

    1995-01-01

    Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.

  15. National low-level waste management program radionuclide report series, Volume 14: Americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winberg, M.R.; Garcia, R.S.

    1995-09-01

    This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. The Waste Wise Schools Program: Evidence of Educational, Environmental, Social and Economic Outcomes at the School and Community Level

    ERIC Educational Resources Information Center

    Armstrong, Patricia; Sharpley, Brian; Malcolm, Stephen

    2004-01-01

    The Waste Wise Schools Program was established by EcoRecycle Victoria to implement waste and litter education in Victorian schools. It is now operating in over 900 schools in Victoria and 300 schools in other Australian states / territories. This paper provides detailed case studies of two active schools in the Waste Wise Schools Program and…

  18. Fast Track Characterization of Highly Radioactive Waste Pits Combining Off-the-Shelf Robotics with Innovative Investigation Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabeuf, Jean-Michel; Boya, Didier

    The investigation and characterization of radioactive waste pits and effluent storage tanks represents a substantial and challenging step in the overall decommissioning programme launched by AREVA NC in 1998 on the site of Marcoule on behalf of the French Atomic Energy commission. Physical ,radiological and regulatory constraints, combined with a tight schedule, have lead our teams to use proven conventional instrumentation and robotics in innovative configurations . One such investigation, conducted on a particularly challenging radioactive effluent storage pit, is described below. The 'H' pit is a stainless steel clad concrete cavity, located in the second basement of the de-claddingmore » building of Marcoule site. It was used for forty years as buffer storage for high activity effluents and has a length of 5 meters, a width of 3 meters , a height of 2.5 meters, and is topped by lead plates over 5 cm thick and The bottom of the cavity is covered with a layer of mud containing mainly graphite, diatoms and resins. The mud level ranges from about 20 centimeters to over 50 centimeters. The overall mud volume is around 2.4 cubic meters. Ambient dose rates above the lead plates exceed 10 mSv/h. The main purpose of our investigation was to characterize the muds for future recovery and conditioning prior to decontaminating the pit. The history of the pit together with the varying mud altimetry lead us to believe that sedimentation had probably occurred throughout the years. We thus decided to combine dose rate measurements using IF104 probes, gamma spectroscopy with CdTe probes and sample collections at different depths to ensure the representativeness and full characterization of the muds. Poor access, ambient dose rates have lead us to conceive a robotic arm, mounted on an shaft which can be modified to fit a wide range of pits and tanks. Custom built robotic tools with maximum manoeuvrability generally involve costs and delays far exceeding our purposes. SIT, a

  19. A generalized method for multiple robotic manipulator programming applied to vertical-up welding

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R.; Cook, George E.; Andersen, Kristinn; Barnett, Robert Joel; Zein-Sabattou, Saleh

    1991-01-01

    The application is described of a weld programming algorithm for vertical-up welding, which is frequently desired for variable polarity plasma arc welding (VPPAW). The Basic algorithm performs three tasks simultaneously: control of the robotic mechanism so that proper torch motion is achieved while minimizing the sum-of-squares of joint displacement; control of the torch while the part is maintained in a desirable orientation; and control of the wire feed mechanism location with respect to the moving welding torch. Also presented is a modification of this algorithm which permits it to be used for vertical-up welding. The details of this modification are discussed and simulation examples are provided for illustration and verification.

  20. Robotics/Automated Systems Technicians.

    ERIC Educational Resources Information Center

    Doty, Charles R.

    Major resources exist that can be used to develop or upgrade programs in community colleges and technical institutes that educate robotics/automated systems technicians. The first category of resources is Economic, Social, and Education Issues. The Office of Technology Assessment (OTA) report, "Automation and the Workplace," presents analyses of…