Sample records for waste site surface

  1. Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C

    2012-06-30

    We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, "formal" and "informal") revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p<0.005), excluding informal dust (p=0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Soil, plant, and structural considerations for surface barriers in arid environments: Application of results from studies in the Mojave Desert near Beatty, Nevada

    USGS Publications Warehouse

    Andraski, Brian J.; Prudic, David E.; ,

    1997-01-01

    The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial and fluvial deposits (Nichols, 1987). Vegetation is sparse; creosote bush is the dominant species. The waste facility has been used for burial of low-level radioactive waste (1962-1992) and hazardous chemical waste (1970 to present). Burial-trench construction includes excavation of native soil, emplacement of waste, and backfilling with previously stockpiled soil. Only the most recently closed hazardous-waste trench (1991) incorporates a plastic liner in the cover. The surfaces of completed burial trenches and perimeter areas are kept free of vegetation.

  3. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  4. Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purnomo, A.S.

    2007-07-01

    Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong site. (authors)« less

  5. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.

  6. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    PubMed

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  7. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eeckhout, E.; Pope, P.; Becker, N.

    1996-04-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Lasmore » Cruces, New Mexico.« less

  8. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  9. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  10. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  11. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling bulk PCB remediation waste..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.265 Sampling bulk PCB remediation waste and porous surfaces...

  12. Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory.

    PubMed

    Gao, Shutao; Hong, Jianwen; Yu, Zhiqiang; Wang, Jingzhi; Yang, Guoyi; Sheng, Guoying; Fu, Jiamo

    2011-12-01

    Polybrominated diphenyl ethers (PBDEs) were determined in 60 surface soils from two e-waste recycling sites (Qingyuan and Guiyu, China) and their surrounding areas to assess the extent and influence of PBDEs from e-waste recycling sites on the surrounding areas. A total of 32 surface soils from industrial areas in South China were also investigated for comparison. The mean concentrations of total PBDEs in the e-waste recycling sites of Guiyu and Qingyuan were 2,909 and 3,230 ng/g dry weight, respectively, whereas the PBDE concentrations decreased dramatically (1-2 orders of magnitude) with increasing distance from the recycling site, suggesting that the e-waste recycling activities were the major source of PBDEs in the surrounding areas. Decabromodiphenyl ethers accounted for 77.0 to 85.8% of total PBDEs in e-waste recycling areas, whereas it accounted for 90.2% in industrial areas. Principal component analysis showed that the major source of PBDEs in e-waste recycling areas were a combination of penta-, octa-, and deca-BDE commercial formulations, whereas deca-BDE commercial formulations were the major source of PBDE congeners in industrial areas. The inventories of PBDEs gave preliminary estimates of 6.22 tons and 13.4 tons for the e-waste recycling areas and industrial areas. The results suggested that significantly higher PBDEs in the e-waste recycling sites have already affected surrounding areas negatively within a relatively large distance. Because of the environmental persistence, bioaccumulation, and toxicity of PBDEs, improving the recycling techniques employed at such facilities and developing e-waste management policies are necessary. Copyright © 2011 SETAC.

  13. Health assessment for Shaw Avenue Dump, Charles City, Iowa, Region 7. CERCLIS No. IAD980630560. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-07

    The Shaw Avenue Dump Site is listed on the National Priorities List. The 8-acre city dump site, consisting of three waste-disposal areas, is located in southeast Charles City approximately 500 feet east of the Cedar River. Sludge from the Charles City waste water treatment plant, which received liquid waste discharge from Salisbury, was placed from 1949 to 1969 in the northern waste cells and in the undefined area on the southern portion of the site. Arsenic is the contaminant of concern at the Shaw Avenue Dump Site. The site is considered to be of public health concern because of themore » potential risk to human health caused by possible exposure to hazardous substances via ingestion of ground water, soil, and surface water; inhalation of fugitive dust; and dermal contact with soil, surface water, and ground water.« less

  14. Existing data on the 216-Z liquid waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, K.W.

    1981-05-01

    During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing datamore » together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.« less

  15. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  16. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  17. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  18. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  19. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water... site is served by a privately owned and centrally operated water and water/waste disposal system, the...

  20. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  1. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  2. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  3. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  4. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  5. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  6. Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier.

    PubMed

    Zhang, Zhuanfang Fred; Strickland, Christopher E; Link, Steven O

    2017-02-01

    Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. After establishing a set of design and performance objectives, a package of design solutions was developed for 1000-year surface barriers over nuclear waste sites. The Prototype Hanford Barrier (PHB) was then constructed in 1994 in the field over an existing waste site as a demonstration. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barrier satisfied nearly all objectives in the past two decades. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford's semiarid climate, limited drainage to well below the 0.5 mm yr -1 performance criterion, limited runoff, and minimized erosion and bio-intrusion. Given the two-decade record of successful performance and consideration of the processes and mechanisms that could affect barrier stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the basis for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less

  8. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  9. Health assessment for Lake Sandy Jo Landfill, Gary, Indiana, Region 5. CERCLIS No. IND980500524. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-11-21

    The 50-acre Lake Sandy Jo Landfill is located in the Black Oak community (predominantly residential) of southwestern Gary in Lake County, Indiana. From about 1971 until about 1980, the lake was filled in with construction and demolition debris, municipal garbage, industrial wastes, hazardous materials, and possibly drummed wastes. These wastes are partly to completely exposed on the landfill surface. Surface soil, subsurface soil, surface water, sediment, and ground water show a variety of metal and organic chemical carcinogens. Toxic noncarcinogen priority pollutants found were chloromethane, copper, cyanide, lead, mercury, and silver. Inorganic soil levels found on the site for leadmore » and cadmium exceed levels of concern that would permit unrestricted use of the site. Remedial measures would be necessary before the site could be granted unrestricted use.« less

  10. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    USGS Publications Warehouse

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  11. Siting process for disposal site of low level radiactive waste in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The sitemore » selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.« less

  12. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet thismore » need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.« less

  13. Cleanup Verification Package for the 600-47 Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Cutlip

    This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris.

  14. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.

    1989-01-01

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facilitymore » consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.« less

  15. Reconnaissance of Organic Wastewater Compounds at a Concentrated Swine Feeding Operation in the North Carolina Coastal Plain, 2008

    USGS Publications Warehouse

    Harden, Stephen L.

    2009-01-01

    Water-quality and hydrologic data were collected during 2008 to examine the occurrence of organic wastewater compounds at a concentrated swine feeding operation located in the North Carolina Coastal Plain. Continuous groundwater level and stream-stage data were collected at one monitoring well and one stream site, respectively, throughout 2008. One round of environmental and quality-control samples was collected in September 2008 following a period of below-normal precipitation and when swine waste was not being applied to the spray fields. Samples were collected at one lagoon site, seven shallow groundwater sites, and one surface-water site for analysis of 111 organic wastewater compounds, including household, industrial, and agricultural-use compounds, sterols, pharmaceutical compounds, hormones, and antibiotics. Analytical data for environmental samples collected during the study provide preliminary information on the occurrence of organic wastewater compounds in the lagoon-waste source material, groundwater beneath fields that receive spray applications of the lagoon wastes, and surface water in the tributary adjacent to the site. Overall, 28 organic wastewater compounds were detected in the collected samples, including 11 household, industrial, and agricultural-use compounds; 3 sterols; 2 pharmaceutical compounds; 5 hormones; and 7 antibiotics. The lagoon sample had the greatest number (20) and highest concentrations of compounds compared to groundwater and surface-water samples. The antibiotic lincomycin had the maximum detected concentration (393 micrograms per liter) in the lagoon sample. Of the 11 compounds identified in the groundwater and surface-water samples, all with reported concentrations less than 1 microgram per liter, only lincomycin identified in groundwater at 1 well and 3-methyl-1H-indole and indole identified in surface water at 1 site also were identified in the lagoon waste material.

  16. Final report: survey and removal of radioactive surface contamination at environmental restoration sites, Sandia National Laboratories/New Mexico. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, K.A.; Mitchell, M.M.; Jean, D.

    1997-09-01

    This report contains the Appendices A-L including Voluntary Corrective Measure Plans, Waste Management Plans, Task-Specific Health and Safety Plan, Analytical Laboratory Procedures, Soil Sample Results, In-Situ Gamma Spectroscopy Results, Radionuclide Activity Summary, TCLP Soil Sample Results, Waste Characterization Memoranda, Waste Drum Inventory Data, Radiological Risk Assessment, and Summary of Site-Specific Recommendations.

  17. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  18. Geohydrology of the near-surface unsaturated zone adjacent to the disposal site for low-level radioactive waste near Beatty, Nevada: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.

  19. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  20. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less

  1. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  2. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  3. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  4. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  5. Superfund Record of Decision (EPA Region 3): Harvey-Knott Drum site, New Castle County, Delaware, September 1985. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Harvey-Knott Drum Site is located in New Castle County, Delaware, approximately one-half mile east of the Maryland-Delaware border. The Harvey and Knotts Trucking, Inc., operated an open dump and burning ground on the site between 1963 and 1969. The facility accepted sanitary, municipal, and industrial wastes believed to be sludges, paint pigments, and solvents. Wastes were emptied onto the ground, into excavated trenches, or left in drums (some of which were buried). Some of these wastes were either burned as a means of reducing waste volume, or allowed to seep into the soil. Contamination of soil, surface water, andmore » ground water has occurred as a result of disposal of these industrial wastes. The selected remedial action for this site is included.« less

  6. ASSESSMENT AND RECOMMENDATIONS FOR IMPROVING THE PERFORMANCE OF WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This broad-based study addressed three categories of issues related to the design,
    construction, and performance of waste containment systems used at landfills, surface
    impoundments, and waste piles, and in the remediation of contaminated sites. Geosynthetic materials have...

  7. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  8. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  9. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  10. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  11. 10 CFR 61.12 - Specific technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...

  12. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... direct access from a street, road, or driveway. Streets and roads must be hard surface or all-weather surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water...

  13. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... direct access from a street, road, or driveway. Streets and roads must be hard surface or all-weather surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water...

  14. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... direct access from a street, road, or driveway. Streets and roads must be hard surface or all-weather surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water...

  15. Study of contaminant transport at an open-tipping waste disposal site.

    PubMed

    Ashraf, Muhammad Aqeel; Yusoff, Ismail; Yusof, Mohamad; Alias, Yatimah

    2013-07-01

    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.

  16. Organohalogen pollutants in surface particulates from workshop floors of four major e-waste recycling sites in China and implications for emission lists.

    PubMed

    Zeng, Yan-Hong; Tang, Bin; Luo, Xiao-Jun; Zheng, Xiao-Bo; Peng, Ping-An; Mai, Bi-Xian

    2016-11-01

    To examine the environmental pollution associated with e-waste recycling activities, the concentrations of organohologenated pollutants (OHPs), i.e., short- and medium-chain chlorinated paraffins (SCCPs and MCCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and several other halogenated flame retardants (OHFRs), were investigated in surface particulates from the workshop floors of four major e-waste recycling sites (Taizhou, Guiyu, Dali and Qingyuan) in China. The mean levels of SCCPs, MCCPs, PCBs, PBDEs and OHFRs in surface particulates ranged from 30,000-61,000, 170,000-890,000, 2700-27,000, 52,000-240,000, and 62,000-140,000ng/g dry weight (dw), respectively. OHFRs, including decabromodiphenyl ethane, dechlorane plus, 1,2-bis(2,4,6-tribromophenoxy)ethane, tetrabromobisphenol A, hexabromocyclododecanes, polybrominated biphenyls, hexabromobenzene, pentabromotoluene, and pentabromoethylbenzene, were frequently (>50% detection frequency) detected in surface particulates with mean concentration ranges of 39,000-63,000, 310-2700, 98-16,000, 21,000-56,000, 55-5700, 1700-27,000, 42-1600, 3.2-220, and 5.8-12ng/g dw, respectively. The composition of OHPs varied depend on the e-waste items processing in different regions. Guiyu and Dali were typical sites contaminated by halogenated flame retardants (HFRs) and CPs, respectively, while Qingyuan, and Taizhou were representative PCB-polluted regions. The evidence produced by this preliminary study indicated that electronic devices and plastics may account for the high content of HFRs and the metal products are likely the major source of CPs in these e-waste sites. Copyright © 2016. Published by Elsevier B.V.

  17. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface waters. (6) Solvent disposal, recovery, and/or reuse is in accordance with relevant provisions of... waste shall dispose of or reuse them using one of the following methods: (A) Non-liquid cleaning...-site cleanup and disposal of PCB remediation waste, a uniform placement of concrete, asphalt, or...

  18. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface waters. (6) Solvent disposal, recovery, and/or reuse is in accordance with relevant provisions of... waste shall dispose of or reuse them using one of the following methods: (A) Non-liquid cleaning...-site cleanup and disposal of PCB remediation waste, a uniform placement of concrete, asphalt, or...

  19. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  20. Regional hydrogeological screening characteristics used for siting near-surface waste-disposal facilities in Oklahoma, U.S.A.

    USGS Publications Warehouse

    Johnson, K.S.

    1991-01-01

    The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials. ?? 1991 Springer-Verlag New York Inc.

  1. Wedron Groundwater Site in Wedron, Illinois

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  2. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    PubMed

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  3. Variations in water balance and recharge potential at three western desert sites

    USGS Publications Warehouse

    Gee, G.W.; Wierenga, P.J.; Andraski, Brian J.; Young, M.H.; Fayer, M.J.; Rockhold, M.L.

    1994-01-01

    Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to >50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication for waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential.

  4. Coupled Environmental Processes in the Mojave Desert and Implications for ET Covers as Stable Landforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Shafer; M. Y oung; S. Zitzer

    2006-01-18

    Monolayer evapotranspiration (ET) covers are the baseline method for closure of disposal sites for low-level radioactive waste (LLW), mixed LLW, and transuranic (TRU) waste at the Nevada Test Site (NTS). The regulatory timeline is typically 1,000 years for LLW and 10,000 years for TRU waste. Covers for such waste have different technical considerations than those with shorter timelines because they are subject to environmental change for longer periods of time, and because the environmental processes are often coupled. To evaluate these changes, four analog sites (approximately 30, 1,000 to 2,000, 7,000 to 12,500, and 125,000 years in age) on themore » NTS were analyzed to address the early post-institutional control period (the youngest site), the 1,000-year compliance period for disposal of LLW, and the 10,000-year period for TRU waste. Tests included soil texture, structure, and morphology; surface soil infiltration and hydraulic conductivity; vegetation and faunal surveys; and literature reviews. Separate measurements were made in plant undercanopy and intercanopy areas. The results showed a progressive increase in silt and clay content of surface soils with age. Changes in soil texture and structure led to a fivefold decline in saturated hydraulic conductivity in intercanopy areas, but no change in undercanopies, which were subject to bioturbation. These changes may have been responsible for the reduction in total plant cover, most dramatically in intercanopy areas, primarily because more precipitation either runs off the site or is held nearer to the surface where plant roots are less common. The results suggest that covers may evolve over longer timeframes to stable landforms that minimize the need for active maintenance.« less

  5. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less

  6. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    NASA Astrophysics Data System (ADS)

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  7. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  8. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  9. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  10. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  11. Canine scent detection and microbial source tracking of human waste contamination in storm drains.

    PubMed

    Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A

    2014-06-01

    Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.

  12. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations

    PubMed Central

    Heaney, Christopher D.; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R.

    2015-01-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI] = 1.03, 5.94) and 2.30 times (95% CI = 0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI = 1.21, 6.80) and 3.36 (95% CI = 1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. PMID:25600418

  13. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations.

    PubMed

    Heaney, Christopher D; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R

    2015-04-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Wedron Groundwater Site Frequently Asked Questions 2013

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  15. Studies of Current Circulation at Ocean Waste Disposal Sites

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, M. A.; Dockter, R. E.

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  17. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  18. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  19. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  20. 10 CFR 960.5-2-8 - Surface characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and... repository siting, construction, operation, and closure. (b) Favorable conditions. (1) Generally flat terrain...

  1. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  2. Test-trench studies in the Amargosa Desert, southern Nevada: Results and application of information to landfill covers in arid environments

    USGS Publications Warehouse

    Andraski, Brian J.; Reynolds, Timothy D.; Morris, Randall C.

    1997-01-01

    As arid sites in the western United States are increasingly sought for disposal of the Nation's hazardous wastes and as volumes of locally generated wastes increase, concern about the potential effect of contaminants on environmental quality is being raised. Studies at the U.S. Geological Survey's Amargosa Desert research site near Beatty, Nevada are being done to evaluate mechanisms that can affect waste isolation in an arid environment. Precipitation at the site averages about 108 mm yr-1. Results have shown that, under undisturbed conditions, the naturally stratified soils in combination with native plants are effective in limiting the potential for percolation of precipitation. Under nonvegetated waste-site conditions, data indicated the accumulation and shallow, but continued, penetration of infiltrated water, However, water potentials below the test trenches and below the 2-m depth for nonvegetated soil indicated the persistence of an upward driving force for water flow during the 5-yr test period. General trends in trench-cover subsidence suggested a positive relation with cumulative precipitation, but subsidence did not appear to have a measurable effect on the water balance. Erosion rates were inversely related to near-surface rock-fragment content. Results suggest that the ultimate fate of contaminants buried at properly managed solid-waste sites may be determined largely by the interactions among climate and the surface-cover features of the disposal facility, and how these factors change with time.

  3. Salmon Site Remedial Investigation Report, Exhibit 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USDOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less

  4. Salmon Site Remedial Investigation Report, Main Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    US DOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less

  5. Salmon Site Remedial Investigation Report, Exhibit 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less

  6. Hydrology of the Melton Valley radioactive-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    USGS Publications Warehouse

    Webster, D.A.; Bradley, Michael W.

    1988-01-01

    Burial grounds 4, 5, and 6 of the Melton Valley Radioactive-waste Burial Grounds, Oak Ridge, TN, were used sequentially from 1951 to the present for the disposal of solid, low level radioactive waste by burial in shallow trenches and auger holes. Abundant rainfall, a generally thin unsaturated zone, geologic media of inherently low permeability, and the operational practices employed have contributed to partial saturation of the buried waste, leaching of radionuclides, and transport of dissolved matter from the burial areas. Two primary methods of movement of wastes from these sites are transport in groundwater, and the overflow of fluid in trenches and subsequent flow across land surface. Whiteoak Creek and its tributaries receive all overland flow from trench spillage, surface runoff from each site, and discharge of groundwater from the regolith of each site. Potentiometric data, locally, indicate that this drainage system also receives groundwater discharges from the bedrock of burial ground 5. By projection of the bedrock flow patterns characteristic of this site to other areas of Melton Valley, it is inferred that discharges from the bedrock underlying burial grounds 4 and 6 also is to the Whiteoak Creek drainage system. The differences in potentiometric heads and a comparatively thin saturated zone in bedrock do not favor the development of deep flow through bedrock from one river system to another. (USGS)

  7. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. RUNOFF, SEDIMENT TRANSPORT, AND SURFACE COLLAPSE AT A LOW-LEVEL RADIOACTIVE-WASTE BURIAL SITE NEAR SHEFFIELD, ILLINOIS.

    USGS Publications Warehouse

    Gray, John R.; Peters, Charles A.; ,

    1985-01-01

    Runoff, sediment transport, and precipitation were measured in three gaged basins composing two-thirds of the 20-acre site, and in a 3. 5-acre basin located 0. 3 mile south of the site. Locations and dimensions of surface collapses at the site were recorded by the site contractor. Volumes of collapsed material were calculated and converted to an equivalent weight of earth material by applying a mean value for the bulk density of soils at the site.

  9. Hazardous Waste Site Analysis (Small Site Technology)

    DTIC Science & Technology

    1990-08-01

    Act HSRT - Hazardous Substance Response Trust (Superfund Trust) HSWA - Hdzardeus and Solid Waste Amendments (to RCRA) NAAQSD - National Ambient Air...impoundments (basically, any area where hazardous substances are located). * Under CERCLA, "Environment" includes surface and groundwater, ambient air, land...34 provisions with permit requirements for new source construction). " Ambient Air Quality standards (NAAQs) have been issued for six "criteria" pollutants

  10. Testing contamination risk assessment methods for toxic elements from mine waste sites

    NASA Astrophysics Data System (ADS)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance <500m to the nearest surface water bodies, and 33 sites are within distance <680m to the nearest settlements. Moreover 25 sites lie directly above the 'poor status' ground water bodies and 91 sites are located in the protected Natura2000 sites (distance =0). Analysis of the total score of all sites was performed, resulting in six risk classes, as follows: <21 (class I, 4 sites), 21-31 (class II, 16 sites), 31-42 (class III, 27 sites), 42-54 (class II, 38 sites), 54-66 (class V, 40 sites) and >66 (class VI, 20 sites). The total risk scores and key parameters are provided in separate tables and GIS maps, in order to facilitate interpretation and comparison. Results of the Pre-selection protocol are consistent with those of the screening PRAMS model. KEY WORDS contamination risk assessment, Mine Waste Directive, Pre-selection Protocol, PRA.MS, AIMSS, abandoned mine sites, GIS

  11. Message development for surface markers at the Hanford Radwaste Disposal sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, M.F.

    1984-12-31

    At the Hanford Reservation in Washington, there are sites which received liquid and solid transuranic wastes from the late 1940`s until 1970. Rockwell Hanford Operations (Rockwell) is investigating the feasibility of several options for the permanent disposal of these wastes. One option is to stabilize the wastes in their present locations and to add barriers to minimize water infiltration and root penetration into the wastes. This report forms part of the project to develop a marking system for transuranic wastes on the Hanford Reservation. The focus of this report is the development of the message system to appear on themore » surface markers. A logical framework is developed to deduce what is required by the message system. Alternatives for each message component are evaluated and justification is provided for the choice of each component. The components are then laid out on the surface marker to provide a legible, comprehensible message system. The surface markers are tall, standing monoliths which ring the perimeter of each disposal area. Based on the logical framework, it is recommended that three domains of representation -- symbols, pictures, and language -- be used in the message system. The warning symbol chosen for the message system is the radiation trefoil. Two other options were considered, including the warning symbol developed by the Human Interference Task Force for a high-level waste repository. The trefoil was preferred because of the widespread usage and international acceptance which is already enjoys.« less

  12. Site characterization report for the basalt waste isolation project. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987,more » and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.« less

  13. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  14. Geological considerations in hazardouswaste disposal

    NASA Astrophysics Data System (ADS)

    Cartwright, K.; Gilkeson, R. H.; Johnson, T. M.

    1981-12-01

    Present regulations assume that long-term isolation of hazardous wastes — including toxic chemical, biological, radioactive, flammable and explosive wastes — may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal.

  15. Geological considerations in hazardouswaste disposal

    USGS Publications Warehouse

    Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.

    1981-01-01

    Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.

  16. Cleanups In My Community (CIMC) - Federal Facility RCRA Sites, National Layer

    EPA Pesticide Factsheets

    Federal facilities are properties owned by the federal government. This data layer provides access to Federal facilities that are Resource Conservation and Recovery Act (RCRA) sites as part of the CIMC web service. The Resource Conservation and Recovery Act, among other things, helps ensure that wastes are managed in an environmentally sound manner so as to protect human health and the environment from the potential hazards of waste disposal.In particular, RCRA tightly regulates all hazardous waste from cradle to grave. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. Accidents or other activities at facilities that treat, store or dispose of hazardous wastes have sometimes led to the release of hazardous waste or hazardous constituents into soil, ground water, surface water, or air. When that happens, the RCRA Corrective Action program is one program that may be used to accomplish the necessary cleanup.In Cleanups in My Community, you can map or list RCRA Corrective Action sites that are currently undergoing corrective action, sites for which a remedy has been selected, sites for which construction has been completed, and sites where the corrective action cleanup is complete. This data layer shows those RCRA sites that are located at Federa

  17. 10 CFR 960.5-2-2 - Site ownership and control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-2 Site ownership... control of access that are required in order that surface and subsurface activities during repository...

  18. Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana).

    PubMed

    Tue, Nguyen Minh; Goto, Akitoshi; Takahashi, Shin; Itai, Takaaki; Asante, Kwadwo Ansong; Kunisue, Tatsuya; Tanabe, Shinsuke

    2016-01-25

    Although complex mixtures of dioxin-related compounds (DRCs) can be released from informal e-waste recycling, DRC contamination in African e-waste recycling sites has not been investigated. This study examined the concentrations of DRCs including chlorinated, brominated, mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in surface soil samples from the Agbogbloshie e-waste recycling site in Ghana. PCDD/F and PBDD/F concentrations in open burning areas (18-520 and 83-3800 ng/g dry, respectively) were among the highest reported in soils from informal e-waste sites. The concentrations of PCDFs and PBDFs were higher than those of the respective dibenzo-p-dioxins, suggesting combustion and PBDE-containing plastics as principal sources. PXDFs were found as more abundant than PCDFs, and higher brominated analogues occurred at higher concentrations. The median total WHO toxic equivalent (TEQ) concentration in open burning soils was 7 times higher than the U.S. action level (1000 pg/g), with TEQ contributors in the order of PBDFs>PCDD/Fs>PXDFs. DRC emission to soils over the e-waste site as of 2010 was estimated, from surface soil lightness based on the correlations between concentrations and lightness, at 200mg (95% confidence interval 93-540 mg) WHO-TEQ over three years. People living in Agbogbloshie are potentially exposed to high levels of not only chlorinated but also brominated DRCs, and human health implications need to be assessed in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  20. The application of magnetic gradiometry and electromagnetic induction at a former radioactive waste disposal site.

    PubMed

    Rucker, Dale Franklin

    2010-04-01

    A former radioactive waste disposal site is surveyed with two non-intrusive geophysical techniques, including magnetic gradiometry and electromagnetic induction. Data were gathered over the site by towing the geophysical equipment mounted to a non-electrically conductive and non-magnetic fibre-glass cart. Magnetic gradiometry, which detects the location of ferromagnetic material, including iron and steel, was used to map the existence of a previously unknown buried pipeline formerly used in the delivery of liquid waste to a number of surface disposal trenches and concrete vaults. The existence of a possible pipeline is reinforced by historical engineering drawing and photographs. The electromagnetic induction (EMI) technique was used to map areas of high and low electrical conductivity, which coincide with the magnetic gradiometry data. The EMI also provided information on areas of high electrical conductivity unrelated to a pipeline network. Both data sets demonstrate the usefulness of surface geophysical surveillance techniques to minimize the risk of exposure in the event of future remediation efforts.

  1. U.S. Department of Energy Nevada Operations Office Environmental Monitoring Program summary data report, second calendar quarter 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, S.C.; Townsend, Y.E.

    1997-02-01

    The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less

  2. Technical and design update in the AUBE French low-level radioactive waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marque, Y.

    1989-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less

  3. Geochemical Characteristics of TP3 Mine Wastes at the Elizabeth Copper Mine Superfund Site, Orange County, Vermont

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.; Briggs, Paul H.; Meier, Allen L.; Muzik, Timothy L.

    2003-01-01

    Remediation of the Elizabeth mine Superfund site in the Vermont copper belt poses challenges for balancing environmental restoration goals with issues of historic preservation while adopting cost-effective strategies for site cleanup and long-term maintenance. The waste-rock pile known as TP3, at the headwaters of Copperas Brook, is especially noteworthy in this regard because it is the worst source of surface- and ground-water contamination identified to date, while also being the area of greatest historical significance. The U.S. Geological Survey (USGS) conducted a study of the historic mine-waste piles known as TP3 at the Elizabeth mine Superfund site near South Strafford, Orange County, VT. TP3 is a 12.3-acre (49,780 m2) subarea of the Elizabeth mine site. It is a focus area for historic preservation because it encompasses an early 19th century copperas works as well as waste from late 19th- and 20th century copper mining (Kierstead, 2001). Surface runoff and seeps from TP3 form the headwaters of Copperas Brook. The stream flows down a valley onto flotation tailings from 20th century copper mining operations and enters the West Branch of the Ompompanoosuc River approximately 1 kilometer downstream from the mine site. Shallow drinking water wells down gradient from TP3 exceed drinking water standards for copper and cadmium (Hathaway and others, 2001). The Elizabeth mine was listed as a Superfund site in 2001, mainly because of impacts of acid-mine drainage on the Ompompanoosuc River.

