DOE Office of Scientific and Technical Information (OSTI.GOV)
Feizollahi, F.; Shropshire, D.
This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less
Hanford solid-waste handling facility strategy
NASA Astrophysics Data System (ADS)
Albaugh, J. F.
1982-05-01
Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.
Structural and seismic analyses of waste facility reinforced concrete storage vaults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C.Y.
1995-07-01
Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940`s through the early 1960`s. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at criticalmore » locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release tomore » the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.« less
Glasses for immobilization of low- and intermediate-level radioactive waste
NASA Astrophysics Data System (ADS)
Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.
2013-03-01
Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2008-01-31
The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils.more » The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, S.C.; Townsend, Y.E.
1997-02-01
The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.E.
1997-12-31
This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands ofmore » perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Marsh, J.D. Jr.
1994-04-01
This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the Whitemore » Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).« less
Wu, Chunfa; Luo, Yongming; Deng, Shaopo; Teng, Ying; Song, Jing
2014-02-15
Informal electrical and electronic waste (e-waste) recycling often creates secondary sources of cadmium (Cd) pollution. To characterize the total Cd concentration (Cdtotal) in topsoil and evaluate the threat of Cd in topsoils to shallow groundwater, 187 topsoil samples and 12 shallow groundwater samples were collected in a typical e-waste recycling area in southeast China. Soil organic matter content, soil pH and Cdtotal in topsoil, pH and dissolved Cd concentration in shallow groundwater were measured. Cdtotal in the topsoils showed an inverse distribution trend with soil pH in that high Cd concentrations (and low pH values) were found in the surrounding area of the metal recycling industrial park where there were many family-operated e-waste recycling facilities before the industrial park was established and with low concentrations (and high pH values) in other areas, and they had similar spatial correlation structures. Cd accumulation and acidification were synchronous in topsoils, and soil pH was significantly correlated with Cdtotal in topsoils with low to moderate negative correlation coefficient (r=-0.24), indicating that both of them maybe correlated with informal recycling. The shallow groundwater in the surrounding area of the metal recycling industrial park was seriously contaminated by Cd, and topsoil Cd accumulation and acidification in the surrounding area of e-waste recycling sites significantly increase the risk of shallow groundwater contaminated by Cd. Action is urgently required to control Cd accumulation and acidification by improving the recycling operations of e-wastes in order to reduce the risk of Cd leaching from topsoils and shallow groundwater contamination. Copyright © 2013. Published by Elsevier B.V.
Assessment of brine migration risks along vertical pathways due to CO2 injection
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Class, Holger
2015-04-01
Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the displaced brine due to CO2 injection and compare it to the natural fluid exchange between shallow and deep aquifers in order to asses possible damage.
NASA Astrophysics Data System (ADS)
Gumm, L. P.; Bense, V. F.; Dennis, P. F.; Hiscock, K. M.; Cremer, N.; Simon, S.
2016-02-01
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10-4 cm3 (STP) g-1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ˜107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study's geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-23
The 500-acre Camp Lejeune Military Reservation is located 15 miles southeast of Jacksonville, in Onslow County, North Carolina. Within the site lies the Hadnot Point Industrial Area (HPIA), which was constructed in the late 1930's. It is composed of 75 buildings and facilities, which include gas stations, offices, storage yards, maintenance shops, and a dry cleaning plant. Several areas of the HPIA have been investigated for potential contamination attributed to Marine Corps activities and operations that resulted in a generation of potentially hazardous wastes. The ROD addresses an interim remedial action for the shallow aquifer at the HPIA to protectmore » human health from exposure to VOCs and metals. The primary contaminants of concern affecting the shallow ground water aquifer are VOCs, including benzene and TCE; and metals, including arsenic, chromium, and lead.« less
NASA Astrophysics Data System (ADS)
Aulenbach, B. T.; Peters, N. E.
2016-12-01
Southeastern U.S. experiences recurring droughts, which can reduce water availability and can result in water-limiting conditions. Monthly water budgets were estimated at Panola Mountain Research Watershed, a small 41-hectare forested watershed near Atlanta, Georgia, from 1985 through 2015, to quantify the effects of climatic variability on groundwater (GW) storage. A relation between stream base flow and watershed GW storage was developed. The relation indicated that both shallow and deep GW storage contribute to base-flow runoff, except for the bottom third (78 mm) of the range in observed shallow soil moisture. The base flow-storage relation was then used to estimate monthly evapotranspiration (ET) using a closed water budget approach. Growing season droughts were almost always preceded by low GW storage at the onset of the growing season. The low base flow and GW storage conditions were caused by low precipitation (P) during the dormant season, and to a lesser extent, carryover of low GW storage conditions from the previous growing season. Growing season P had little impact on drought, as most P ultimately resulted in ET instead of deeper GW recharge. Water-limited growing season conditions were indicated when potential ET (PET) >> ET, and occurred during months having a large "P-deficit", PET - P, and when shallow storage was already near its observed minimum—such that the P-deficits exceeded the extractable water in shallow storage. These observations can be used to hypothesize how projected future increases in temperature, and how resulting increases in PET affect water budgets in Southeastern U.S. The dormant season will become shorter and ET will increase, causing decreased GW recharge during the dormant season, and will result in more frequent and severe growing season droughts. Higher growing season PET would increase the frequency and duration of water limiting conditions due to higher P-deficits and more frequent occurrences of low shallow storage.
Observations on the geology and geohydrology of the Chernobyl' nuclear accident site, Ukraine
Matzko, J.R.; Percious, D.J.; Rachlin, J.; Marples, D.R.
1994-01-01
The most highly contaminated surface areas from cesium-137 fallout from the April 1986 accident at the Chernobyl' nuclear power station in Ukraine occur within the 30-km radius evacuation zone set up around the station, and an 80-km lobe extending to the west-southwest. Lower levels of contamination extend 300 km to the west of the power station. The geology, the presence of surface water, a shallow water table, and leaky aquifers at depth make this an unfavorable environment for the long-term containment and storage of the radioactive debris. An understanding of the general geology and hydrology of the area is important to assess the environmental impact of this unintended waste storage site, and to evaluate the potential for radionuclide migration through the soil and rock and into subsurface aquifers and nearby rivers. -from Authors
Bergeron, M.P.
1985-01-01
The Western New York Nuclear Service Center (WNYNSC) is a 3 ,336-acre tract of land in northern Cattaraugus County, NY, about 30 mi south of Buffalo. In 1963, 247 acres within the WNYNSC was developed for a nuclear-fuel reprocessing plant and ancillary facilities, including (1) a receiving and storage facility to store fuel prior to reprocessing, (2) underground storage tanks for liquid high-level radioactive wastes from fuel reprocessing, (3) a low-level wastewater treatment plant, and (4) two burial grounds for shallow burial of solid radioactive waste. A series of geologic and hydrologic investigations was done as part of the initial development and construction of the facilities by numerous agencies during 1960-62; these produced a large quantity of well data, some of which are difficult to locate or obtain. This report is a compilation of well and boring data collected during this period. The data include records of 236 wells, geologic logs of 145 wells and 167 test borings, and descriptions of 20 measured geologic sections. Two oversized maps show locations of the reported data. (USGS)
Thermal Impact of Medium Deep Borehole Thermal Energy Storage on the Shallow Subsurface
NASA Astrophysics Data System (ADS)
Welsch, Bastian; Schulte, Daniel O.; Rühaak, Wolfram; Bär, Kristian; Sass, Ingo
2017-04-01
Borehole heat exchanger arrays are a well-suited and already widely applied method for exploiting the shallow subsurface as seasonal heat storage. However, in most of the populated regions the shallow subsurface also comprises an important aquifer system used for drinking water production. Thus, the operation of shallow geothermal heat storage systems leads to a significant increase in groundwater temperatures in the proximity of the borehole heat exchanger array. The magnitude of the impact on groundwater quality and microbiology associated with this temperature rise is controversially discussed. Nevertheless, the protection of shallow groundwater resources has priority. Accordingly, water authorities often follow restrictive permission policies for building such storage systems. An alternative approach to avoid this issue is the application of medium deep borehole heat exchanger arrays instead of shallow ones. The thermal impact on shallow aquifers can be significantly reduced as heat is stored at larger depth. Moreover, it can be further diminished by the installation of a thermally insulating materials in the upper section of the borehole heat exchangers. Based on a numerical simulation study, the advantageous effects of medium deep borehole thermal energy storage are demonstrated and quantified. A finite element software is used to model the heat transport in the subsurface in 3D, while the heat transport in the borehole heat exchangers is solved analytically in 1D. For this purpose, an extended analytical solution is implemented, which also allows for the consideration of a thermally insulating borehole section.
Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon
NASA Astrophysics Data System (ADS)
Neumann, P.; Haggerty, R.
2012-12-01
A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAQ MA
2009-05-12
The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of PCB...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. Fred
A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In thismore » design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.« less
Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
SIMMONS, F.M.
2000-03-29
This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cellsmore » 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasser, K.
1994-06-01
In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less
Solid wastes from nuclear power production.
Soule, H F
1978-01-01
Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244
Fischer, John N.
1986-01-01
In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.
Importance of storage time in mesophilic anaerobic digestion of food waste.
Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing
2016-07-01
Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants. Copyright © 2016. Published by Elsevier B.V.
Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Patrice Ann; Baumer, Andrew Ronald
Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.
2006-02-01
Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less
SRS stainless steel beneficial reuse program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boettinger, W.L.
1997-02-01
The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other typesmore » of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.« less
NASA Astrophysics Data System (ADS)
Muralidharan, D.; Andrade, R.; Anand, K.; Sathish, R.; Goud, K.
2009-12-01
Mining activities results into generation of disintegrated waste materials attaining increased mobilization status and requires a safe disposal mechanism through back filling process or secluded storage on surface with prevention of its interaction with environment cycle. The surface disposal of waste materials will become more critical in case of mined minerals having toxic or radioactive elements. In such cases, the surface disposal site is to be characterized for its sub-surface nature to understand its role in environmental impact due to the loading of waste materials. Near surface geophysics plays a major role in mapping the geophysical characters of the sub-surface formations in and around the disposal site and even to certain extent helps in designing of the storage structure. Integrated geophysical methods involving resistivity tomography, ground magnetic and shallow seismic studies were carried out over proposed tailings pond area of 0.3 sq. kms underlined by dipping sedimentary rocks consisting of ferruginous shales and dolomitic to siliceous limestone with varying thicknesses. The investigated site being located in tectonically disturbed area, geophysical investigations were carried out with number of profiles to visualize the sub-surface nature with clarity. The integration of results of twenty profiles of resistivity tomography with 2 m (shallow) and 10 m (moderate depth) electrode spacing’s enabled in preparing probable sub-surface geological section along the strike direction of the formation under the tailings pond with some geo-tectonic structure inferred to be a fault. Similarly, two resistivity tomography profiles perpendicular to the strike direction of the formations brought out the existence of buried basic intrusive body on the northern boundary of the proposed tailings pond. Two resistivity tomography profiles in criss-cross direction over the suspected fault zone confirmed fault existence on the north-eastern part of tailings pond. Thirty two magnetic profiles inside the tailings pond and surrounding areas on the southern part of the tailings pond enabled in identifying two parallel east-west intrusive bodies forming the impermeable boundary for the tailings pond. The shallow seismic refraction and the geophysical studies in and around the proposed tailings pond brought out the suitability of the site, even when the toxic elements percolates through the subsurface formations in to the groundwater system, the existence of dykes on either side of the proposed ponding area won’t allow the water to move across them thus by restricting the contamination within the tailings pond area. Similarly, the delineation of a fault zone within the tailings pond area helped in shifting the proposed dam axis of the pond to avoid leakage through the fault zone causing concern to environment pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, T.A., Fluor Daniel Hanford
1997-02-06
The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
40 CFR 266.220 - What does a storage and treatment conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...
On-site low level radwaste storage facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knauss, C.H.; Gardner, D.A.
1993-12-31
This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less
40 CFR 273.53 - Storage time limits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...
40 CFR 273.53 - Storage time limits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...
40 CFR 273.53 - Storage time limits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...
Fires at storage sites of organic materials, waste fuels and recyclables.
Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William
2013-09-01
During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.
ERIC Educational Resources Information Center
Dukert, Joseph M.
Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)
Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980
Hull, R.W.; Martin, J.B.
1982-01-01
Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)
Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...
Subseabed storage of radioactive waste
NASA Astrophysics Data System (ADS)
Bell, Peter M.
The subject of the storage of nuclear wastes products incites emotional responses from the public, and thus the U.S. Subseabed Disposal Program will have to make a good case for waste storage beneath the ocean floor. The facts attendant, however, describe circumstances necessitating cool-headed analysis to achieve a solution to the growing nuclear waste problem. Emotion aside, a good case indeed is being made for safe disposal beneath the ocean floor.The problems of nuclear waste storage are acute. A year ago, U.S. military weapons production had accumulated over seventy-five million gallons of high-level radioactive liquid waste; solid wastes, such as spent nuclear fuel rods from reactors, amounted to more than 12,000 tons. These wastes are corrosive and will release heat for 1000 years or more. The wastes will remain dangerously radioactive for a period of 10,000 years. There are advantages in storing the wastes on land, in special underground repositories, or on the surface. These include the accessibility to monitor the waste and the possibility of taking action should a container rupture occur, and thus the major efforts to determine suitable disposal at this time are focused on land-based storage. New efforts, not to be confused with ocean dumping practices of the past, are demonstrating that waste containers isolated in the clays and sediments of the ocean floor may be superior (Environ. Sci. Tech., 16, 28A-37A 1982).
Radioactive waste storage issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Daniel E.
1994-08-15
In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal)more » of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.« less
GIS analysis of available data to identify regions in the U.S. where shallow ground water supplies are particularly vulnerable to contamination by releases of biofuels from underground storage tanks. In this slide presentation, GIS was used to perform a simple numerical and ...
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
Thermal energy storage for industrial waste heat recovery
NASA Technical Reports Server (NTRS)
Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.
1978-01-01
Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-01
In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Astrophysics Data System (ADS)
Wojnar, F.; Lunberg, W. L.
1980-03-01
A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Technical Reports Server (NTRS)
Wojnar, F.; Lunberg, W. L.
1980-01-01
A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, W.T.
The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.
Waste canister for storage of nuclear wastes
Duffy, James B.
1977-01-01
A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less
Safety analysis report for the Waste Storage Facility. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bengston, S.J.
1994-05-01
This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.
78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
...-2012-0246] RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear... its generic determination on the environmental impacts of the continued storage of spent nuclear fuel... revising the generic determination of the environmental impacts of the continued storage of spent nuclear...
Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.
Dodemaide, David T; Matthews, Ty G; Iervasi, Dion; Lester, Rebecca E
2018-03-01
Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in macrophyte assemblages between raw-water storages and natural water bodies. These similarities illustrate that anthropogenic water storages support representative populations of some aquatic biota across the landscape, and thus, may provide important refuge following disturbance where dispersal capabilities allow. Copyright © 2017 Elsevier B.V. All rights reserved.
License restrictions at Barnwell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Autry, V.R.
1991-12-31
The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A
2008-10-09
The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.
Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities
The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less
Hanford Waste Physical and Rheological Properties: Data and Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.
2011-08-01
The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
1998 report on Hanford Site land disposal restrictions for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, D.G.
1998-04-10
This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of bothmore » the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTeer, Jennifer; Morris, Jenny; Wickham, Stephen
Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. Duringmore » the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, F.H.
1990-02-01
Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.
Method for utilizing decay heat from radioactive nuclear wastes
Busey, H.M.
1974-10-14
Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.
NASA Astrophysics Data System (ADS)
Alhumidan, S. M.; Alfaifi, H. J.; Ibrahim, E. K. E.; Abdel Rahman, K.
2015-12-01
In the present study, the hydrochemistry and geologic characteristics of the shallow groundwater aquifer along Wadi Al Showat, Khamis Mushiet District, Southwest Saudi Arabia was evaluated and assessed. Along this wadi the fractured/weathered basement rocks house significant quantity of groundwater that usually used by local people for agricultural and domestic purposes. Assessing and evaluation of the quality of the groundwater in such shallow aquifers is very important; especially the groundwater is generally occurred within the fractured basement rocks at shallow depths, thus exposing the groundwater to surface or near-surface contaminants is expected. For this purpose hydrochemical and biological analysis was conducted for 25 water samples collected from the available shallow dug wells along the studied wadi. The study reveals that the groundwater quality changed due to the agriculture and urbanization practices along the wadi. The effect of domestic waste water and septic tanks was obvious. In addition, the field investigation indicates that the basement rocks in the area is dissected by two main sets of fractures that oriented in the west-northwest and east-west directions. In some places, the basement rocks is intruded by coarse-grained, quartz-rich quartzite grained monzogranite, and pegmatite veins that have a coarse-grained weathering product, therefore, they tend to develop and preserve open joint systems between the granitic blocks. These fracturing system are important from the hydrogeological point of view, as they facilitate the storage, water flow movement through them and also facilitate the vertical infiltration of the surface pollutants. These results led to a better understanding of the groundwater characteristics that is important in groundwater management in the study area.
A novel muon detector for borehole density tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared
Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Geological carbon storage, natural gas storage, enhanced oil recovery, compressed air storage, aquifer storage and recovery, waste water storage and oil and gas production are examples of application areas. It is thus crucial to monitor in quasi-real time the behavior of these fluids, and several monitoring techniques can be used. Among them, those that trackmore » density changes in the subsurface are the most relevant. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable tomographic imaging of density structure to monitor small changes in density – a proxy for fluid migration – at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. The robustness of the detector design comes primarily from the use of polystyrene scintillating rods arrayed in alternating layers to provide a coordinate scheme. Testing and measurements using a prototype detector in the laboratory and shallow underground facilities demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.« less
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
Radioactive waste management in Poland status and strategy for the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlodarski, J.
1995-12-01
Site selection for a new radioactive waste repository in Poland has been started. The repository will contain low- and intermediate-level radioactive wastes and spent fuel. Superficial, shallow underground and deep underground disposal options were considered; 39 potential sites have been selected. Issues to be resolved regarding waste management in Poland are also outlined in this paper.
Industrial waste materials and by-products as thermal energy storage (TES) materials: A review
NASA Astrophysics Data System (ADS)
Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.
2016-05-01
A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.
Method of preparing nuclear wastes for tansportation and interim storage
Bandyopadhyay, Gautam; Galvin, Thomas M.
1984-01-01
Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.
Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.
2013-01-01
Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about 6 percent (-202,000 acre-feet) of the overall storage volume within the newly defined study area.
Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
Vienken, T; Schelenz, S; Rink, K; Dietrich, P
2015-01-01
Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...
Vascular plants of waste storage sites in the 200 areas of the Hanford reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, K.R.; Rickard, W.H.
1973-12-01
A brief accounting of terrestrial, riparian and semi-aquatic plants known to be associated with radioactive waste storage sites in the 200 Areas of the Hanford Reservation is given. In most cases the species are characteristic of those which generally inhabit the reservation, but some plants are restricted to specialized habitats provided by particular waste storage sites. It is impractical to list all species growing at each waste storage site because of seasonal variation and changes brought about by environmental management practices. An alpbabetical listing has been prepared with an example of where each species is known to occur. The listmore » will be updated as needed and expanded to include other waste storage areas. Plant specimens were collected during spring and fall when flowering material was available. Herbarium mounts were prepared of many specimens and have been retained as part of the Hanford Reservation herbarium collection. Identification to species level was made whenever possible. Color photographs of the specimen mounts are used as training aids and demonstration material by ARHCO Radiation Monitoring personnel. (auth)« less
Sepúlveda, Nicasio; Zack, A.L.; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.
1990-01-01
A laboratory experiment to measure the specific storage of an aquifer material was conducted. A known dead load, simulating an overburden load, was applied to a sample of completely saturated aquifer material contained inside a cylinder. After the dead load was applied, water was withdrawn from the sample, causing the hydrostatic pressure to decrease and the effective stress to increase. The resulting compression of the sample and the amount of water withdrawn were measured after equilibrium was reached. The procedure was repeated by increasing the dead load and the hydrostatic pressure followed by withdrawing water to determine new values of effective stress and compaction. The simulated dead loads are typical of those experienced by shallow artesian aquifers. The void ratio and the effective stress of the aquifer sample, as simulated by different dead loads, determine the pore volume compressibility which, in turn, determines the values of specific storage. An analytical algorithm was used to independently determine the stress dependent profile of specific storage. These values are found to be in close agreement with laboratory results. Implications for shallow artesian aquifers, with relatively small overburden stress, are also addressed.
Energy content of municipal solid waste bales.
Ozbay, Ismail; Durmusoglu, Ertan
2013-07-01
Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.
Method of encapsulating solid radioactive waste material for storage
Bunnell, Lee Roy; Bates, J. Lambert
1976-01-01
High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.
Process for vitrification of contaminated sodium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, H.T.; Mellinger, G.B.
1983-03-01
A glass composition was developed to accommodate 30 wt % sodium oxide and resist devitrification and leaching. An in-can melting process that is compatible with a comtaminated sodium calciner developed by Argonne National Laboratory was tested both on a laboratory and on an engineering scale and found to be viable. The Liquid Metal Fast Breeder Reactor experimental program continues to produce elemental sodium contaminated with radionuclides. This material is presently in temporary storage facilities because the current criterion will not permit alkali metals to be disposed of in shallow land burials. As a first step in treatment, Argonne National Laboratorymore » (ANL) has developed a calciner that will convert the sodium metal to an oxide. In work supported by the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is developing and demonstrating a process that is compatible with the calciner and facilities at ANL-West for incorporating sodium oxide into a glass. Glass, which normally contains sodium oxide, was chosen as the waste form because it is chemically durable and nondispersible. It is simple to produce, and the technology for incorporating nuclear wastes into glass is well developed.« less
40 CFR 761.65 - Storage for disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... storage of non-liquid PCB/ radioactive wastes must be designed to prevent the buildup of liquids if such... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents...
10 CFR 72.22 - Contents of application: General and financial information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
Recycling of waste lead storage battery by vacuum methods.
Lin, Deqiang; Qiu, Keqiang
2011-07-01
Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki
2013-03-01
Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... following: (1) Storage of low-level radioactive waste at the site of generation; (2) Storage of low-level... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-09-01
This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.
Chowdhury, Rubel Biswas; Chakraborty, Priyanka
2016-08-01
Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.
Geohydrologic aspects for siting and design of low-level radioactive-waste disposal
Bedinger, M.S.
1989-01-01
The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.
Brown, Michael J; Button, Lisa M; Badjie, Karafa S; Guyer, Jean M; Dhanorker, Sarah R; Brach, Erin J; Johnson, Pamela M; Stubbs, James R
2014-03-01
The national waste rate for hospital-issued blood products ranges from 0% to 6%, with operating room-responsible waste representing up to 70% of total hospital waste. A common reason for blood product waste is inadequate intraoperative storage. Our transfusion service database was used to quantify and categorize red blood cell (RBC) and fresh-frozen plasma (FFP) units issued for intraoperative transfusion that were wasted over a 27-month period. Two cohorts were created: 1) before implementation of a blood transport and storage initiative (BTSI)-RBC and plasma waste January 1, 2011-May 31, 2012; 2) after implementation of BTSI-RBC and plasma waste June 1, 2012, to March 31, 2013. The BTSI replaced existing storage coolers (8-hr coolant life span with temperature range of 1-10°C) with a cooler that had a coolant life span of 18 hours and a temperature range of 1 to 6°C and included an improved educational cooler placard and an alert mechanism in the electronic health record. Monthly median RBC and plasma waste and its associated cost were the primary outcomes. An intraoperative BTSI significantly reduced median monthly RBC (1.3% vs. 0.07%) and FFP (0.4% vs. 0%) waste and its associated institutional cost. The majority of blood product waste was due to an unacceptable temperature of unused returned blood products. An intraoperative BTSI significantly reduced median monthly RBC and FFP waste. The cost to implement this initiative was small, resulting in a significant estimated return on investment that may be reproducible in institutions other than ours. © 2013 American Association of Blood Banks.
Low-level radwaste storage facility at Hope Creek and Salem Generating Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyen, L.C.; Lee, K.; Bravo, R.
Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less
Effects of storage environment on the moisture content and microbial growth of food waste.
Chen, Ying-Chu; Hsu, Yi-Cheng; Wang, Chung-Ting
2018-05-15
Food waste (FW) has become a critical issue in sustainable development as the world's population has increased. Direct incineration of FW remains the primary treatment option. The moisture content of FW may affect the energy efficiency of incineration. In Taiwan, FW, which includes raw (r-FW) and post-consumer (p-FW) waste, is often stored in freezers before pretreatment. This study evaluated the effects of storage environment on the moisture content and microbial growth of FW. Storage at 263 K was associated with the largest reduction in moisture content in both r-FW and p-FW. At 263 K, the moisture content of r-FW and p-FW was lowest at 96 and 72 h, respectively. The E.coli and total bacteria counts were steady over 120 h when stored at 263 K. Storage at 253 K required the greatest electricity consumption, followed by 263 K and 258 K. Based on the reduction of moisture content and increase in energy efficiency, it is suggested that FW is placed in temporary storage at 263 K before (pre)treatment. The results of this study will help waste-to-energy plants, incinerators, and waste management enterprises to implement proper (pre)treatment of FW for sustainable waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lewis, Barney D.; Goldstein, Flora J.
1982-01-01
Aqueous chemical and radioactive wastes discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 have affected the quality of the ground water in the underlying Snake River Plain aquifer. The aqueous wastes have created large and laterally dispersed concentration plumes within the aquifer. The waste plumes with the largest areal distribution are those of chloride , tritium, and with high specific conductance values. The data from eight wells drilled near the southern INEL boundary during the summer of 1980 were used to evaluate the accuracy of a predictive modeling study completed in 1973, and to simulate 1980 positions of chloride and tritium plumes. Data interpretation from the drilling program indicates that the hydrogeologic characteristics of the subsurface rocks have marked effects on the regional ground-water flow regimen and, therefore, the movement of aqueous wastes. As expected, the waste plumes projected by the computer model for 1980, extended somewhat further downgradient than indicated by well data due to conservative worst-case assumptions in the model input and inacurate approximations of subsequent waste discharge and aquifer recharge conditions. (USGS)
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
RCRA Refresher Self-Study, Course 28582
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
Federal and state regulations require hazardous and mixed waste facility workers at treatment and storage facilities (TSFs) and <90-day accumulation areas to be trained in hazardous and mixed waste management. This course will refamiliarize and update <90-day accumulation area workers, TSF workers, and supervisors of TSF workers regarding waste identification, pollution prevention, storage area requirements, emergency response procedures, and record-keeping requirements.
RCRA Personnel Training, Course 7488
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
Federal and state regulations require hazardous and mixed waste facility workers at treatment and storage facilities (TSFs) and <90-day accumulation areas to be trained in hazardous and mixed waste management. This course will refamiliarize and update <90-day accumulation area workers, TSF workers, and supervisors of TSF workers regarding waste identification, pollution prevention, storage area requirements, emergency response procedures, and record-keeping requirements.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... Class C (GTCC) process waste at the Humboldt Bay ISFSI. PG&E submitted its license amendment request by... proposed amendment to License No. SNM-2514 to allow storage of GTCC process waste at the Humboldt Bay ISFSI... fuel and is authorized by NRC, under License No. SNM-2514, to also store GTCC activated metal waste at...