  4. Environmental impact of leachate characteristics on water quality.

    PubMed

    Cumar, Sampath Kumar Mandyam; Nagaraja, Balasubramanya

    2011-07-01

    Improper urbanization and industrialization are causing a critical stress on groundwater quality in urban areas of the developing countries. The present study under investigation describes the pollution caused by leachate from a waste management site in southwestern Bangalore city causing pollution of the surface water and groundwater reserves. The characterization of 20 groundwater samples and Haralukunte lake sample indicated high pollution of these water reserves by leachate entry into the groundwater and surface water sources. The study area focuses around the solid waste management site, carrying out bio-composting and vermi-composting of municipal solid waste. Further investigations on the severe health problems faced by the public in the study area has revealed a clear pointer towards the usage of polluted water for rearing live-stock, farming, and domestic activities. The characterization of the leachate with high values of BOD at 1,450 mg/l, TDS at 17,200 mg/l, nitrates at 240 mg/l, and MPN at 545/100 ml indicates a clear nuisance potential, which has been substantiated by the characterization of lake water sample with chlorides at 3,400 mg/l, TDS at 8,020 mg/l, and lead and cadmium at 0.18 and 0.08 mg/l, respectively. Analysis of groundwater samples shows alarming physicochemical values closer to the waste disposal site and relatively reduced values away from the source of the waste management site. Bureau of Indian Standards have been adapted as the benchmark for the analysis and validation of observed water quality criteria.

  5. Basic data report for drillhole WIPP 30 (Waste Isolation Pilot Plant - WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-01

    WIPP 30 was drilled in east-central Eddy County, New Mexico, in NW 1/4, Sec. 33, T21S, R31E, to obtain drill core for the study of dissolution of near-surface rocks. The borehole encountered from top to bottom, the Dewey Lake Red Beds (449' including artificial fill for drill pad), Rustler Formation (299'), and the upper 160' of the Salado Formation. Continuous core was cut from the surface to total depth. Geophysical logs were taken the full length of the borehole to measure acoustic velocities, density, and distribution of potassium and other radioactive elements. Information from this borehole will be included inmore » an interpretive report on dissolution in Nash Draw based on combined borehole data, surface mapping and laboratory analyses of rocks and fluids. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes and to then be converted to a repository. The WIPP will also provide research facilities for interactions between high-level waste and salt. Administration policy as of February 1980 is to hold the WIPP site in reserve until the first disposal site can be chosen from several potential sites, including the WIPP.« less

  6. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLBmore » disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health and the environment. The waste stream is recommended for disposal without conditions.« less

  7. Polybrominated diphenyl ethers in e-waste: level and transfer in a typical e-waste recycling site in Shanghai, Eastern China.

    PubMed

    Li, Yue; Duan, Yan-Ping; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling

    2014-06-01

    Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ18PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1-2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Description and hydrogeologic evaluation of nine hazardous-waste sites in Kansas, 1984-86

    USGS Publications Warehouse

    Hart, R.J.; Spruill, T.B.

    1988-01-01

    Wastes generated at nine hazardous-waste sites in Kansas were disposed in open pits, 55-gal drums, or large storage tanks. These disposal methods have the potential to contaminate groundwater beneath the sites, the soil on the sites, and nearby surface water bodies. Various activities on the nine sites included production of diborane, transformer oil waste, production of soda ash, use of solvents for the manufacture of farm implements, reclamation of solvents and paints, oil-refinery wastes, meat packaging, and the manufacture and cleaning of tanker-truck tanks. Monitoring wells were installed upgradient and downgradient from the potential contamination source on each site. Strict decontamination procedures were followed to prevent cross contamination between well installations. Air-quality surveys were made on each site before other investigative procedures started. Hydrogeologic investigative techniques, such as terrain geophysical surveys, gamma-ray logs, and laboratory permeameter tests, were used. Groundwater level measurements provide data to determine the direction of flow. Groundwater contamination detected under the sites posed the greatest threat to the environment because of possible migration of contaminants by groundwater flow. Concentrations of volatile organic compounds, polynuclear aromatic hydrocarbons, and trace metals were detected in the groundwater at several of the sites. Many of the same compounds detected in the groundwater also were detected in soil and bed-material samples collected onsite or adjacent to the sites. Several contaminants were detected in background samples of groundwater and soil. (USGS)

  9. Wildlife and the coal waste policy debate: proposed rules for coal waste disposal ignore lessons from 45 years of wildlife poisoning

    Treesearch

    A. Dennis Lemly; Joseph P. Skorupa

    2012-01-01

    This analysis examines wildlife poisoning from coal combustion waste (CCW) in the context of EPA's proposed policy that would allow continued use of surface impoundments as a disposal method. Data from 21 confirmed damage sites were evaluated, ranging from locations where historic poisoning has led to corrective actions that have greatly improved environmental...

  10. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte, E-mail: chs@env.dtu.dk; Fredenslund, Anders M., E-mail: amf@env.dtu.dk; Nedenskov, Jonas, E-mail: jne@amfor.dk

    2011-05-15

    AV Miljo is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH{sub 4}) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed thatmore » the gas generated in the cell with mixed combustible waste consisted of mainly CH{sub 4} (70%) and carbon dioxide (CO{sub 2}) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH{sub 4} (27%) and nitrogen (N{sub 2}) (71%), containing no CO{sub 2}. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH{sub 4} mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH{sub 4} generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH{sub 4} emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH{sub 4} emission from the disposal site was found to be 820 {+-} 202 kg CH{sub 4} d{sup -1}. The total emission rate through the leachate collection system at AV Miljo was found to be 211 kg CH{sub 4} d{sup -1}. This showed that approximately 1/4 of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely.« less

  11. Installation-restoration program. Preliminary assessment: 106th Civil Engineering Flight, Roslyn Air National Guard Station, New York Air National Guard, Roslyn, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed fo throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants.« less

  12. Kd Values for Agricultural and Surface Soils for Use in Hanford Site Farm, Residential, and River Shoreline Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey

    This report provides best estimate Kd values and a minimum and maximum range of Kd values to be used for agricultural soils and Columbia River bank sediments that exist today or would exist in the future when portions of the Hanford Site are released for farming, residential, and recreational use after the U. S. Department of Energy (DOE) completes clean up of defense waste on the site. The Kd values should be used to determine the fate and transport rates of contaminants and their availability for plant and animal uptake in selected non-groundwater scenarios included in Hanford Site environmental impactmore » statements, risk assessments and specific facility performance assessments. This report describes scenarios such as a small farm where drilling of a well inadvertently goes through buried waste and brings waste to the surface, allowing the tailings to become available for direct human exposure or incorporation into garden crops and farm animals used for food by the farm family. The Kd values recommended in this report can also be used to calculate sediment-water partitioning factors used to predict plant and animal uptake from interaction with the contaminated soil.« less

  13. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  14. Colloidal mobilization of arsenic from mining-affected soils by surface runoff.

    PubMed

    Gomez-Gonzalez, Miguel Angel; Voegelin, Andreas; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando

    2016-02-01

    Scorodite-rich wastes left as a legacy of mining and smelting operations pose a threat to environmental health. Colloids formed by the weathering of processing wastes may control the release of arsenic (As) into surface waters. At a former mine site in Madrid (Spain), we investigated the mobilization of colloidal As by surface runoff from weathered processing wastes and from sediments in the bed of a draining creek and a downstream sedimentation-pond. Colloids mobilized by surface runoff during simulated rain events were characterized for their composition, structure and mode of As uptake using asymmetric flow field-flow fractionation coupled to inductively plasma mass spectrometry (AF4-ICP-MS) and X-ray absorption spectroscopy (XAS) at the As and Fe K-edges. Colloidal scorodite mobilized in surface runoff from the waste pile is acting as a mobile As carrier. In surface runoff from the river bed and the sedimentation pond, ferrihydrite was identified as the dominant As-bearing colloidal phase. The results from this study suggest that mobilization of As-bearing colloids by surface runoff may play an important role in the dispersion of As from metallurgical wastes deposited above ground and needs to be considered in risk assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling non-porous surfaces. 761.267... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.267 Sampling non-porous surfaces. (a) Sample large, nearly flat, non-porous surfaces by dividing...

  16. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling non-porous surfaces. 761.267... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.267 Sampling non-porous surfaces. (a) Sample large, nearly flat, non-porous surfaces by dividing...

  17. Leachate migration from a pesticide waste disposal site in Hardeman County, Tennessee

    USGS Publications Warehouse

    Sprinkle, C.L.

    1978-01-01

    Between 1964 and 1972, approximately 300,000 drums (55-gallon steel barrels) of waste derived from the manufacturing of pesticides were buried on 45 acres of land in northern Hardemen County, Tennessee. Leachates from these wastes are migrating from the disposal site in surface runoff, through shallow perched water zones, and through the local water-table aquifer. Compounds identified in the leachates included: dieldrin, endrin , chlordene, heptachlor, heptachlor epoxide, pentachlorocyclopentadiene, and hexachloro-bicycloheptadiene. The rate of migration of some of the leachate compounds in the water-table aquifer was found to be at least 80 feet per year. (Woodard-USGS)

  18. Using Natural Cementation Systems to Control Corrosion Dust on Un-surfaced Roads

    DTIC Science & Technology

    2010-02-01

    metallurgical slags ), volcanic glass , fly ash and low-fired clays • Can use waste alkali from manufacturing operations • No Portland cement is involved Soil...solidified with alkali- activated glass slag US Army Corps of Engineers 4 Pohakuloa Training Area (PTA) as a Test Site • Serious dust problem at site...Conventional Cement? • Glass can be both the aggregate and form the cementing phase • Waste glass ( slag , fly ash) can be used • More alkaline solution is

  19. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.R.; McDonald, J.R.; Russell, R.J.

    1995-10-01

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

  20. Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS

    NASA Astrophysics Data System (ADS)

    Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.

    2017-11-01

    In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.

  1. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  2. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  3. Sydney tar ponds: some problems in quantifying toxic waste.

    PubMed

    Furimsky, Edward

    2002-12-01

    Information on the type and amount of hazardous and toxic waste is required to develop a meaningful strategy and estimate a realistic cost for clean up of the Sydney Tar Pond site which is located on Cape Breton, in the province of Nova Scotia, Canada. The site covers the area of the decommissioned Sysco (Sydney Steel Corporation) plant. The materials of concern include BTEX (benzene, toluene, ethylbenzene, and xylenes), PAH (polycyclic aromatic hydrocarbons), PCB (polychlorinated biphenyl), and particulates laden with toxic metals, such as arsenic, lead, and others. The originally nontoxic materials such as soil, blast furnace slag, and vegetation, as well as surface and ground waters, which were subsequently contaminated, must also be included if they fail tests prescribed by environmental regulations. An extensive sampling program must be undertaken to obtain data for an accurate estimate of the waste to be cleaned and disposed of. Apparently, 700,000 tons of toxic waste, which is believed to be present on the site, may represent only a fraction of the actual amount. The clean-up of the site is only part of the solution. Toxic waste has to be disposed of in accordance with environmental regulations.

  4. Immobilization of metals in contaminated soil from E-waste recycling site by dairy-manure-derived biochar.

    PubMed

    Chen, Zhiliang; Zhang, Jianqiang; Liu, Minchao; Wu, Yingxin; Yuan, Zhihui

    2017-08-24

    E-waste is a growing concern around the world and varieties of abandoned E-waste recycling sites, especially in urban area, need to remediate immediately. The impacts of dairy-manure-derived biochars (BCs) on the amelioration of soil properties, the changes in the morphologies as well as the mobility of metals were studied to test their efficacy in immobilization of metals for a potential restoration of vegetation landscape in abandoned E-waste recycling site. The amendment with BCs produced positive effects on bioavailability and mobility reduction for Pb, Cd, Zn and Cu depending on BC ratio and incubation time. The BCs promoted the transformation of species of heavy metals to a more stable fraction, and the metals concentrations in Toxicity Characteristic Leaching Procedure extract declined significantly, especially Pb and Cu. Besides, the BCs ameliorated the substrate with increasing the soil pH, cations exchangeable capacity and available phosphorous, which suggested BC as a potential amendment material for abandoned E-waste recycling sites before restoration of vegetation landscape. Generally, the BC modified by alkaline treatment has a higher efficacy, probably due to increase of specific surface area and porosity as well as the functional groups after alkaline treatment.

  5. Using imaging spectroscopy to map acidic mine waste

    USGS Publications Warehouse

    Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; Roth, S.

    2000-01-01

    The process of pyrite oxidation at the surface of mine waste may produce acidic water that is gradually neutralized as it drains away from the waste, depositing different Fe-bearing secondary minerals in roughly concentric zones that emanate from mine-waste piles. These Fe-bearing minerals are indicators of the geochemical conditions under which they form. Airborne and orbital imaging spectrometers can be used to map these mineral zones because each of these Fe-bearing secondary minerals is spectrally unique. In this way, imaging spectroscopy can be used to rapidly screen entire mining districts for potential sources of surface acid drainage and to detect acid producing minerals in mine waste or unmined rock outcrops. Spectral data from the AVIRIS instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, CO. Laboratory leach tests of surface samples show that leachate pH is most acidic and metals most mobile in samples from the inner jarosite zone and that leachate pH is near-neutral and metals least mobile in samples from the outer goethite zone.

  6. Development of a carbonate crust on alkaline nuclear waste sludge at the Hanford site.

    PubMed

    Page, Jason S; Reynolds, Jacob G; Ely, Tom M; Cooke, Gary A

    2018-01-15

    Hard crusts on aging plutonium production waste have hindered the remediation of the Hanford Site in southeastern Washington, USA. In this study, samples were analyzed to determine the cause of a hard crust that developed on the highly radioactive sludge during 20 years of inactivity in one of the underground tanks (tank 241-C-105). Samples recently taken from the crust were compared with those acquired before the crust appeared. X-ray diffraction and scanning electron microscopy (SEM) indicated that aluminum and uranium phases at the surface had converted from (hydr)oxides (gibbsite and clarkeite) into carbonates (dawsonite and cejkaite) and identified trona as the cementing phase, a bicarbonate that formed at the expense of thermonatrite. Since trona is more stable at lower pH values than thermonatrite, the pH of the surface decreased over time, suggesting that CO 2 from the atmosphere lowered the pH. Thus, a likely cause of crust formation was the absorption of CO 2 from the air, leading to a reduction of the pH and carbonation of the waste surface. The results presented here help establish a model for how nuclear process waste can age and can be used to aid future remediation and retrieval activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor.

    PubMed

    Twining, J R; Hughes, C E; Harrison, J J; Hankin, S; Crawford, J; Johansen, M; Dyer, L

    2011-06-01

    The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of (3)H that were significantly higher (up to ∼700 Bq L(-1)) than local background levels (0-10 Bq L(-1)). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p < 0.01) local fallout (3)H but its influence did not reach as far as the disposal trenches. The elevated (3)H levels in transpirate were, however, substantially lower than groundwater concentrations measured across the site (ranging from 0 to 91% with a median of 2%). Temporal patterns of tree transpirate (3)H, together with local meteorological observations, indicate that soil water within the active root zones comprised a mixture of seepage and rainfall infiltration. The degree of mixing was variable given that the soil water activity concentrations were heterogeneous at a scale equivalent to the effective rooting volume of the trees. In addition, water taken up by roots was not well mixed within the trees. Based on correlation modelling, net rainfall less evaporation (a surrogate for infiltration) over a period of from 2 to 3 weeks prior to sampling seems to be the optimum predictor of transpirate (3)H variability for any sampled tree at this site. The results demonstrate successful use of (3)H in transpirate from trees to indicate the presence and general extent of sub-surface contamination at a low-level nuclear waste site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    PubMed

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  9. Spatiotemporal Dynamics of Biogeochemical Species around Karadiyana Solid Waste Landfill, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Koliyabandara, P. A.; Cooray, P. L. A. T.; Liyanage, S.; Siriwardana, C.

    2017-12-01

    Leachate from solid waste landfills is a significant environmental issue throughout the world. Most of the developed countries have strict guidelines for solid waste landfills as opposed to the open solid waste dumps in developing countries. Karadiyana solid waste management facility is located in Western province, Sri Lanka having a total area about 25 acres. Several Local Authorities use this facility as the final disposal site for their daily collected garbage. About 575 tons/day of Municipal Solid Waste reach the project site. This novel study was carried out to understand the spatiotemporal variation of nutrients around the site surrounded by a marshy land which directly has a connection to Weras River. Leachate, surface water and ground water samples were collected from pre-determined locations and analyzed to assess the interaction of leachate with surrounding water bodies. Sample locations were selected based on topography, areas close to dumpsite and flow regimes. Sampling was done monthly over eight months starting from September 2016 data and they were preserved, and analyzed according to the Standard Methods for the Examination of Water and wastewater analysis. Ammonia Nitrogen, Nitrate Nitrogen, Total Phosphorous (TP) of surface water ranged in between 0.08-320, 10-6000, 0.2-50 mg/L. For leachate samples, the above parameters varied in the range of 0.22-320, 18-13000 and 0.04-15 mg/L. Highest concentrations for Nitrogenous species and Phosphorous were observed at the sampling point closer to the site (latitude 6.816538 and longitude of 79.902250). Higher concentrations measured during the rainy period may be attributed to rainwater that infiltrated into the landfill that promotes solubilisation of pollutants and enhanced leaching of nutrients from actively decomposing waste mass into leachates. Interestingly, though high concentration of nitrogen and TP observed in surface waters, dense algae growth was not observed. This may be due to the presence of Cu at level in the range of 0.1 to 0.2 ppm. Ammonia Nitrogen, Nitrate Nitrogen, TP in ground water of monitoring wells ranged in between 400-500, 40-62, 1.6- 160 mg/L. Our results emphasizes there is a greater threat by the cumulative load discharged to the river annually. Proper treatment prior to disposal is recommended.

  10. A study of surface and subsurface ground motions at Calico Hills, Nevada Test Site

    USGS Publications Warehouse

    King, Kenneth W.

    1982-01-01

    A study of earthquake ground motions recorded at depth in a drill hole and at the ground surface has derived the surface to subsurface transfer functions such as might be expected at a potential nuclear waste repository in a similar setting. The site under investigation has small seismic velocity contrasts in the layers of rock between the surface and the subsurface seismometer location. The subsurface seismic motions were similar in spectral characteristics to the surface motions and were lower in amplitude across the recorded band-width by a factor of 1.5.

  11. Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuanfang Fred; Strickland, Christopher E.; Link, Steven O.

    Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. The Prototype Hanford Barrier (PHB) was designed as a 1000-year barrier with pre-determined design and performance objectives and demonstrated in field from 1994 to present. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barriermore » satisfied nearly all key objectives. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford’s semiarid climate, limited drainage to well below the 0.5 mm yr-1 performance criterion, limited runoff, and minimized erosion. Given the two-decade record of successful performance and consideration of all the processes and mechanisms that could degrade the stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the base for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste.« less

  12. Health assessment for Master Disposal Service Landfill, Waukesha County, Brookfield, Wisconsin, Region 5. CERCLIS No. WID980820070. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-10

    The Master Disposal Service Landfill is listed on the National Priorities List. The site is located on the western edge of Brookfield in Waukesha County, Wisconsin. From 1962 to 1982, Master Disposal Service, Inc. operated a 40-acre landfill and filled a 26-acre wetland area by accepting in excess of 1.5 million gallons of industrial wastes. The wastes included solvents, paint products, adhesives, oils, and foundry wastes. State sampling established that ground water near the site is contaminated by chromium, lead, phenols, and PCBs. Based on the available information, the site is considered to be of potential public health concern becausemore » of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated ground water, surface water, soil and air.« less

  13. Water-quality and hydrogeologic data for three phosphate industry waste-disposal sites in central Florida, 1979-80

    USGS Publications Warehouse

    Miller, Ronald L.; Sutcliffe, Horace

    1982-01-01

    This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)

  14. Installation-restoration program. Preliminary assessment: 201st Red Horse, Civil Engineering Flight, Fort Indiantown Gap Air National Guard Station, Pennsylvania Air National Guard, Annville, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed of throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants due to leakage or seepage from landfills and storage tanks.« less

  15. Cleanups In My Community (CIMC) - RCRA and Base Realignment and Closure (BRAC) Federal Facilities, National Layer

    EPA Pesticide Factsheets

    This data layer provides access to Resource Conservation and Recovery Act (RCRA) Base Realignment and Closure (BRAC) sites as part of the CIMC web service. The Resource Conservation and Recovery Act, among other things, helps ensure that wastes are managed in an environmentally sound manner so as to protect human health and the environment from the potential hazards of waste disposal.In particular RCRA tightly regulates all hazardous waste from cradle to grave. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. Accidents or other activities at facilities that treat, store or dispose of hazardous wastes have sometimes led to the release of hazardous waste or hazardous constituents into soil, ground water, surface water, or air. When that happens, the RCRA Corrective Action program is one program that may be used to accomplish the necessary cleanup.This data layer shows those RCRA sites that are located at BRAC Federal Facilities. Additional RCRA sites and other BRAC sites (those that are not RCRA sites) are included in other data layers as part of this web service.Note: RCRA facilities which are not undergoing corrective action are not considered ??Cleanups?? in Cleanups in My Community. The complete set of RCRA facilities can be accessed via

  16. Land Application of Wastes: An Educational Program. Waste Application Systems - Module 12, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    Land application systems are discussed with reference to the options available for applying wastewater and sludge to the site. Spray systems, surface flow methods, and sludge application schemes are all included with discussions of the advantages and disadvantages of each option within these categories. A distinction is made between the choice of…

  17. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  18. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  19. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  20. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  1. A Report to Congress on Long-Term Stewardship. Volume II, Site Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2001-01-01

    During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as for other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over a 100 sites in 30 States and one U.S. Territory. Hundreds of thousand of acres of residually contaminated soils, contaminated groundwater, surface water and sediment contamination, and contaminated buildings are present at many sites across the country. These sites range in sizemore » from less than one acre, containing only a single facility, to large sites spanning over 100,000 acres with huge uranium enrichment plants and plutonium processing canyons. Since 1989, the U.S. Department of Energy’s (DOE) Environmental Management (EM) program has made significant progress in addressing this environmental legacy. Millions of cubic meters of waste have been removed, stabilized, or disposed of, resulting in significant risk and cost reduction. In addition, DOE began disposing of transuranic (i.e., plutonium-contaminated) waste in the nation’s first deep geologic repository – the Waste Isolation Pilot Plant in New Mexico. DOE is now carrying out its long-term stewardship obligations at dozens of sites, including smaller sites where DOE has completed cleanup work for the entire site and many larger sites where DOE has remediated portions of the site.« less

  2. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    EPA Pesticide Factsheets

    This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially harmful to our health or the environment. Hazardous wastes can be liquids, solids, gases, or sludges. They can be discarded commercial products, like cleaning fluids or pesticides, or the by-products of manufacturing processes. The RCRA Corrective Action Program, run by EPA and 43 authorized states and territories, works with facilities that have treated, stored, or disposed of hazardous wastes (TSDs) to protect public health and the environment by investigating and cleaning up hazardous releases to soil, ground water, surface water, and air at their facilities.RCRA Corrective Action sites in all 50 states and four U.S. territories cover 18 million acres of land.EPA estimates that more than 35 million people, roughly 12 percent of the U.S. population, live within one mile of a RCRA Corrective Action site (based on the 2000 U.S. Census).RCRA Corrective Action facilities include many current and former chemical manufacturing plants, oil refineries, lead smelters, wood preservers, steel mills, commercial landfills, and a variety of other types of entities. Due to poor practices prior to environmental regulations, Corrective Action facilities have left large stretches of river sediments laden with PCBs; deposited lead in residential yards and parks beyond site boundaries; polluted drinking water wells

  3. Evapotranspiration (ET) covers.

    PubMed

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information about specific projects using ET covers. There are three general approaches for non-conventional cover systems to achieve approval for installation; the first is when equivalent performance to conventional final cover systems can be demonstrated directly on site. This is the approach used by the Sandia study, by most ACAP sites, and the Rocky Mountain Arsenal. A second approach is used when there are data from a site specific study such as an ACAP installation at a site that has analogous soil and climate conditions. Several sites in Colorado and Southern California have achieved approval based on data from similar sites. The third most common approach for regulatory approval is by installation of data collection systems with the agreement that the permanence of the ET cover installation is contingent on success of the cover in meeting certain performance goals. This article is intended as an introduction to the topic and is not intended to serve as guidance for design or construction, nor indicate the appropriateness of using an ET cover systems at a particular site.

  4. Superfund Record of Decision (EPA Region 7): Doepke Disposal (Holliday), KS. (First remedial action), September 1989. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-21

    The Doepke Disposal (Holliday) site is an inactive industrial-waste landfill located east of Holliday, Johnson County, Kansas. During the 1950s and early 1960s the site was used as a landfill for residential refuse. In 1963 Doepke Disposal Service, Inc. leased the property and operated a commercial and industrial waste landfill until 1970, when the State shut down the operation. Materials such as fiberglass, fiberglass resins, paint sludges, spent solvents, metal sludges, soaps, and pesticides were reportedly disposed of at the landfill. In 1966 fire debris and up to 374 drums of solvents and organochlorine and organophosphate pesticides were disposed ofmore » at the site as a result of a fire at a Kansas City chemical plant. Initially wastes and residues brought to the site were burned, however, in the late 1960s burning operations ceased and solid wastes were buried onsite and liquids were disposed of in two surface impoundments. In 1977 rock material excavated during the construction of an interstate was dumped onsite and in some cases over the deposited waste. The current owner uses portions of the site for storage of clay, crushed shales, and crushed limestone. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylene; other organics including PAHs, PCBs, and pesticides, and metals including chromium and lead.« less

  5. Can Cr( iii ) substitute for Al( iii ) in the structure of boehmite?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Conroy, Michele A.; Smith, Frances N.

    2016-01-01

    The dissolution of boehmite is a technical issue for the Al industry because of its recalcitrant nature. In fact, a similar problem exists with boehmite in nuclear waste sludge at the Hanford site in eastern Washington State, USA. Dissolution of Al phases is required to reduce the waste loadings in the final borosilicate glass waste form. Although not the most common Al-bearing species in the sludge, boehmite may become a rate limiting step in the processing of the wastes. Hanford boehmite is an order of magnitude more resistant to dissolution in hot caustic solutions than expected from surface-normalized rates. Wemore » are exploring potential intrinsic and extrinsic effects that may limit boehmite reactivity; one clue comes from microstructural analyses that indicate an association of Cr with Al in the Hanford nuclear waste. Hence, in this first paper, we investigated the potential role of chromium on the reactivity of boehmite in caustic solution. An important finding was that irrespective of the synthesis pathway, amount of Cr(III), or the resultant morphology, there was no evidence for Cr incorporation in the bulk structure, in agreement with QM calculations. In fact, electron microscopic (EM) and spectroscopic analyses showed that Cr was enriched at the (101) edges of the boehmite. However, Cr had no measurable effect on the morphology during the synthesis step. In contrast, comparison of the morphologies of the synthetic Cr-doped and pure boehmite samples after exposure to caustic solutions provided evidence that Cr inhibited the corrosion. TEM showed that Cr was not homogeneously distributed at the surface. Consequently, Cr may have partially passivated the surface by blocking discrete energetic sites on the lateral surfaces of boehmite.« less

  6. Polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in surface dust at an E-waste processing site in Southeast China.

    PubMed

    Leung, Anna O W; Zheng, Jinshu; Yu, Chik Kin; Liu, Wing Keung; Wong, Chris K C; Cai, Zongwei; Wong, Ming H

    2011-07-01

    Surface dust collected from printed circuit board recycling workshop floors, roads, a schoolyard, and an outdoor food market in Guiyu, China, a village intensely involved in e-waste processing, were investigated for levels of polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). PBDE concentrations in dust from workshop-floors (14,800 ± 5130 ng/g) and on adjacent roads to the workshops (24,900 ± 31,600 ng/g) were highest among the study sites whereas PCDD/F concentrations were highest at the schoolyard (1316 pg/g) and in a workshop (1264 pg/g). Analyses of <2 mm and <53 μm dust particle sizes did not show any significant differences in PBDE concentrations. The cytotoxicity was investigated using two bioassays: 7-ethoxyresorufin O-deethylase (EROD-TEQ) and MTT. EROD-TEQ values ranged from 260 to 432 pg/g, with the highest in dust collected from a street lined with workshops. Using the MTT assay, cytoxicity of dust from the plastic chips drying district in Guiyu was higher than dust from the other sites investigated. This study showed that the primitive recycling of e-waste introduced toxic pollutants into the environment which are potentially harmful to the health of e-waste workers and local residents, especially children, and warrants an urgent investigation into POPs related health impacts.

  7. Evaluation of Heavy Metals in Solid Waste Disposal Sites in Campinas City, Brazil Using Synchrotron Radiation Total Reflection X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    de Faria, Bruna Fernanda; Moreira, Silvana

    2011-12-01

    The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.

  8. Rehabilitation of El Yahoudia dumping site, Tunisia.

    PubMed

    Zaïri, M; Ferchichi, M; Ismaïl, A; Jenayeh, M; Hammami, H

    2004-01-01

    As in all developing countries, cities in Tunisia face serious problems of environmental pollution caused mainly by the inadequate and inefficient final disposal of their generated solid wastes. The Tunisian government launched a development program including the construction of landfills in the main cities and the closure of the contaminated sites issued from solid wastes landrising practice. The project of the Henchir El Yahoudia landfill restoration is the first experience in this programme. It has been suggested to convert the site to a green park and to implement an ornamental plant nursery. The whole surface of the landfill is approximately 100 ha from which 30 ha have been already transformed to an urban recreational area and the remaining 70 ha have to be characterized for the project extension. A field investigation by boring was conducted in order to define the geological and the hydrogeological conditions, the vertical and horizontal wastes layer extension, content and degree of decomposition and the composition and quantities of leachate and landfill gas. Representative samples of waste, soil, groundwater and leachate were collected for laboratory analyses. Several of these borings were converted to piezometers to define the flow regime in the site. The results showed that the biogas (CH4, H2S, and CO2), leachate and waste, distribution in the site is mainly affected by the temporal variation of the site operating method. The underlying fissured clay layer facilitated leachate infiltration into the groundwater where high BOD, COD and nitrogen concentrations were registered.

  9. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized bymore » the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.« less

  10. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  11. Selected Water- and Sediment-Quality, Aquatic Biology, and Mine-Waste Data from the Ely Copper Mine Superfund Site, Vershire, VT, 1998-2007

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Hathaway, Edward; Coles, James F.

    2008-01-01

    The data contained in this report are a compilation of selected water- and sediment-quality, aquatic biology, and mine-waste data collected at the Ely Copper Mine Superfund site in Vershire, VT, from August 1998 through May 2007. The Ely Copper Mine Superfund site is in eastern, central Vermont (fig. 1) within the Vermont Copper Belt (Hammarstrom and others, 2001). The Ely Copper Mine site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2001. Previous investigations conducted at the site documented that the mine is contributing metals and highly acidic waters to local streams (Hammarstrom and others, 2001; Holmes and others, 2002; Piatak and others, 2003, 2004, and 2006). The U.S. Geological Survey (USGS), in cooperation with the USEPA, compiled selected data from previous investigations into uniform datasets that will be used to help characterize the extent of contamination at the mine. The data may be used to determine the magnitude of biological impacts from the contamination and in the development of remediation activities. This report contains analytical data for samples collected from 98 stream locations, 6 pond locations, 21 surface-water seeps, and 29 mine-waste locations. The 98 stream locations are within 3 streams and their tributaries. Ely Brook flows directly through the Ely Copper Mine then into Schoolhouse Brook (fig. 2), which joins the Ompompanoosuc River (fig. 1). The six pond locations are along Ely Brook Tributary 2 (fig. 2). The surface-water seeps and mine-waste locations are near the headwaters of Ely Brook (fig. 2 and fig. 3). The datasets 'Site_Directory' and 'Coordinates' contain specific information about each of the sample locations including stream name, number of meters from the mouth of stream, geographic coordinates, types of samples collected (matrix of sample), and the figure on which the sample location is depicted. Data have been collected at the Ely Copper Mine Superfund site by the USEPA, the Vermont Department of Environmental Conservation (VTDEC), and the USGS. Data also have been collected on behalf of USEPA by the following agencies: Arthur D. Little Incorporated (ADL), U.S. Army Cold Region Research and Engineering Laboratory (CRREL), URS Corporation (URS), USEPA, and USGS. These data provide information about the aquatic communities and their habitats, including chemical analyses of surface water, pore water, sediments, and fish tissue; assessments of macroinvertebrate and fish assemblages; physical characteristics of sediments; and chemical analyses of soil and soil leachate collected in and around the piles of mine waste.

  12. Land Application of Wastes: An Educational Program. Non-Crop and Forest Systems - Module 13, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module discusses the characteristics of alternate sites and management schemes and attempts to evaluate the efficiency of each alternative in terms of waste treatment. Three types of non-crop land application are discussed: (1) forest lands; (2) park and recreational application; and (3) land reclamation in surface or strip mined areas. (BB)

  13. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation where there is a nutrient-rich source of waste.

  14. Geochemistry of Mine Waste and Mill Tailings, Meadow Deposits, Streambed Sediment, and General Hydrology and Water Quality for the Frohner Meadows Area, Upper Lump Gulch, Jefferson County, Montana

    USGS Publications Warehouse

    Klein, Terry L.; Cannon, Michael R.; Fey, David L.

    2004-01-01

    Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and zinc typically are adsorbed to the surface coatings of streambed-sediment grains. Mine waste and mill tailings contain high concentrations of arsenic, cadmium, copper, lead, and zinc in a quartz-rich matrix. Most of the waste sites that were sampled had low acid-generating capacity, although one site (fine-grained mill tailings from the Nellie Grant mine deposited in the upper part of lower Frohner Meadows) had extremely high acid-generating potential because of abundant fine-grained pyrite. Two distinct sites were identified as metal sources based on streambed-sediment samples, cores in the meadow substrate, and mine and mill-tailings samples. The Frohner mine and mill site contribute material rich in arsenic and lead; similar material from the Nellie Grant mine and mill site is rich in cadmium and zinc.

  15. Subduction zones: Not relevant to present-day problems of waste disposal

    USGS Publications Warehouse

    Silver, E.A.

    1972-01-01

    SUBDUCTION zones are considered to be sites of disposal for vast areas of the Earth's surface1, while new surface is generated simultaneously at rise crests2. Bostrom and Sherif3 suggest that the world's industrial and domestic waste be dumped into subduction zones at deep sea trenches to allow nature to complete the recycling process at geologically rapid rates of 5 to 10 cm/yr. They also point out that trenches are often sites of rapid rates of deposition and suggest that the dumped wastes would, speaking geologically, soon be buried. Francis4 suggests that canisters of toxic chemical and radioactive wastes could be dumped onto trench sediments and be expected to sink at rates of 20 m/yr, assuming that the mass of turbidites in the trench fill often spontaneously liquefies on shaking by earthquakes. The assumption is based on the supposed lack of evidence for deformed sediment in trenches. I will argue that the suggestion of Bostrom and Sherif3 is not useful for the next few dozen generations of human populations and will point out observational evidence to show that Francis's4 assumption is incorrectly founded. ?? 1972 Nature Publishing Group.

  16. Polybrominated diphenyl ethers in e-waste: Level and transfer in a typical e-waste recycling site in Shanghai, Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan

    Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well asmore » dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.« less

  17. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    USGS Publications Warehouse

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-11-13

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  18. Physical, chemical, and biological aspects of subsurface organic waste injection near Wilmington, North Carolina

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.; White, W.R.

    1976-01-01

    From May 1968 to December 1972, an industrial organic waste was injected at rates of 100 to 200 gallons per minute (6.3 to 12.6 litres per second) into a sand, gravel, and limestone aquifer of Late Cretaceous age by Hercules Inc. located near Wilmington, North Carolina. This report presents both field and laboratory data pertaining to the physical, chemical, and biological effects of waste injection into the subsurface at this particular site, a case history of the operation, predictions of the reactions between certain organic wastes and the aquifer components, and descriptions of the effects of these reactions on the subsurface movement of the wastes. The case history documents a situation in which subsurface waste injection could not be considered a successful means of waste disposal. The first injection well was used only for 1 year due to excessive wellhead pressure build-up above the specified pressure limit of 150 pounds per square inch (10.3 bars). A second injection well drilled as a replacement operated for only 5 months before it too began to have problems with plugging. Upward leakage of waste into shallower aquifers was also detected at several wells in the injection-observation well system. The multiple problems of plugging, high pressures, and waste leakage suggested that the reactive nature of the waste with the aquifer into which it was injected was the primary reason for the difficulties experienced with waste injection. A site study was initiated in June 1971 to investigate waste-aquifer interactions. The first stage of the study determined the hydrogeologic conditions at the site, and characterized the industrial waste and the native ground water found in the injection zone and other aquifers. The injection zone consisted of multiple permeable zones ranging in depth from about 850 to 1,000 feet (259 to 305 metres) below land surface. In addition to the injection zone, aquifers were found near depths of 60, 300, 500, and 700 feet (18, 91, 152, and 213 metres) below land surface. The aquifers from 300 feet (91 metres) down to the injection zone were flowing artesian with the natural pressure of the injection zone being 65 feet (20 metres) above land surface at the site. The dissolved solids concentration in the native ground water increased with depth to an average value of 20,800 mg/l (milligram per litre) (two-thirds that of seawater) in the water from the injection zone. Sodium chloride was the major dissolved solid, and all of the ground water below 300-feet (91-metres) depth was slightly alkaline. Dissolved organic carbon of the industrial waste averaged 7,100 mg/l and 95 percent of the organic carbon was identified and quantified. The major organic waste constituents in order of decreasing abundance were acetic acid, formic acid, p-toluic acid, formaldehyde, methanol, terephthalic acid, phthalic acid, and benzoic acid. Prior to injection, the waste was neutralized with lime to pH 4 so that the major inorganic waste constituent was calcium at a concentration of 1,300 mg/l. The second stage of the site study involved the observation of waste-aquifer interactions at various wells as the waste arrived and passed by the wells. Water samples obtained from three observation wells located 1,500 to 2,000 feet (457 to 607 metres) from the original injection well gave evidence for biochemical waste transformations at low waste concentrations. Gas that effervesced from these water samples contained up to 54 percent methane by volume. Ferrous iron concentrations as high as 35 mg/l, hydrogen sulfide gas, and sulfide precipitates were additional indicators of biochemical reductive processes in the subsurface environment. Approximately 3,000 organisms per millilitre were found in uncontaminated ground water from the injection zone whereas in waste-contaminated wells, the number increased to levels as high as 1,000,000 organisms per millilitre. High concentrations of waste were found to be toxic to microo

  19. Corrective Action Investigation Plan for Corrective Action Unit 527: Horn Silver Mine, Nevada Test Site, Nevada: Revision 1 (Including Records of Technical Change No.1, 2, 3, and 4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    This Corrective Action Investigation Plan contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 527, Horn Silver Mine, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 527 consists of one Corrective Action Site (CAS): 26-20-01, Contaminated Waste Dump No.1. The site is located in an abandoned mine site in Area 26 (which is the most arid part of the NTS) approximately 65 miles northwest of Las Vegas. Historicalmore » documents may refer to this site as CAU 168, CWD-1, the Wingfield mine (or shaft), and the Wahmonie mine (or shaft). Historical documentation indicates that between 1959 and the 1970s, nonliquid classified material and unclassified waste was placed in the Horn Silver Mine's shaft. Some of the waste is known to be radioactive. Documentation indicates that the waste is present from 150 feet to the bottom of the mine (500 ft below ground surface). This CAU is being investigated because hazardous constituents migrating from materials and/or wastes disposed of in the Horn Silver Mine may pose a threat to human health and the environment as well as to assess the potential impacts associated with any potential releases from the waste. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less

  20. Public health assessment for master disposal service landfill, Brookfield, Waukesha County, Wisconsin, Region 5. Cerclis No. WID980820070. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-08

    The Master Disposal Service Landfill (MDSL) accepted industrial wastes from 1962 to 1982. The wastes were placed in a 26-acre wetland area and were confined by surrounding berms. Groundwater, surface water, soil and sediments have been contaminated with volatile organic compounds and metals. The remedial investigation of the landfill identified a plume of contaminated groundwater extending from beneath the site to approximately 675 feet southwest of the site. There is no evidence of human exposure. The site is of no apparent public health hazard at the present time. However, this could change if no remediation of contaminated groundwater occurs.

  1. FIELD STUDY OF THE FATE OF ARSENIC, LEAD, AND ZINC AT THE GROUND-WATER/SURFACE-WATER INTERFACE

    EPA Science Inventory

    It is recognized that physical and chemical interactions between adjacent ground water and surface water bodies are an important factor impacting water budget and nutrient/contaminant transport within a watershed. This observation is also of importance for hazardous waste site c...

  2. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...

  3. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...

  4. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...

  5. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  6. LANDSAT observations of ocean dump plume movement and dispersion. [Cape Henlopen, Delaware

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G. R.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Eighteen LANDSAT images were analyzed to study the dispersion and movement of ocean dump plumes thirty-eight miles southeast of Cape Henlopen, Delaware, at the disposal site for waste discharged from a plant producing titanium dioxide. Long visual persistence was explained by the formation of a suspended ferric floc. Spectrometric measurements indicate that upon combining with sea water the acid waste develops a strong reflectance peak in the band 0.55 to 0.60 micron region, resulting in a stronger contrast in the MSS band 4 than the other bands. Predominant direction of movement of the waste plumes was to the southeast. Average drift velocity for surface drogues and the waste plumes was about 0.5 knots. The water at the test site was highly stratified and stable in the summer and nearly homogenous in the winter.

  7. Quadrant III RFI draft report: Appendix B-I, Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    In order to determine the nature and extent of contamination at a RCRA site it is often necessary to investigate and characterize the chemical composition of the medium in question that represents background conditions. Background is defined as current conditions present at a site which are unaffected by past treatment, storage, or disposal of hazardous waste (OEPA, 1991). The background composition of soils at the Portsmouth Gaseous Diffusion Plant (PORTS) site was characterized for the purpose of comparing investigative soil data to a background standard for each metal on the Target Compound List/Target Analyte List and each radiological parameter ofmore » concern in this RFI. Characterization of background compositions with respect to organic parameters was not performed because the organic parameters in the TCL/TAL are not naturally occurring at the site and because the site is not located in a highly industrialized area nor downgradient from another unrelated hazardous waste site. Characterization of the background soil composition with respect to metals and radiological parameters was performed by collecting and analyzing soil boring and hand-auger samples in areas deemed unaffected by past treatment, storage, or disposal of hazardous waste. Criteria used in determining whether a soil sample location would be representative of the true background condition included: environmental history of the location, relation to Solid Waste Management Units (SWMU`s), prevailing wind direction, surface runoff direction, and ground-water flow direction.« less

  8. Quadrant III RFI draft report: Appendix B-I, Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    In order to determine the nature and extent of contamination at a RCRA site it is often necessary to investigate and characterize the chemical composition of the medium in question that represents background conditions. Background is defined as current conditions present at a site which are unaffected by past treatment, storage, or disposal of hazardous waste (OEPA, 1991). The background composition of soils at the Portsmouth Gaseous Diffusion Plant (PORTS) site was characterized for the purpose of comparing investigative soil data to a background standard for each metal on the Target Compound List/Target Analyte List and each radiological parameter ofmore » concern in this RFI. Characterization of background compositions with respect to organic parameters was not performed because the organic parameters in the TCL/TAL are not naturally occurring at the site and because the site is not located in a highly industrialized area nor downgradient from another unrelated hazardous waste site. Characterization of the background soil composition with respect to metals and radiological parameters was performed by collecting and analyzing soil boring and hand-auger samples in areas deemed unaffected by past treatment, storage, or disposal of hazardous waste. Criteria used in determining whether a soil sample location would be representative of the true background condition included: environmental history of the location, relation to Solid Waste Management Units (SWMU's), prevailing wind direction, surface runoff direction, and ground-water flow direction.« less

  9. Site Environmental Report for Calendar Year 2000. DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Phil; Samuels, Sandy; Lee, Majelle

    2001-09-01

    This Annual Site Environmental Report (ASER) for 2000 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned company-operated, test facility within Area IV. All nuclear work was terminated in 1988, andmore » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2000 continue to indicate no significant releases of radioactive material from Rocketdyne sites. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway.« less

  10. Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Levitt, M. T.

    2006-12-01

    The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.

  11. Site Selection for the Disposal of LLW in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, W.S.; Chi, L.M.; Tien, N.C.

    2006-07-01

    This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potentialmore » candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper presents the implementation status of the LLW disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes, and preliminary disposal concepts 'NIMBY' (Not in my backyard) is a critical problem for implementation of the final disposal project. Resistance from local communities has been continuously received during site characterization. To overcome this, an incentive program to encourage community acceptance has been approved by the Government. Programs for community promotion are being proposed and negotiations are also underway. (authors)« less

  12. Exposure-Reducing Behaviors among Residents Living near a Coal Ash Storage Site

    ERIC Educational Resources Information Center

    Zierold, Kristina M.; Sears, Clara G.; Brock, Guy N.

    2016-01-01

    Coal ash, a waste product generated from burning coal for energy, is composed of highly respirable particles containing heavy metals, radioactive elements, and polycylic aromatic hydrocarbons. Coal ash is stored in landfills and surface impoundments frequently located near neighborhoods. Fugitive dust from the storage sites exposes neighborhoods,…

  13. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-1... repository operation and closure, (1) the expected average radiation dose to members of the public within any...) Disqualifying conditions. A site shall be disqualified if— (1) Any surface facility of a repository would be...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs.

  15. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  16. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  17. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    PubMed

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, Wing K.; Pegg, Ian L.; Brandys, Marek

    One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less

  19. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-groundmore » biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.« less

  20. Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, A.; Gordon, S.; Goldston, W.

    2013-07-08

    This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less

  1. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites. FY 1992 year-end progress report: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the ``60`s Pits`` area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less

  2. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the 60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less

  3. RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeffer, J.

    2008-06-10

    The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state ofmore » Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal, cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.« less

  4. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    PubMed

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hydrologic data for the Weldon Spring radioactive waste-disposal sites, St. Charles County, Missouri; 1984-1986

    USGS Publications Warehouse

    Kleeschulte, M.J.; Emmett, L.F.; Barks, J.H.

    1986-01-01

    Hydrologic and water quality data were collected during an investigation of the Weldon Spring radioactive waste disposal sites and surroundings area in St. Charles County, Missouri, from 1984 to 1986. The data consists of water quality analyses of samples collected from 45 groundwater and 27 surface water sites. This includes analyses of water from four raffinate pits and from the Weldon Spring quarry. Also included in the report are the results of a seepage run on north flowing tributaries to Dardenne Creek from Kraut Run to Crooked Creek. Mean daily discharge from April 1985 to April 1986 is given for two springs located about 1.5 mi north of the chemical plant. (USGS)

  6. Navy Aquatic Hazardous Waste Sites: The Problem and Possible Solutions

    DTIC Science & Technology

    1989-08-01

    sensitive area. NEESA 13-013. Naval Weapons Station Concord , CA . This activity had 13 sites recommended for further study as having potential to impact the...also carry contaminants to the bay. NEESA 13-014. Naval Air Station Alameda, CA . Seven sites have the potential to impact San Francisco Bay. The West...addition, surface runoff may carry contaminants to the ponds or Kaneohe Bay. NEESA 13-040. Naval Weapons Station Charleston, SC. Four sites have the

  7. Reconstruction of the inner structure of small scale mining waste dumps by combining GPR and ERTdata.

    NASA Astrophysics Data System (ADS)

    Kniess, Rudolf; Martin, Tina

    2015-04-01

    Two abandoned small waste dumps in the west of the Harz mountains (Germany) were analysed using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Aim of the project (ROBEHA, funded by the German Federal Ministry of Education and Research (033R105)) is the assessment of the recycling potential of the mining residues taking into account environmental risks of reworking the dump site. One task of the geophysical prospection is the investigation of the inner structure of the mining dump. This is important for the estimation of the approximate volume of potentially reusable mining deposits within the waste dump. The two investigated dump sites are different in age and therefore differ in their structure. The older residues (< 1930) consist of ore processing waste from density separation (stamp mill sand). The younger dump site descends from comprises slag dump waste. The layer of fine grained residues at the first dump site is less than 6 m thick and the slag layer is less than 2 m thick. Both sites are partially overlain by forest or grassland vegetation and characterized by topographical irregularities. Due to the inhomogeneity of the sites we applied electrical resistivity tomography (ERT) and ground penetrating radar (GPR) for detailed investigation. Using ERT we could distinguish various layers within the mining dumps. The resistivities of the dumped material differ from the bedrock resistivities at both sites. The GPR measurements show near surface layer boundaries down to 3 - 4 m. In consecutive campaigns 100 MHz and 200 MHz antennas were used. The GPR results (layer boundaries) were included into the ERT inversion algorithm to enable more precise and stable resistivity models. This needs some special preprocessing steps. The 3D-Position of every electrode from ERT measurement and the GPR antenna position on the surface require an accuracy of less than 1cm. At some points, the layer boundaries and radar wave velocities can be calibrated with borehole stratigraphic data from a mineralogical drilling campaign. This is important for a precise time-depth conversion of reflectors from GPR measurement. This reflectors were taken from radargram and have been adopted as resistivity boundary in the start model of the geoelectric inversion algorithm.

  8. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241more » in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)« less

  9. Hydrogeologic data for the McKay Creek subsurface waste-injection test site, Pinellas County, Florida

    USGS Publications Warehouse

    Hickey, John D.

    1977-01-01

    Lithologic, hydraulic, geophysical, and water-quality data collected at the McKay Creek subsurface waste-injection test site in Pinellas County, Florida, are reported. Data were collected to determine the possibility of subsurface injection of waste-treatment plant effluent. One exploratory hole, one test injection well, and eight observation wells were constructed between May 1973 and February 1976. The exploratory hole was drilled to a depth of 1,750 feet below land surface; the test injection well is open in dolomite between 952 and 1 ,040 feet; and the observation wells are open to intervals above , in, and below the test injection zone. The lithology of the upper 100 feet is predominantly clay. From 100 to 1,750 feet below land surface, limestone and dolomite predominate. Gypsum is present 1,210 feet below land surface. Laboratory analyses of cores taken during drilling are given for vertical intrinsic permeability, porosity, interval transit time, and compressibility. Specific capacities tested during drilling range from 4 to 2,500 gallons per minute per foot of drawdown. An 83-hour withdrawal test at 4,180 gallons per minute and a 2-month injection test at 650 gallons per minute were run. Small water-quality changes were observed in one observation well immediately above the test injection zone during and after the injection test. Formation water in all of the wells with the exception of the shallowest observation wells is saline. The vertical position of saltwater is estimated to be at about 280 feet below land surface. Thirteen wells within a 1-mile radius of the test site were located and sampled for water quality. (USGS)

  10. Investigating the Influence of Remedial Capping on the Hydrological, Geochemical, and Microbial Processes that Control Subsurface Contaminant Migration at WAG 5 on the Oak Ridge Reservation: Implications toward Long-Term Stewardship

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Mehlhorn, T. L.

    2006-05-01

    The following research investigated the effectiveness of an aggressive, large scale remedial action that is occurring to subsurface waste trenches containing radioactive and organic waste at the Oak Ridge National Laboratory. The site is being remediated as one of the top cleanup prioritization for the Oak Ridge Accelerated Remediation endeavor. Site landlords, Bechtel Jacobs Co., LLC (BJC) are installing a minimal RCRA cap with the primary objective of controlling the infiltration of storm water into the hundreds of unconfined waste trenches containing radioactive and organic waste. The site now offers a unique scientific opportunity to track the kinetic evolution of post-cap processes influencing contaminant migration and immobilization, because we have many years of pre-cap coupled processes information and knowledge. Since the cap is certain to disrupt the near steady-state contaminant discharge profiles that have existed for many years from the site, we have been quantifying the influence of post-cap hydrological, geochemical, and microbial processes on contaminant discharge as a function of scale and time in an effort to assess local-scale cap influences versus regional scale groundwater flow influences on contaminant discharge. We have been allowed to maintain numerous groundwater monitoring wells at a field site and these have a rich historical data set with regard to hydrology, geochemistry, microbiology, and contaminant flux. Our objectives are to investigate cap induced changes in (1) groundwater and surface hydrology and contaminant flux, (2) geochemistry and contaminant speciation, and (3) microbial community structure and organic contaminant degradation and inorganic contaminant immobilization. Our approach monitors coupled processes during base-flow and during storm events in both the groundwater and surface water discharge from the site and the surrounding watershed. Pre- and post-cap data will than be modeled with a multiprocess, multicomponent, transport model which is linked to pre- and post-cap surface water hydrograph analysis from the site and the surrounding watershed. Our goal is to provide an improved fundamental understanding of the long-term fate and transport of contaminants and an improved ability to predict system response to remedial actions. The experimental and numerical results from this investigation will provide knowledge and information in previously unexplored areas of cap performance with regard to coupled hydrology, geochemistry, microbiology, and contaminant flux in humid regimes. The products will support DOE's mission of long-term stewardship of contaminated environments and be transferable to other site where similar remediation exists or is planned.

  11. Hydrogeologic controls on water quality at a university dairy farm

    NASA Astrophysics Data System (ADS)

    McKay, L. D.; Hunter, R. W.; Lee, J.

    2010-12-01

    Dairy farms typically produce large quantities of manure and other waste products which are often stored or treated in lagoons and then applied to local fields as fertilizer. Contamination of nearby streams by dairy farm wastes through surface runnoff, drainage tile discharge, direct release of wastes or inundation of waste storage facilities during seasonal flooding have long been recognized as major environmental concerns. However, much less attention has been paid to fate and transport of dairy wastes in the subsurface and their potential impact on water quality in aquifers or in groundwater discharge to streams. One of the challenges in evaluating the environmental impact of dairy operations is that there are relatively few field research sites where all of the potential pathways for waterborne transport of dairy wastes are monitored and quantititatively evaluated. There are even fewer sites where extensive baseline water quality monitoring programs were established prior to operation of the dairy. This is essential to distinguish between environmental impacts from dairy operations and other nearby sources, such as beef production and human sewage from septic fields. This talk describes the development of a an integrated hydrogeologic/hydrologic site assessment and groundwater/surface water quality monitoring program at the University of Tennessee - Little River Dairy Farm, located near Townsend, TN. The dairy is currently under construction and the first cows are expected to arrive in late 2010. Hydrologic/hydrogeologic investigations of streams and groundwater at the site have been underway for more than 3 years, and these are expected to provide background data for assessing impacts of dairy wastes and for testing the effectiveness of different management practises. The lower half of the ~180 ha site consists of low-relief fields used for row crops, which are underlain by 4 - 8 m of alluvial deposits (mainly interbedded silt and fine-grained sands) on top of by black shale or limestone. Several active sinkholes are present in the portion of the fields underlain by limestone. The fields are bounded on two sides by the Little River, a popular recreational river, and on the third side by Ellejoy Creek, which is on the state’s 303(d) list for impairment by nutrients, sediment and fecal microorganisms, which are derived from upstream agricultural and rural residential development. These fields will be fertilized with treated dairy wastes and are the main area of concern for offsite migration of contaminants through groundwater, drainage ditches and (eventually) a tile drain system. A secondary area of concern is the dairy waste treatment pond which is located, along with the dairy barns, on the upland portion of the site, which is underlain by 1-2 m of clay-rich residual soils developed on fractured shale bedrock. Long term water quality monitoring of runnoff, streams, drainage ditches and groundwater is planned, with the intent of measuring environmental impact of dairy operations and testing the effectiveness of different management practises.

  12. Landfill site selection by using geographic information systems

    NASA Astrophysics Data System (ADS)

    Şener, Başak; Süzen, M. Lütfi; Doyuran, Vedat

    2006-01-01

    One of the serious and growing potential problems in most large urban areas is the shortage of land for waste disposal. Although there are some efforts to reduce and recover the waste, disposal in landfills is still the most common method for waste destination. An inappropriate landfill site may have negative environmental, economic and ecological impacts. Therefore, it should be selected carefully by considering both regulations and constraints on other sources. In this study, candidate sites for an appropriate landfill area in the vicinity of Ankara are determined by using the integration of geographic information systems and multicriteria decision analysis (MCDA). For this purpose, 16 input map layers including topography, settlements (urban centers and villages), roads (Highway E90 and village roads), railways, airport, wetlands, infrastructures (pipelines and power lines), slope, geology, land use, floodplains, aquifers and surface water are prepared and two different MCDA methods (simple additive weighting and analytic hierarchy process) are implemented to a geographical information system. Comparison of the maps produced by these two different methods shows that both methods yield conformable results. Field checks also confirm that the candidate sites agree well with the selected criteria.

  13. Hydrologic Evaluation of the Jungo Area, Southern Desert Valley, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.

    2010-01-01

    RecologyTM, the primary San Francisco waste-disposal entity, is proposing to develop a Class 1 landfill near Jungo, Nevada. The proposal calls for the landfill to receive by rail about 20,000 tons of waste per week for up to 50 years. On September 22, 2009, the Interior Appropriation (S.A. 2494) was amended to require the U.S. Geological Survey to evaluate the proposed Jungo landfill site for: (1) potential water-quality impacts on nearby surface-water resources, including Rye Patch Reservoir and the Humboldt River; (2) potential impacts on municipal water resources of Winnemucca, Nevada; (3) locations and altitudes of aquifers; (4) how long it will take waste seepage from the site to contaminate local aquifers; and (5) the direction and distance that contaminated groundwater would travel at 95 and 190 years. This evaluation was based on review of existing data and information. Desert Valley is tributary to the Black Rock Desert via the Quinn River in northern Desert Valley. The Humboldt River and Rye Patch Reservoir would not be affected by surface releases from the proposed Jungo landfill site because they are in the Humboldt basin. Winnemucca, on the Humboldt River, is 30 miles east of the Jungo landfill site and in the Humboldt basin. Groundwater-flow directions indicate that subsurface flow near the proposed Jungo landfill site is toward the south-southwest. Therefore, municipal water resources of Winnemucca would not be affected by surface or subsurface releases from the proposed Jungo landfill site. Basin-fill aquifers underlie the 680-square-mile valley floor in Desert Valley. Altitudes around the proposed Jungo landfill site range from 4,162 to 4,175 feet. Depth to groundwater is fairly shallow in southern Desert Valley and is about 60 feet below land surface at the proposed Jungo landfill site. A groundwater divide exists about 7 miles north of the proposed Jungo landfill site. Groundwater north of the divide flows north towards the Quinn River. South of the divide and near the proposed Jungo landfill site, groundwater flows in a south-southwesterly direction. Data are insufficient to determine whether groundwater eventually flows into Rye Patch Reservoir or other adjacent valleys. Estimates indicate that contaminants would travel about 0.02 mile and a maximum of 2.5 miles in 95 years and about 0.04 mile and a maximum of 5.0 miles in 190 years. The closest supply wells that could be impacted by contaminants are 5 to 6 miles downgradient and are used for industry, irrigation, and stock watering.