40 CFR 264.603 - Post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
....603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... treatment or storage unit has contaminated soils or ground water that cannot be completely removed or...
Classification methodology for tritiated waste requiring interim storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cana, D.; Dall'ava, D.; Decanis, C.
2015-03-15
Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less
NASA Astrophysics Data System (ADS)
Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian
2015-04-01
The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is taken into account for the numerical simulations. Hence, the simulations are performed with the code OpenGeoSys, which is especially suited for simulating coupled thermal, hydraulic and geochemical processes. The scenario simulations show an increase in the source zone emission of TCE at higher temperatures, which is primarily due to the focusing of the groundwater flow in the area of higher temperatures within the source zone and to a lesser part to an increase in TCE solubility. On the other hand, a widening of the contaminant plume and enlargement of the area for TCE biodegradation is induced, which leads to an increase in biodegradation of the chlorinated hydrocarbons. In combination almost no change in the overall ratio of degraded to emitted TCE is found, which shows that the seasonal heat storage is not negatively influencing the present TCE contamination under these assumptions. The results of this work serve to support the risk assessment for the interaction between heat storage and contaminations in the shallow subsurface and show positive interactions as well as possible conflicts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, B.D.
The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.
Storage for greater-than-Class C low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beitel, G.A.
1991-12-31
EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less
ICPP tank farm closure study. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.
1998-02-01
The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less
Wouters, Inge M.; Douwes, Jeroen; Doekes, Gert; Thorne, Peter S.; Brunekreef, Bert; Heederik, Dick J. J.
2000-01-01
As part of environmental management policies in Europe, separate collection of organic household waste and nonorganic household waste has become increasingly common. As waste is often stored indoors, this policy might increase microbial exposure in the home environment. In this study we evaluated the association between indoor storage of organic waste and levels of microbial agents in house dust. The levels of bacterial endotoxins, mold β(1→3)-glucans, and fungal extracullar polysaccharides (EPS) of Aspergillus and Penicillium species were determined in house dust extracts as markers of microbial exposure. House dust samples were collected in 99 homes in The Netherlands selected on the basis of whether separated organic waste was present in the house. In homes in which separated organic waste was stored indoors for 1 week or more the levels of endotoxin, EPS, and glucan were 3.2-, 7.6-, and 4.6-fold higher, respectively (all P < 0.05), on both living room and kitchen floors than the levels in homes in which only nonorganic residual waste was stored indoors. Increased levels of endotoxin and EPS were observed, 2.6- and 2.1-fold (P < 0.1), respectively, when separated organic waste was stored indoors for 1 week or less, whereas storage of nonseparated waste indoors had no effect on microbial agent levels (P > 0.2). The presence of textile floor covering was another major determinant of microbial levels (P < 0.05). Our results indicate that increased microbial contaminant levels in homes are associated with indoor storage of separated organic waste. These increased levels might increase the risk of bioaerosol-related respiratory symptoms in susceptible people. PMID:10653727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hladek, K.L.
1997-10-07
The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less
Applications for activated carbons from waste tires: Natural gas storage and air pollution control
Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.
1996-01-01
Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.
20. VIEW OF THE WASTE STORAGE TANKS ASSOCIATED WITH THE ...
20. VIEW OF THE WASTE STORAGE TANKS ASSOCIATED WITH THE PLATING LABORATORY. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste
Verstraeten, Ingrid M.; Fetterman, G.S.; Meyer, M.J.; Bullen, T.; Sebree, S.K.
2005-01-01
In Nebraska, a large number (>200) of shallow sand-point and cased wells completed in coarse alluvial sediments along rivers and lakes still are used to obtain drinking water for human consumption, even though construction of sand-point wells for consumptive uses has been banned since 1987. The quality of water from shallow domestic wells potentially vulnerable to seepage from septic systems was evaluated by analyzing for the presence of tracers and multiple isotopes. Samples were collected from 26 sand-point and perforated, cased domestic wells and were analyzed for bacteria, coliphages, nitrogen species, nitrogen and boron isotopes, dissolved organic carbon (DOC), prescription and nonprescription drugs, or organic waste water contaminants. At least 13 of the 26 domestic well samples showed some evidence of septic system effects based on the results of several tracers including DOC, coliphages, NH4+, NO3-, N2, ?? 15N[NO3-] and boron isotopes, and antibiotics and other drugs. Sand-point wells within 30 m of a septic system and <14 m deep in a shallow, thin aquifer had the most tracers detected and the highest values, indicating the greatest vulnerability to contamination from septic waste. Copyright ?? 2005 National Ground Water Association.
Tank 19F Folding Crawler Final Evaluation, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.
2000-10-25
The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-06-17
The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaelen, Gunter van; Verheyen, Annick
2007-07-01
The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less
Problems in shallow land disposal of solid low-level radioactive waste in the united states
Stevens, P.R.; DeBuchananne, G.D.
1976-01-01
Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These studies have necessitated the development of special drilling, sampling, well construction, and testing techniques. A recent development in borehole geophysical techniques is downhole spectral gammaray analysis which not only locates but identifies specific radionuclides in the subsurface. Field investigations are being supplemented by laboratory studies of the hydrochemistry of the transuranic elements, the kinetics of solid-liquid phase interactions, and the potential complexing of radionuclides with organic compounds and solvents which mobilize normally highly sorbable nuclides. Theoretical studies of digital predictive solute transport models are being implemented to assure their availability for application to problems and processes identified in the field and laboratory. ?? 1976 International Association of Engineering Geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 50-acre South Andover site is composed of several privately owned parcels of land near Minneapolis in Anoka County, Minnesota. There are several source areas where former activities included drum storage, waste storage, and waste burning. Solid and liquid chemical waste dumping and open pit burning of solvents occurred during the 1960's and 1970's. Investigations showed that drum storage and chemical waste disposal sites were partially obscured by auto salvage operations and more than 3 million waste tires. The ROD amendment changes the 1988 ROD for ground water based on current data from a 1990 Design Investigation. The primary contaminantsmore » of concern affecting the ground water are VOCs, including acetone, ethyl benzene, methylchloride, PCE, TCE, toluene; and metals, including arsenic, chromium, and lead.« less
NASA Astrophysics Data System (ADS)
Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian
2016-04-01
Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a second example, the option of seasonal hydrogen storage in a deep saline aquifer is considered. The induced thermal and hydraulic multiphase flow processes were simulated. Also, an integrative approach towards geophysical monitoring of gas presence was evaluated by synthetically applying these monitoring methods to the synthetic, however realistically defined numerical storage scenarios. Laboratory experiments provided parameterisations of geochemical effects caused by storage gas leakage into shallow aquifers in cases of sealing failure. Ultimately, the analysis of realistically defined scenarios of subsurface energy storage within the ANGUS+ project allows a quantification of the subsurface space claimed by a storage operation and its induced effects. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-09-01
This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)
NASA Astrophysics Data System (ADS)
Weber, Gregor; Castro, Jonathan M.
2017-05-01
Understanding the conditions that culminate in explosive eruptions of silicic magma is of great importance for volcanic hazard assessment and crisis mitigation. However, geological records of active volcanoes typically show a wide range of eruptive behavior and magnitude, which can vary dramatically for individual eruptive centers. In order to evaluate possible future scenarios of eruption precursors, magmatic system variables for different eruption types need to be constrained. Here we use petrological experiments and microanalysis of crystals to clarify the P-T-x state under which rhyodacitic melts accumulated prior to the H3 eruption; the largest Holocene Plinian eruption of Hekla volcano in Iceland. Cobalt-buffered, H2O-saturated phase equilibrium experiments reproduce the natural H3 pumice phenocryst assemblage (pl > fa + cpx > ilm + mt > ap + zrc) and glass chemistry, at 850 ± 15°C and PH2O of 130 to 175 MPa, implying shallow crustal magma storage between 5 and 6.6 km. The systematics of FeO and anorthite (CaAl2Si2O8) content in plagioclase reveal that thermal gradients were more important than compositional mixing or mingling within this magma reservoir. As these petrological findings indicate magma storage much shallower than is currently thought of Hekla's mafic system, we use the constrained storage depth in combination with deformation modeling to forecast permissible surface uplift patterns that could stem from pre-eruptive magma intrusion. Using forward modeling of surface deformation above various magma storage architectures, we show that vertical surface displacements caused by silicic magma accumulation at ∼6 km depth would be narrower than those observed in recent mafic events, which are fed from a lower crustal storage zone. Our results show how petrological reconstruction of magmatic system variables can help link signs of pre-eruptive geophysical unrest to magmatic processes occurring in reservoirs at shallow depths. This will enhance our abilities to couple deformation measurements (e.g. InSAR and GPS) to petrological studies to better constrain potential precursors to volcanic eruptions.
Emery, Robert J
2012-11-01
Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.
Hanford facility dangerous waste permit application, general information portion. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnichsen, J.C.
1997-08-21
For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).« less
Hanford facility dangerous waste permit application, PUREX storage tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, C. R.
1997-09-08
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).
30 CFR 784.23 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage and discharge... structure, permanent water impoundment, refuse pile, and coal mine waste impoundment for which plans are...; (12) Location of each water and subsidence monitoring point; (13) Location of each facility that will...
Active Sites Environmental Monitoring Program: Mid-FY 1991 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.
1991-10-01
This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading ofmore » vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.« less
Public acceptance for centralized storage and repositories of low-level waste session (Panel)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, H.R.
1995-12-31
Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance,more » and lessons learned in each country. The audience is invited to participate in the discussion.« less
Shallow-storage conditions for the rhyolite of the 1912 eruption at Novarupta, Alaska
Coombs, Michelle L.; Gardner, James E.
2001-01-01
Recent studies have proposed contrasting models for the plumbing system that fed the 1912 eruption of Novarupta, Alaska. Here, we investigate the conditions under which the rhyolitic part of the erupted magma last resided in the crust prior to eruption. Geothermometry suggests that the rhyolite was held at ∼800-850 °C, and analyses of melt inclusions suggest that it was fluid saturated and contained ∼4 wt% water. Hydrothermal, water-saturated experiments on rhyolite pumice reveal that at those temperatures the rhyolite was stable between 40 and 100 MPa, or a depth of 1.8-4.4 km. These results suggest that pre-eruptive storage and crystal growth of the rhyolite were shallow; if the rhyolite ascended from greater depths, it did so slowly enough for unzoned phenocrysts to grow as it passed through the shallow crust.
NASA Astrophysics Data System (ADS)
Güven, O.; Melville, J. G.; Molz, F. J.
1983-06-01
Analytical expressions are derived for the temperature distribution and the mean temperature of an idealized aquifer thermal energy storage (ATES) system, taking into account the heat exchange at the ground surface and the finite thickness of the overlying layer above the storage aquifer. The analytical expressions for the mean temperature may be used to obtain rough estimates of first-cycle recovery factors for preliminary evaluations of shallow confined or unconfined ATES systems. The results, which are presented in nondimensional plots, indicate that surface heat exchange may have a significant influence on the thermal behavior of shallow ATES systems. Thus it is suggested that the effects of surface heat exchange should be considered carefully and included in the detailed analyses of such ATES systems.
Francis, A J; Dobbs, S; Nine, B J
1980-01-01
Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60Co, 85Sr, and 134,137Cs, was not affected at total activity concentrations of 2.6 X 10(2) and 2.7 X 10(3) pCi/ml. PMID:7406490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, S.M.
1997-04-30
This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.
NASA Astrophysics Data System (ADS)
Magoba, Moses; Opuwari, Mimonitu
2017-04-01
This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Ren, Li; Kong, Xiangbin
2016-10-01
Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.
Favorable Decision Upholding Radioactive/Hazardous Mixed Waste Storage Civil Enforcement Policy
This page contains a copy of the U.S. Court of Appeals (District of Columbia Circuit) decision in Edison Electric Institute, et al. v. EPA, No. 91-1586, which upheld the EPA's August 29, 1991, radioactive/hazardous 'mixed waste' storage civil enforcement policy
40 CFR 240.200-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...
40 CFR 240.200-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...
The mixed low-level waste problem in BE/NWN capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.C.
1999-07-01
The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less
Generation of 3-D surface maps in waste storage silos using a structured light source
NASA Technical Reports Server (NTRS)
Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.
1992-01-01
Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eide, J.; Baillieul, T. A.; Biedscheid, J.
2003-02-26
Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less
40 CFR 264.230 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wastes. 264.230 Section 264.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.230 Special requirements for incompatible wastes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika
This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less
Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.
1986-01-01
Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns ofmore » basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.« less
Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayancsik, B.A.
1994-10-13
During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less
Environmental Hazards of Nuclear Wastes
ERIC Educational Resources Information Center
Micklin, Philip P.
1974-01-01
Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...
NASA Astrophysics Data System (ADS)
Huang, J. C.; Wright, W. V.
1982-04-01
The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.
Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials
NASA Astrophysics Data System (ADS)
Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan
2018-05-01
In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julyk, L.J.
1995-09-01
In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false [Reserved] 72.216 Section 72.216 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module discusses the hydrologic considerations that apply to land application of wastes. These are precipitation, infiltration and percolation, evapotranspiration, runoff, and groundwater. Climatic considerations that relate to wastewater storage are also discussed. Particular emphasis is given to wastewater flow, precipitation, evaporation,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.
2013-02-24
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job; Bryan, Samuel
2013-07-01
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less
Effects from past solid waste disposal practices.
Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R
1978-01-01
This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.
Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security
NASA Astrophysics Data System (ADS)
Pawar, R.
2017-12-01
Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.
Hackley, Keith C.; Liu, Chao-Li; Trainor, D.
1999-01-01
The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely ruled out.
NASA Astrophysics Data System (ADS)
Balia, R.; Littarru, B.
2010-03-01
Two examples of combined application of geophysical techniques for the pre-reclamation study of old waste landfills in Sardinia, Italy, are illustrated. The first one concerned a mine tailings basin and the second one a municipal solid waste landfill; both disposal sites date back to the 1970-80s. The gravity, shallow reflection, resistivity and induced polarization methods were employed in different combinations at the two sites, and in both cases useful information on the landfill's geometry has been obtained. The gravity method proved effective for locating the boundaries of the landfill and the shallow reflection seismic technique proved effective for the precise imaging of the landfill's bottom; conversely the electrical techniques, though widely employed for studying waste landfills, provided mainly qualitative and debatable results. The overall effectiveness of the surveys has been highly improved through the combined use of different techniques, whose individual responses, being strongly dependent on their specific basic physical characteristic and the complexity of the situation to be studied, did not show the same effectiveness at the two places.
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.1083 - Waste determination procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste determination procedures. 264... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1083 Waste...
Davis, Linda C.
2006-01-01
Radiochemical and chemical wastes generated at facilities at the Idaho National Laboratory (INL) were discharged since 1952 to infiltration ponds at the Reactor Technology Complex (RTC) (known as the Test Reactor Area [TRA] until 2005), and the Idaho Nuclear Technology and Engineering Center (INTEC) and buried at the Radioactive Waste Management Complex (RWMC). Disposal of wastewater to infiltration ponds and infiltration of surface water at waste burial sites resulted in formation of perched ground water in basalts and in sedimentary interbeds above the Snake River Plain aquifer. Perched ground water is an integral part of the pathway for waste-constituent migration to the aquifer. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to monitor the movement of radiochemical and chemical constituents in wastewater discharged from facilities to both perched ground water and the aquifer. This report presents an analysis of water-quality and water-level data collected from wells completed in perched ground water at the INL during 1999-2001, and summarizes historical disposal data and water-level-and water-quality trends. At the RTC, tritium, strontium-90, cesium-137, dissolved chromium, chloride, sodium, and sulfate were monitored in shallow and deep perched ground water. In shallow perched ground water, no tritium was detected above the reporting level. In deep perched ground water, tritium concentrations generally decreased or varied randomly during 1999-2001. During October 2001, tritium concentrations ranged from less than the reporting level to 39.4?1.4 picocuries per milliliter (pCi/mL). Reportable concentrations of tritium during July-October 2001 were smaller than the reported concentrations measured during July-December 1998. Tritium concentrations in water from wells at the RTC were likely affected by: well's distance from the radioactive-waste infiltration ponds (commonly referred to as the warm-waste ponds); water depth below the ponds; the amount of tritium discharged to radioactive-waste infiltration ponds in the past; discontinued use of radioactive-waste infiltration ponds; radioactive decay; and dilution from disposal of nonradioactive water. During 1999-2001, the strontium-90 concentrations in two wells completed in shallow perched water near the RTC exceeded the reporting level. Strontium-90 concentrations in water from wells completed in deep perched ground water at the RTC varied randomly with time. During October 2001, concentrations in water from five wells exceeded the reporting level and ranged from 2.8?0.7 picocuries per liter (pCi/L) in well USGS 63 to 83.8?2.1 pCi/L in well USGS 54. No reportable concentrations of cesium-137, chromium-51, or cobalt-60 were present in water samples from any of the shallow or deep wells at the RTC during 1999-2001. Dissolved chromium was not detected in shallow perched ground water at the RTC during 1999-2001. Concentrations of dissolved chromium during July-October 2001 in deep perched ground water near the RTC ranged from 10 micrograms per liter (?g/L) in well USGS 61 to 82 ?g/L in well USGS 55. The largest concentrations were in water from wells north and west of the radioactive-waste infiltration ponds. During July-October 2001, dissolved sodium concentrations ranged from 7 milligrams per liter (mg/L) in well USGS 78 to 20 mg/L in all wells except well USGS 68 (413 mg/L). Dissolved chloride concentrations in shallow perched ground water ranged from 10 mg/L in wells CWP 1, 3, and 4 to 53 mg/L in well TRA A 13 during 1999-2001. Dissolved chloride concentrations in deep perched ground water ranged from 5 mg/L in well USGS 78 to 91 mg/L in well USGS 73. The maximum dissolved sulfate concentration in shallow perched ground water was 419 mg/L in well CWP 1 during July 2000. Concentrations of dissolved sulfate in water from wells USGS 54, 60
USDA-ARS?s Scientific Manuscript database
Due to their shallow vertical support, remotely-sensed surface soil moisture retrievals are commonly regarded as being of limited value for water budget applications requiring the characterization of temporal variations in total terrestrial water storage (S). However, advances in our ability to esti...
Performance assessment for continuing and future operations at solid waste storage area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.
Enhanced Shielding Performance of HLW Storage Packages via Multi- Component Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winfrey, Leigh
The steel coatings developed here prevent water, dirt, and chemical contaminants from the atmosphere or soil from making contact with waste packages that would damage and weaken them during long-term storage. In addition, through this project we demonstrated that a range of coatings have this capability, will survive in the environment they will be used in, and can be deposited readily on large surfaces which is critical for their use in waste storage.
LaSala, Albert Mario; Doty, Gene C.
1976-01-01
The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion during a catastrophic flood. For these reasons, they are judged to be unsuited for long-term storage. Local conditions at several of these burial grounds are particularly unfavorable from the standpoint of safety. Depressions and swales at some burial grounds, such as numbers 4 and 5 in the 300 Area in which runoff can collect, enhance the possibility of water infiltrating through the buried wastes and transporting radionuclides to the water table. Also, during a high stage of the Columbia River, the water table conceivably could rise into burial grounds l and 2 of the 100 F Area. Most of the burial grounds on the low terraces contain either (1) reactor components and related equipment bearing activation products, principally cobalt-60, or (2) less hazardous radioactive materials such as uranium. The inventory of activation products in these burial grounds will decay to a safe level in a relatively short period of time (about 100 years), according to estimates made by C. D. Corbit, Douglas United Nuclear, Inc., 1969. The inventory of radionuclides is not considered by the ERDA staff to be complete, however. At these burial grounds containing activation products or less hazardous materials, investigations should be made of the radioactivity in soil and ground water beneath selected representative sites to verify that radionuclides are not migrating from the burial grounds. If migration is detected, field investigations should be made to determine the source or sources of the radionuclides and the desirability of removing the source wastes. Other burial grounds on the low terraces contain plutonium and fission products, which require long-term storage. Both the 300 WYE and the 300 North burial grounds are reported to contain plutonium in large quantities. Burial ground no. l in the 300 Area reportedly also contains plutonium. The inventory records of any other burial grounds on the low terraces suspected of containing plutonium should be reviewed to determine if pl
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
Nitrate in ground water and spring water near four dairy farms in North Florida, 1990-93
Andrews, W.J.
1994-01-01
Concentrations of nitrate and other selected water- quality characteristics were analyzed periodically for two years in water from 51 monitoring wells installed at four farms and in water discharging from three nearby springs along the Suwannee River in Lafayette and Suwannee Counties to examine the quality of ground water at these farms and the transport of nutrients in ground water to the nearby spring-fed Suwannee River: Ground water from shallow wells, which were completed in the top ten feet of the saturated zone in a surficial sandy aquifer and in the karstic Upper Floridan aquifer generally had the highest concentrations of nitrate, ranging from <.02 to 130 mg/L as nitrogen. Nitrate concentrations commonly exceeded the primary drinking water standard of 10 mg/L for nitrate as nitrogen in water from shallow wells, which tapped the top ten feet of the uppermost aquifers near waste-disposal areas such as wastewater lagoons and defoliated, intensive-use areas near milking barns. Upgradient from waste-disposal areas, concentrations of nitrate in ground water were commonly less than 1 mg/L as nitrogen. Water samples from deep wells (screened 20 feet deeper than shallow wells in these aquifers) generally had lower concentrations of nitrate (ranging from <0.02 to 84 mg/L) than water from shallow wells. Water samples from the three monitored springs (Blue, Telford, and Convict Springs) had nitrate concentrations ranging from 1.5 to 6.5 mg/L as nitrogen, which were higher than those typically occurring in water from upgradient wells at the monitored dairy farms or from back- ground wells sampled in the region. Analyses of nitrogen isotope ratios in nitrate indicated that leachate from animal wastes was the principal source of nitrate in ground water adjacent to waste-disposal areas at the monitored and unmonitored dairy farms. Leachate from a combi- nation of fertilizers, soils, and animal wastes appeared to be the source of nitrate in ground- water downgradient from pastures and wastewater spray fields at dairy farms and in water discharging from three nearby springs. Although denitrifying bacteria were present in counts sometimes exceeding 240,000 colonies/100mL in water from dairy-farm monitoring wells, ground water in the uppermost aquifers in Lafayette and Suwannee Counties generally contained too much oxygen for denitrification to remove nitrate from shallow ground water. Denitrification was more likely to occur in deeper ground water, which typically has lower dissolved oxygen concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burt, D.L.
1994-04-01
The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.
NASA Technical Reports Server (NTRS)
Autrey, David (Inventor); Morrison, Terrell Lee (Inventor); Kaufman, Cory (Inventor)
2017-01-01
A toilet for use on a space vehicle has a toilet bowl having a storage canister at a remote end for receiving human waste. The compactor includes a cable connected to a lever which pulls the cable in a direction forcing the compactor into the storage canister to compact the captured waste when the lever is actuated.
30 CFR 780.14 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and non-coal waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage... water impoundment, refuse pile, and coal mine waste impoundment for which plans are required by § 780.25... architecture. [44 FR 15357, Mar. 13, 1979; 44 FR 49685, Aug. 24, 1979, as amended at 45 FR 51550, Aug. 4, 1980...
This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle
Cost Implications of an Interim Storage Facility in the Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Joshua J.; Joseph, III, Robert Anthony; Howard, Rob L
2016-09-01
This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.
NASA Technical Reports Server (NTRS)
Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.
1972-01-01
The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.
Muenhor, Dudsadee; Harrad, Stuart; Ali, Nadeem; Covaci, Adrian
2010-10-01
This study reports concentrations of brominated flame retardants in dust samples (n=25) and in indoor (n=5) and outdoor air (n=10) (using PUF disk passive air samplers) from 5 electronic and electrical waste (e-waste) storage facilities in Thailand. Concentrations of Sigma(10)PBDEs (BDEs 17, 28, 47, 49, 66, 85, 99, 100, 153 and 154) in outdoor air in the vicinity of e-waste storage facilities ranged from 8 to 150 pg m(-3). Indoor air concentrations ranged from 46 to 350 pg m(-3), with highest concentrations found in a personal computer and printer waste storage room at an e-waste storage facility. These are lower than reported previously for electronic waste treatment facilities in China, Sweden, and the US. Concentrations of Sigma(21)PBDEs (Sigma(10)PBDEs+BDEs 181, 183, 184, 191, 196, 197, 203, 206, 207, 208 and 209), decabromodiphenylethane (DBDPE), decabromobiphenyl (BB-209) in dust were 320-290,000, 43-8700 and <20-2300 ng g(-1) respectively, with the highest concentrations of Sigma(21)PBDEs, BDE-209 and DBDPE in a room used to house discarded TVs, stereos and radios. PBDE concentrations in dust were slightly higher but within the range of those detected in workshop floor dust from an e-waste recycling centre in China. The highest concentration of BB-209 was detected in a room storing discarded personal computers and printers. Consistent with recent reports of elevated ratios of BDE-208:BDE-209 and BDE-183:BDE-209 in household electronics from South China, percentage ratios of BDE-208:BDE-209 (0.64-2.9%) and of BDE-208:BDE-183 (2.8-933%) in dust samples exceeded substantially those present in commercial deca-BDE and octa-BDE formulations. This suggests direct migration of BDE-208 and other nonabrominated BDEs from e-waste to the environment. Under realistic high-end scenarios of occupational exposure to BDE-99, workers in the facilities were exposed above a recently-published Health Based Limit Value for this congener. Reassuringly, estimated exposures to BDE-209 were below the USEPA's reference dose for this congener. Copyright 2010 Elsevier Ltd. All rights reserved.
Waste Management Decision-Making Process During a Homeland Security Incident Response
A step-by-step guide on how to make waste management-related decisions including how waste can be minimized, collected and treated, as well as where waste can be sent for staging, storage and final disposal.
The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulik, V.I.; Biland, A.B.
2012-07-01
New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less
Brown, Philip M.; Brown, D.L.; Reid, M.S.; Lloyd, O.B.
1979-01-01
The report describes the subsurface distribution of rocks of Cretaceous to Late Jurassic( ) age in the Atlantic Coastal Plain , South Carolina, and Georgia, and examines their potential for deep-well waste storage into th part of the regional sediment mass which lies below the deepest zones containing usable ground waters. For the study, usable ground water is considered to be that which contains less than 10,000 mg/L dissolved solids. Using a group of geohydrologic parameters derived from or combining 21 categories of basic data, established from study and interpretation of well cuttings and geophysical logs, a series of 32 regional maps and 8 stratigraphic cross sections was constructed. For each of the eight geologic units delineated in the subsurface, the maps illustrate the distribution of waste-storage potential in terms of areal extent, depth below land surface, sand-shale geometry, and the approximate sodium chloride concentration of a unit 's nonusable ground water. In areas where the geologic units contain nonusable ground water, the depth below land surface and the thickness of potential waste-storage reservoir and reservoir-seal combinations are variable. The range in variability appears to be broad enough to meet the need for a wide choice among the geologic requirements that would normally be considered in selecting specific waste-storage sites for detailed examination. (Woodard-USGS)
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
Magma Transport from Deep to Shallow Crust and Eruption
NASA Astrophysics Data System (ADS)
White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.