  14. Sources and fates of heavy metals in a mining-impacted stream: Temporal variability and the role of iron oxides

    PubMed Central

    Schaider, Laurel A.; Senn, David B.; Estes, Emily R.; Brabander, Daniel J.; Shine, James P.

    2014-01-01

    Heavy metal contamination of surface waters at mining sites often involves complex interactions of multiple sources and varying biogeochemical conditions. We compared surface and subsurface metal loading from mine waste pile runoff and mine drainage discharge and characterized the influence of iron oxides on metal fate along a 0.9-km stretch of Tar Creek (Oklahoma, USA), which drains an abandoned Zn/Pb mining area. The importance of each source varied by metal: mine waste pile runoff contributed 70% of Cd, while mine drainage contributed 90% of Pb, and both sources contributed similarly to Zn loading. Subsurface inputs accounted for 40% of flow and 40-70% of metal loading along this stretch. Streambed iron oxide aggregate material contained highly elevated Zn (up to 27,000 μg g−1), Pb (up to 550 μg g−1) and Cd (up to 200 μg g−1) and was characterized as a heterogeneous mixture of iron oxides, fine-grain mine waste, and organic material. Sequential extractions confirmed preferential sequestration of Pb by iron oxides, as well as substantial concentrations of Zn and Cd in iron oxide fractions, with additional accumulation of Zn, Pb, and Cd during downstream transport. Comparisons with historical data show that while metal concentrations in mine drainage have decreased by more than an order of magnitude in recent decades, the chemical composition of mine waste pile runoff has remained relatively constant, indicating less attenuation and increased relative importance of pile runoff. These results highlight the importance of monitoring temporal changes at contaminated sites associated with evolving speciation and simultaneously addressing surface and subsurface contamination from both mine waste piles and mine drainage. PMID:24867708

  15. Destruction of the recreational, asthetic, agricultural, wildlife conservation and preservation, and residential uses of the land as a result of the abuses of the manufacturing, commercial, extractive, construction, and transportation industries

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Explicit concern over land use and abuse stems from the recognition of the negative impacts of unrestrained and unregulated economic, industrial, and population growth upon finite land resources. Only one quarter of the total surface area of the earth is land, and of that a large portion is uninhabitable. The present stresses upon the land include urbanization, urban sprawl and urban congestion; electrical, nuclear industrial park siting requirements; land degradation through stripping surface minerals; land degradation through disposal of radioactive wastes, sewage sludge, solid waste and other industrial wastes; rising demand for agricultural land; and the erosion and destruction of land through elimination of protective coverings such as forests, grasslands, and wetlands.

  16. Movement and fate of creosote waste in ground water, Pensacola, Florida; U.S. Geological Survey toxic waste--ground-water contamination program

    USGS Publications Warehouse

    Mattraw, H. C.; Franks, B.J.

    1984-01-01

    In 1983, the U.S. Geological Survey, Office of Hazardous Waste Hydrology, selected the former American Creosote Works site near Pensacola, Florida as a national research demonstration area. Seventy-nine years (1902-81) of seepage from unlined discharge impoundments had released creosote, diesel fuel, and pentachlorophenol (since 1950) wastes into the ground-water system. A cluster of from 2 to 5 wells constructed at different depths at 9 sites yielded water which revealed contamination 600 feet downgradient and to a depth of 100 feet below land surface near the site. The best cross-sectional representation of the contaminant plume was obtained from samples collected and analyzed for oxidation-reduction sensitive inorganic chemical constituents. Energy dispersive x-ray fluorescence detected recently formed iron carbonate in soil samples from highly reducing ground-water zones. Approximately eighty specific organic contaminants were isolated from ground-water samples by gas-chromotography/mass spectrometry. Column studies indicate the dimethyl phenols are not sorbed or degraded by the sand-and-gravel aquifer materials. Five of nineteen individual phenolic and related compounds are biodegradable based on anaerobic digestor experiments with ACW site bacterial populations. The potential impacts in the nearby Pensacola Bay biotic community are being evaluated. (USGS)

  17. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55more » Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less

  18. Characterization of Leachate at Simpang Renggam Landfill Site, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Zailani, L. W. M.; Amdan, N. S. M.; Zin, N. S. M.

    2018-04-01

    Nowadays, the world facing a major problem in managed solid waste due to the increasing of solid waste. Malaysia, one of the country also involves in this matter which is 296 landfills are open to overcome this problem. Currently, the best alternative option to manage solid waste is by using landfilling method because it has low costing advantages. The disadvantage of landfill method, it might cause a pollution by producing leachate that will give an effect to the ground and surface water resources. This study focuses on analysing the leachate composition at Simpang Renggam Landfill(SRL) site for seven parameters such as COD, BOD, SS, turbidity, pH, BOD5/COD, and ammonia (NH3-N). All the data obtained were compared with previous researcher and Malaysia Environmental Quality Act 1974. From the result, SRL site was categorized as partially stabilized leachate with the parameter of BOD5/COD > 0.1. The SRL site is recommended to use a physical-chemical method for a better treatment because the leachate composition is classified as old leachate and aerated lagoon method are not satisfied to be used in treating the aging leachate at SRL site.

  19. Humans and ecosystems over the coming millennia: overview of a biosphere assessment of radioactive waste disposal in Sweden.

    PubMed

    Kautsky, Ulrik; Lindborg, Tobias; Valentin, Jack

    2013-05-01

    This is an overview of the strategy used to describe the effects of a potential release from a radioactive waste repository on human exposure and future environments. It introduces a special issue of AMBIO, in which 13 articles show ways of understanding and characterizing the future. The study relies mainly on research performed in the context of a recent safety report concerning a repository for spent nuclear fuel in Sweden (the so-called SR-Site project). The development of a good understanding of on-site processes and acquisition of site-specific data facilitated the development of new approaches for assessment of surface ecosystems. A systematic and scientifically coherent methodology utilizes the understanding of the current spatial and temporal dynamics as an analog for future conditions. We conclude that future ecosystem can be inferred from a few variables and that this multidisciplinary approach is relevant in a much wider context than radioactive waste.

  20. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less

  1. Generation and distribution of PAHs in the process of medical waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less

  2. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China.

    PubMed

    Leung, Anna O W; Luksemburg, William J; Wong, Anthony S; Wong, Ming H

    2007-04-15

    Surface soils and combusted residue from a village located in southeast China, which has been intensely involved in the dismantling and "recycling" of computer parts (e-waste) for the past decade, were analyzed for polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Total PBDE concentrations were highest in combusted residue of plastic chips and cables collected from a residential area (33,000-97,400 ng/g, dry wt), in soils from an acid leaching site (2720-4250 ng/g, dry wt), and a printer roller dump site (593-2890 ng/g, dry wt). BDE-209 was the most dominant congener (35-82%) among the study sites indicating the prevalence of commercial Deca-BDE, however signature congeners from commercial Penta- and Octa-BDE were also found. PCDD/F concentrations were also highest in soil from the acid leaching site (12,500-89,800 pg/g, 203-1100 pg WHO-TEQ/g, dry wt) and in combusted residue (13,500-25,300 pg/g, 84.3-174 pg WHO-TEQ/g, dry wt) and were comparable to PCDD/F levels of some open dumping sites in Asian developing countries. Of the e-waste activities, acid leaching and open burning emitted the highest concentrations of PBDEs and PCDD/Fs. This study is among the very few studies dealing with the important issue of pollution generated from crude e-waste recycling. Our results showthatthe crude processing of e-waste has become one of the major contributors of PBDEs and PCDD/Fs to the terrestrial environment.

  3. The use of dynamic modeling in assessing tritium phytoremediation

    Treesearch

    Karin T. Rebel; Susan J. Riha; John C. Seaman; Clinton d. Barton

    2005-01-01

    To minimize movement of tritium into surface waters at the Mixed Waste Management Facility at the Savannah River Site, tritiumcontaminated groundwater released to the surface along seeps in the hillside is being retained in a constructed pond and used to irrigate forest acreage that lies over the contaminated groundwater. Management of the application of tritium-...

  4. West Virginia wood waste from uncharted sources: log landings and active surface mines

    Treesearch

    Shawn T. Grushecky; Lawrence E. Osborn

    2013-01-01

    Traditionally, biomass availability estimates from West Virginia have focused on primary and secondary mill byproducts and logging residues. Other sources of woody biomass are available that have not been surveyed. Through a series of field studies during 2010 and 2011, biomass availability estimates were developed for surface mine sites and log landings in West...

  5. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    NASA Astrophysics Data System (ADS)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the reactive mineral surface area. The formation of coatings on dissolving mineral surfaces significantly reduces the amount of surface available to react with fluids. Our results show that negatively charged ion complexes, responsible for U transport, decreases when alkalinity and rock buffer capacity is similarly lower. Carbonate ion pairs however, may increase U mobility when radionuclide concentration is high and rock buffer capacity is low. The present work helps to orient future monitoring of this site in Brazil as well as of other sites where uranium is linked to igneous rock formations, without the presence of sulphides. Monitoring SO4 migration (in acidic leaching uranium sites) seems to be an efficient and simple way to track different hazards, especially in tropical conditions, where the succession of dry and wet periods increases the weathering action of the residual H2SO4. Nevertheless, models of risk evaluation should take into account reactive surface areas and neogenic minerals since they determine the U ion complex formation, which in turn, controls uranium mobility in natural systems. Keywords: uranium mining, reactive mineral surface area, uranium complexes, inverse modelling approach, risk evaluation

  6. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  7. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  8. Reconnaissance investigation of petroleum products in soil and ground water at Longmire, Mount Rainier National Park, Washington, 1990

    USGS Publications Warehouse

    Sumioka, S.S.

    1995-01-01

    The removal of an underground waste-oil storage tank in Mount Rainier National Park, at Longmire, Washington, led to the discovery that soil surrounding the tank was saturated with unidentified petroleum hydrocarbons. Subsequent investigations by the National Park Service indicated that a petroleum product smelling like diesel oil was present in the unsaturated zone as far as 120 feet from the tank site. A study was conducted by the U.S. Geological Survey in cooperation with the National Park Service to determine the extent to which the petroleum hydrocarbons have affected the unsaturated zone and ground water in the Longmire area. Measurements of water levels in wells and of water-surface elevations of the Nisqually River and a wetland west of Longmire indicate that ground water does not flow from the maintenance area to the river or to the wetland. Waste oil and diesel oil were detected in soil samples from the site closest to the waste-oil storage-tank site. Diesel oil was also detected in samples from a site about 200 feet northwest of the storage-tank site. Organic compounds of undetermined origin were detected in soil samples from all of the other sites. Waste oil was not conclusively detected in any of the ground-water samples. Diesel oil was detected in water samples from the well closest to the storage tank and from a well about 200 feet west of the storage-tank site. Ground-water samples from all of the other wells contained organic compounds of undetermined origin.

  9. Site characterization design and techniques used at the Southern Shipbuilding Corporation site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, J.P.; Geraghty, C.A.; Moore, G.W.

    1995-12-31

    The Southern Shipbuilding Corporation (SSC) site is an inactive barge/ship manufacturing and repair facility situated on approximately 54 acres in Slidell, St. Tammany Parish, Louisiana. Two unlined surface impoundments (North and South impoundments) are situated on the northwest portion of the site and are surrounded on three sides by Bayou Bonfouca. These impoundments are the sources of carcinogenic polynuclear aromatic hydrocarbon (CPAH) contamination at the site. Inadequate containment has resulted in the release of impoundment wastes into the bayou. To evaluate potential response alternatives for the site, an Engineering Evaluation/Cost Analysis (EE/CA) field investigation was conducted from July through Octobermore » 1994. A two phase sampling approach was used in combination with innovative and traditional sampling techniques, field screening technologies, and exploitation of the visual characteristics of the waste to determine the extent of waste migration with limited off-site laboratory confirmation. A skid-mounted mobile drilling unit, secured to a specialized sampling platform designed for multiple applications, was used for collection of sediment cores from the bayou as well as tarry sludge cores from the impoundments. Field screening of core samples was accomplished on site using an organic vapor analyzer and a total petroleum hydrocarbon (TPH) field analyzer. Pollutants of concern include metals, cyanide, dioxin, and organic compounds. This paper presents details on the sampling design and characterization techniques used to accomplish the EE/CA field investigation.« less

  10. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 26-acre Shaw Avenue Dump site is a chemical waste site in Charles City, Floyd County, Iowa. Land use in the area is predominantly residential. From 1899 to 1964, Charles City used the site as a municipal landfill for waste incineration, and disposal of liming sludge from the city's publicly owned treatment works (POTW) and asphaltic materials continue to be disposed of in the landfill. Between 1977 and 1981, the State issued reports based on studies of the site and surface water that documented elevated levels of metals in an abandoned gravel pit near the site. The Record of Decisionmore » (ROD) addresses the chemical fill and surrounding contaminated soil, and the underground gasoline tank as Operable Unit 1 (OU1). A future ROD will address contaminated ground water as OU2. The primary contaminants of concern affecting the soil and debris are VOCs including benzene, toluene, and xylenes; other organics including PAHs; metals including arsenic and lead; and other inorganics. The selected remedial action for the site is included.« less

  12. Superfund Record of Decision (EPA Region 5): Midco II, Gary, IN. (First remedial action), (amendment), April 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 7-acre Midco II site is an abandoned chemical waste storage and disposal facility in Gary, Indiana. Land use in the surrounding area is predominantly industrial. The underlying aquifer, which is used primarily for non-drinking purposes, is highly susceptible to contamination from surface sources. From 1976 to 1978, the site was used for treatment, storage, and disposal of chemical and bulk liquid wastes. The ROD amends a 1989 ROD that addressed the remaining contaminated soil, pit wastes, and ground water by treatment of an estimated 35,000 cubic yards of soil wastes. The amended remedy reduces the estimated amount of soilmore » to be treated, as a result of new information on arsenic data and amended soil CALs, further defines the site cover requirements, and further defines the requirements for deep well injection of contaminated ground water. The primary contaminants of concern affecting the subsurface soil, sediment, and ground water are VOCs, including methylene chloride, benzene, toluene, TCE, and xylenes; other organics, including PCBs, phenols, and PAHs; and metals, including chromium, and lead. The amended remedial action for the ROD is included.« less

  13. Remote sensing investigations at a hazardous-waste landfill

    USGS Publications Warehouse

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  14. Surface geophysical investigation of the areal and vertical extent of metallic waste at the former Tyson Valley Powder Farm near Eureka, Missouri, Spring 2004

    USGS Publications Warehouse

    Ball, Lyndsay B.; Kress, Wade H.; Anderson, Eric D.; Teeple, Andrew; Ferguson, James W.; Colbert, Charles R.

    2004-01-01

    The former Tyson Valley Powder Farm near Eureka, Missouri, was used primarily as a storage facility for the production of small arms ammunition during 1941?47 and 1951?61. A secondary use of the site was for munitions testing and disposal. Surface exposures of small arms waste, characterized by brass shell casings and fragments, as well as other miscellaneous scrap metal are remnants of disposal practices that took place during U.S. Army operation and can be found throughout the site. Little historical information exists describing disposal practices, and more debris is believed to be buried in the subsurface. The U.S. Army Corps of Engineers has identified several areas of concern throughout the former Tyson Valley Powder Farm. A surface-geophysical investigation was performed by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, to evaluate the areal and vertical extent of metallic debris in the subsurface within three of these areas of concern. Electromagnetic and magnetic methods were used to locate anomalies indicating relatively large concentrations of buried metallic debris within the selected areas of concern. Maps were created identifying twelve anomalous zones in the three areas of concern, and three of these zones were selected for further investigation. The extent and depth of the anomalies within these zones were explored using two-dimensional direct-current resistivity methods. Resistivity and time-domain induced polarization data were compared to the anomalous locations of the electromagnetic and magnetic surveys. The geophysical methods selected for this study were useful in determining the areal and vertical extent of metallic waste within the former Tyson Valley Powder Farm. However, electromagnetic and magnetic methods were not able to differentiate magnetic scrap metal from non-magnetic metallic small arms waste, most likely due to the small size and scattered distribution of the small arms waste, in addition to the mixing of both types of debris in the subsurface. Electromagnetic and magnetic data showed some zones of concentrated anomalies, while there was a general scattering of small anomalies throughout the site. Inverted resistivity sections, as well as induced polarization sections, showed the debris to have a maximum depth of approximately 1 to 2 meters below the surface.

  15. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  16. Movement and fate of creosote waste in ground water, Pensacola, Florida; U.S. Geological Survey toxic waste-ground-water contamination program

    USGS Publications Warehouse

    Mattraw, Harold C.; Franks, Bernard J.

    1986-01-01

    Ground- and surface-water contamination by pesticides used in the wood-preserving industry is widespread in the United States. Pine poles were treated with wood preservatives from 1902 to 1981 at a creosote works near Pensacola, Florida. Diesel fuel, creosote, and pentachlorophenol were discharged to two unlined impoundments that had a direct hydraulic connection to the sand-and-gravel aquifer. Evidence of wood-preserving waste contamination appears to be confined to the upper 30 meters of the aquifer. The waste plume extends downgradient approximately 300 meters south toward Pensacola Bay. In 1983, the creosote works site was selected by the U.S. Geological Survey's Office of Hazardous Waste Hydrology as a national research demonstration area to apply the latest techniques for characterizing hazardous waste problems. The multidisciplinary research effort is aimed at studying processes that affect the occurrence, transport, transformations, and fate of the toxic contaminants associated with wood preservatives in the environment. Clusters of two to five wells were constructed at different depths at nine sites to define the depth of contamination. Research studies are investigating sorption, dispersion, dilution, chemical reactions, bacterially mediated transformations, quality assurance, plume hydrodynamics, and the ultimate fate of these complex organic wastes.

  17. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun

    This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiationmore » fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.« less

  18. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  19. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  20. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    PubMed

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site density) when using clay model. Moreover, increasing s/l ratio would produce more sorption sites, which helps to suppress the impact of heterogeneous surface on Cs sorption behavior under high pH environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Transmutation studies at CEA in frame of the SPIN program objectives, results and future trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvatores, M.; Prunier, C.; Guerin, Y.

    1995-10-01

    In order to respond to the public concern about wastes and in particular the long-lived high level ones, a French law issued on December 30, 1991 identified the major objectives of research for the next fifteen years, before a new debate and possibly a decision on final wastes disposal in Parliament. These objectives are: (1) improvement of the wastes conditioning; (2) extraction and transmutation of the long-lived wastes in order to minimize their long term toxicity; (3) research performed in underground laboratories in order to characterize the capacity of geological structures to confine radioactive wastes (two sites have to bemore » selected for these underground laboratories, in concertation with the local population); (4) last, the study of conditioning and prolonged surface storage of wastes.« less

  2. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was potentially acid generating because of paste-pH values of less than 4 and negative net-neutralization potentials (NNP). The processed flotation-mill tailings, however, had a near neutral paste pH, positive NNP, and a few weight percent calcite. Leachate tests indicated that elements and compounds such as Al, Cd, Cu, Fe, Mn, Se, SO4, and Zn were leached from mine waste in concentrations that exceeded aquatic ecosystem and drinking-water standards. Mine waste from the Pike Hill mines was chemically and mineralogically similar to that from the Elizabeth and Ely mines. In addition, metals were leached and acid was produced from mine waste from the Pike Hill mines in comparable concentrations to those from the Elizabeth and Ely mines, although the host rock of the Pike Hill deposits contains significant amounts of carbonate minerals and, thus, a greater acid-neutralizing capacity when compared to the host rocks of the Elizabeth and Ely deposits. Water samples collected from unimpacted parts of the Waits River watershed generally contained lower amounts of metals compared to water samples from mine drainage, were alkaline, and had a neutral pH, which was likely because of calcareous bedrock. Seeps and mine pools at the mine site had acidic to neutral pH, ranged from oxic to anoxic, and generally contained concentrations of metals, for example, aluminum, cadmium, copper, iron, and zinc, that exceeded aquatic toxicity standards or drinking-water standards, or both. Surface waters directly downstream of the Eureka and Union mines were acidic, as indicated by pH values from 3.1 to 4.2, and contained high concentrations of some elements including as much as 11,400 micrograms per liter (?g/L) Al, as much as 22.9 ?g/L Cd, as much as 6,790 ?g/L Cu, as much as 23,300 ?g/L Fe, as much as 1,400 ?g/L Mn, and as much as 3,570 ?g/L Zn. The concentrations of these elements exceeded water-quality guidelines. Generally, in surface waters, the pH increased and the concentrations of these elemen

  3. Superfund Record of Decision (EPA Region 7): Vogel Paint and Wax, Maurice, IA. (First remedial action), September 1989. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-20

    The Vogel Paint and Wax (VPW) site is an approximately two-acre disposal area two miles southwest of the town of Maurice, in Sioux County, Iowa. Adjacent land uses are primarily agricultural; however, several private residences are within one-quarter mile of the site. A surficial sand and gravel aquifer underlies the site and supplies nearby private wells and the Southern Sioux County Rural Water System, located a mile and one half southeast of the site. Paint sludge, resins, solvents, and other paint-manufacturing wastes were disposed of at the site between 1971 and 1979. VPW records indicate that approximately 43,000 gallons ofmore » aliphatic and aromatic hydrocarbons and 6,000 pounds of metals waste were buried at the site. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylenes; and metals including chromium and lead. The selected remedial action for this site includes excavation of contaminated soil and separation of solid and liquid wastes; onsite bioremediation of 3,000 cubic yards of the contaminated soil in a fully contained surface impoundment unit, or onsite thermal treatment if soil contains high metal content; and stabilization of treated soil, if necessary to prevent leaching of metals, followed by disposal in the excavated area.« less

  4. Preliminary Assessment McGhee - Tyson ANGB, McGhee - Tyson Municipal Airport, Knoxville, Tennessee

    DTIC Science & Technology

    1988-06-01

    and assessment of sites on the Base which may have been contaminated with hazardous materials/hazardous waste. B. MAJOR FINDINGS The Air National Guard...identification of eleven (11) sites (see Figure ES.I). Of this total, seven exhibit the potential for contaminant presence and possible migration. The remaining...four sites pose no potential threat to human and environmental receptors from either surface or ground water contamination . I I ES-i Source: McGhee

  5. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    PubMed

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  6. Toxic element mobility assessment and modeling for regional geo-scientific survey to support Risk Assessment in a European Union context

    NASA Astrophysics Data System (ADS)

    Abdaal, Ahmed; Jordan, Gyozo; Bartha, Andras; Fugedi, Ubul

    2013-04-01

    The Mine Waste Directive 2006/21/EC requires the risk-based inventory of all mine waste sites in Europe. The geochemical documentation concerning inert classification and ranking of the mine wastes requires detailed field study and laboratory testing and analyses of waste material to assess the Acid Mine Drainage potential and toxic element mobility. The procedure applied in this study used a multi-level decision support scheme including: 1) expert judgment, 2) data review, 3) representative field sampling and laboratory analysis of formations listed in the Inert Mining Waste List, and 4) requesting available laboratory analysis data from selected operating mines. Based on expert judgment, the listed formations were classified into three categories. A: inert B: probably inert, but has to be checked, C: probably not inert, has to be examined. This paper discusses the heavy metal contamination risk assessment (RA) in leached quarry-mine waste sites in Hungary. In total 34 mine waste sites (including tailing lagoons and heaps of both abandoned mines and active quarries) have been selected for scientific testing using the EU Pre-selection Protocol. Over 93 field samples have been collected from the mine sites including Ore (Andesite and Ryolite), Coal (Lignite, black and brown coals), Peat, Alginite, Bauxite, Clay and Limestone. Laboratory analyses of the total toxic element content (aqua regia extraction), the mobile toxic element content (deionized water leaching) and the analysis of different forms of sulfur (sulfuric acid potential) ) on the base of Hungarian GKM Decree No. 14/2008. (IV. 3) concerning mining waste management. A detailed geochemical study together with spatial analysis and GIS has been performed to derive a geochemically sound contamination RA of the mine waste sites. Key parameters such as heavy metal and sulphur content, in addition to the distance to the nearest surface and ground water bodies, or to sensitive receptors such as settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA methods. Results show that some of the waste rock materials assumed to be inert were found non/inert. Thus, regional RA needs more spatial and petrological examination with special care to rock and mineral deposit genetics.

  7. Vegetation cover and long-term conservation of radioactive waste packages: the case study of the CSM waste disposal facility (Manche District, France).

    PubMed

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  8. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, ormore » hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.« less

  9. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, Robert P.

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance usingmore » surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.« less

  10. Water quality impacts from on-site waste disposal systems to coastal areas through groundwater discharge

    NASA Astrophysics Data System (ADS)

    Harris, P. J.

    1995-12-01

    This report summarizes research studies linking on-site waste disposal systems (OSDS) to pathogen and nutrient concentrations in groundwater with the potential to impact coastal embayments. Few studies connect OSDS to coastal water quality. Most studies examined pathogen and nutrient impacts to groundwater and omitted estimations of contaminants discharged to surface water. The majority of studies focused on nitrogen, with little information on pathogens and even less on phosphorus. Nitrogen discharged from OSDS poses the greatest threat to water quality. Vertical distance of septic tank infiltration system from the water table, septic system design, and siting remain the key components in minimizing potential impacts from OSDS for control of both pathogens and nutrients. The most comprehensive information connecting nutrient contributions from OSDS to surface water quality was the study conducted on Buttermilk Bay in Massachusetts where 74% of nitrogen to the bay was attributed to onsite disposal systems. In conclusion, further studies on the viability and transport of pathogens and nutrients through the groundwater aquifer and across the groundwater/surface-water interface are needed. Additional research on the importance of septic system design on the availability of contaminants to groundwater as well as the minimum distance between the septic system and water table necessary to protect groundwater are also indicated.

  11. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Ill. Chemical data were evaluated to determine the principal, naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on-site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rainwater or snowmelt changed to an ionic composition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

  12. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

  13. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    EPA Science Inventory

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  14. Health assessment for Harvey and Knott Drum National Priorities List (NPL) Site, New Castle County, Delaware, Region 3. CERCLIS No. DED980713093. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Harvey Knott Drum National Priorities List site, located near Kirkwood in New Castle County, Delaware, is an inactive landfill that had received sanitary, municipal and industrial wastes. Contaminants released from the site include heavy metals and organic compounds and have entered groundwater, soils, sediments, and surface waters. The principal concern is that contaminated groundwater may migrate to off-site domestic, public, and agricultural water supply wells. Also, contaminants in off-site surface water and sediments pose some concern for recreational use and consumption of fish. Off-site contaminated soils near the west property line may be a threat to persons that trespassmore » into that area. The site is of potential health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.« less

  15. Volcanic hazards: Perspectives from eruption prediction to risk assessment for disposal of radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.

    1980-12-31

    This document summarizes an oral presentation that described the potential for volcanic activity at the proposed Yucca Mountain, Texas repository site. Yucca Mountain is located in a broad zone of volcanic activity known as the Death Valley-Pancake Ridge volcanic zone. The probability estimate for the likelihood that some future volcanic event will intersect a buried repository at Yucca Mountain is low. Additionally, the radiological consequences of penetration of a repository by basaltic magma followed by eruption of the magma at the surface are limited. The combination of low probability and limited consequence suggests that the risk posed by waste storagemore » at this site is low. (TEM)« less

  16. A research park for studying processes in unsaturated fractured media

    NASA Astrophysics Data System (ADS)

    Baker, Kristine; McLing, Travis; Street, Leah; Schafer, Annette; Ansley, Shannon; Hull, Larry; Holt, Robert; Roback, Robert; Jones, Catherine

    A field research site has been developed to explore the combined use of physical experiments and mathematical modeling to analyze large-scale infiltration and chemical transport through the unsaturated media overlying the Snake River Plain Aquifer in southeastern Idaho. This site offers opportunities to observe water and contaminant migration influenced by fluid dynamics and microbial activity through heterogeneous-porous and fractured media.At many waste disposal facilities, the presence of toxic or radioactive wastes between the land surface and underlying aquifers poses a serious and ongoing threat to public health and safety.To reduce the risk associated with these industrial and Cold War by-products, a combination of remediation and long-term monitoring will be required.