2016-12-01
We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.
Public health response to striking solid waste management.
Murti, Michelle; Ayre, Reg; Shapiro, Howard; de Burger, Ron
2011-10-01
In 2009, the City of Toronto, Ontario, Canada, experienced a six-week labor disruption involving 24,000 city workers that included solid waste and public health employees. In an attempt to control illegal dumping and to manage garbage storage across the city during this period, 24 temporary garbage storage sites were established by the city (mostly in local parks) for residents to dispose of their household waste. No other municipality in North America has attempted to operate this many temporary sites for this long a period. Management and nonunion staff from Healthy Environments in Toronto Public Health performed daily inspections, responded to community questions, issued public health orders, and worked closely with Solid Waste Management and the Ministry of the Environment to actively manage the public health concerns associated with these sites. This intensive oversight mitigated public health risks to the community and facilitated an effective, safe solution to the temporary garbage storage problem.
Stockton, S.L.; Balch, Alfred H.
1978-01-01
The Salt Valley anticline, in the Paradox Basin of southeastern Utah, is under investigation for use as a location for storage of solid nuclear waste. Delineation of thin, nonsalt interbeds within the upper reaches of the salt body is extremely important because the nature and character of any such fluid- or gas-saturated horizons would be critical to the mode of emplacement of wastes into the structure. Analysis of 50 km of conventional seismic-reflection data, in the vicinity of the anticline, indicates that mapping of thin beds at shallow depths may well be possible using a specially designed adaptation of state-of-the-art seismic oil-exploration procedures. Computer ray-trace modeling of thin beds in salt reveals that the frequency and spatial resolution required to map the details of interbeds at shallow depths (less than 750 m) may be on the order of 500 Hz, with surface-spread lengths of less than 350 m. Consideration should be given to the burial of sources and receivers in order to attenuate surface noise and to record the desired high frequencies. Correlation of the seismic-reflection data with available well data and surface geology reveals the complex, structurally initiated diapir, whose upward flow was maintained by rapid contemporaneous deposition of continental clastic sediments on its flanks. Severe collapse faulting near the crests of these structures has distorted the seismic response. Evidence exists, however, that intrasalt thin beds of anhydrite, dolomite, and black shale are mappable on seismic record sections either as short, discontinuous reflected events or as amplitude anomalies that result from focusing of the reflected seismic energy by the thin beds; computer modeling of the folded interbeds confirms both of these as possible causes of seismic response from within the salt diapir. Prediction of the seismic signatures of the interbeds can be made from computer-model studies. Petroleum seismic-reflection data are unsatisfactory for mapping the thin beds because of the lack of sufficient resolution to provide direct evidence of the presence of the thin beds. However, indirect evidence, present in these data as discontinuous seismic events, suggests that two geophysical techniques designed for this specific problem would allow direct detection of the interbeds in salt. These techniques are vertical seismic profiling and shallow, short-offset, high-frequency, seismic-reflection recording.
Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio
2018-03-01
The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.
2013-12-01
Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.
Unitized regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2008-01-01
A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.
Kas'ianov, V I
2005-01-01
The paper presents the results of a study of the impact of large-scale solid waste storage on ascariasis morbidity in the population. The use of sewage sediments as an organic soil fertilizer to grow strawberries and table greens is shown to substantially increase the risk of Ascaris infection in the population. Storage of solid domestic garbage on specialized dumping grounds does not lead to mass environmental pollution with geohelminthic eggs.
Method for storage of solid waste
Mecham, William J.
1976-01-01
Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.
Hydrologic conditions at the Idaho National Engineering Laboratory, Idaho, emphasis; 1974-1978
Barraclough, Jack T.; Lewis, Barney D.; Jensen, Rodger G.
1981-01-01
Aqueous chemical and radioactive wastes have been discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 and has affected the quality of the ground water in the underlying Snake River Plain aquifer. Ongoing studies conducted from 1974 through 1978 have shown the perpetuation of a perched ground-water zone in the basalt underlying the waste disposal ponds at the INEL 's Test Reactor Area and of several waste plumes in the regional aquifer created by deep well disposal at the Idaho Chemical Processing Plant (ICPP). The perched zone contains tritium, chromium-51, cobalt-60, strontium-90, and several nonradioactive chemicals. Tritium has formed the largest waste plume south of the ICPP, and accounts for 95 percent of the total radioacticity disposed of through the ICPP disposal well. Waste plumes with similar configurations and flowpaths contain sodium, chloride, and nitrate. Strontium-90, iodine-129, and cesium-137 are also discharged through the well but they are sorbed from solution as they move through the aquifer or are discharged in very small quantities. Strontium-90 and iodine-129 have formed small waste plumes and cesium-137 is not detectable in ground-water samples. Radionuclide plume size and concentrations therein are controlled by aquifer flow conditions, the quantity discharged, radioactive decay, sorption, dilution by dispersion, and perhaps other chemical reactions. Chemical wastes are subject to the same processes except for radioactive decay. (USGS)
Internal evaporation and condensation characteristics in the shallow soil layer of an oasis
NASA Astrophysics Data System (ADS)
Ao, Yinhuan; Han, Bo; Lu, Shihua; Li, Zhaoguo
2016-07-01
The surface energy balance was analyzed using observations from the Jinta oasis experiment in the summer of 2005. A negative imbalance energy flux was found during daytime that could not be attributed to the soil heat storage process. Rather, the imbalance was related to the evaporation within the soil. The soil heat storage rate and the soil moisture variability always showed similar variations at a depth of 0.05 m between 0800 and 1000 (local standard time), while the observed imbalanced energy flux was very small, which implied that water vapor condensation occurred within the soil. Therefore, the distillation in shallow soil can be derived using reliable surface energy flux observations. In order to show that the importance of internal evaporation and condensation in the shallow soil layer, the soil temperatures at the depths of 0.05, 0.10, and 0.20 m were reproduced using a one-dimensional thermal diffusion equation, with the observed soil temperature at the surface and at 0.40 m as the boundary conditions. It was found that the simulated soil temperature improves substantially in the shallow layer when the water distillation is added as a sink/source term, even after the soil effective thermal conductivity has been optimized. This result demonstrates that the process of water distillation may be a dominant cause of both the temperature and moisture variability in the shallow soil layer.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Kumar, Ramesh; Shaikh, Babar Tasneem; Somrongthong, Ratana; Chapman, Robert S
2015-01-01
Background and Objective: Infectious waste management practices among health care workers in the tertiary care hospitals have been questionable. The study intended to identify issues that impede a proper infectious waste management. Methods: Besides direct observation, in-depths interviews were conducted with the hospital administrators and senior management involved in healthcare waste management during March 2014. We looked at the processes related to segregation, collection, storage and disposal of hospital waste, and identified variety of issues in all the steps. Results: Serious gaps and deficiencies were observed related to segregation, collection, storage and disposal of the hospital wastes, hence proving to be hazardous to the patients as well as the visitors. Poor safety, insufficient budget, lack of trainings, weak monitoring and supervision, and poor coordination has eventually resulted in improper waste management in the tertiary hospitals of Rawalpindi. Conclusion: Study has concluded that the poor resources and lack of healthcare worker’s training in infectious waste results in poor waste management at hospitals. PMID:26430405
Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City
NASA Astrophysics Data System (ADS)
Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.
2017-07-01
Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.
40 CFR 265.72 - Manifest discrepancies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...
40 CFR 265.72 - Manifest discrepancies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...
40 CFR 265.72 - Manifest discrepancies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post... and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
40 CFR 264.54 - Amendment of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...
40 CFR 265.54 - Amendment of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...
40 CFR 265.54 - Amendment of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...
40 CFR 264.54 - Amendment of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...
NASA Astrophysics Data System (ADS)
Gassenmeier, M.; Sens-Schönfelder, C.; Delatre, M.; Korn, M.
2015-01-01
Regarding the exploitation of natural resources, storage of waste or subsurface construction, there is an increasing need to obtain comprehensive knowledge about the subsurface and its temporal changes. We investigate the possibility of a passive monitoring using ambient seismic noise, which is cheap and continuous compared to active seismics. We work with data acquired with a seismic network in Ketzin (Germany) where 67 271 tons of CO2 were injected from 2008 June until 2013 August into a saline aquifer at a depth of about 650 m. Monitoring the expansion of the CO2 plume is essential for the characterization of the reservoir as well as the detection of potential leakage. By cross-correlating about 4 yr of passive seismic data in a frequency range of 0.05-4.5 Hz we found periodic velocity variations with a period of approximately 1 yr that cannot be caused by the CO2 injection. The prominent direction of the noise wavefield indicates a wind farm as the dominant source providing the temporally stable noise field. This spacial stability excludes variations of the noise source distribution as a cause of spurious velocity variations. Based on an amplitude decrease associated with time windows towards later parts of the coda, we show that the variations must be generated in the shallow subsurface. A comparison to groundwater level data reveals a direct correlation between depth of the groundwater level and the seismic velocity. The influence of ground frost on the seismic velocities is documented by a sharp increase of velocity when the maximum daily temperature stays below 0 °C. Although the observed periodic changes and the changes due to ground frost affect only the shallow subsurface, they mask potential signals of material changes from the reservoir depths.
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2012 CFR
2012-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2014 CFR
2014-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
40 CFR 262.104 - What are the minimum performance criteria?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste en route from a laboratory to an on-site hazardous waste accumulation area; or (2) To a treatment... hazardous waste and that it is prudent to transfer it directly to a treatment, storage, and disposal...) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE University Laboratories...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
40 CFR 264.199 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible...(b) is complied with. (b) Hazardous waste must not be placed in a tank system that has not been...
40 CFR 761.216 - Unmanifested waste report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
40 CFR 761.216 - Unmanifested waste report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 8 2013-07-01 2013-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...
Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...
40 CFR 761.65 - Storage for disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Storage for disposal. 761.65 Section... PROHIBITIONS Storage and Disposal § 761.65 Storage for disposal. This section applies to the storage for... greater. (a)(1) Storage limitations. Any PCB waste shall be disposed of as required by subpart D of this...
40 CFR 761.65 - Storage for disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Storage for disposal. 761.65 Section... PROHIBITIONS Storage and Disposal § 761.65 Storage for disposal. This section applies to the storage for... greater. (a)(1) Storage limitations. Any PCB waste shall be disposed of as required by subpart D of this...
Waste Generation Overview Refresher, Course 21464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.
Shallow and Deep Groundwater Contributions to Ephemeral Streamflow Generation
NASA Astrophysics Data System (ADS)
Zimmer, M. A.; McGlynn, B. L.
2016-12-01
Our understanding of streamflow generation processes in low relief, humid landscapes is limited. To address this, we utilized an ephemeral-to-intermittent drainage network in the Piedmont region of the United States to gain new understanding about the drivers of ephemeral streamflow generation, stream-groundwater interactions, and longitudinal expansion and contraction of the stream network. We used hydrometric and chemical data collected within zero through second order catchments to characterize streamflow and overland, shallow soil, and deep subsurface flow across landscape positions. Results showed bi-directionality in stream-groundwater gradients that were dependent on catchment storage state. This led to annual groundwater recharge magnitudes that were similar to annual streamflow. Perched shallow and deep water table contributions shifted dominance with changes in catchment storage state, producing distinct stream hydrograph recession constants. Active channel length versus runoff followed a consistent relationship independent of storage state, but exhibited varying discharge-solute hysteresis directions. Together, our results suggest that temporary streams can act as both important groundwater recharge and discharge locations across the landscape, especially in this region where ephemeral drainage densities are among the highest recorded. Our results also highlight that the internal catchment dynamics that generate temporary streams play an important role in dictating biogeochemical fluxes at the landscape scale.
NASA Astrophysics Data System (ADS)
de La Bernardie, Jérôme; de Dreuzy, Jean-Raynald; Bour, Olivier; Thierion, Charlotte; Ausseur, Jean-Yves; Lesuer, Hervé; Le Borgne, Tanguy
2016-04-01
Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the complexity of fractured media. The purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, a simplified numerical model of fractured media is considered with few fractures. Here we present the different steps for building the model and for achieving the sensitivity analysis. First, an analytical and dimensional study on the equations has been achieved to highlight the main parameters that control the optimization of the system. In a second step, multiphysics software COMSOL was used to achieve numerical simulations in a very simplified model of fractured media. The objective was to test the efficiency of such a system to store and recover thermal energy depending on i) the few parameters controlling fracture network geometry (size and number of fractures) and ii) the frequency of cycles used to store and recover thermal energy. The results have then been compared to reference shallow geothermal systems already set up for porous media. Through this study, relationships between structure, heat exchanges and storage may be highlighted.
Radon exposure at a radioactive waste storage facility.
Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M
2014-06-01
The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.
In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less
40 CFR 265.256 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.256 Special requirements for ignitable or reactive waste. (a) Ignitable or reactive waste must not be placed in a pile unless the waste and pile satisfy all applicable requirements of 40 CFR part 268, and: (1) Addition of the waste to an existing pile...
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...
40 CFR 761.340 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... leaching characteristics for storage or disposal. (a) Existing accumulations of non-liquid, non-metal PCB bulk product waste. (b) Non-liquid, non-metal PCB bulk product waste from processes that continuously generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... the owners and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schruder, Kristan; Goodwin, Derek
2013-07-01
AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, S.; Kawase, K.; Iijima, K.
2013-07-01
After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup andmore » waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less
40 CFR 273.53 - Storage time limits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... transfer facility for ten days or less. (b) If a universal waste transporter stores universal waste for more than ten days, the transporter becomes a universal waste handler and must comply with the...
Radioactive waste material melter apparatus
Newman, D.F.; Ross, W.A.
1990-04-24
An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Astrophysics Data System (ADS)
Trebilcox, G. J.; Lundberg, W. L.
1981-03-01
The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.
Radioactive waste material melter apparatus
Newman, Darrell F.; Ross, Wayne A.
1990-01-01
An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one ormore » more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.« less
Leaking Underground Storage Tank (LUST) Trust Fund
In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.
Progress and future direction for the interim safe storage and disposal of Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.
This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.
2015-12-01
Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow magma storage, as well as properties of the ERZ conduit and influx of magma into Kīlauea's shallow magma reservoir. Reservoir influx parameters cannot in general be uniquely resolved, but reservoir volume and exsolved volatile content are well constrained; ERZ conduit radius may also be estimated given some simplifying assumptions.
40 CFR 265.257 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.257 Special requirements for incompatible wastes. (a... the same pile, unless § 265.17(b) is complied with. (b) A pile of hazardous waste that is incompatible with any waste or other material stored nearby in other containers, piles, open tanks, or surface...
40 CFR 761.211 - Unmanifested waste report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...
40 CFR 761.211 - Unmanifested waste report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...
40 CFR 761.211 - Unmanifested waste report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...
40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...
40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.229 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reactive waste. 264.229 Section 264.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.229 Special requirements for ignitable or reactive...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.
2014-08-04
The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less
NASA Astrophysics Data System (ADS)
Correa Silva, R.; Larter, S.
2016-12-01
Atmospheric CO2 capture into biomass is one of the capture options for negative emission technologies, although proposed sequestration systems such as the permanent burial of total fresh biomass, algal lipids or soil amendment with biochar are yet to be successfully demonstrated as effective at scale. In the context of carbon sequestration, shallow geological reservoirs have not been exhaustively explored, even though they pose, away from groundwater protection zones, potentially low implementation cost, and geographically abundant potential carbon storage reservoirs. Typical carbon storage vectors considered, such as CO2 and biochar, are not suitable for shallow aquifer disposal, due either to cap rock containment requirements, or shallow aquifer CO2 densities, or issues related to formation damage from solid particles. Thus, a cost-effective technology, aimed at converting biomass into a large-scale carbon vector fit-for-disposal in shallow formations could be significant, linking promising carbon capture and containment strategies. In this work, we discuss the development of unconventional carbon vectors for subsurface storage in the form of Functionalized, Refractory and Aqueous Compatible Carbon Compounds (FRACCC), as a potential alternative negative emission technology (Larter et al., 2010). The concept is based on CO2 capture into microbial and algal biomass, followed by the modification of biomass constituents through facile chemical reactions aimed at rendering the biomass efficiently into a stable, biologically refractory but water soluble form, similar in some regards, to dissolved organic matter in the oceans, then sequestering the material in geological settings. As the injected material is not buoyant, containment specifications are more modest than for CO2 injection and potentially, more reservoirs could be accessible! This work analyses the technological, economic and societal implications of such potential FRACCC technologies, and make an assessment of whether such routes are likely to be technically, economically and politically viable.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false When is your LLMW no longer eligible for the storage and treatment conditional exemption? 266.255 Section 266.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES O...
125. ARAI Contaminated waste storage tank (ARA729). Shows location of ...
125. ARA-I Contaminated waste storage tank (ARA-729). Shows location of tank on the ARA-I site, section views, connecting pipeline, and other details. Norman Engineering Company 961-area/SF-301-3. Date: January 1959. Ineel index code no. 068-0301-00-613-102711. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Wilson, Lionel; Head, James W., III
1988-01-01
The fluid dynamics of the well-documented eruptive episodes at Pu'u 'O'o, Kilauea are used to investigate quantitatively the size and shape of the shallow conduit system beneath the vent. The possible geometry of this region is considered. The dynamics of the eruptive episodes is used to place restrictions on the size and shape of the region and thermal calculations are used to show that the geometry is consistent with the region being the fluid residue of the partially cooled, major preepisode 1 dike. The Pu'u 'O'o example is used to illustrate some general properties of shallow magma storage zones.
Hospital waste management in El-Beheira Governorate, Egypt.
Abd El-Salam, Magda Magdy
2010-01-01
This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and clear lines of responsibilities between the departments involved in hospital waste management. Effective medical waste management programs are multisectoral and require cooperation between all levels of implementation, from national and local governments to hospital staff and private businesses. 2009 Elsevier Ltd. All rights reserved.
O. Fovet; L. Ruiz; M. Hrachowitz; M. Faucheux; C. Gascuel-Odoux
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel Storage Installation or a Monitored Retrievable Storage Facility.'' This draft regulatory guide is proposed revision 2 of Regulatory Guide 3.50, which provides a format that the NRC considers acceptable for submitting the information for license applications to store spent nuclear fuel, high-level radioactive waste, and/or reactor-related Greater than Class C waste.
Integrated waste management system costs in a MPC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supko, E.M.
1995-12-01
The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.
Medium Deep High Temperature Heat Storage
NASA Astrophysics Data System (ADS)
Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo
2015-04-01
Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.
40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).
Code of Federal Regulations, 2011 CFR
2011-07-01
... risks to humans or to the environment resulting from exposure to hazardous wastes or hazardous... human health and the environment, to include, for areas where wastes will remain in place, monitoring... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).
Code of Federal Regulations, 2013 CFR
2013-07-01
... risks to humans or to the environment resulting from exposure to hazardous wastes or hazardous... human health and the environment, to include, for areas where wastes will remain in place, monitoring... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
....113 Section 264.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... the final volume of hazardous wastes, or the final volume of non-hazardous wastes if the owner or...
40 CFR 240.206-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... spillages occur, emptying the solid waste storage area at least weekly, and routinely cleaning the remainder of the facility. (b) Solid waste and residue should not be allowed to accumulate at the facility for...
NASA Astrophysics Data System (ADS)
Gerardus Zuurbier, Koen; Stuyfzand, Pieter Jan
2017-02-01
Coastal aquifers and the deeper subsurface are increasingly exploited. The accompanying perforation of the subsurface for those purposes has increased the risk of short-circuiting of originally separated aquifers. This study shows how this short-circuiting negatively impacts the freshwater recovery efficiency (RE) during aquifer storage and recovery (ASR) in coastal aquifers. ASR was applied in a shallow saltwater aquifer overlying a deeper, confined saltwater aquifer, which was targeted for seasonal aquifer thermal energy storage (ATES). Although both aquifers were considered properly separated (i.e., a continuous clay layer prevented rapid groundwater flow between both aquifers), intrusion of deeper saltwater into the shallower aquifer quickly terminated the freshwater recovery. The presumable pathway was a nearby ATES borehole. This finding was supported by field measurements, hydrochemical analyses, and variable-density solute transport modeling (SEAWAT version 4; Langevin et al., 2007). The potentially rapid short-circuiting during storage and recovery can reduce the RE of ASR to null. When limited mixing with ambient groundwater is allowed, a linear RE decrease by short-circuiting with increasing distance from the ASR well within the radius of the injected ASR bubble was observed. Interception of deep short-circuiting water can mitigate the observed RE decrease, although complete compensation of the RE decrease will generally be unattainable. Brackish water upconing from the underlying aquitard towards the shallow recovery wells of the ASR system with multiple partially penetrating wells (MPPW-ASR) was observed. This leakage
may lead to a lower recovery efficiency than based on current ASR performance estimations.
NASA Astrophysics Data System (ADS)
Lautz, L. K.; Hoke, G. D.; Lu, Z.; Siegel, D. I.
2013-12-01
Hydraulic fracturing has the potential to introduce saline water into the environment due to migration of deep formation water to shallow aquifers and/or discharge of flowback water to the environment during transport and disposal. It is challenging to definitively identify whether elevated salinity is associated with hydraulic fracturing, in part, due to the real possibility of other anthropogenic sources of salinity in the human-impacted watersheds in which drilling is taking place and some formation water present naturally in shallow groundwater aquifers. We combined new and published chemistry data for private drinking water wells sampled across five southern New York (NY) counties overlying the Marcellus Shale (Broome, Chemung, Chenango, Steuben, and Tioga). Measurements include Cl, Na, Br, I, Ca, Mg, Ba, SO4, and Sr. We compared this baseline groundwater quality data in NY, now under a moratorium on hydraulic fracturing, with published chemistry data for 6 different potential sources of elevated salinity in shallow groundwater, including Appalachian Basin formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. A multivariate random number generator was used to create a synthetic, low salinity (< 20 mg/L Cl) groundwater data set (n=1000) based on the statistical properties of the observed low salinity groundwater. The synthetic, low salinity groundwater was then artificially mixed with variable proportions of different potential sources of salinity to explore chemical differences between groundwater impacted by formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. We then trained a multivariate, discriminant analysis model on the resulting data set to classify observed high salinity groundwater (> 20 mg/L Cl) as being affected by formation water, road salt, septic effluent, landfill leachate, animal waste, or water softeners. Single elements or pairs of elements (e.g. Cl and Br) were not effective at discriminating between sources of salinity, indicating multivariate methods are needed. The discriminant analysis model classified most accurately samples affected by formation water and landfill leachate, whereas those contaminated by road salt, animal waste, and water softeners were more likely to be discriminated as contaminated by a different source. Using this approach, no shallow groundwater samples from NY appear to be affected by formation water, suggesting the source of salinity pre-hydraulic fracturing is primarily a combination of road salt, septic effluent, landfill leachate, and animal waste.
NASA Astrophysics Data System (ADS)
Kreitler, Charles W.; Akhter, M. Saleem; Donnelly, Andrew C. A.
1990-09-01
Hydrologic hydrochemical investigations were conducted to determine the long-term fate of hazardous chemical waste disposed in the Texas Gulf Coast Tertiary formations by deep-well injection. The study focused on the hydrostatic section of the Frio Formation because it is the host of a very large volume of injected waste and because large data bases of formation pressures and water chemistry are available. Three hydrologic regimes exist within the Frio Formation: a shallow fresh to moderately saline water section in the upper 3,000 4,000 ft (914 1,219 m); an underlying 4,000- to 5,000-ft-thick (1,219- to 1,524-m) section with moderate to high salinities: and a deeper overpressured section with moderate to high salinities. The upper two sections are normally pressured and reflect either freshwater or brine hydrostatic pressure gradients. Geopressured conditions are encountered as shallow as 6,000 ft (1,829 m). The complexity of the hydrologic environment is enhanced due to extensive depressurization in the 4,000- to 8,000-ft-depth (1,219- to 2,438-m) interval, which presumably results from the estimated production of over 10 billion barrels (208 × 106 m3) of oil equivalent and associated brines from the Frio in the past 50 yr. Because of the higher fluid density and general depressurization in the brine hydrostatic section, upward migration of these brines to shallow fresh groundwaters should not occur. Depressured oil and gas fields, however, may become sinks for the injected chemical wastes. Water samples appear to be in approximate oxygen isotopic equilibrium with the rock matrix, suggesting that active recharge of the Frio by continental waters is not occurring. In the northern Texas Gulf Coast region salt dome dissolution is a prime process controlling water chemistry. In the central and southern Frio Formation, brines from the deeper geopressured section may be leaking into the hydrostatic section. The lack of organic acids and the alteration of Frio oils from samples collected from depths shallower than approximately 7,000 ft (2,133 m) suggest microbial degradation of organic material. This has useful implications for degradation of injected chemical wastes and needs to be investigated further.
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
Pipe overpack container for trasuranic waste storage and shipment
Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.
1999-01-01
A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.
Do scaly clays control seismicity on faulted shale rocks?
NASA Astrophysics Data System (ADS)
Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie
2018-04-01
One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.
Process for disposal of aqueous solutions containing radioactive isotopes
Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.
1979-01-01
A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.
300 Area waste acid treatment system closure plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUKE, S.N.
1999-05-17
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less
DWPF Safely Dispositioning Liquid Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-05
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less
NASA Astrophysics Data System (ADS)
Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.
2011-04-01
The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.
Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.
Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua
2017-04-01
Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stress-strain response of plastic waste mixed soil.
Babu, G L Sivakumar; Chouksey, Sandeep Kumar
2011-03-01
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Cramer, Alisha J.; Cole, Jacqueline M.
2017-05-08
The ever-increasing demands of the modern world continue to place substantial strain on the environment. To help alleviate the damage done to the natural world, the encapsulation of small molecules or ions (guests) into porous inorganic structural frameworks (hosts) provides a potential remedy for some of the environmental concerns facing us today. These concerns include the removal of harmful pollutants from water or air, the safe entrapment of nuclear waste materials, or the purification and storage of small molecules that act as alternative fuel sources. For this study, we review the trends in using inorganic materials as hostmedia for themore » removal or storage of various wastes and alternative fuels. In conclusion, we cover the treatment of water contaminated with dyes or heavy metals, air pollution alleviation via CO 2, SO x, NO x, and volatile organic compound containment, nuclear waste immobilization, and storage for H 2 and methane as alternative fuels.« less
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 761.75 - Chemical waste landfills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...
40 CFR 761.75 - Chemical waste landfills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...
40 CFR 761.75 - Chemical waste landfills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water. (b) The provisions of the plan must be carried out immediately whenever there...
40 CFR 761.215 - Exception reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...
40 CFR 761.215 - Exception reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...
40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... remediation wastes into or within a CAMU does not constitute creation of a unit subject to minimum technology... wastes for implementing corrective action or cleanup at the facility. A CAMU must be located within the...