  17. The Abandoned E-Waste Recycling Site Continued to Act As a Significant Source of Polychlorinated Biphenyls: An in Situ Assessment Using Fugacity Samplers.

    PubMed

    Wang, Yan; Luo, Chunling; Wang, Shaorui; Cheng, Zhineng; Li, Jun; Zhang, Gan

    2016-08-16

    The recycling of e-waste has attracted significant attention due to emissions of polychlorinated biphenyls (PCBs) and other contaminants into the environment. We measured PCB concentrations in surface soils, air equilibrated with the soil, and air at 1.5-m height using a fugacity sampler in an abandoned electronic waste (e-waste) recycling site in South China. The total concentrations of PCBs in the soils were 39.8-940 ng/g, whereas the concentrations in air equilibrated with the soil and air at 1.5 m height were 487-8280 pg/m(3) and 287-7380 pg/m(3), respectively. The PCB concentrations displayed seasonal variation; they were higher in winter in the soils and higher in summer in the air, indicating that the emission of PCBs from the soil was enhanced during hot seasons for the relatively high temperature or additional sources, especially for low-chlorinated PCBs. We compared two methods (traditional fugacity model and fugacity sampler) for assessing the soil-air partition coefficients (Ksa) and the fugacity fractions of PCBs. The results suggested that the fugacity sampler provided more instructive and practical estimation on Ksa values and trends in air-soil exchange, especially for low-chlorinated PCBs. The abandoned e-waste burning site still acted as a significant source of PCBs many years after the prohibition on open burning.

  18. Superfund Record of Decision (EPA Region 5): Summit National Liquid Disposal Service, Deerfield, OH. (First remedial action), (Amendment), November 1990. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 11.5-acre Summit National Liquid Disposal Service site is a former liquid waste disposal facility in rural Deerfield Township, Ohio. The site contains two ponds, an inactive incinerator, and several vacant buildings. Surrounding the site are several residences, two landfills, light industries, and farmland. From 1973 to 1978, Summit National operated a solvent recycling and waste disposal facility onsite. The Record of Decision (ROD) amends a 1988 ROD that provided for remediation of contaminated soil, sediment, debris, ground water, and surface water. In both the 1990 proposed remedy for the ROD amendment and the 1988 ROD, the remedy for themore » most highly contaminated soil and sediment is excavation and treatment. The amended remedial action for the site includes expanding site boundaries to include contaminated areas along the site perimeters; excavating and incinerating onsite 24,000 cubic yards of soil excavated to a depth of 2 feet, 4,000 cubic yards of sediment from the site perimeter, drainage ditches and offsite ponds, and 900 to 1,600 buried drums.« less

  19. Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India.

    PubMed

    Anbazhagan, P; SivakumarBabu, G L; Lakshmikanthan, P; VivekAnand, K S

    2016-03-01

    Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2 g and persisted only for a period of 1 s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5 g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India. © The Author(s) 2016.

  20. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are themore » same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is divided into Part 1 that defines time-dependent releases from each regional site, Part 2 that defines transport conditions through the groundwater, and Part 3 that defines transport through surface water and populations using the surface waters for drinking.« less

  1. Probing the chemistry, structure, and dynamics of the water-silica interface

    NASA Astrophysics Data System (ADS)

    Lockwood, Glenn K.

    Despite its natural abundance and wide-ranging technological relevance, much remains unknown or unclear about water-silica interfaces. Computer simulation stands to bridge the gaps of knowledge left by experiment, and a recently developed Dissociative Water Potential has enabled the simulation of large amorphous silica surfaces in contact with water without having to impose a model of surface chemistry a priori. Earlier work with this model has revealed the existence of several protonated surface sites such as SiOH2 + and Si-(OH+)-Si that have yet to be extensively characterized. However, both experiment and quantum mechanical simulation have provided an increasing body of evidence that suggests these sites exist, and these sites may play key roles in some of the unexplained phenomena observed in water-silica systems. To this end, this Dissociative Water Potential has been applied to develop a comprehensive picture of the chemistry, structure, and dynamics of the water-silica interface that is unbiased by any expectation of what sites should form. The bridging OH site, Si-(OH+)-Si, does form and is characterized as a highly acidic site that occurs predominantly on strained Si-O-Si bridges near the interface. Similarly, the transient formation of SiOH2 + is observed, and this site is found to be more acidic than Si-(OH +)-Si. In addition to H3O+ that forms near the interface, all of these sites readily deprotonate and are expected to play a role in the enhanced proton conductivity experimentally observed in hydrated mesoporous silica. The reactions between water and silica are particularly relevant to the engineering of nuclear waste forms, and the role of water-silica interactions are also explored within the context of the degradation of silica-based waste forms exposed to radiation. Despite the significant simulation effort employed in glassy waste form research, no molecular models of radiation damage in silica include the effects of moisture. This deficiency is addressed, and water is found to play a significant role in accelerating the degradation of amorphous silica under irradiation. Water inhibits healing of the network and promotes the formation of voids into which more water can penetrate, giving way to new damage accumulation mechanisms not seen in any past simulations.

  2. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  3. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Kannan, K.; Cheng, J.

    2008-11-15

    Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less

  4. Opportunities for Cost Effective Disposal of Radioactively Contaminated Solid Waste on the Oak Ridge Reservation, Oak Ridge, TN - 13045

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMonia, Brian; Dunning, Don; Hampshire John

    2013-07-01

    Department of Energy (DOE) requirements for the release of non-real property, including solid waste, containing low levels of residual radioactive materials are specified in DOE Order 458.1 and associated guidance. Authorized limits have been approved under the requirements of DOE Order 5400.5, predecessor to DOE Order 458.1, to permit disposal of solid waste containing low levels of residual radioactive materials at solid waste landfills located within the DOE Oak Ridge Reservation (ORR). Specifically, volumetric concentration limits for disposal of solid waste at Industrial Landfill V and at Construction/Demolition Landfill VII were established in 2003 and 2007, respectively, based on themore » requirements in effect at that time, which included: an evaluation to ensure that radiation doses to the public would not exceed 25 mrem/year and would be as low as reasonably achievable (ALARA), with a goal of a few mrem/year or less (in fact, these authorized limits actually were derived to meet a dose constraint of 1 mrem/year); an evaluation of compliance with groundwater protection requirements; and reasonable assurance that the proposed disposal is not likely to result in a future requirement for remediation of the landfill. Prior to approval as DOE authorized limits, these volumetric concentration limits were coordinated with the Tennessee Department of Environment and Conservation (TDEC) and documented in a Memorandum of Understanding (MOU) between the TDEC Division of Radiological Health and the TDEC Division of Solid Waste Management. These limits apply to the disposal of soil and debris waste generated from construction, maintenance, environmental restoration, and decontamination and decommissioning (D and D) activities on the DOE Oak Ridge Reservation. The approved site-specific authorized limits were incorporated in the URS/CH2M Oak Ridge LLC (UCOR) waste profile system that authorizes disposal of special wastes at either of the RCRA Subtitle D landfills. However, a recent DOE assessment found that implementation of the site-specific authorized limits for volumetrically contaminated waste was potentially limited due in part to confusion regarding the applicability of volumetric concentration limits and/or surface activity limits to specific wastes. This paper describes recent efforts to update the authorized limits for Industrial Landfill V and Construction/Demolition Landfill VII and to improve the procedures for implementation of these criteria. The approved authorized limits have been evaluated and confirmed to meet the current requirements of DOE Order 458.1, which superseded DOE Order 5400.5 in February 2011. In addition, volumetric concentration limits have been developed for additional radionuclides, and site-specific authorized limits for wastes with surface contamination have been developed. Implementing procedures have been revised to clarify the applicability of volumetric concentration limits and surface activity limits, and to allow the use of non-destructive waste characterization methods. These changes have been designed to promote improved utilization of available disposal capacity of the onsite disposal facilities within the DOE Oak Ridge Reservation. In addition, these changes serve to bring the waste acceptance requirements at these DOE onsite landfills into greater consistency with the requirements for commercial/ public landfills under the TDEC Bulk Survey for Release (BSFR) program, including two public RCRA Subtitle D landfills in close proximity to the DOE Oak Ridge Reservation. (authors)« less

  5. Effects of three phosphate industrial sites on ground-water quality in central Florida, 1979 to 1980

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1984-01-01

    Geologic, hydrologic, and water quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida are presented. The data were collected from September 1979 to October 1980 at the AMAX Phosphate, Inc. chemical plant, Piney Point; the USS Agri-Chemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximately 5,400 field and laboratory water quality determinations on water samples collected from about 100 test holes and 28 surface-water , 5 rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste disposal operations are tabulated. Maps are included to show sampling sites. (USGS)

  6. Performance assessment methodology and preliminary results for low-level radioactive waste disposal in Taiwan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.

    2006-02-01

    Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.« less

  7. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposedmore » in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.« less

  8. Health assessment for Shaw Avenue Dump Site, Charles City, Iowa, Region 7 (amended). CERCLIS No. IAD980630560. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-07

    The Shaw Avenue Dump Site is listed by the U.S. Environmental Protection Agency (USEPA) on the National Priorities List (NPL). The 8-acre city dump site, consisting of three waste disposal areas, is located in the southeast edge of Charles City approximately 500 feet east of the Cedar River. The three disposal areas are no longer in use and have been covered with soil and are vegetated. Arsenic is the contaminant of concern at the Shaw Avenue Dump Site. On-site soil samples collected in 1981 contained concentrations of arsenic that ranged from 4-820 mg/kg. On-site groundwater, surface water, and air analysesmore » were not conducted in previous investigations. From the available information, this site is considered to be of public health concern because of the potential risk to human health caused by possible exposure to hazardous substances via ingestion of groundwater, soil, and surface water; inhalation of fugitive dust; and dermal contact with soil, surface water, and groundwater.« less

  9. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less

  10. Installation-Restoration Program Preliminary Assessment, Naknek Recreational Camps, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    The Hazardous Materials Technical Center (HMTC) was retained in January 1988 to conduct the Installation-Restoration Program (IRP) Preliminary Assessment of Naknek Recreational Camps, Alaska, DoD policy is to identify and fully evaluate suspected problems associated with past hazardous-material disposal sites on DoD facilities, control the migration of hazardous contamination from such facilities, and control hazards to health and welfare that may have resulted from these past operations. Past installation operations involved the use and disposal of materials and wastes that were subsequently categorized as hazardous. The major operations of Naknek Camp I and Camp II did not use or disposemore » of HM/HW; however, these camps were used by the Air Force as dump areas and landfills. Waste oils, fuels, and polychlorinated biphenyls (PCBs) were among the wastes disposed of during these dumping activities. Information obtained through interviews, records, and field observations resulted in the identification of three sites that are potentially contaminated with HM/HW. At each of the identified sites, the potential exists for contamination of surface water, soils, and/or ground water and subsequent contaminant migration.« less

  11. Water-quality conditions at selected landfills in Mecklenburg County, North Carolina, 1986-92

    USGS Publications Warehouse

    Ferrell, G.M.; Smith, D.G.

    1995-01-01

    Water-quality conditions at five municipal landfills in Mecklenburg County, North Carolina, were studied during 1986-92. Analytical results of water samples from monitoring wells and streams at and near the landfills were used to evaluate effects of leachate on surface and ground water. Ground-water levels at monitoring wells were used to determine directions of ground-water flow at the landfills. Data from previous studies were used for analysis of temporal trends in selected water-quality properties and chemical constituents. Effects of leachate, such as large biochemical- and chemical-oxygen demands, generally were evident in small streams originating within the landfills, whereas effects of leachate generally were not evident in most of the larger streams. In larger streams, surface-water quality upstream and downstream from most of the landfills was similar. However, the chemical quality of water in Irwin Creek appears to have been affected by the Statesville Road landfill. Concentrations of several constituents indicative of leachate were larger in samples collected from Irwin Creek downstream from the Statesville Road landfill than in samples collected from Irwin Creek upstream from the landfill. The effect of leachate on ground-water quality generally was largest in water from wells adjacent to waste-disposal cells. Concentrations of most constituents considered indicative of leachate generally were smaller with increasing distance from waste-disposal cells. Water samples from offsite wells generally indicated no effect or very small effects of leachate. Action levels designated by the Mecklenburg County Engineering Department and maximum contaminant levels established by the U.S. Environmental Protection Agency were exceeded in some samples from the landfills. Ground-water samples exceeded action levels and maximum contaminant levels more commonly than surface-water samples. Iron and manganese were the constituents that most commonly exceeded action levels in water samples from the landfills. Synthetic organic compounds were detected more commonly and in larger concentrations in ground-water samples than in surface-water samples. Concentrations of synthetic organic compounds detected in water samples from monitoring sites at the landfills generally were much less than maximum contaminant levels. However, concentrations of some chlorinated organic compounds exceeded maximum contaminant levels in samples from several monitoring wells at the Harrisburg Road and York Road landfills. Trend analysis indicated statistically significant temporal changes in concentrations of selected water-quality constituents and properties at some of the monitoring sites. Trends detected for the Holbrooks Road and Statesville Road landfills generally indicated an improvement in water quality and a decrease in effects of leachate at most monitoring sites at these landfills from 1979 to 1992. Water-quality trends detected for monitoring sites at the Harrisburg Road and York Road landfills, the largest landfills in the study, differed in magnitude and direction. Upward trends generally were detected for sites near recently closed waste-disposal cells, whereas downward trends generally were detected for sites near older waste-disposal cells. Temporal trends in water quality generally reflected changes in degradation processes associated with the aging of landfill wastes.

  12. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less

  13. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  14. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.; Drimmer, D.; Giovannini, A.

    2002-02-26

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which aremore » rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences. Potential radionuclides releases are controlled and have a single discharge point to the biosphere.« less

  15. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  16. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  17. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  18. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  19. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  20. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the manymore » problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review.« less

  2. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    NASA Astrophysics Data System (ADS)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional occupancies. The pH dependent sorption determined for trace Zn concentrations showed large Rd values across the entire pH range with almost no dependence on the background electrolyte concentration. Additional sorption experiments carried out at substantial fractional Zn loadings demonstrated that the selectivity for the exchange of Na+ for Zn2+ at the planar sites could not explain the large Rd values measured at low pH and trace Zn concentrations. This suggests that another mechanism is ruling Zn uptake under these conditions.

  3. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less

  4. PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: Levels, congener profiles and health risk assessment.

    PubMed

    Chakraborty, Paromita; Selvaraj, Sakthivel; Nakamura, Masafumi; Prithiviraj, Balasubramanian; Cincinelli, Alessandra; Bang, John J

    2018-04-15

    Growth of informal electronic waste (e-waste) recycling sector is an emerging problem for India. The presence of halogenated compounds in e-wastes may result in the formation of persistent organic pollutants like polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during recycling processes. We therefore investigated PCBs and PCDD/Fs in surface soils explicitly from the informal e-waste recycling sites and nearby open dumpsites of major metropolitan cities from four corners of India, viz., New Delhi (North), Kolkata (East), Mumbai (West) and Chennai (South). In the informal e-waste recycling sites, the range of Σ 26 PCBs (0.4-488ng/g) and ƩPCDD/Fs (1.0-10.6ng/g) were higher than Ʃ 26 PCBs (0.3-21ng/g) and ƩPCDD/Fs (0.15-7.3ng/g) from open dumpsites. In the e-waste sites, ƩPCDDs were found with increasing trend from ƩTetraCDD to OctaCDD, whereas ƩPCDFs showed a reverse trend. The dominance of PCDF congeners and maximum toxicity equivalents (TEQ) for both PCDDs (17pg TEQ/g) and PCDFs (82pg TEQ/g) at Mandoli in New Delhi has been related to intensive precious metal recovery process using acid bath. Among dumpsites, highest TEQ for PCDD/Fs was observed at Kodangaiyur dumpsite of Chennai (CN DS -02, 45pg TEQ/g). Positive Matrix Factorization (PMF) model identified distinct congener pattern based on the functional activities, such as e-waste dismantling, shredding, precious metal recovery and open burning in dumpsites. E-waste metal recovery factor was loaded with 86-91% of PCB-77, -105, -114, -118 and 30% of PCB-126, possibly associated with the burning of wires during the copper extraction process. Almost 70% of the Ʃ 26 PCB concentrations was comprised of the dioxin-like PCB congeners with a maximum concentration of 437ng/g at New Moore market in Chennai, followed by Wire Lane (102ng/g), in Mumbai. We speculate that PCB-126 might have resulted from combustion of plastic materials in e-waste stream and dumped waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. On-site or off-site treatment of medical waste: a challenge

    PubMed Central

    2014-01-01

    Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145

  6. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less

  7. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluatemore » and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.« less

  8. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. Tomore » assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.« less

  9. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.

    PubMed

    Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B

    2018-01-16

    This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  10. Non-Operational Property Evaluation for the Hanford Site River Corridor - 12409

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, John; Aly, Alaa

    2012-07-01

    The Hanford Site River Corridor consists of the former reactor areas of the 100 Areas and the former industrial (fuel processing) area in the 300 Area. Most of the waste sites are located close to the decommissioned reactors or former industrial facilities along the Columbia River. Most of the surface area of the River Corridor consists of land with little or no subsurface infrastructure or indication of past or present releases of hazardous constituents, and is referred to as non-operational property or non-operational area. Multiple lines of evidence have been developed to assess identified fate and transport mechanisms and tomore » evaluate the potential magnitude and significance of waste site-related contaminants in the non-operational area. Predictive modeling was used for determining the likelihood of locating waste sites and evaluating the distribution of radionuclides in soil based on available soil concentration data and aerial radiological surveys. The results of this evaluation indicated: 1) With the exception of stack emissions, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas, 2) Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides, and (3) the likelihood of detecting elevated radionuclide concentrations or other waste sites in non-operational area soils is very small. The overall conclusions from the NPE evaluation of the River Corridor are: - With the exception of stack emissions to the air, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas. While pathways such as windblown dust, overland transport and biointrusion have the potential for dispersing waste site contaminants, the resulting transport is unlikely to result in substantial contamination in non-operational areas. - Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides; these radionuclides either would have decayed and would be undetectable in soil, or likely would not have deposited onto Hanford Site soils. A small fraction of the total historical emissions consisted of long-lived particulate radionuclides, which could have deposited onto the soil. Soil monitoring studies conducted as part of surveillance and monitoring programs do not indicate a build-up of radionuclide concentrations in soil, which might indicate potential deposition impacts from stack emissions. Aerial radiological surveys of the Hanford Site, while effective in detecting gamma-emitting nuclides, also do not indicate deposition patterns in soil from stack emissions. - The surveillance and monitoring programs also have verified that the limited occurrence of biointrusion observed in the River Corridor has not resulted in a spread of contamination into the non-operational areas. - Monitoring of radionuclides in ambient air conducted as part of the surveillance and monitoring programs generally show a low and declining trend of detected concentrations in air. Monitoring of radionuclides in soil and vegetation correspondingly show declining trends in concentrations, particularly for nuclides with short half lives (Cs-137, Co-60 and Sr-90). - Statistical analysis of the geographical distribution of waste sites based on man -made features and topography describes the likely locations of waste sites in the River Corridor. The results from this analysis reinforce the findings from the Orphan Site Evaluation program, which has systematically identified any remaining waste sites within the River Corridor. - Statistical analysis of the distribution of radionuclide concentrations observable from aerial surveys has confirmed that the likelihood of detecting elevated radionuclide concentrations in non-operational area soils is very small; the occurrences and locations where potentially elevated concentrations may be found are discussed below. In addition, statistical analysis showed that there is a relatively high probability (>50%) that concentrations of Cs-137 higher than background (3.9 Bq/kg or 1.05 pCi/g) are located outside of the operational portion of the 100-BC, 100-K, and 100-N Areas. This observation is based on modeled concentrations in soil derived from aerial radiography data. However, the extent is limited to a few meters from the respective facilities fence lines or known operational activities. Evaluation of the extent of contamination is being conducted as part of the RI process for each decision area. No unanticipated waste sites were identified either from the OSE program or statistical analysis of waste site proximity to known features. Based on the evaluation of these multiple lines of evidence, the likelihood of identifying waste sites or contaminant dispersal from Hanford site operations into non-operational areas can be considered very small. (authors)« less

  11. Site Environmental Report for Calendar Year 2007. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lenox, Art

    2008-09-30

    This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequentmore » radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.« less

  12. Site Environmental Report for Calendar Year 2001. DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Phil; Samuels, Sandy; Leee, Majelle

    2002-09-01

    This Annual Site Environmental Report (ASER) for 2001 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Boeing Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988,more » and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Closure of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2001 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway. No structural debris from buildings, released for unrestricted use, was transferred to municipal landfills or recycled in 2001.« less

  13. The Face that Launched a Thousand Slips

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.; Schenk, P.; Thomas, P. C.

    2013-01-01

    Helene, (approximately 17.6 kilometers mean radius) is an L4 Trojan co-orbital of Saturn's moon Dione. Its hemisphere features an unusual morphology consisting of broad depressions and a generally smooth surface patterned with streaks and grooves. The streaks appear to be oriented down-gradient, as are the grooves. This pattern suggests intensive mass-wasting as a dominant process on the leading hemisphere. Kilometer-scale impact craters are very sparse on the leading hemisphere other than the degraded kilometer-scale basins defining the overall satellite shape, and many small craters have a diffuse appearance suggesting ongoing mass wasting. Thus mass wasting must dominate surface-modifying processes at present. In fact, the mass wasting appears to have been sufficient in magnitude to narrow the divides between adjacent basins to narrow septa, similar, but in lower relief, to the honeycomb pattern of Hyperion. The prominent groves occur primarily near topographic divides and appear have cut into a broad, slightly lower albedo surface largely conforming to the present topography but elevated a few meters above the smooth surfaces undergoing mass wasting flow. Low ridges and albedo markings on the surface suggest surface flow of materials traveling up to several kilometers. Diffusive mass wasting produces smooth surfaces - such a pattern characterizes most of the low-lying surfaces. The grooves, however, imply that the transport process is advective at those locations where they occur, that is, erosion tends to concentrate along linear pathways separated by divides. In fact, in many places grooves have a fairly regular spacing of 125-160 meters, defining a characteristic erosional scale. Several questions are prompted by the unusual morphology of Helene: 1) What is the nature of the surface materials? 2) Are the transport processes gradual or catastrophic motion from one or a few events? 3) What mechanisms drive mass wasting and groove development? 4) Have the formative processes been active in the recent past? 5) Finally, is the surface accreting or eroding? The smooth character of the leading edge hemisphere of Helene and the dominance of mass wasting suggest that the surface is composed of fine-grained debris, probably dominated by dust-size to small gravel particles. The Lagrangian points of saturnian satellites are locations where planetesimals might have accreted to form co-orbital satellites such as and they may capture ejecta from their master moon. Published models suggest that Helene is a site of net accretion, but we find no extant explanation for the dominance of fine grain sizes for the surface (and probable subsurface) composition of Helene and the other Lagrangian satellites. Observation of the mass wasting tracks on Helene suggests the presence of well-defined streams of debris with low bordering levees that may be depositional features or remnants of the dissected higher surface. Some flows in grazing illumination appear to have a convex cross-section. This mass-flow morphology might be consistent with the occurrence of large-scale flow events, but which might have occurred through rapid emplacement or slow glacier-like creep. On the other hand, small craters appear to have been "softened" by creep-like processes, indicating ongoing mass wasting.

  14. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, J.C.

    1996-08-27

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.

  15. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, John C.

    1996-01-01

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.

  16. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of variousmore » water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.« less

  17. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  18. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  19. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  20. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  1. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  2. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at pH < 5.0. These results suggested that the contaminated sediments might either contain other more reactive clay minerals such as smectite, or that the long-term acid-leaching process might have altered the surface reactivity of the original sediments. Further studies are needed to identify more reactive mineral facies and understand the effects of acid leaching on the surface reactivity of the sediments.

  3. Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties.

    PubMed

    Mandal, Sanchita; Sarkar, Binoy; Igalavithana, Avanthi Deshani; Ok, Yong Sik; Yang, Xiao; Lombi, Enzo; Bolan, Nanthi

    2017-12-01

    Objective of this study was to investigate the mechanisms of 2,4-Dichlorophynoxy acetic acid (2,4-D) sorption on biochar in aqueous solutions. Sorption isotherm, kinetics, and desorption experiments were performed to identify the role of biochars' feedstock and production conditions on 2,4-D sorption. Biochars were prepared from various green wastes (tea, burcucumber, and hardwood) at two pyrolytic temperatures (400 and 700°C). The tea waste biochar produced at 700°C was further activated with steam under a controlled flow. The sorption of 2,4-D was strongly dependent on the biochar properties such as specific surface area, surface functional groups, and microporosity. The steam activated biochar produced from tea waste showed the highest (58.8mgg -1 ) 2,4-D sorption capacity, which was attributed to the high specific surface area (576m 2 g -1 ). The mechanism of 2,4-D removal from aqueous solution by biochar is mainly attributed to the formation of heterogeneous sorption sites due to the steam activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    PubMed

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  5. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  6. Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.

    1988-02-01

    In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less

  7. Technology for Waste Treatment at Remote Army Sites

    DTIC Science & Technology

    1986-09-01

    Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by

  8. Geochemical survey of an illegal waste disposal site under a waste emergency scenario (Northwest Naples, Italy).

    PubMed

    Ferrara, L; Iannace, M; Patelli, A M; Arienzo, M

    2013-03-01

    Since the mid 1980s, Naples and the Campania region have suffered from the dumping of wastes into overfilled landfills. The aim was to characterise a former cave located in Roccarainola (Naples, Italy) for its eventual destination to a controlled landfill site. A detailed hydro-geochemical survey of the area was carried out through drilling of 14 boreholes and four monitoring wells. Samples of water, sediment and soil were analysed for heavy metals and organic contaminants from a dew pond placed in the middle of the cave. The underneath aquifer was also surveyed. The nature of gases emitted from the site was investigated. Results of the geognostic survey revealed the presence of huge volumes of composite wastes, approximately half a million of cubic metre, which accumulated up to a thickness of 25.6 m. In some points, wastes lie below the free surface level of the aquifer. The sampled material from the boreholes revealed levels of As, Cd, Cr, Cu, Hg, Pb, Sn, Tl and Zn exceeding the intervention legal limits. Outstanding loads of Cd, Pb and Zn were found, with levels exceeding of about 50, 100 and 1,870 times the limit. In several points, polycyclic aromatic hydrocarbon load was extremely high, 35 vs 1 mg kg(-1) of the threshold. The aquifer was also very heavily polluted by Cd, Cr-tot, Cu, Fe, Mn, Ni, Pb and Zn, with impressive high load of Cr and Mn, up to 250-370 times the limits. Hot gases up to 62 °C with presence of xylene and ethylbenzene were found. Results indicated that the site needs an urgent intervention of recovery to avoid compromising the surrounding areas and aquifers of the Campania plain.

  9. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  10. Public health assessment for Rockwool Industries, Belton, Bell County, Texas, Region 6, CERCLIS number TXD066379645. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-08-03

    The Rockwool Industries, Inc. (RWI) National Priorities List site is a 100 acre site one-mile east of downtown Belton in Bell County, Texas. The Facility manufactured two types of mineral wool insulation: Blow wool and batt wool. Three main contaminant source areas have been identified at the site. Source 1, in the middle portion of the site, includes contaminated soil associated with the South Shot Pile. Source 2, in the northern portion of the site, includes contaminated soils associated with the Cemetery Shot Pile. Source 3, in the northwest portion of the site includes contaminated soils associated with the Cemeterymore » Shot Pile. The primary waste types at the site include spent iron shot and baghouse dust. Secondary waste types include boiler blowdown water, stormwater runoff, recovered groundwater, and bricks. The Texas Department of Health (TDH) and the Agency for Toxic Substances and Disease Registry (ATSDR) evaluated the environmental information available for the site and identified several exposure situations for evaluation. These exposure situations include possible contact with site contaminants in the soil, surface water, sediment, and groundwater. The potential for exposure to site contaminants through the food chain was also examined. A brief review of the evaluation, organized by hazard category, is presented.« less

  11. Health assessment for Midwest Industrial Waste Disposal Company, Inc. (Midco II) NPL (National Priorities List) Site, 5900 Industrial Highway, Gary, Indiana, Region 5. CERCLIS No. IND980679559. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-12

    The 7-acre Midco II Site is located at 5900 Industrial Highway, Gary, Indiana. The site is listed on the National Priorities List. Various heavy metals, inorganic, and organic compounds were found in the media on-site. The environmental media of concern at the site are ground water, surface water, and soil. Although access to the Midco II site is restricted, the contaminants detected on-site will continue to migrate and may pose health threats until remedial activities are completed. Therefore, the Midco II site poses a potential health concern until an evaluation of the site is completed and remedial activities are chosen.