40 CFR 264.120 - Certification of completion of post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification that the post-closure care period for the hazardous waste disposal unit was performed in...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... later than 60 days after completion of the established post-closure care period for each hazardous waste...
40 CFR 761.61 - PCB remediation waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...
NASA Astrophysics Data System (ADS)
Coppola, Diego; Di Muro, Andrea; Peltier, Aline; Villeneuve, Nicolas; Ferrazzini, Valerie; Favalli, Massimiliano; Bachèlery, Patrick; Gurioli, Lucia; Harris, Andrew; Moune, Séverine; Vlastélic, Ivan; Galle, Bo; Arellano, Santiago; Aiuppa, Alessandro
2017-04-01
During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system and resulted in collapse of the summit crater. Following the 2007 eruption, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system to provoke four small (<5 × 10 6 m3) eruptions from vents located close to the summit cone. Progressive increase in output rate between each eruption culminated, with the fifth, longest-lasting (August-October 2015) and largest-volume (45 ± 15 × 10 6 m3) eruption of the cycle. Activity observed in 2014 and 2015 points to a phase of shallow system rejuvenation and discharge, whereby continuous magma supply provoked eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continued until unloading of the deepest, least differentiated magma triggered an "effusive paroxysm" that emptied the main shallow reservoir and terminated the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.
Safety evaluation for packaging (onsite) concrete-lined waste packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
1997-09-25
The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
40 CFR 261.142 - Cost estimate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...
40 CFR 261.142 - Cost estimate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...
40 CFR 261.142 - Cost estimate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...
40 CFR 264.96 - Compliance period.
Code of Federal Regulations, 2011 CFR
2011-07-01
....96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.96 Compliance period. (a) The Regional Administrator will...
Hazardous Waste Cleanup: Clean Harbors BTD, LLC in Clarence, New York
The Clean Harbors BDT, LLC site was a commercial treatment, storage, and disposal facility that treated reactive hazardous wastes, pressurized waste, pharmaceutical and packaged laboratory chemicals. The facility was initially owned and operated by Wilson-
Code of Federal Regulations, 2012 CFR
2012-01-01
... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.
2008-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockie, K.A.; Suttora, L.C.; Quigley, K.D.
2007-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabbaghi, Mostafa, E-mail: mostafas@buffalo.edu; Esmaeilian, Behzad, E-mail: b.esmaeilian@neu.edu; Raihanian Mashhadi, Ardeshir, E-mail: ardeshir@buffalo.edu
Highlights: • We analyzed a data set of HDDs returned back to an e-waste collection site. • We studied factors that affect the storage behavior. • Consumer type, brand and size are among factors which affect the storage behavior. • Commercial consumers have stored computers more than household consumers. • Machine learning models were used to predict the storage behavior. - Abstract: Consumers often have a tendency to store their used, old or un-functional electronics for a period of time before they discard them and return them back to the waste stream. This behavior increases the obsolescence rate of usedmore » still-functional products leading to lower profitability that could be resulted out of End-of-Use (EOU) treatments such as reuse, upgrade, and refurbishment. These types of behaviors are influenced by several product and consumer-related factors such as consumers’ traits and lifestyles, technology evolution, product design features, product market value, and pro-environmental stimuli. Better understanding of different groups of consumers, their utilization and storage behavior and the connection of these behaviors with product design features helps Original Equipment Manufacturers (OEMs) and recycling and recovery industry to better overcome the challenges resulting from the undesirable storage of used products. This paper aims at providing insightful statistical analysis of Electronic Waste (e-waste) dynamic nature by studying the effects of design characteristics, brand and consumer type on the electronics usage time and end of use time-in-storage. A database consisting of 10,063 Hard Disk Drives (HDD) of used personal computers returned back to a remanufacturing facility located in Chicago, IL, USA during 2011–2013 has been selected as the base for this study. The results show that commercial consumers have stored computers more than household consumers regardless of brand and capacity factors. Moreover, a heterogeneous storage behavior is observed for different brands of HDDs regardless of capacity and consumer type factors. Finally, the storage behavior trends are projected for short-time forecasting and the storage times are precisely predicted by applying machine learning methods.« less
NASA Astrophysics Data System (ADS)
Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.
In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.
Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, O.D.
1997-09-04
This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... participant associated with planning, design, materials, installation, labor, management, maintenance, or..., construction, or maintenance of animal waste storage or treatment facilities or associated waste transport or...
DWPF Safely Dispositioning Liquid Waste
None
2018-06-21
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called âvitrification,â as the preferred option for treating liquid radioactive waste.
Bubblers Speed Nuclear Waste Processing at SRS
None
2018-05-23
At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.
Methods and system for subsurface stabilization using jet grouting
Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.
1999-01-01
Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.
Hillion, Marie-Lou; Moscoviz, Roman; Trably, Eric; Leblanc, Yoann; Bernet, Nicolas; Torrijos, Michel; Escudié, Renaud
2018-01-01
Biodegradable wastes produced seasonally need an upstream storage, because of the requirement for a constant feeding of anaerobic digesters. In the present article, the potential of co-ensiling biodegradable agro-industrial waste (sugar beet leaves) and lignocellulosic agricultural residue (wheat straw) to obtain a mixture with low soluble sugar content was evaluated for long-term storage prior to anaerobic digestion. The aim is to store agro-industrial waste while pretreating lignocellulosic biomass. The dynamics of co-ensiling was evaluated in vacuum-packed bags at lab-scale during 180 days. Characterization of the reaction by-products and microbial communities showed a succession of metabolic pathways. Even though the low initial sugars content was not sufficient to lower the pH under 4.5 and avoid undesirable fermentations, the methane potential was not substantially impacted all along the experiment. No lignocellulosic damages were observed during the silage process. Overall, it was shown that co-ensiling was effective to store highly fermentable fresh waste evenly with low sugar content and offers new promising possibilities for constant long-term supply of industrial anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.
System for handling and storing radioactive waste
Anderson, J.K.; Lindemann, P.E.
1982-07-19
A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.
System for handling and storing radioactive waste
Anderson, John K.; Lindemann, Paul E.
1984-01-01
A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-23
This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRAmore » regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.« less
Landa, E.R.
2003-01-01
Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.
Pipe overpack container for transuranic waste storage and shipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geinitz, R.R.; Thorp, D.T.; Rivera, M.A.
1999-12-07
A Pipe Overpack Container is described for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding, thus allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container wasmore » employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.« less
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... establish minimum national standards that define the acceptable management of hazardous waste during the...
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases... the ground-water quality; (vii) The potential for health risks caused by human exposure to waste...
40 CFR 264.95 - Point of compliance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.95 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.95 Point of compliance. (a) The Regional Administrator will...
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases... the ground-water quality; (vii) The potential for health risks caused by human exposure to waste...
40 CFR 264.95 - Point of compliance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.95 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.95 Point of compliance. (a) The Regional Administrator will...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
When a hazardous waste management unit stops receiving waste at the end of its active life, it must be cleaned up, closed, monitored, and maintained in accordance with the Resource Conservation and Recovery Ac
40 CFR 265.340 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...
40 CFR 265.340 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...
40 CFR Appendix to Part 243 - Recommended Bibliography
Code of Federal Regulations, 2010 CFR
2010-07-01
... Part 243 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Pt. 243, App... guide in solid waste management. Environmental Protection Publication SW-127. Washington, U.S...
40 CFR 264.194 - General operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....194 Section 264.194 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.194 General operating requirements. (a) Hazardous wastes or treatment reagents must...
40 CFR 264.220 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments... that use surface impoundments to treat, store, or dispose of hazardous waste except as § 264.1 provides...
40 CFR 265.228 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.228 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... or operator must: (1) Remove or decontaminate all waste residues, contaminated containment system...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
1989-01-01
water-table aquifer. This aquifer is made up chiefly of the alluvium and fluvial (terrace) deposits of Quaternary age , but locally may include sand in...the uppermost part of the Jackson Formation and Claiborne Group of Tertiary age . Water samples were collected from these 10 wells and from two...been identified as having received unknown quantities and types of industrial wastes (Waste Age , 1979, p. 54, 56). These sites are the (1) Belleuue
Developing a concept for a national used fuel interim storage facility in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Donald Wayne
2013-07-01
In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal. Loss of Conditional Exemption § 266...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal Loss of Conditional Exemption § 266...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal. Loss of Conditional Exemption § 266...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal Loss of Conditional Exemption § 266...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...
Code of Federal Regulations, 2011 CFR
2011-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2012 CFR
2012-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2014 CFR
2014-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2010 CFR
2010-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2013 CFR
2013-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Minerals and design of new waste forms for conditioning nuclear waste
NASA Astrophysics Data System (ADS)
Montel, Jean-Marc
2011-02-01
Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.
2013-07-01
The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less
Biological intrusion of low-level-waste trench covers
NASA Astrophysics Data System (ADS)
Hakonson, T. E.; Gladney, E. S.
The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.
National Policy Implications of Storing Nuclear Waste in the Pacific Region,
1981-01-01
US Congress, Senate, Committee on Energy and Natural Resources, Pacific Spent Nuclear Fuel Storage , Hearing...selected. 17 One type of shipping cask which has been used to transport spent fuel assemblies to the Nevada Test Site is a leakproof steel cask that can...discussion the following conclusions on the nuclear waste storage issue appear valid. The Reagan decision to reprocess spent fuel has not changed US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, M.S.
1982-07-01
A visit was made to the San Juan Cement Company, Dorado, Puerto Rico to evaluate control methods for a storage and delivery system for hazardous wastes used in a demonstration project as a supplemental fuel for cofiring a cement kiln. Analysis of the material during the visit revealed the presence of methylene chloride, carbon-tetrachloride, chloroform, acetone, hexane, ethanol, and ethyl acetate. Steel storage tanks were placed on an impermeable concrete slab surrounded by a sealed retaining wall. Steel piping with all welded joints carried the waste fuels from storage tanks to the kiln, where fuels were injected through a speciallymore » fabricated burner. Vapor emissions were suppressed by venting the displaced vapor through a recycle line. Exhaust gases from the kiln passed through a bag house type dust collector, and were vented to the atmosphere through a single stack. Half-mask air-purifying respirators were used when in the hazardous-waste storage/delivery area. Neoprene gloves were used when performing tasks with potential skin contact. Hard hats, safety glasses, and safety boots were all worn. The author concludes that the control methods used seemed effective in suppressing vapor emissions.« less
NASA Astrophysics Data System (ADS)
Strayer, Richard; Hummerick, Mary; Richards, Jeffrey; Birmele, Michele; Roberts, Michael
AdHocReviewCycleID-309796538 NewReviewCycle EmailSubjectPlease review this (?today?) AuthorEm Richard F. (KSC)[DYNAMAC CORP] ReviewingToolsShownOnceurn:schemas-microsoft-com:office:smart One goal of Exploration Life Support solid waste processing is to stabilize wastes for storage, mitigate crew risks, and enable resource recovery. Food and crew fecal wastes contain easily biodegraded organic components that support microbial growth. Our objective is to determine a baseline for the fate of selected microbes in wastes prior to processing treatments. Challenge microbes, including human-associated pathogens, were added to unsterilized, simulated food trash solid waste containing a mixed microbial community. The fate of the microbial community and challenge microbes was determined over a 6 week time course of waste storage. Challenge microbes were selected from a list of microorganisms common to residual food or fecal wastes and included: Escherichia coli, Salmonella enterica serovar typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger (a common mold), and Bacillus pumilus SAFR-032, a spore-forming bacterium previously isolated from spacecraft assembly facilities selected for its resistance to heat, uv, and desiccation. The trash model simulant contained 80% food trash (food waste and containers) and 20% hygiene wipes. Cultures of challenge microbes were grown overnight on Nutrient Agar (Difco), harvested, re-suspended in physiological saline, and diluted to achieve the desired optical density for inoculation. The six organisms were pooled and inoculated into the simulated food wastes and packaging before manual mixing. Inoculated simulated waste was stored in custom FlexfoilTM gas sampling bags (SKC, Inc.) which were then connected to a gas analysis system designed to supply fresh air to each bag to maintain O2 above 1%. Bag headspace was monitored for CO2 (PP Systems) and O2 (Maxtec). Total microbes were quantified by microscopic direct counts and general cultivation-based methods. Detection and enumeration of challenge microbes was accomplished by cultivation-based microbiological methods with specific selective media and by molecular methods using quantitative stocktickerPCR (qPCR) with stocktickerDNA primers specific for each challenge organism. stocktickerDNA was extracted and purified from residual wastes with a stocktickerDNA isolation kit (Mo Bio), and quantified (NanoDrop) from standard curves prepared from pure culture isolates of each challenge organism. QPCR was conducted on a Roche LightCycler 480 using the Roche stocktickerSYBR Green Master Mix Kit. The identity of all challenge microbes in recovered isolates was verified by stocktickerDNA sequencing (stocktickerABI 3130 Genetic Analyzer - Applied Biosystems). To date, concentrations of challenge microbial populations at concentrations ranging from ˜107 - 108 have been added to simulated food waste and extracted either immediately after mixing or after 1 week of storage. Cultivation-based counts indicated that 5 of 6 challenge microbes could be recovered from simulated food wastes after inoculation for both concentrations. Only S. enterica serovar typhimurium could not be detected at week 0 for the 107 inoculum. Between week 0 and 1, challenge microbes increased in density: S. aureus, E. coli, and P. aeruginosa increasing up to 4 orders of magnitude from the 107 inoculum. Molecular results for the week 0 and week 1 stored samples indicated that the relative concentrations of target stocktickerDNA for the challenge microbes had increased between 1 and 3 orders of magnitude. These preliminary studies demonstrate that potential problems regarding pathogens as cross-contaminants from other waste streams could develop during storage of space mission solid wastes. Ongoing studies are examining longer storage times up to 6 weeks. The results can be used to determine requirements and criteria for waste treatment prior to storage and provides a means of testing the ability of treatment technologies to limit contaminant survival and proliferation.