  12. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, L.R.; Aguilar, R.; Mercer, J.W.

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with boreholemore » locations and times-of-drilling charts are included.« less

  13. Radioactive Waste Management Complex low-level waste radiological performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Bruna Fernanda de; Moreira, Silvana

    The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate themore » content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.« less

  15. Marker development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, M.R.

    This report is to discuss the marker development for radioactive waste disposal sites. The markers must be designed to last 10,000 years, and place no undue burdens on the future generations. Barriers cannot be constructed that preclude human intrusion. Design specifications for surface markers will be discussed, also marker pictograms will also be covered.

  16. Metal contamination in environmental media in residential areas around Romanian mining sites

    EPA Science Inventory

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary co...

  17. SPATIAL AND TEMPORAL DYNAMICS IN ARSENIC SPECIATION ACROSS THE GROUND WATER-SURFACE WATER TRANSITION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground-water plume contains elevated levels of arsenic and hydrocarbon contaminants derived from historical disposal of process wastes ...

  18. 76 FR 32081 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... County. Groundwater near the Site is used for domestic purposes, including drinking water. Landfill No. 1... synthetic liner. The permit also required leachate collection, installation of groundwater monitoring wells... investigation during the RI/FS included waste, leachate, groundwater, surface water and sediment, soil, and air...

  19. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  20. Municipal Landfilling Practice And Its Impact On Groundwater Resources In And Around Urban Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Howard, K. W. F.; Eyles, N.; Livingstone, S.

    1996-01-01

    The hazardous contents of municipal landfills are rarely documented and problems are usually not recognised until landfill leachate pollutes a well or surface-water body. By this time, the groundwater is often extensively contaminated with little opportunity for redress. Recent studies in southern Ontario have adopted a pro-active stance to this issue. The location, size, design and geologic setting of almost 1,200 active and inactive landfills have been documented; in addition, a contaminant-source audit has been performed for a representative region of urban Toronto, where 82 landfills sites are contained in an area of 700 km2. Groundwater flow modeling reveals that at half the sites groundwater travel time to major urban streams and Lake Ontario is less than 10 years, suggesting that chemically conservative chemicals released at these sites would have a rapid impact on surface-water quality. The sites are as large as 99 ha, and waste thickness normally ranges from 3-30 m. In the audited area, the sites contain an estimated 4.6×107 tons of material, consisting primarily of domestic waste, incinerator ashes, and construction and commercial debris; some sites are believed, however, to have received liquid waste from industrial sources. The chemical audit indicates that more than 1.3 million tons, or approximately 2.9 percent of the landfill waste, will enter the landfill leachate. About 99 percent of the leachable mass is composed of calcium, magnesium, sodium, nitrogen (as ammonia, nitrate, and nitrite), chloride, sulphate, and bicarbonate. However, the real potential damage must be measured by the degree of environmental degradation that would ensue if the leachate is released to the subsurface. Ignoring the possible effects of chemical biodegradation and volatilization within the aquifer, calculations indicate that 17 of the 39 leachate components investigated are individually capable of contaminating at least 2×1012 liters of water in excess of Provincial water-quality standards, a volume that approximately represents the quantity of groundwater that passes through the study area during a 20-year period. Given that only two of the 82 landfills operate a leachate collection system, 60-70 percent of the potential impacts are likely to be realized. Particularly threatened is the lower Don Valley, where about 20 landfills are concentrated in an area of just 60 km2.

  1. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  2. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  3. Application of Remote Sensing and GIS in Landfill (waste Disposal) Site Selection and Environmental Impacts Assessment around Mysore City, Karnataka, India

    NASA Astrophysics Data System (ADS)

    Basavarajappa, T. H.

    2012-07-01

    Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering a suitable methodology was developed. The feasibility of site selection in the study area based on different criteria was used to obtain the layered data by integrating Remote Sensing and GIS. This methodology is suitable for all practical applications in other cities, also.

  4. Assessment of environmental policy implementation in solid waste management in Kathmandu, Nepal.

    PubMed

    Dangi, Mohan B; Schoenberger, Erica; Boland, John J

    2017-06-01

    In Nepal, full-fledged environmental legislation was rare before the democratic constitution of 1990. The first law covering the environment and sustainability was the Environment Protection Act 1997. While the Solid Waste Act was introduced in 1987, the problem of solid waste management still surfaces in Kathmandu. In order to understand the bedrock of this unrelenting failure in solid waste management, the manuscript digs deeper into policy implementation by dissecting solid waste rules, environmental legislations, relevant local laws, and solid waste management practices in Kathmandu, Nepal. A very rich field study that included surveys, interviews, site visits, and literature review provided the basis for the article. The study shows that volumes of new Nepalese rules are crafted without effective enforcement of their predecessors and there is a frequent power struggle between local government bodies and central authority in implementing the codes and allocating resources in solid waste management. The study concludes that Kathmandu does not require any new instrument to address solid waste problems; instead, it needs creation of local resources, execution of local codes, and commitment from central government to allow free exercise of these policies.

  5. Green plants as solar energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    A survey covers the potential of energy production from biomass and solid wastes; various processes for the combustion of wastes, such as the co-combustion of solid waste and sewage sludge at the St. Paul/Seneca Treatment Plant Sludge Incinerator; various biological processes for the conversion of solid wastes to fuel such as the Institute of Gas Technology 400 l. digestor for the biogasification of municipal solid waste and sewage solids to a methane-rich product gas; the use of industrial wastes for fuel, such as slash and mill residues used as fuel in lumber mills; the biogasification of animal wastes by usingmore » small-scale on-site digesters to produce methane gas for cooking and lighting; energy farming methods, such as growing giant California kelp, sargassum, and plankton as suitable feedstock for the production of methane, fertilizers, and food; problems, such as the possible alteration of the reflectivity of large areas of the earth's surface by rapidly growing plants raised for biomass; and benefits such as the reduction in air, water, and land pollution associated with the use of wastes and biomass grown especially for energy.« less

  6. Comprehensive Planning for Classification and Disposal of Solid Waste at the Industrial Parks regarding Health and Environmental Impacts

    PubMed Central

    Rahmani Samani, Bahareh

    2014-01-01

    The aim of this study is the comprehensive planning for integrated management of solid waste at the industrial parks. The share of each industrial group including food, metal, chemical, non-metallic minerals, textile, electrical and electronical, and cellulose industries were 48.2, 14.9, 6.7, 22, 0.9, 0.6, and 6.5 percent, respectively. The results showed that nearly half of total industrial waste produced from the range of biological materials are biodegradable and discharging them without observing environmental regulations leads to short-term pollution and nuisance in the acceptor environment. Also some parts of case study waste were recyclable which is considerable from viewpoint of economical and environmental pollution. Long-term impacts will appear due to improper site selection of disposal from the spatial standpoint. In this way, an approach for site selection using several socioeconomic, physical, and environmental criteria based on multicriteria decision making model (MCDM) is introduced. Health risks and environment pollution such as soil and surface water may be done. It is essential to revise the studied industries layout, particularly those units which produce special waste which should be more cautious. Also stricter enforcement is required as an effective step in reducing the harmful impacts of it. PMID:24688552

  7. Comprehensive planning for classification and disposal of solid waste at the industrial parks regarding health and environmental impacts.

    PubMed

    Hashemi, Hassan; Pourzamani, Hamidreza; Rahmani Samani, Bahareh

    2014-01-01

    The aim of this study is the comprehensive planning for integrated management of solid waste at the industrial parks. The share of each industrial group including food, metal, chemical, non-metallic minerals, textile, electrical and electronical, and cellulose industries were 48.2, 14.9, 6.7, 22, 0.9, 0.6, and 6.5 percent, respectively. The results showed that nearly half of total industrial waste produced from the range of biological materials are biodegradable and discharging them without observing environmental regulations leads to short-term pollution and nuisance in the acceptor environment. Also some parts of case study waste were recyclable which is considerable from viewpoint of economical and environmental pollution. Long-term impacts will appear due to improper site selection of disposal from the spatial standpoint. In this way, an approach for site selection using several socioeconomic, physical, and environmental criteria based on multicriteria decision making model (MCDM) is introduced. Health risks and environment pollution such as soil and surface water may be done. It is essential to revise the studied industries layout, particularly those units which produce special waste which should be more cautious. Also stricter enforcement is required as an effective step in reducing the harmful impacts of it.

  8. Tailings Pond Characterization And Designing Through Geophysical Surveys In Dipping Sedimentary Formations

    NASA Astrophysics Data System (ADS)

    Muralidharan, D.; Andrade, R.; Anand, K.; Sathish, R.; Goud, K.

    2009-12-01

    Mining activities results into generation of disintegrated waste materials attaining increased mobilization status and requires a safe disposal mechanism through back filling process or secluded storage on surface with prevention of its interaction with environment cycle. The surface disposal of waste materials will become more critical in case of mined minerals having toxic or radioactive elements. In such cases, the surface disposal site is to be characterized for its sub-surface nature to understand its role in environmental impact due to the loading of waste materials. Near surface geophysics plays a major role in mapping the geophysical characters of the sub-surface formations in and around the disposal site and even to certain extent helps in designing of the storage structure. Integrated geophysical methods involving resistivity tomography, ground magnetic and shallow seismic studies were carried out over proposed tailings pond area of 0.3 sq. kms underlined by dipping sedimentary rocks consisting of ferruginous shales and dolomitic to siliceous limestone with varying thicknesses. The investigated site being located in tectonically disturbed area, geophysical investigations were carried out with number of profiles to visualize the sub-surface nature with clarity. The integration of results of twenty profiles of resistivity tomography with 2 m (shallow) and 10 m (moderate depth) electrode spacing’s enabled in preparing probable sub-surface geological section along the strike direction of the formation under the tailings pond with some geo-tectonic structure inferred to be a fault. Similarly, two resistivity tomography profiles perpendicular to the strike direction of the formations brought out the existence of buried basic intrusive body on the northern boundary of the proposed tailings pond. Two resistivity tomography profiles in criss-cross direction over the suspected fault zone confirmed fault existence on the north-eastern part of tailings pond. Thirty two magnetic profiles inside the tailings pond and surrounding areas on the southern part of the tailings pond enabled in identifying two parallel east-west intrusive bodies forming the impermeable boundary for the tailings pond. The shallow seismic refraction and the geophysical studies in and around the proposed tailings pond brought out the suitability of the site, even when the toxic elements percolates through the subsurface formations in to the groundwater system, the existence of dykes on either side of the proposed ponding area won’t allow the water to move across them thus by restricting the contamination within the tailings pond area. Similarly, the delineation of a fault zone within the tailings pond area helped in shifting the proposed dam axis of the pond to avoid leakage through the fault zone causing concern to environment pollution.

  9. Effects of produced waters at oilfield production sites on the Osage Indian Reservation, northeastern Oklahoma

    USGS Publications Warehouse

    Otton, James K.; Asher-Bolinder, Sigrid; Owen, Douglass E.; Hall, Laurel

    1997-01-01

    The authors conducted limited site surveys in the Wildhorse and Burbank oilfields on the Osage Indian Reservation, northeastern Oklahoma. The purpose was to document salt scarring, erosion, and soil and water salinization, to survey for radioactivity in oilfield equipment, and to determine if trace elements and naturally occurring radioactive materials (NORM) were present in soils affected by oilfield solid waste and produced waters. These surveys were also designed to see if field gamma spectrometry and field soil conductivity measurements were useful in screening for NORM contamination and soil salinity at these sites. Visits to oilfield production sites in the Wildhorse field in June of 1995 and 1996 confirmed the presence of substantial salt scarring, soil salinization, and slight to locally severe erosion. Levels of radioactivity on some oil field equipment, soils, and road surfaces exceed proposed state standards. Radium activities in soils affected by tank sludge and produced waters also locally exceed proposed state standards. Laboratory analyses of samples from two sites show moderate levels of copper, lead, and zinc in brine-affected soils and pipe scale. Several sites showed detectable levels of bromine and iodine, suggesting that these trace elements may be present in sufficient quantity to inhibit plant growth. Surface waters in streams at two sampled sites exceed total dissolved solid limits for drinking waters. At one site in the Wildhorse field, an EM survey showed that saline soils in the upper 6m extend from a surface salt scar downvalley about 150 m. (Photo [95k]: Dead oak trees and partly revegetated salt scar at Site OS95-2 in the Wildhorse field, Osage County, Oklahoma.) In the Burbank field, limited salt scarring and slight erosion occurs in soils at some sites and low to moderate levels of radioactivity were observed in oil field equipment at some sites. The levels of radioactivity and radium observed in some soils and equipment at these sites are above levels of concern as defined in regulations proposed by the Conference of Radiation Control Program Directors. The volumes of material involved appear to be relatively small for most sites. The lead levels observed in soils affected by tank sludge wastes are about one half of the US Environmental Protection Agency (USEPA) interim remedial action levels used for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites (400 ppm). Field gamma spectrometry proved useful in delineating areas where radium has been added to the natural soil by oilfield solid waste and produced water, although the technique does not meet standards of assessment used in the state of Louisiana which require core sampling of 15 cm intervals and radiochemical analysis in the laboratory. Further work is needed to develop field gamma spectrometry as a substitute for the more expensive coring and laboratory analysis. The ratio of radium-228 to radium-226 may hold promise in evaluating the relative ages of NORM contamination at a site.

  10. Superfund Record of Decision (EPA Region 4): Newsom Brothers/Old Reichhold, Columbia, MS. (First remedial action), September 1989. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-18

    The 81-acre Newsom Brothers/Old Reichhold site is in Marion County, Columbia, Mississippi. Site activities included producing tall oils, turpentine, calcium and zinc resinates, and polymerized and rubber resins. Furthermore, PCP was apparently mixed with diesel oil and sold, and xylenes were used in a number of processes. A State investigation in 1976 revealed that waste water containing phenols, oil, and grease was discharging to a small creek. Further investigations resulted in EPA performing an immediate removal action in 1984, which included the removal of over 600 surface drums from the site and excavating and draining two ponds, one of whichmore » was subsequently filled with clean fill. Onsite buried drum areas were the target of another EPA removal action conducted in 1987-88. In addition there is an extensive system of concrete drains that served to collect and drain spilled wastes and rain water that has an area of runoff of approximately 300,000 square feet. The primary contaminants of concern in the soil, sediment, and bulked wastes are organics including PAHs, PCBs, and PCP, and metals.« less

  11. An industry perspective on commercial radioactive waste disposal conditions and trends.

    PubMed

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  12. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    PubMed

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  13. Waste information management system: a web-based system for DOE waste forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.

    2007-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less

  14. Monitoring regional effects of high pressure injection of wastewater in a limestone aquifer

    USGS Publications Warehouse

    Faulkner, Glen L.; Pascale, Charles A.

    1975-01-01

    More than 10 billion gallons (38 × 106 m3) of acid industrial liquid waste has been injected in about 11 years under high pressure into a saline-water-filled part of a limestone aquifer of low transmissivity between 1,400 and 1,700 feet (430 and 520 m) below land surface near Pensacola, Florida. A similar waste disposal system is planned for the same zone at a site about 8.5 miles (13.7 km) to the east. The injection zone is the lower limestone of the Floridan aquifer. The lower limestone is overlain by a confining layer of plastic clay about 220 feet (67 m) thick at the active injection site and underlain by another confining layer of shale and clay. The upper confining layer is overlain by the upper limestone of the Floridan aquifer.The active injection system consists of two injection wells about a quarter of a mile (0.4 km) apart and three monitor wells. Two of the monitor wells (deep monitors) are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations about 1.5 miles (2.4 km) south and 1.9 miles (3.1 km) north of the center of the injection site. The third well (shallow monitor), used to observe any effects in the upper limestone, is about 100 feet (30 m) from one of the injection wells. Since 1972 the injection zone has also been monitored at a test well at the planned new injection site. Three more monitor wells in the injection zone were activated in early 1974 at sites 17 miles (27 km) northeast, 22 miles (35 km) east and 33 miles (53 km) northeast of the injection site. The six deep monitors provide a system for evaluating the regional effects of injecting wastes. No change in pressure or water quality due to injection was, by mid-1974, evident in the upper limestone at the injection site, but static pressures in the lower limestone at the site had increased 8 fold since injection began in 1963. Chemical analyses indicated probable arrival of the diluted waste at the south monitor well in 1973. By mid-1974 waste evidently had not reached the north monitor well.Calculations indicate that by mid-1974 pressure effects from waste injection extended radially more than 40 miles (64 km) from the injection site. By mid-1974 pressure effects of injection were evident from water-level measurements made at the five deep monitor wells nearest the active injection site. No effects were recognized at the well 33 miles (53 km) away. Less than 20 miles (32 km) northeast of the active injection site, the lower limestone contains fresh water. Changes in the pressure regime due to injection indicate a tendency for northeastward movement of the fresh-water/salt-water interface in the lower limestone.

  15. Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste-to-Biofuel Conversion

    DOE PAGES

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao; ...

    2017-06-21

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  16. 40 CFR 273.55 - Off-site shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.55 Off-site... universal waste being shipped off-site meets the Department of Transportation's definition of hazardous...

  17. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  18. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  19. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  20. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  1. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  2. Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Fischer, D.D.; Crawford, R.C.

    1982-06-01

    Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less

  3. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  4. Impact of Scots pine (Pinus sylvestris L.) plantings on long term (137)Cs and (90)Sr recycling from a waste burial site in the Chernobyl Red Forest.

    PubMed

    Thiry, Yves; Colle, Claude; Yoschenko, Vasyl; Levchuk, Svjatoslav; Van Hees, May; Hurtevent, Pierre; Kashparov, Valery

    2009-12-01

    Plantings of Scots pine (Pinus sylvestris L.) on a waste burial site in the Chernobyl Red Forest was shown to greatly influence the long term redistribution of radioactivity contained in sub-surfaces trenches. After 15 years of growth, aboveground biomass of the average tree growing on waste trench no.22 had accumulated 1.7 times more (137)Cs than that of trees growing off the trench, and 5.4 times more (90)Sr. At the scale of the trench and according to an average tree density of 3300 trees/ha for the study zone, tree contamination would correspond to 0.024% of the (137)Cs and 2.52% of the (90)Sr contained in the buried waste material. A quantitative description of the radionuclide cycling showed a potential for trees to annually extract up to 0.82% of the (90)Sr pool in the trench and 0.0038% of the (137)Cs. A preferential (90)Sr uptake from the deep soil is envisioned while pine roots would take up (137)Cs mostly from less contaminated shallow soil layers. The current upward flux of (90)Sr through vegetation appeared at least equal to downward loss in waste material leaching as reported by Dewiere et al. (2004, Journal of Environmental Radioactivity 74, 139-150). Using a prospective calculation model, we estimated that maximum (90)Sr cycling can be expected to occur at 40 years post-planting, resulting in 12% of the current (90)Sr content in the trench transferred to surface soils through biomass turnover and 7% stored in tree biomass. These results are preliminary, although based on accurate methodology. A more integrated ecosystem study leading to the coupling between biological and geochemical models of radionuclide cycling within the Red Forest seems opportune. Such a study would help in the adequate management of that new forest and the waste trenches upon which they reside.

  5. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  6. Distribution and mass loss of volatile organic compounds in the surficial aquifer at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware, November 2000-February 2001

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Neupane, Pradumna P.

    2002-01-01

    Ground-water and surface-water sampling was conducted in the natural attenuation study area in the East Management Unit of Dover Air Force Base, Delaware to determine the distributions of volatile organic compounds in the vicinity of four sites?Fire Training Area Three, the Rubble Area Landfill, the Receiver Station Landfill, and the Liquid Waste Disposal Landfill. This work was done by the U.S. Geological Survey, in cooperation with the U.S. Air Force, as part of an ongoing assessment of the effectiveness of natural attenuation at these sites. The specific objectives of the study were to (1) determine the areal and vertical extent of the contaminant plumes and source areas, (2) measure volatile organic compound concentrations in ground-water discharge areas and in surface water under base-flow conditions, (3) evaluate the potential for off-site migration of the mapped plumes, and (4) estimate the amount of mass loss downgradient of the Liquid Waste Disposal and Receiver Station Landfills. A direct-push drill rig and previously installed multi-level piezometers were used to determine the three-dimensional distributions of volatile organic compounds in the 30?60-foot-thick surficial aquifer underlying the natural attenuation study area. A hand -driven mini-piezometer was used to collect ground-water samples in ground-water discharge areas. A total of 319 ground-water and 4 surface-water samples were collected from November 2000 to February 2001 and analyzed for chlorinated solvents and fuel hydrocarbons. The contaminant plumes migrating from Fire Training Area Three and the Rubble Area Landfill are approximately 500 feet and 800 feet, respectively, in length. These plumes consist predominantly of cis-1,2-dichloroethene, a daughter product, indicating that extensive dechlorination of tetrachloroethene and trichloroethene has occurred at these sites. With an approximate length of 2,200 feet, the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills is the largest of the three plumes in the East Management Unit. In this plume, the parent compounds, tetrachloroethene and trichloroethene, as well as cis-1,2-dichloroethene, are present downgradient of the source. Vinyl chloride was not detected in the natural attenuation study area. Vertical water-quality profiles indicate that volatile organic compounds are present mainly in the upper part of the surficial aquifer. Plumes of fuel hydrocarbon constituents were not detected in the natural attenuation study area. Volatile organic compounds were present at concentrations above detection limits in 6 of 14 samples collected from the aquifer underlying the bed of Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three, indicating that the plumes migrating from Fire Training Area Three and the Receiver Station and Liquid Waste Disposal Landfills are reaching these ground-water discharge areas. In contrast, sampling results indicated that the plume from the Rubble Area Landfill does not reach these ground-water discharge areas. Trichloroethene was present above detection limits in one of four surface-water samples collected from Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three. The trichloroethene concentration is below applicable Delaware Department of Natural Resources and Environmental Control surface-water-quality standards for human health. An assessment of chlorinated-solvent mass loss in the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicates that tetrachloroethene and trichloroethene mass loss downgradient of the source is negligible. Cis-1,2-dichloroethene, however, appears to biodegrade by an unidentified reaction in the plume. Plan-view maps of the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicate that tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene may migrate off Dover Air Force Base property approximately 1,500 f

  7. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate

    NASA Astrophysics Data System (ADS)

    Colgan, William; Machguth, Horst; MacFerrin, Mike; Colgan, Jeff D.; As, Dirk; MacGregor, Joseph A.

    2016-08-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75 years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  8. The Abandoned Ice Sheet Base at Camp Century, Greenland, in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Colgan, William; Machguth, Horst; Macferrin, Mike; Colgan, Jeff D.; Van As, Dirk; Macgregor, Joseph A.

    2016-01-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  9. DOE Waste Treatability Group Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less

  10. Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.

  11. Morphological, biochemical, and histopathological indices and contaminant burdens of cotton rats (Sigmodon hispidus) at three hazardous waste sites near Houston, Texas, USA

    USGS Publications Warehouse

    Rattner, B.A.; Flickinger, Edward L.; Hoffman, D.J.

    1993-01-01

    Male cotton rats (Sigmodon hispidus) were studied at three industrial waste sites near Houston, Texas, to determine whether various morphological, biochemical, and histopathological indices provided evidence of contaminant exposure and toxic insult. Only modest changes were detected in cotton rats residing at waste sites compared with reference sites. No single parameter was consistently altered, except hepatic cytochrome P-450 concentration which was lower ( [Formula: see text] ) at two waste sites, and tended to be lower ( [Formula: see text] ) at a third waste site. Elevated petroleum hydrocarbon concentrations were detected in rats at one waste site, but contaminant burdens of rats from the other sites were unremarkable. Unlike rats captured in summer, those trapped in winter exhibited hepatocellular hypertrophy and up to a 65% increase in liver: body weight ratio, cytochrome P-450 concentration, and activities of aniline hydroxylase, aryl hydrocarbon hydroxylase, and glutathione S-transferase. Although genotoxicity has been previously documented in cotton rats residing at two of the waste sites, biomarkers in the present study provided little evidence of exposure and damage

  12. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    PubMed

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.

  13. Environmental radioactivity assessment around old uranium mining sites near Mangualde (Viseu), Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.

    2007-07-01

    Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater ismore » tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)« less

  14. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

  15. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  16. Robots remove explosive waste from flooded site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    Explosive industrial waste can remain hazardous for years, making remediation extremely dangerous, particularly when using traditional methods involving people and manually operated equipment. The work is even more complex if the waste is submerged. Authorities in 1988 faced an unusual challenge when they decided to clean up a flooded area that had been used for more than 30 years as a dump for explosive materials. They devised an innovative but highly effective solution. Instead of using divers, two robots perform the cleanup while site personnel remain 600 feet away from the restricted area. The robots were developed by Sonsub Environmentalmore » Services Inc. (Houston), which is responsible for their operation. The robots initially located and cleared a small area underwater to set up a metal-processing system, which also was designed by Sonsub. The system is similar to a metal-recycling shredder. The robots then assembled the 25-foot-tall, 20-ton system 60 feet below the surface on the pit floor. A large, surface robot carried sections of the shredder to the cleared area and lowered them, while a smaller, submersible robot guided them into position. This required extreme precision by the smaller robot, which had to ensure that sections mated properly. Both robots now retrieve waste from the pit bottom and feed it into the shredder. The larger robot has a 40-foot jointed arm for lifting up to 1,000 pounds of debris, a manipulator hand for sorting through rock piles and removing small containers, and a grapple for picking up items from the pit floor.« less

  17. WORKSHOP REPORT - CONSIDERATIONS FOR DEVELOPING LEACHING TEST METHODS FOR SEMI- AND NON-VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...

  18. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  19. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  20. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  1. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Decisions based on PCB concentration measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761...

  2. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    USGS Publications Warehouse

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  3. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  4. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  5. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  6. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  7. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  8. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  9. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  10. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  11. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vories, K.C.

    2003-07-01

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less

  12. Cd and proton adsorption onto bacterial consortia grown from industrial wastes and contaminated geologic settings.

    PubMed

    Borrok, David M; Fein, Jeremy B; Kulpa, Charles F

    2004-11-01

    To model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior. Here we measure proton and Cd adsorption onto a range of bacterial consortia grown from heavily contaminated industrial wastes, groundwater, and soils. We model the results using a discrete site surface complexation approach to determine binding constants and site densities for each consortium. The results demonstrate that bacterial consortia from different contaminated environments exhibit a range of total site densities (approximately a 3-fold difference) and Cd-binding constants (approximately a 10-fold difference). These ranges for Cd binding constants may be small enough to suggest that bacteria-metal adsorption in contaminated environments can be described using relatively few "averaged" bacteria-metal binding constants (in conjunction with the necessary binding constants for competing surfaces and ligands). However, if additional precision is necessary, modeling parameters must be developed separately for each contaminated environment of interest.

  13. Utilizing hydrologic, statistical, and geochemical tools to assess uranium mobility in surface and near-surface environments

    NASA Astrophysics Data System (ADS)

    Naftz, D. L.; Walton-Day, K. E.; Fuller, C.; Dam, W. L.; Briggs, M. A.; Snyder, T.

    2015-12-01

    Legacy uranium (U) mining and processing activities have resulted in soil and water contamination on Federal, state, and tribal lands in the western United States. Sites include legacy mill sites associated with U extraction now managed by the Department of Energy and thousands of waste dumps associated with U exploration, mining, and processing. Recently (2012), over 400,000 hectares of federally managed land in northern Arizona was withdrawn from consideration of mining for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. Ore from active and recently active U mines in the Colorado Plateau, the Henry Mountains Complex, and the Arizona Strip is transported to the only currently (2015) active conventional mill site in the western United States, located in Utah. Previous and ongoing U.S. Geological Survey assessments to examine U mobility at a variety of legacy and active sites associated with ore exploration, extraction, and processing will be presented as field-scale examples. Topics associated with site investigations will include: (1) offsite migration of radionuclides associated with the operation of the White Mesa U mill; (2) long-term contaminant transport from legacy U waste dumps on Bureau of Land Management regulated land in Utah; (3) application of incremental soil sampling techniques to determine pre- and post-mining radionuclide levels associated with planned and operating U mines in northern Arizona; (4) application of fiber optic digital temperature sensing equipment to identify areas where shallow groundwater containing elevated U levels may be discharging to a river adjacent to a reclaimed mill site in central Wyoming; and (5) field-scale manipulation of groundwater chemistry to limit U migration from a legacy upgrader site in southeastern Utah.

  14. Elevated levels of polychlorinated biphenyls in plants, air, and soils at an E-waste site in Southern China and enantioselective biotransformation of chiral PCBs in plants.

    PubMed

    Chen, She-Jun; Tian, Mi; Zheng, Jing; Zhu, Zhi-Cheng; Luo, Yong; Luo, Xiao-Jun; Mai, Bi-Xian

    2014-04-01

    E-waste that contains polychlorinated biphenyls (PCBs) is moved across national boundaries, often from industrialized countries in the northern hemisphere, where the items were formerly used, to subtropical and tropical regions in southeastern Asia and Africa. As a result, there is a high likelihood that PCBs will be released into the environment from a primary source due to the elevated temperatures encountered in these low-latitude regions. In the present study, PCBs and enantiomer fractions (EFs) of chiral PCBs (PCB 84, 95, 132, 136, 149, and 183) were analyzed in air, eucalyptus leaves, pine needles, and soil at an e-waste site and a rural site in southern China. The concentrations of PCBs at the e-waste site ranged from 7825 to 76330 pg/m(3), 27.5 to 1993 ng/g, and 24.2 to 12045 ng/g in the air (gas plus particle), plant leaves, and soils, respectively. The atmospheric PCB composition profiles in the present study indicated relatively high abundances of penta- and hexa-PCBs, which were different from those previously observed in the air across China. The Clausius-Clapeyron regression analysis indicated that evaporation from local contaminated surfaces constitutes a primary emission source of PCBs in the air at the e-waste site. The chiral signatures of PCBs in the air at the e-waste site were essentially racemic (mean EFs = (0.484 ± 0.022)-(0.499 ± 0.004) in the gaseous phase) except for PCB 84 (0.420 ± 0.050), indicating that racemic sources dominate the PCB emission in the air. PCB chiral signatures in the soils ((0.422 ± 0.038)-(0.515 ± 0.016)) were similar to those in the air except for PCB 95. However, the chiral PCBs in the plants (especially the eucalyptus leaves) had significantly nonracemic residues ((0.368 ± 0.075)-(0.561 ± 0.045)) compared to those in the air and soil. This finding suggests that enantioselective biotransformation of these atropisomeric PCBs was very likely to occur in the plant leaves, possibly due to metabolism by cytochrome P-450 enzymes in leaves. To our knowledge, this is the first report on the enantioselective metabolism of chiral PCBs in plants under field conditions.

  15. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    USGS Publications Warehouse

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  16. Site environmental report for calendar year 2002. DOE operations at the Boeing Company, Rocketdyne Propulsion and Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2003-09-30

    This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and,more » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.« less

  17. Development of Risk Insights for Regulatory Review of a Near-Surface Disposal Facility for Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, D.W.; Ridge, A.C.; Thaggard, M.

    2006-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of themore » public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)« less

  18. Applications of multi-season hyperspectral remote sensing for acid mine water characterization and mapping of secondary iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Davies, Gwendolyn E.

    Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.

  19. Closure report for Corrective Action Unit 211, Area 15 EPA Farm waste sites, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 211 Area 15 Farm Waste Sties at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  20. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2018-01-16

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  1. Hanford Site Solid Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  2. Installation Restoration Program (IRP). Phase 2. Confirmation/Quantification. Stage 1. McEntire Air National Guard Base, Eastover, South Carolina.

    DTIC Science & Technology

    1986-06-10

    Environmental Research Group (ERG) Laboratories of Ann Arbor, Michigan, and a duplicate set sent to OEHL’s laboratory in San Antonio, Texas. The remainder of...sites and well clusters , and the overall sparsity of data points at the base, a water table aquifer potentiometric surface map for the entire base could...L _ MW2-34 The predominant solid wastes disposed at this site were paper and domestic refuse, old wood from demolished structures, general

  3. NV/YMP radiological control manual, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gile, A.L.

    The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste andmore » the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.« less

  4. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental data illustrates the complementarity of molecular and macro-scale descriptions of the clay reactivity.

  5. Five-year performance monitoring of a high-density polyethylene (HDPE) cover system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada).

    PubMed

    Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin

    2017-12-01

    Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.

  6. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of themore » 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  7. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  8. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  9. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.« less

  10. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

  11. 40 CFR 270.110 - What must I include in my application for a RAP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management site; (e) A scaled drawing of the remediation waste management site showing: (1) The remediation waste...

  12. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  13. The Reduction of Aqueous Metal Species on the Surfaces of Fe(II)-Containing Oxides: The Role of Surface Passivation

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1998-01-01

    The reduction of aqueous transition metal species at the surfaces of Fe(II)- containing oxides has important ramifications in predicting the transport behavior in ground water aquifers. Experimental studies using mineral suspensions and electrodes demonstrate that structural Fe(II) heterogeneously reduces aqueous ferric, cupric, vanadate and chromate ions on magnetite and ilmenite surfaces. The rates of metal reduction on natural oxides is strongly dependent on the extent of surface passivation and redox conditions in the weathering environment. Synchrotron studies show that surface oxidation of Fe(II)-containing oxide minerals decreases their capacity for Cr(VI) reduction at hazardous waste disposal sites.

  14. Configuration management at an environmental restoration DOE facility (Fernald)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckett, C.; Pasko, W.; Kupinski, T.

    This report contains information about a meeting held to discuss the decontamination and decommissioning of the Fernald site in Ohio. This site contains two major types of waste. First is the legacy waste. This waste consists of the wastes which were left over from production which is stored in various drums and containers across the site. Second is the waste generated from the remedial activities.

  15. Health and Safety Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Clark, C. Jr.; Burman, S.N.

    1993-12-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at Waste Area Grouping (WAG) 6 at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to safety and health (S&H) issues. The plan is written to utilize past experience and best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactivemore » materials to air, soil, or surface water This plan explains additional site-specific health and safety requirements such as Site Specific Hazards Evaluation Addendums (SSHEAs) to the Site Safety and Health Plan which should be used in concert with this plan and existing established procedures.« less

  16. Adsorption of aliphatic polyhydroxy carboxylic acids on gibbsite: pH dependency and importance of adsorbate structure.

    PubMed

    Schneckenburger, Tatjana; Riefstahl, Jens; Fischer, Klaus

    2018-01-01

    Aliphatic (poly)hydroxy carboxylic acids [(P)HCA] occur in natural, e.g. soils, and in technical (waste disposal sites, nuclear waste repositories) compartments . Their distribution, mobility and chemical reactivity, e.g. complex formation with metal ions and radionuclides, depend, among others, on their adsorption onto mineral surfaces. Aluminium hydroxides, e.g. gibbsite [α-Al(OH) 3 ], are common constituents of related solid materials and mimic the molecular surface properties of clay minerals. Thus, the study was pursued to characterize the adsorption of glycolic, threonic, tartaric, gluconic, and glucaric acids onto gibbsite over a wide pH and (P)HCA concentration range. To consider specific conditions occurring in radioactive wastes, adsorption applying an artificial cement pore water (pH 13.3) as solution phase was investigated additionally. The sorption of gluconic acid at pH 4, 7, 9, and 12 was best described by the "two-site" Langmuir isotherm, combining "high affinity" sorption sites (adsorption affinity constants [Formula: see text] > 1 L mmol -1 , adsorption capacities < 6.5 mmol kg -1 ) with "low affinity" sites ([Formula: see text] < 0.1 L mmol -1 , adsorption capacities ≥ 19 mmol kg -1 ). The total adsorption capacities at pH 9 and 12 were roughly tenfold of that at pH 4 and 7. The S-shaped pH sorption edge of gluconic acid was modelled applying a constant capacitance model, considering electrostatic interactions, hydrogen bonding, surface complex formation, and formation of solved polynuclear complexes between Al 3+ ions and gluconic acid. A Pearson and Spearman rank correlation between (P)HCA molecular properties and adsorption parameters revealed the high importance of the size and the charge of the adsorbates. The adsorption behaviour of (P)HCAs is best described by a combination of adsorption properties of carboxylic acids at acidic pH and of polyols at alkaline pH. Depending on the molecular properties of the adsorbates and on pH, electrostatic interactions, hydrogen bonding, and ternary surface complexation contribute in varying degrees to the adsorption process. Linear distribution coefficients K d between 8.7 and 60.5 L kg -1 (1 mmol L -1 initial PHCA concentration) indicate a considerable mineral surface affinity at very high pH, thus lowering the PHCA fraction available for the complexation of metal ions including radionuclides in solution and their subsequent mobilization.

  17. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  18. Nevada Test Site Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  19. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less

  20. Remote Sensing Combined with Field Spectroscopy for the Detection and Monitoring of Heavy Metal Contamination from Informal E-waste Recycling

    NASA Astrophysics Data System (ADS)

    Friedlander, L. R.; Garb, Y.

    2017-12-01

    Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts of the image (e.g., shadows). We have begun to distinguish shadows from the dark burn site centers by automatically detecting and masking shadows. This will allow us to utilize images taken at different times and our in-situ field spectral results to develop a method for monitoring contaminant spread from these complex point sources.

  1. Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, John C.

    2012-07-01

    A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comesmore » into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically replaced and disposed of as radioactive waste. A total of 0.85 m{sup 3} of waste sludge per year requires disposal on average, in addition to another 6.6 m{sup 3} of waste cartridge filters. All water discharges are regulated by a state of New Jersey Pollutant Discharge Elimination System Permit implemented by the Federal Water Pollution Control Act (Clean Water Act). Laboratory analyses are required to satisfy requirements of the state NPDES permit. Specific monitoring parameters and discharge rates will be provided. Use of the water treatment systems drastically reduces the amount of contaminated water requiring solidification and water disposal to near zero. Millions of liters of potentially contaminated water from excavation activities is treated and released within permit limits. A small volume of solid radioactive waste (21 cubic meters) is generated annually from water treatment process operations. Management of ground and surface water is effectively controlled in remediation areas by the use of sumps, erosion control measures and pumping of water to storage vessels. Continued excavations can be made as water impacting the site is effectively controlled. (authors)« less

  2. Critical management practices influencing on-site waste minimization in construction projects.

    PubMed

    Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A

    2017-01-01

    As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  4. Geologic and geophysical characterization studies of Yucca Mountain, Nevada, a potential high-level radioactive-waste repository

    USGS Publications Warehouse

    Whitney, J.W.; Keefer, W.R.

    2000-01-01

    In recognition of a critical national need for permanent radioactive-waste storage, Yucca Mountain in southwestern Nevada has been investigated by Federal agencies since the 1970's, as a potential geologic disposal site. In 1987, Congress selected Yucca Mountain for an expanded and more detailed site characterization effort. As an integral part of this program, the U.S. Geological Survey began a series of detailed geologic, geophysical, and related investigations designed to characterize the tectonic setting, fault behavior, and seismicity of the Yucca Mountain area. This document presents the results of 13 studies of the tectonic environment of Yucca Mountain, in support of a broad goal to assess the effects of future seismic and fault activity in the area on design, long-term performance, and safe operation of the potential surface and subsurface repository facilities.

  5. Overview and technical and practical aspects for use of geostatistics in hazardous-, toxic-, and radioactive-waste-site investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossong, C.R.; Karlinger, M.R.; Troutman, B.M.

    1999-10-01

    Technical and practical aspects of applying geostatistics are developed for individuals involved in investigation at hazardous-, toxic-, and radioactive-waste sites. Important geostatistical concepts, such as variograms and ordinary, universal, and indicator kriging, are described in general terms for introductory purposes and in more detail for practical applications. Variogram modeling using measured ground-water elevation data is described in detail to illustrate principles of stationarity, anisotropy, transformations, and cross validation. Several examples of kriging applications are described using ground-water-level elevations, bedrock elevations, and ground-water-quality data. A review of contemporary literature and selected public domain software associated with geostatistics also is provided, asmore » is a discussion of alternative methods for spatial modeling, including inverse distance weighting, triangulation, splines, trend-surface analysis, and simulation.« less

  6. Groundwater and Air Contamination: Risk, Toxicity, Exposure Assessment, Policy, and Regulation

    NASA Astrophysics Data System (ADS)

    Watts, R. J.; Teel, A. L.

    2003-12-01

    The improper disposal of hazardous wastes and subsequent contamination of surface and groundwaters has exposed the public and ecosystems to toxic chemicals that have detrimental consequences. The cost of cleaning up the thousands of hazardous waste sites throughout the world is daunting, and the effort to do so is economically impractical. As a result, some level of contamination will always remain, both locally and globally. The presence of a residual level of contamination carries with it the probability of negative impacts on the world's population; e.g., enhanced risk of cancer or the onset of neurological disorders. Risk is the probability of such events. Risk assessments are routinely performed at contaminated sites and in areas of widespread environmental contamination, such as an entire aquifer, as a means of quantifying the potential threats to public health and to ecosystems.

  7. Site descriptive modeling as a part of site characterization in Sweden - Concluding the surface based investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Johan; Winberg, Anders; Skagius, Kristina

    The Swedish Nuclear Fuel and Waste Management Co., SKB, is currently finalizing its surface based site investigations for the final repository for spent nuclear fuel in the municipalities of Oestharmnar (the Forsmark area) and Oskarshamn (the Simpevar/Laxemar area). The investigation data are assessed into a Site Descriptive Model, constituting a synthesis of geology, rock mechanics, thermal properties, hydrogeology, hydro-geochemistry, transport properties and a surface system description. Site data constitute a wide range of different measurement results. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modeling. The three-dimensional modelingmore » (i.e. estimating the distribution of parameter values in space) is made in a sequence where the geometrical framework is taken from the geological models and in turn used by the rock mechanics, thermal and hydrogeological modeling. These disciplines in turn are partly interrelated, and also provide feedback to the geological modeling, especially if the geological description appears unreasonable when assessed together with the other data. Procedures for assessing the uncertainties and the confidence in the modeling have been developed during the course of the site modeling. These assessments also provide key input to the completion of the site investigation program. (authors)« less

  8. Waste Handeling Building Conceptual Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less

  9. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.

    PubMed

    Auxilio, Anthony R; Choo, Wei-Lit; Kohli, Isha; Chakravartula Srivatsa, Srikanth; Bhattacharya, Sankar

    2017-09-01

    A bench scale, two-stage, thermo-catalytic reactor equipped with a continuous feeding system was used to pyrolyse pure and waste plastics. Experiments using five zeolitic and clay-based catalysts of different forms (pellet and powders) and different plastic feedstocks - virgin HDPE, HDPE w1aste and mixed plastic waste (MPW) were compared to the control experiments - pyrolysis without catalyst. Results indicated that the two pelletized catalysts were the most promising for the conditions employed. Of these two, one with higher acidity and surface area was highly selective for the gasoline fraction (C 5 -C 11 ) giving 80% from the total medium distillate conversion using virgin HDPE as feedstock. It also produced the least amount of olefins (17% for virgin HDPE, 4% for HDPE waste and 2% for MPW) and coke (<1% for virgin HDPE, 3% for HDPE waste and 5% for MPW), and the highest aromatics content (22% for virgin HDPE from un-distilled medium distillate, 5% for HDPE and 13% for MPW both from distilled medium distillate). The second pelletized catalyst exhibited high selectivity for the diesel fraction (C 12 -C 25 ) giving 63% from the total medium distillate conversion using virgin HDPE as feedstock. The amount of coke deposited on the catalyst surface depended mainly on the mesopore volume, with less coke deposited as the mesopore volume increased. The variation in catalyst selectivity with acidity strength due to Lewis sites on the catalyst surface controls selectivity towards carbon chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  12. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it; Gisi, Sabino De

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. Wemore » wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.« less

  13. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Decisions based on PCB concentration... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.298 Decisions based on PCB concentration measurements resulting from sampling. (a) For...

  14. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NSO Waste Management Project

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  15. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites

    EPA Pesticide Factsheets

    The purpose of this paper is to provide RPMs and others investigating hazardous waste sites a summary of the technical issues that need to be considered when determining if a site (i.e., hazardous waste site/area of concern) has elevated levels of ...

  16. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    USGS Publications Warehouse

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  17. Three multimedia models used at hazardous and radioactive waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selectionmore » and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.« less

  18. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and sitemore » properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.« less

  19. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  20. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  1. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  2. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  3. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  4. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  5. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  6. Estimating the possible range of recycling rates achieved by dump waste pickers: The case of Bantar Gebang in Indonesia.

    PubMed

    Sasaki, Shunsuke; Araki, Tetsuya

    2014-06-01

    This article presents informal recycling contributions made by scavengers in the surrounding area of Bantar Gebang final disposal site for municipal solid waste generated in Jakarta. Preliminary fieldwork was conducted through daily conversations with scavengers to identify recycling actors at the site, and then quantitative field surveys were conducted twice. The first survey (n = 504 households) covered 33% of all households in the area, and the second survey (n = 69 households) was conducted to quantify transactions of recyclables among scavengers. Mathematical equations were formulated with assumptions made to estimate the possible range of recycling rates achieved by dump waste pickers. Slightly over 60% of all respondents were involved in informal recycling and over 80% of heads of households were waste pickers, normally referred to as live-in waste pickers and live-out waste pickers at the site. The largest percentage of their spouses were family workers, followed by waste pickers and housewives. Over 95% of all households of respondents had at least one waste picker or one small boss who has a coequal status of a waste picker. Average weight of recyclables collected by waste pickers at the site was estimated to be approximately 100 kg day(-1) per household on the net weight basis. The recycling rate of solid wastes collected by all scavengers at the site was estimated to be in the range of 2.8-7.5% of all solid wastes transported to the site. © The Author(s) 2014.

  7. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  8. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Higueras, Pablo L.; Adatto, Isaac; Lasorsa, Brenda K.

    2004-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almade??n District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almade??n area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almade??n are among the highest found at Hg mines worldwide. Mine wastes from Almade??n contain highly elevated Hg concentrations, ranging from 160 to 34 000 ??g/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almade??n mine is also contaminated, containing Hg as high as 13 000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 ??g/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almade??n mine and significant conversion to methyl-Hg in the surface environment.

  9. Organochlorines in surface soil at electronic-waste wire burning sites and metal contribution evaluated using quantitative X-ray speciation

    NASA Astrophysics Data System (ADS)

    Fujimori, Takashi; Takigami, Hidetaka; Takaoka, Masaki

    2013-04-01

    Heavy metals and toxic chlorinated aromatic compounds (aromatic-Cls) such as dioxins and polychlorinated biphenyls (PCBs) are found at high concentrations and persist in surface soil at wire burning sites (WBSs) in developing countries in which various wire cables are recycled to yield pure metals. Chlorine K-edge near-edge X-ray absorption fine structure (NEXAFS) is used to detect the specific chemical form of Cl and estimate its amount using a spectrum jump in the solid phase. Quantitative X-ray speciation of Cl was applied to study the mechanisms of aromatic-Cls formation in surface soil at WBSs in Southeast Asia. Relationships between aromatic-Cls and chlorides of heavy metals were evaluated because heavy metals are promoters of the thermochemical solid-phase formation of aromatic-Cls.

  10. Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada, REVISION 0, march 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ITLV.

    1999-03-01

    The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: Perform video surveys of the discharge and outfall lines. Collect samples of material in the septic tanks. Conduct exploratory trenching to locate and inspect subsurface components. Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. Drill boreholes and collect subsurface soil samples if required. Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less

  11. The Pinnacles of Callisto

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Many regions of Callisto feature an unusual landscape consisting of rolling dark plains with interspersed bright knobs (pinnacles) and ridges. In earlier work we interpreted the dark plains as dusty, mass-wasted residue from sublimation from volatile-rich bedrock and the bright knobs (often crater rims) as water ice accumulations at locations sheltered from thermal reradiation from the dusty residue. We simulated evolution of Callisto's craters as a combination of bedrock volatile sublimation, mass wasting of the dark, non-coherent residue, and redeposition of ice, and concluded that the ice pinnacles and ridges might be underlain by tens to hundreds of meters of ice. Here we report the initial work of a new study of pinnacles addressing additional questions: 1) Is there an evolutionary sequence starting, e.g., from a cratered initial surface through growth and formation of a dust mantle and pinnacles, to eventual loss of ice to sublimation resulting in just a dark, dusty surface? 2) What determines the areal density and spatial scale of pinnacles - volatile content of bedrock, crater density, surface age, broad-scale topographic setting? 3) Are pinnacles still forming? Several observations address these questions. In a few places scattered high-albedo blocks approx. 25-60 m in diameter occur in the vicinity of large icy pinnacles. We interpret these blocks to be remnants from the collapse of tall pinnacles that were undermined by mass wasting. Some high-relief icy knobs have developed a skeletonized planform due to mass wasting by avalanching, or perhaps to seeding of new sites of ice deposition on mass-wasted ice blocks. Some areas nearly lack fresh craters with well-defined ejecta and ice-free rims. This may imply rapid transformation of fresh craters by sublimation, mass wasting, and ice reprecipitation. In other areas small sharp-rimmed craters occur which lack ice pinnacles, but the craters nonetheless lack visible ejecta sheets. Our preliminary interpretation is that mass wasting is very efficient on Callisto, or alternatively the dust cover is very thick and lacks competent coarse materials.

  12. Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs.

    PubMed

    Matsukami, Hidenori; Tue, Nguyen Minh; Suzuki, Go; Someya, Masayuki; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2015-05-01

    Three oligomeric organophosphorus flame retardants (o-PFRs), eight monomeric PFRs (m-PFRs), tetrabromobisphenol A (TBBPA), and polybrominated diphenyl ethers (PBDEs) were identified and quantified in surface soils and river sediments around the e-waste recycling area in Bui Dau, northern Vietnam. Around the e-waste recycling workshops, 1,3-phenylene bis(diphenyl phosphate) (PBDPP), bisphenol A bis(diphenyl phosphate) (BPA-BDPP), triphenyl phosphate (TPHP), TBBPA, and PBDEs were dominant among the investigated flame retardants (FRs). The respective concentrations of PBDPP, BPA-BDPP, TPHP, TBBPA and the total PBDEs were 6.6-14000 ng/g-dry, <2-1500 ng/g-dry, 11-3300 ng/g-dry, <5-2900 ng/g-dry, and 67-9200 ng/g-dry in surface soils, and 4.4-78 ng/g-dry, <2-20 ng/g-dry, 7.3-38 ng/g-dry, 6.0-44 ng/g-dry and 100-350 ng/g-dry in river sediments. Near the open burning site of e-waste, tris(methylphenyl) phosphate (TMPP), (2-ethylhexyl)diphenyl phosphate (EHDPP), TPHP, and the total PBDEs were abundantly with respective concentrations of <2-190 ng/g-dry, <2-69 ng/g-dry, <3-51 ng/g-dry and 1.7-67 ng/g-dry in surface soils. Open storage and burning of e-waste have been determined to be important factors contributing to the emissions of FRs. The environmental occurrence of emerging FRs, especially o-PFRs, indicates that the alternation of FRs addition in electronic products is shifting in response to domestic and international regulations of PBDEs. The emissions of alternatives from open storage and burning of e-waste might become greater than those of PBDEs in the following years. The presence and environmental effects of alternatives should be regarded as a risk factor along with e-waste recycling. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Increased Rate of Hospitalization for Diabetes and Residential Proximity of Hazardous Waste Sites

    PubMed Central

    Kouznetsova, Maria; Huang, Xiaoyu; Ma, Jing; Lessner, Lawrence; Carpenter, David O.

    2007-01-01

    Background Epidemiologic studies suggest that there may be an association between environmental exposure to persistent organic pollutants (POPs) and diabetes. Objective The aim of this study was to test the hypothesis that residential proximity to POP-contaminated waste sites result in increased rates of hospitalization for diabetes. Methods We determined the number of hospitalized patients 25–74 years of age diagnosed with diabetes in New York State exclusive of New York City for the years 1993–2000. Descriptive statistics and negative binomial regression were used to compare diabetes hospitalization rates in individuals who resided in ZIP codes containing or abutting hazardous waste sites containing POPs (“POP” sites); ZIP codes containing hazardous waste sites but with wastes other than POPs (“other” sites); and ZIP codes without any identified hazardous waste sites (“clean” sites). Results Compared with the hospitalization rates for diabetes in clean sites, the rate ratios for diabetes discharges for people residing in POP sites and “other” sites, after adjustment for potential confounders were 1.23 [95% confidence interval (CI), 1.15–1.32] and 1.25 (95% CI, 1.16–1.34), respectively. In a subset of POP sites along the Hudson River, where there is higher income, less smoking, better diet, and more exercise, the rate ratio was 1.36 (95% CI, 1.26–1.47) compared to clean sites. Conclusions After controlling for major confounders, we found a statistically significant increase in the rate of hospitalization for diabetes among the population residing in the ZIP codes containing toxic waste sites. PMID:17366823

  14. The characterization and risk assessment of the `Red Forest` radioactive waste burial site at Chernobyl Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.

    The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less

  15. Waste Information Management System with 2012-13 Waste Streams - 13095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Lagos, L.

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less

  16. Hepatic ethoxyresorufin-O-deethylase induction in the common kingfisher from an electronic waste recycling site.

    PubMed

    Wu, Jiang-Ping; Mo, Ling; Zhi, Hui; Peng, Ying; Tao, Lin; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian

    2016-06-01

    The health effects of exposure to electronic waste (e-waste)-derived pollutants are an important issue. The authors explored the association between the hepatic levels of e-waste-derived halogenated contaminants (including polychlorinated biphenyls [PCBs], polybrominated diphenyl ethers [PBDEs], and polybrominated biphenyls [PBBs]) and hepatic ethoxyresorufin-O-deethylase (EROD) activity of the common kingfisher (Alcedo atthis) from an e-waste site and 2 reference sites in South China. The summed concentrations of PCBs, PBDEs, and PBBs ranged from 620 ng/g to 15 000 ng/g, 25 ng/g to 900 ng/g, and 14 ng/g to 49 ng/g wet weight, respectively, in the kingfishers from the e-waste site, and these values were significantly greater (2-3 orders of magnitude) than those obtained at the 2 reference sites. Correspondingly, significant hepatic EROD induction was observed in the kingfishers from the e-waste site compared with the reference sites. The EROD activity was significantly correlated to the levels of most of the PCB and PBDE congeners examined as well as PBB 153, suggesting that EROD induction may be evoked by these e-waste-derived pollutants. Environ Toxicol Chem 2016;35:1594-1599. © 2015 SETAC. © 2015 SETAC.

  17. Phenolic contamination in the sand-and-gravel aquifer from a surface impoundment of wood treatment wastes, Pensacola, Florida

    USGS Publications Warehouse

    Troutman, D.E.; Godsy, E.M.; Goerlitz, D.F.; Ehrlich, G.G.

    1984-01-01

    Creosote and pentachlorophenol wastewaters discharged to unlined surface impoundments have resulted in groundwater contamination in the vicinity of an industrial site near Pensacola, Florida. Total phenol concentrations of 36,000 microgm/liter have been detected 40 ft below land surface in a test hole 100 ft south of an overflow impoundment but less than 10 microgm/liter 90 ft below land surface. Samples collected in test holes 1,350 ft downgradient from the surface impoundments and 100 ft north of Pensacola Bay, above and immediately below a clay lens, indicate that phenol contaminated groundwater may not be discharging directly into Pensacola Bay. Phenol concentrations exceeding 20 microgm/liter were detected in samples from a drainage ditch discharging directly into Bayou Chico. Microbiological data collected near the test site suggest that an anaerobic methanogenic ecosystem contributes to a reduction in phenol concentrations in groundwater. A laboratory study using bacteria isolated from the study site indicates that phenol, 2-methylphenol, and 3-methylphenol are significantly degraded and that methanogenesis reduces total phenol concentrations in laboratory digestors by 45%. Pentachlorophenol may inhibit methanogenesis at concentrations exceeding 0.45 milligm/liter. (USGS)

  18. Health assessment for Salem Acres, Essex County, Salem, Massachusetts, Region 1. CERCLIS No. MAD980525240. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Salem Acres, Incorporated site is a 235 acre parcel located in Salem, Essex County, Massachusetts. There are pits at the site which have apparently been filled with sewage sludge and tannery wastes. Organic compounds and metals have been found in the sludge in the pits, generally in the high parts-per-million range in very limited testing. Compounds detected in sludge included PCB-1254, lead, chromium, and mercury. Soil samples in the area did not show evident contamination. Off-site surface water had elevated levels of lead; two measurements were 64 ug/l and 89 ug/l, approximately. An oil sheen in surface water andmore » vegetation typical of polluted areas indicated water quality degradation. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via continued direct exposure to soils, sediments and sludge residues in marginal areas of the site, and any consumption of any fish from the streams draining the site.« less

  19. Health assessment for Lang Property National Priorities List (NPL) site, Pemberton Township, Burlington County, New Jersey, Region 2. CERCLIS No. NJD980505382. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-17

    The Lang Property National Priorities List Site is located in Pemberton Township, Burlington County, New Jersey. Unauthorized disposal of hazardous wastes occurred on approximately two acres of the 40-acre site. The contaminant classes that were identified on the site are volatile organic compounds (VOCs), semi-volatile organic compounds (semi-VOCs), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and metals. The contaminant classes of concern are PCBs, VOCs, and semi-VOCs for on-site ground water. VOCs is the contaminant class of concern for sediments and surface water. The on-site ground water is highly contaminated; at the maximum chemical concentrations detected, use of thismore » water without treatment would pose a human health concern. The potential does exist for human exposure to ground water contaminants by ingestion, inhalation of volatilized VOCs from ground water, and dermal absorption. The surface soils are also highly contaminated and represent a current possible as well as future human health concern for trespassers, blueberry farm workers and harvesters, and construction and remedial workers.« less

  20. Geology of the MER 2003 "Elysium" candidate landing site in southeastern Utopia Planitia, Mars

    USGS Publications Warehouse

    Tanaka, K.L.; Carr, M.H.; Skinner, J.A.; Gilmore, M.S.; Hare, T.M.