NASA Astrophysics Data System (ADS)
Havens, Karl E.; Flaig, Eric G.; James, R. Thomas; Lostal, Sergio; Muszick, Dera
1996-07-01
During 1987 1992, a mandatory program to control phosphorus discharges was implemented at dairy operations located to the north of Lake Okeechobee, Florida, USA. Thirty of 48 dairies participated in this program and implemented best management practices (BMPs), which included the construction of intensive animal waste management systems. Eighteen dairies closed their milkproducing operations under a government-funded buyout program. In this paper, we compare trends in runoff total phosphorus (TP) concentrations among the dairies that remained active and implemented BMPs. A central feature of the dairy waste management system is the high intensity area (HIA), defined as the milking barn and adjacent vegetation-free land, encircled by a drainage ditch and dike. Animal waste from the HIA is diverted into anaerobic lagoons and storage ponds, from which water is periodically removed and used for irrigation of field crops. The impacts of BMP construction on runoff TP concentrations were immediate and, in most cases, dramatic. Average TP concentrations declined significantly ( P < 0.001), from 9.0 to 1.2 mg TP liter-1 at dairies in one basin (Lower Kissimmee River), and from 2.6 to 1.0 mg TP liter-1 in another (Taylor Creek/Nubbin Slough). Some sites experienced greater declines in TP than others. To elucidate possible causes for the difference in response, a multivariate statistical model was utilized. Independent variables included soil pH, soil drainage characteristics, spodic horizon depth, and the areas of different BMP components (pasture, HIA, spray fields). The analysis significantly separated dairies with the highest and lowest runoff TP concentrations. Lowest TP occurred at dairies having particular soil characteristic (shallow spodic horizon) and certain BMP features (large HIA and small heard pastures).
Prudic, David E.; Randall, Allan D.
1977-01-01
Burial trenches for disposal of solid radioactive waste at West Valley, N.Y., are excavated in till that has very low hydraulic conductivity (about 5 x 10 to the minus 8th power centimeters per second). Fractures and root tubes with chemically oxidized and (or) reduced soil in their walls extend to 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975-76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 0.00001 to 0.001 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes. (Woodard-USGS)
Miscellaneous chemical basin expedited site characterization report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riha, B.D.; Pemberton, B.E.; Rossabi, J.
1996-12-01
A total of twenty nine cone penetrometer test (CPT) pushes in three weeks were conducted for vadose zone characterization of the Miscellaneous Chemical Basin (MCB) waste unit at the Savannah River Site. The shallow, unlined basin received liquid chemical wastes over an 18 year period beginning in 1956. This characterization was initiated to determine the vertical and lateral extent of contamination in the vadose zone and to install vadose zone wells for remediation by barometric pumping or active vapor extraction to help prevent further contamination of groundwater. The CPT locations within the waste site were selected based on results frommore » previous shallow soil gas surveys, groundwater contamination data, and the suspected basin center. Geophysical data and soil gas samples were collected at twenty five locations and twenty five vadose zone wells were installed. The wells were screened to target the clay zones and areas of higher soil gas concentrations. The well construction diagrams are provided in Appendix B. Baro-Ball{trademark} valves for enhanced barometric pumping were installed on each well upon completion to immediately begin the remediation treatability study at the site.« less
NASA Astrophysics Data System (ADS)
Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.
40 CFR 262.20 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 262.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.20 General requirements. (a)(1) A generator who transports, or offers for transport a hazardous waste for offsite treatment, storage, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] 264.255 Section 264.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.255...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... includes an amended waste analysis plan, ground-water monitoring and response program, human exposure....113 Section 265.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.77 - Additional reports.
Code of Federal Regulations, 2011 CFR
2011-07-01
....77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... submitting the biennial report and unmanifested waste reports described in §§ 265.75 and 265.76, the owner or...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264... waste incinerators (as defined in § 260.10 of this chapter), except as § 264.1 provides otherwise. (b...
Hazardous Waste Handling Should be Defined
ERIC Educational Resources Information Center
Steigman, Harry
1972-01-01
An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)
Hazardous Waste Cleanup: Northeast Environmental Services in Canastota, New York
The Haz-O-Waste Corporation operated this treatment and storage facility for hazardous and industrial wastes from August 1976 until it was purchased by Northeast Environmental Services, Inc., in September, 1986. The facility is located on Canal Road in Can
40 CFR 265.1059 - Standards: Delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.1059 - Standards: Delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... infeasible without a hazardous waste management unit shutdown. In such a case, repair of this equipment shall...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voegele, Michael D.; Vieth, Donald
2013-07-01
The report of the Blue Ribbon Commission on America's Nuclear Future [1] makes a number of important recommendations to be considered if Congress elects to redirect U.S. high-level radioactive waste disposal policy. Setting aside for the purposes of this discussion any issues related to political forces leading to stopping progress on the Yucca Mountain project and driving the creation of the Commission, an important recommendation of the Commission was to institute prompt efforts to develop one or more consolidated storage facilities. The Blue Ribbon Commission noted that this recommended strategy for future storage and disposal facilities and operations should bemore » implemented regardless of what happens with Yucca Mountain. It is too easy, however, to focus on interim storage as an alternative to geologic disposal. The Blue Ribbon Commission report does not go far enough in addressing the magnitude of the contentious problems associated with reopening the issues of relative authorities of the states and federal government with which Congress wrestled in crafting the Nuclear Waste Policy Act [2]. The Blue Ribbon Commission recommendation for prompt adoption of an interim storage program does not appear to be fully informed about the actions that must be taken, the relative cost of the effort, or the realistic time line that would be involved. In essence, the recommendation leaves to others the details of the systems engineering analyses needed to understand the nature and details of all the operations required to reach an operational interim storage facility without derailing forever the true end goal of geologic disposal. The material presented identifies a number of impediments that must be overcome before the country could develop a centralized federal interim storage facility. In summary, and in the order presented, they are: 1. Change the law, HJR 87, PL 107-200, designating Yucca Mountain for the development of a repository. 2. Bring new nuclear waste legislation to the floor of the Senate, overcoming existing House support for Yucca Mountain; 3. Change the longstanding focus of Congress from disposal to storage; 4. Change the funding concepts embodied in the Nuclear Waste Policy Act to allow the Nuclear Waste fund to be used to pay for interim storage; 5. Reverse the Congressional policy not to give states or tribes veto or consent authority, and to reserve to Congress the authority to override a state or tribal disapproval; 6. Promulgate interim storage facility siting regulations to reflect the new policies after such changes to policy and law; 7. Complete already underway changes to storage and transportation regulations, possibly incorporating changes to reflect changes to waste disposal law; 8. Promulgate new repository siting regulations if the interim storage facility is to support repository development; 9. Identify volunteer sites, negotiate agreements, and get Congressional approval for negotiated benefits packages; 10. Design, License and develop the interim storage facility. The time required to accomplish these ten items depends on many factors. The estimate developed assumes that certain of the items must be completed before other items are started; given past criticisms of the current program, such an assumption appears appropriate. Estimated times for completion of individual items are based on historical precedent. (authors)« less
40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...
40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...
40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...
Waste Management Information System (WMIS) User Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. E. Broz
2008-12-22
This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.
Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less
Analysis of solid waste from ships and modeling of its generation on the river Danube in Serbia.
Ulniković, Vladanka Presburger; Vukić, Marija; Milutinović-Nikolić, Aleksandra
2013-06-01
This study focuses on the issues related to the waste management in river ports in general and, particularly, in ports on the river Danube's flow through Serbia. The ports of Apatin, Bezdan, Backa Palanka, Novi Sad, Belgrade, Smederevo, Veliko Gradiste, Prahovo and Kladovo were analyzed. The input data (number of watercrafts, passengers and crew members) were obtained from harbor authorities for the period 2005-2009. The quantities of solid waste generated on both cruise and cargo ships are considered in this article. As there is no strategy for waste treatment in the ports in Serbia, these data are extremely valuable for further design of equipment for waste treatment and collection. Trends in data were analyzed and regression models were used to predict the waste quantities in each port in next 3 years. The obtained trends could be utilized as the basis for the calculation of the equipment capacities for waste selection, collection, storage and treatment. The results presented in this study establish the need for an organized management system for this type of waste, as well as suggest where the terminals for collection, storage and treatment of solid waste from ships should be located.
Bergeron, M.P.; Kappel, W.M.; Yager, R.M.
1987-01-01
A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, N.Y. The facilities are underlain by glacial and postglacial deposits that fill an ancestrial bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses , ranges from 0.000018 to 0.000086 m/day. (USGS)
Robotics for mixed waste operations, demonstration description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.R.
The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less
Test plan for formulation and evaluation of grouted waste forms with shine process wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, W. L.; Jerden, J. L.
2015-09-01
The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
Code of Federal Regulations, 2014 CFR
2014-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
[Hygienic requirements for transportation of industrial waste and consumption residues].
Metel'skiĭ, S V; Sin'kova, N V
2009-01-01
All wishing legal persons and individual entrepreneurs are presently engaged in garbage disposal Sanitary-and-epidemiological examination of activities in transportation of waste is complicated by that the existing sanitary regulations lack no requirements for storage, repair, washing, sanitization of waste-carrying transport, particularly epidemiologically dangerous (domestic, food, and biological waste, animal excreta, cut hair, etc.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1987-01-01
At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less
Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gomberg, Steve
2015-11-01
The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less
NASA Astrophysics Data System (ADS)
Muglia, J.; Skinner, L.; Schmittner, A.
2017-12-01
Circulation changes have been suggested to play an important role in the sequestration of atmospheric CO2 in the glacial ocean. However, previous studies have resulted in contradictory results regarding the strength of the Atlantic Meridional Overturning Circulation (AMOC) and three-dimensional, quantitative reconstructions of the glacial ocean constrained by multiple proxies remain lacking. Here we simulate the modern and glacial ocean using a coupled, global, three-dimensional, physical-biogeochemical model constrained simultaneously by d13C, radiocarbon, and d15N to explore the effects of AMOC differences and Southern Ocean iron fertilization on the distributions of these isotopes and ocean carbon storage. We show that d13C and radiocarbon data sparsely sampled at the locations of existing glacial sediment cores can be used to reconstruct the modern AMOC accurately. Applying this method to the glacial ocean we find that a surprisingly weak (6-9 Sv or about half of today's) and shallow AMOC maximizes carbon storage and best reproduces the sediment data. Increasing the atmospheric soluble iron flux in the model's Southern Ocean intensifies export production, carbon storage, and improves agreement with d13C and d15N reconstructions. Our best fitting model is a significant improvement compared with previous studies. It suggests that a weak and shallow AMOC and enhanced iron fertilization conspired to maximize carbon storage in the glacial ocean.
Hazardous Waste Cleanup: Triumvirate Environmental Incorporated in Astoria, New York
Triumvirate Environmental, Inc. (TEI) is located at 42-14 19th Avenue in Astoria, New York. This location has been in continuous operation as a waste storage and transfer facility since 1964. The site was formerly owned and operated by Chemical Waste
The University of Georgia Chemical Waste Disposal Program.
ERIC Educational Resources Information Center
Dreesen, David W.; Pohlman, Thomas J.
1980-01-01
Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)
40 CFR 264.149 - Use of State-required mechanisms.
Code of Federal Regulations, 2010 CFR
2010-07-01
....149 Section 264.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... where EPA is administering the requirements of this subpart but where the State has hazardous waste...
40 CFR 264.197 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... as hazardous waste, unless § 261.3(d) of this chapter applies. The closure plan, closure activities...
40 CFR 264.190 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264... use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a... treat hazardous waste which contains no free liquids and are situated inside a building with an...
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
....254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...
Wiersma, Bruce J.
2014-02-08
The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore » instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less
ERIC Educational Resources Information Center
Neville, Angela
1996-01-01
Provides a list of recommendations for safely managing hazardous waste containers. Encourages training of employees on the hazards of the wastes they handle and the correct procedures for managing containers. (DDR)
Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A
2015-09-15
Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.
BAG PASSOUT SEALER FOR WATER-SHIELDED CAVE FACILITY (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
The water-shielded cave facility is used in processing irradiated slugs for recovery of americium, curium, berkelium, californium, einsteinium, and fermium. The remotely operated, plastic-bag passout sealer is used in removing isotopic fractions for storage in the rear or for removing radioactive waste for placement in the waste storage containers. The unit is accessible by both the primary inclosure master-slaves and the service area master-slaves. (F.L.S.)
Radiologic safety assessment for low level waste storage on TRU pads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, J.P.
1986-03-17
The reference document (TA 2-1118) proposes to store Low Level Radioactive Solid Waste in B-25 boxes on concrete pads at the 643-G burial ground site, pending resolution of policy concernig its ultimate disposal. This analysis verifies that the reference proposal is safe, as long as it is applied to a limited material quantity of low specific activity, as described in the reference document. The predominant concern in the safety analysis is the emission of airborne activity as a result of tornados and fires. However, containment provided by B-25 boxes is sufficient to mitigate the consequences of these events sufficiently. Nevertheless,more » it is strongly recommended that any above-ground storage procedures include provisions for covering the waste containment boxes to prevent exposure to rainwater and subsequent corrosion if the storage period is to extend beyond one year.« less
Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S
2014-01-01
Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.