    2003-01-01

    The NASA Mars Exploration Rover (MER) Project has been considering a landing-site ellipse designated EP78B2 in southeastern Utopia Planitia, southwest of Elysium Mons. The site appears to be relatively safe for a MER landing site because of its predicted low wind velocities in mesoscale atmospheric circulation models and its low surface roughness at various scales as indicated by topographic and imaging data sets. Previously, the site's surface rocks have been interpreted to be marine sediments or lava flows. In addition, we suggest that Late Noachian to Early Hesperian collapse and mass wasting of Noachian highland rocks contributed to the deposition of detritus in the area of the ellipse. Furthermore, we document partial Late Hesperian to Early Amazonian resurfacing of the ellipse by flows and vents that may be of mud or silicate volcanic origin. A rover investigation of the Utopia landing site using the MER Athena instrument package might address some fundamental aspects of Martian geologic evolution, such as climate change, hydrologic evolution, and magmatic and tectonic history. Copyright 2003 by the American Geophysical Union.

  1. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China.

    PubMed

    Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam

    2009-02-01

    Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study.

  2. Instrumentation used for hydraulic testing of potential water-bearing formations at the Waste Isolation Pilot Plant site in southeastern New Mexico

    USGS Publications Warehouse

    Basler, J.A.

    1983-01-01

    Requirements for testing hydrologic test wells at the proposed Waste Isolation Pilot Plant near Carlsbad, New Mexico, necessitated the use of inflatable formation packers and pressure transducers. Observations during drilling and initial development indicated small formation yields which would require considerable test times by conventional open-casing methods. A pressure-monitoring system was assembled for performance evaluation utilizing commercially available components. Formation pressures were monitored with a down-hole strain-gage transducer. An inflatable packer equipped with a 1/4-inch-diameter steel tube extending through the inflation element permitted sensing formation pressures in isolated test zones. Surface components of the monitoring system provided AC transducer excitation, signal conditioning for recording directly in engineering units, and both analog and digital recording. Continuous surface monitoring of formation pressures provided a means of determining test status and projecting completion times during any phase of testing. Maximum portability was afforded by battery operation with all surface components mounted in a small self-contained trailer. (USGS)

  3. Distribution and removal of organochlorine pesticides in waste clay bricks from an abandoned manufacturing plant using low-temperature thermal desorption technology.

    PubMed

    Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong

    2018-04-01

    The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.

  4. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters.

    PubMed

    Cole, Dana; Long, Sharon C; Sobsey, Mark D

    2003-11-01

    Male-specific (F+) coliphages have been investigated as viral indicators of fecal contamination that may provide source-specific information for impacted environmental waters. This study examined the presence and proportions of the different subgroups of F+ coliphages in a variety of fecal wastes and surface waters with well-defined potential waste impacts. Municipal wastewater samples had high proportions of F+ DNA and group II and III F+ RNA coliphages. Bovine wastewaters also contained a high proportion of F+ DNA coliphages, but group I and IV F+ RNA coliphages predominated. Swine wastewaters contained approximately equal proportions of F+ DNA and RNA coliphages, and group I and III F+ RNA coliphages were most common. Waterfowl (gull and goose) feces contained almost exclusively F+ RNA coliphages of groups I and IV. No F+ coliphages were isolated from the feces of the other species examined. F+ coliphage recovery from surface waters was influenced by precipitation events and animal or human land use. There were no significant differences in coliphage density among land use categories. Significant seasonal variation was observed in the proportions of F+ DNA and RNA coliphages. Group I F+ RNA coliphages were the vast majority (90%) of those recovered from surface waters. The percentage of group I F+ RNA coliphages detected was greatest at background sites, and the percentage of group II F+ RNA coliphages was highest at human-impacted sites. Monitoring of F+ coliphage groups can indicate the presence and major sources of microbial inputs to surface waters, but environmental effects on the relative occurrence of different groups need to be considered.

  5. Geophysical studies of the Syncline Ridge area, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Hoover, D.B.; Hanna, W.F.; Anderson, L.A.; Flanigan, V.J.; Pankratz, L.W.

    1982-01-01

    A wide variety of geophysical methods were employed to study a proposed nuclear waste site at Syncline Ridge on the Nevada Test Site, Nev. The proposed site was believed to be a relatively undisturbed synclinal structure containing a thick argillite unit of Misslsslppian age, the Eleana Formation unit J, which would be the emplacement medium. Data acquisition for the geophysical studies was constrained because of rugged topography in a block of Tipplpah Limestone overlying the central part of the proposed site. This study employed gravity, magnetic, seismic refraction and reflection, and four distinct electrical methods to try and define the structural integrity and shape of the proposed repository medium. Detailed and regional gravity work revealed complex structure at the site. Magnetics helped only in identifying small areas of Tertiary volcanic rocks because of low magnetization of the rocks. Seismic refraction assisted in identifying near surface faulting and bedrock structure. Difficulty was experienced in obtaining good quality reflection data. This implied significant structural complexity but also revealed the principal features that were supported by other data. Electrical methods were used for fault identification and for mapping of a thick argillaceous unit of the Eleana Formation in which nuclear waste was to be emplaced. The geophysical studies indicate that major faults along the axis of Syncline Ridge and on both margins have large vertical offsets displacing units so as not only to make mining difficult, but also providing potential paths for waste migration to underlying carbonate aquifers. The Eleana Formation appeared heterogeneous, which was inferred to be due to structural complexity. Only a small region in the northwest part of the study area was found to contain a thick and relatively undisturbed volume of host rock.

  6. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less

  7. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.

    PubMed

    Asakura, Hiroshi; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2007-01-01

    Influent and processed water were sampled at different points in the leachate treatment facilities of five municipal solid waste (MSW) landfill sites. Then, the concentrations of endocrine-disrupting chemicals (EDCs), namely, alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs), in the treated leachate samples were determined and the behavior of the EDCs in the treatment processes was discussed. The concentrations of APs were as low as those in surface waters, and no OTs were detected (detection limit: 0.01 microg/L). Meanwhile, diethylhexyl phthalate (DEHP), which was the most abundant of the four substances measured as PAEs, and BPA were found in all of the influent samples. BPA was considerably degraded by aeration, except when the water temperature was low and the total organic carbon (TOC) was high. By contrast, aeration, biological treatment, and coagulation/sedimentation removed only a small amount of DEHP.

  8. Mine Waste at The Kherzet Youcef Mine : Environmental Characterization

    NASA Astrophysics Data System (ADS)

    Issaad, Mouloud; Boutaleb, Abdelhak; Kolli, Omar

    2017-04-01

    Mining activity in Algeria has existed since antiquity. But it was very important since the 20th century. This activity has virtually ceased since the beginning of the 1990s, leaving many mine sites abandoned (so-called orphan mines). The abandonment of mining today poses many environmental problems (soil pollution, contamination of surface water, mining collapses...). The mining wastes often occupy large volumes that can be hazardous to the environment and human health, often neglected in the past: Faulting geotechnical implementation, acid mine drainage (AMD), alkalinity, presence of pollutants and toxic substances (heavy metals, cyanide...). The study started already six years ago and it covers all mines located in NE Algeria, almost are stopped for more than thirty years. So the most important is to have an overview of all the study area. After the inventory job of the abandoned mines, the rock drainage prediction will help us to classify sites according to their acid generating potential.

  9. Performance-assessment progress for the Rozan low-level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smietanski, L.; Mitrega, J.; Frankowski, Z.

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangeredmore » unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.« less

  10. Suitability of Sites for Hazardous Waste Disposal, Concord Naval Weapons Station, Concord, California.

    DTIC Science & Technology

    1987-09-01

    mainly as a band of low hills situated centrally within Clayton Valley. The old alluvium may be roughly equivalent to beds mapped northeast of Suisun Bay...this site is selected for further investi- gations. Landsliding is unlikely on the relatively gentle valley floor. The low position of the water ...full depth of 110.0 ft is given in Fig- ure 17. Ground- water level is documented in Table 2. The piezometric surface for the tip at 105 ft is at 48 ft. A

  11. Study on detecting leachate leakage of municipal solid waste landfill site.

    PubMed

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  12. Mass Wasting on the Moon: Implications for Seismicity

    NASA Technical Reports Server (NTRS)

    Weber, Renee; Nahm, Amanda; Schmerr, Nick; Yanites, Brian

    2016-01-01

    Seismicity estimates play an important role in creating regional geological characterizations, which are useful for understanding a planet's formation and evolution, and are of key importance to site selection for landed missions. Here we investigate the regional effects of seismicity in planetary environments with the goal of determining whether such surface features on the Moon, could be triggered by fault motion.

  13. Mass Wasting on the Moon: Implications for Seismicity

    NASA Technical Reports Server (NTRS)

    Weber, R. C.; Nahm, A. L.; Yanites, B.; Schmerr, N.

    2016-01-01

    Introduction: Seismicity estimates play an important role in creating regional geological characterizations, which are useful for understanding a planet's formation and evolution, and of key importance to site selection for landed missions. Here we investigate the regional effects of lunar seismicity with the goal of determining whether surface features such as landslides and boulder trails on the Moon are triggered by fault motion.

  14. Evaluation of imidacloprid-treated traps as an attract and kill system for filth flies during contingency operations.

    USDA-ARS?s Scientific Manuscript database

    Field trials were conducted to evaluate if filth fly trap efficacy was increased by application of an insecticide to a trap’s exterior. Four Fly Terminator® Pro traps baited with Fly Terminator® attractant were suspended on PVC pipe framing at a Florida waste transfer site. Exterior surfaces of tw...

  15. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.« less

  16. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less

  17. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production.

    PubMed

    Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina

    2017-12-01

    Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.

  19. Superfund record of decision (EPA Region 5): Skinner Landfill, Butler County, Union Township, West Chester, OH. (First remedial action), September 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-30

    The 78-acre Skinner Landfill site is located in West Chester, Butler County, Ohio. Land use in the immediate vicinity includes business and residential uses to the west and crop farming to the north. The site was used in the past for the mining of sand and gravel, and was operated for the landfilling of a wide variety of materials from approximately 1934 through 1990. Materials deposited onsite include demolition debris, household refuse, and a wide variety of chemical wastes. In 1982, EPA conducted an investigation that showed that the groundwater southeast of the buried waste lagoon was contaminated with VOCs.more » RI studies conducted between 1986 and 1989 investigated the site ground water, surface water, soil, and sediment. In 1990, the state closed the site to further landfilling activities. The ROD is an interim action to protect human health by limiting site access to prevent ingestion of and direct contact with contaminated soil, and to protect the potentially affected users of ground water on and near the site. The primary contaminants of concern affecting the soil and ground water are VOCs, including benzene; organics, including PAHs, PCBs, and pesticides; and metals, including arsenic. The selected interim remedial action for the site are included.« less

  20. Approaches to systematic assessment of environmental exposures posed at hazardous waste sites in the developing world: the Toxic Sites Identification Program.

    PubMed

    Ericson, Bret; Caravanos, Jack; Chatham-Stephens, Kevin; Landrigan, Philip; Fuller, Richard

    2013-02-01

    In the developing world, environmental chemical exposures due to hazardous waste sites are poorly documented. We describe the approach taken by the Blacksmith Institute's Toxic Sites Identification Program in documenting environmental chemical exposures due to hazardous waste sites globally, identifying sites of concern and quantifying pathways, populations, and severity of exposure. A network of local environmental investigators was identified and trained to conduct hazardous waste site investigations and assessments. To date, 2,095 contaminated sites have been identified within 47 countries having an estimated population at risk of 71,500,000. Trained researchers and investigators have visited 1,400 of those sites. Heavy metals are the leading primary exposures, with water supply and ambient air being the primary routes of exposure. Even though chemical production has occurred largely in the developed world to date, many hazardous waste sites in the developing world pose significant hazards to the health of large portions of the population. Further research is needed to quantify potential health and economic consequences and identify cost-effective approaches to remediation.

  1. Multi-criteria GIS-based siting of transfer station for municipal solid waste: The case of Kumasi Metropolitan Area, Ghana.

    PubMed

    Bosompem, Christian; Stemn, Eric; Fei-Baffoe, Bernard

    2016-10-01

    The increase in the quantity of municipal solid waste generated as a result of population growth in most urban areas has resulted in the difficulty of locating suitable land areas to be used as landfills. To curb this, waste transfer stations are used. The Kumasi Metropolitan Area, even though it has an engineered landfill, is faced with the problem of waste collection from the generation centres to the final disposal site. Thus in this study, multi-criteria decision analysis incorporated into a geographic information system was used to determine potential waste transfer station sites. The key result established 11 sites located within six different sub-metros. This result can be used by decision makers for site selection of the waste transfer stations after taking into account other relevant ecological and economic factors. © The Author(s) 2016.

  2. Spatial analysis of hazardous waste data using geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirschky, J.H.

    1984-01-01

    The objective of this investigation was to determine if geostatistics could be a useful tool for evaluating hazardous waste sites. Three sites contaminated by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) were investigated. The first site evaluated was a creek into which TCDD-contaminated soil had eroded. The second site was a town in which TCDD-contaminated wastes had been sprayed onto the streets. Finally, the third site was a highway of which the shoulders were contaminated by dust deposition from a nearby hazardous waste site. The distribution of TCDD at the first and third sites were investigated using kriging, an optimal estimation technique. By usingmore » kriging, the areas of both sites requiring cleanup were successfully identified. At the second site, the town, satisfactory results were not obtained. The distribution of contamination in this town is believed to be very heterogeneous; thus, reasonable estimates could not be obtained. Additional sampling was therefore recommended at this site. Based upon this research, geostatistics appears to be a very useful tool for evaluating a hazardous waste site if the distribution of contaminants at the site is homogeneous, or can be divided into homogeneous areas.« less

  3. Occurrence and potential health risk of Cryptosporidium and Giardia in different water catchments in Belgium.

    PubMed

    Ehsan, Amimul; Geurden, Thomas; Casaert, Stijn; Paulussen, Jef; De Coster, Lut; Schoemaker, Toon; Chalmers, Rachel; Grit, Grietje; Vercruysse, Jozef; Claerebout, Edwin

    2015-02-01

    Human wastewater and livestock can contribute to contamination of surface water with Cryptosporidium and Giardia. In countries where a substantial proportion of drinking water is produced from surface water, e.g., Belgium, this poses a constant threat on drinking water safety. Our objective was to monitor the presence of Cryptosporidium and Giardia in different water catchment sites in Belgium and to discriminate between (oo)cysts from human or animal origin using genotyping. Monthly samples were collected from raw water and purified drinking water at four catchment sites. Cryptosporidium and Giardia were detected using USEPA method 1623 and positive samples were genotyped. No contamination was found in purified water at any site. In three catchments, only low numbers of (oo)cysts were recovered from raw water samples (<1/liter), but raw water samples from one catchment site were frequently contaminated with Giardia (92 %) and Cryptosporidium (96 %), especially in winter and spring. Genotyping of Giardia in 38 water samples identified the presence of Giardia duodenalis assemblage AI, AII, BIV, BIV-like, and E. Cryptosporidium andersoni, Cryptosporidium suis, Cryptosporidium horse genotype, Cryptosporidium parvum, and Cryptosporidium hominis were detected. The genotyping results suggest that agriculture may be a more important source of surface water contamination than human waste in this catchment. In catchment sites with contaminated surface water, such as the Blankaart, continuous monitoring of treated water for the presence of Cryptosporidium and Giardia would be justified and (point) sources of surface water contamination should be identified.

  4. Exposure pathway evaluations for sites that processed asbestos-contaminated vermiculite.

    PubMed

    Anderson, Barbara A; Dearwent, Steve M; Durant, James T; Dyken, Jill J; Freed, Jennifer A; Moore, Susan McAfee; Wheeler, John S

    2005-01-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) is currently evaluating the potential public health impacts associated with the processing of asbestos-contaminated vermiculite at various facilities around the country. Vermiculite ore contaminated with significant levels of asbestos was mined and milled in Libby, Montana, from the early 1920s until 1990. The majority of the Libby ore was then shipped to processing facilities for exfoliation. ATSDR initiated the National Asbestos Exposure Review (NAER) to identify and evaluate exposure pathways associated with these processing facilities. This manuscript details ATSDR's phased approach in addressing exposure potential around these sites. As this is an ongoing project, only the results from a selected set of completed site analyses are presented. Historical occupational exposures are the most significant exposure pathway for the site evaluations completed to date. Former workers also probably brought asbestos fibers home on their clothing, shoes, and hair, and their household contacts may have been exposed. Currently, most site-related worker and community exposure pathways have been eliminated. One community exposure pathway of indeterminate significance is the current exposure of individuals through direct contact with waste rock brought home for personal use as fill material, driveway surfacing, or soil amendment. Trace levels of asbestos are present in soil at many of the sites and buried waste rock has been discovered at a few sites; therefore, future worker and community exposure associated with disturbing on-site soil during construction or redevelopment at these sites is also a potential exposure pathway.

  5. 40 CFR 98.468 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design capacity, the calculation must include a site-specific density. If the design capacity is within... process that can reasonably be expected to change the site-specific waste density, the site-specific waste density must be redetermined and the design capacity must be recalculated based on the new waste density...

  6. 40 CFR 98.468 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... design capacity, the calculation must include a site-specific density. If the design capacity is within... process that can reasonably be expected to change the site-specific waste density, the site-specific waste density must be redetermined and the design capacity must be recalculated based on the new waste density...

  7. Burden of disease from toxic waste sites in India, Indonesia, and the Philippines in 2010.

    PubMed

    Chatham-Stephens, Kevin; Caravanos, Jack; Ericson, Bret; Sunga-Amparo, Jennifer; Susilorini, Budi; Sharma, Promila; Landrigan, Philip J; Fuller, Richard

    2013-07-01

    Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Sites were identified through the Blacksmith Institute's Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934-1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem.

  8. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran

    PubMed Central

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative. PMID:27766238

  9. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran.

    PubMed

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.

  10. 40 CFR 273.18 - Off-site shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...

  11. 40 CFR 273.38 - Off-site shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...

  12. 40 CFR 273.38 - Off-site shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...

  13. 40 CFR 273.18 - Off-site shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...

  14. 40 CFR 273.18 - Off-site shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...

  15. 40 CFR 273.38 - Off-site shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...

  16. 40 CFR 273.38 - Off-site shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...

  17. 40 CFR 273.18 - Off-site shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...

  18. 40 CFR 273.38 - Off-site shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...

  19. 40 CFR 273.18 - Off-site shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...

  20. Toxic air pollution across a state line: implications for the siting of resource recovery facilities.

    PubMed

    Landrigan, P J; Halper, L A; Silbergeld, E K

    1989-01-01

    Massive volumes of solid waste are produced in the United States. Options for disposal are limited. Incineration and recycling are frequently proposed solutions. However, incinerators and waste recovery facilities, such as scrap smelters, generate hazardous air pollutants and toxic ash. Their potential hazards to health have not been adequately assessed. To illustrate the policy issues surrounding waste incineration and resource recycling, we examine the case of U.S. Metals, a scrap metals recovery plant in Carteret, New Jersey. This plant emitted 20 kilograms of dioxin in its 25 years of operation. It also released 86 tons of lead annually; nearby air lead levels were repeatedly in violation of standards. Construction of a tall stack caused export of toxic emissions from the plant to Staten Island, New York; high concentrations of lead were documented in surface soil on Staten Island. Because neither the State of New Jersey nor the U.S. Environmental Protection Agency were willing to regulate emissions from the plant, New York, the downwind state, was forced to sue U.S. Metals in federal court. The suit resulted ultimately in closing the plant. The case illustrates the difficulties in regulating pollution across state lines, a difficulty compounded by the abdication of responsibility by state and federal agencies. Further, the episode appears paradigmatic of a disturbing trend by state and local governments to locate waste combustion facilities at sites which will resolve problems of solid waste by encouraging export of airborne pollutants across regulatory boundaries.

  1. Installation restoration program. Site investigation report, IRP sites No. 1, No. 2, and No. 3. 106th Civil Engineering Flight, New York Air National Guard, Roslyn Air National Guard Station, Roslyn, New York. Volume 1. Site Investigation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    This report presents the results of the Site Investigation (SI) conducted at IRP Sites No. 1, No. 2, and No. 3 at the 106th Civil Engineering Flight (CEF) located at Roslyn Air National Guard Station (ANGS), Roslyn, Long Island, New York. A Preliminary Assessment (PA) (AD-A238 847) of the 106th CEF resulted in the identification of two potentially contaminated waste holding areas and a waste sludge application site. These sites were identified as IRP Site No. 1 (Access Road to Aerospace Ground Equipment `AGE` Shop), IRP Site No. 2 (Old Waste Holding Area No. 1), and IRP Site No. 3more » (Old Waste Holding Area No. 2) and recommended for further investigation under the Installation Restoration Program (IRP).« less

  2. Extractive waste management: A risk analysis approach.

    PubMed

    Mehta, Neha; Dino, Giovanna Antonella; Ajmone-Marsan, Franco; Lasagna, Manuela; Romè, Chiara; De Luca, Domenico Antonio

    2018-05-01

    Abandoned mine sites continue to present serious environmental hazards because the heavy metals associated with extractive waste are continuously released into the environment, where they threaten human life and the environment. Remediating and securing extractive waste are complex, lengthy and costly processes. Thus, in most European countries, a site is considered for intervention when it poses a risk to human health and the surrounding environment. As a consequence, risk analysis presents a viable decisional approach towards the management of extractive waste. To evaluate the effects posed by extractive waste to human health and groundwater, a risk analysis approach was used for an abandoned nickel extraction site in Campello Monti in North Italy. This site is located in the Southern Italian Alps. The area consists of large and voluminous mafic rocks intruded by mantle peridotite. The mining activities in this area have generated extractive waste. A risk analysis of the site was performed using Risk Based Corrective Action (RBCA) guidelines, considering the properties of extractive waste and water for the properties of environmental matrices. The results showed the presence of carcinogenic risk due to arsenic and risks to groundwater due to nickel. The results of the risk analysis form a basic understanding of the current situation at the site, which is affected by extractive waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, M.S.

    The Barnwell Waste Management Facility (BWMF) is scheduled to restrict access to waste generators outside of the Atlantic Compact (SC, CT, NJ) on July 1, 2008. South Carolina, authorized under the Low-Level Waste Policy Act of 1980 and Amendments Act of 1985, and in agreement with the other Atlantic Compact states, will only accept Class A, B, and C low-level radioactive waste (LLRW) generated within compact. For many years, the BWMF has been the only LLRW disposal facility to accept Class B and C waste from LLRW generators throughout the country, except those that have access to the Northwest Compactmore » Site. Many Class B/C waste generators consider this to be a national crisis situation requiring interim or possible permanent storage, changes in operation, significant cost impacts, and/or elimination of services, especially in the health care and non-power generation industries. With proper in-house waste management practices and utilization of commercial processor services, a national crisis can be avoided, although some generators with specific waste forms or radionuclides will remain without options. In summary: It is unknown what the future will bring for commercial LLRW disposal. Could the anticipated post Barnwell Class B/C crisis be avoided by any of the following? - Barnwell Site remains open for the nation's commercial Class B/C waste; - Richland Site opens back up to the nation for commercial Class B/C waste; - Texas Site opens up to the nation for commercial Class B/C waste; - Federal Government intervenes by keeping a commercial Class B/C site open for the nation's commercial Class B/C waste; - Federal Government makes a DOE site available for commercial Class B/C waste; - Federal Government revisits the LLRW Policy Act of 1980 and Amendments Act of 1985. Without a future LLRW site capable of accepting Class B/C currently on the horizon, commercial LLRW generators are faced with waste volume elimination, reduction, or storage. With proper in-house waste management practices, utilization of commercial processor services and regulatory relief, a national crisis can be avoided. Waste volumes for storage can be reduced to as little as 10% of the current Class B/C volume. Although a national LLRW crisis can be avoided, some generators with specific waste forms or radionuclides will have a significant financial and/or operational impact due to a lack of commercial LLRW management options. (authors)« less

  4. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lackmore » of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line work) of Swadley and Hoover (1990) and re-label these with map unit designations like those in northern Frenchman Flat (Huckins-Gang et al, 1995a,b,c; Snyder et al, 1995a,b,c,d).« less

  5. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    PubMed

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the ground surface.

  6. Interaction of mining activities and aquatic environment: A review from Greek mine sites.

    NASA Astrophysics Data System (ADS)

    Vasileiou, Eleni; Kallioras, Andreas

    2016-04-01

    In Greece a significant amount of mineral and ore deposits have been recorded accompanied by large industrial interest and a long mining history. Today many active and/or abandoned mine sites are scattered within the country; while mining activities take place in different sites for exploiting various deposits (clay, limestone, slate, gypsum, kaolin, mixed sulphide ores (lead, zinc, olivine, pozzolan, quartz lignite, nickel, magnesite, aluminum, bauxite, gold, marbles etc). The most prominent recent ones are: (i) the lignite exploitation that is extended in the area of Ptolemais (Western Macedonia) and Megalopolis (Central Peloponnese); and (ii) the major bauxite deposits located in central Greece within the Parnassos-Ghiona geotectonic zone and on Euboea Island. In the latter area, significant ores of magnesite were exploited and mixed sulphide ores. Centuries of intensive mining exploitation and metallurgical treatment of lead-silver deposits in Greece, have also resulted in significant abandoned sites, such as the one in Lavrion. Mining activities in Lavrio, were initiated in ancient times and continued until the 1980s, resulting in the production of significant waste stockpiles deposited in the area, crucial for the local water resources. Ιn many mining sites, environmental pressures are also recorded after the mine closure to the aquatic environment, as the surface waters flow through waste dump areas and contaminated soils. This paper aims to the geospatial visualization of the mining activities in Greece, in connection to their negative (surface- and/or ground-water pollution; overpumping due to extensive dewatering practices) or positive (enhanced groundwater recharge; pit lakes, improvement of water budget in the catchment scale) impacts on local water resources.

  7. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  8. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  9. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  10. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...

  11. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less

  12. Maternal residential proximity to waste sites and industrial facilities and conotruncal heart defects in offspring.

    PubMed

    Langlois, Peter H; Brender, Jean D; Suarez, Lucina; Zhan, F Benjamin; Mistry, Jatin H; Scheuerle, Angela; Moody, Karen

    2009-07-01

    Most studies of the relationship between maternal residential proximity to sources of environmental pollution and congenital cardiovascular malformations have combined heart defects into one group or broad subgroups. The current case-control study examined whether risk of conotruncal heart defects, including subsets of specific defects, was associated with maternal residential proximity to hazardous waste sites and industrial facilities with recorded air emissions. Texas Birth Defects Registry cases were linked to their birth or fetal death certificate. Controls without birth defects were randomly selected from birth certificates. Distances from maternal addresses at delivery to National Priority List (NPL) waste sites, state superfund waste sites, and Toxic Release Inventory (TRI) facilities were determined for 1244 cases (89.5% of those eligible) and 4368 controls (88.0%). Living within 1 mile of a hazardous waste site was not associated with risk of conotruncal heart defects [adjusted odds ratio (aOR) = 0.83, 95% confidence interval (CI) = 0.54, 1.27]. This was true whether looking at most types of defects or waste sites. Only truncus arteriosus showed statistically elevated ORs with any waste site (crude OR: 2.80, 95% CI 1.19, 6.54) and with NPL sites (crude OR: 4.63, 95% CI 1.18, 13.15; aOR 4.99, 95% CI 1.26, 14.51), but the latter was based on only four exposed cases. There was minimal association between conotruncal heart defects and proximity to TRI facilities (aOR = 1.10, 95% CI = 0.91, 1.33). Stratification by maternal age or race/ethnic group made little difference in effect estimates for waste sites or industrial facilities. In this study population, maternal residential proximity to waste sites or industries with reported air emissions was not associated with conotruncal heart defects or its subtypes in offspring, with the exception of truncus arteriosus.

  13. Health assessment for Neal's Dump, Spencer, Owen County, Indiana, Region 5. CERCLIS No. IND980794549. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Neal's Dump (the site) is located four miles south of Spencer, Indiana, on Pottersville Road. The site is 1/2 acre in size and 20 feet deep. Neal's Dump served as a waste disposal site from approximately 1958 to the early seventies. The Westinghouse Electric Corporation, Bloomington, Indiana, disposed of an unknown amount of capacitors, rage, and sawdust contaminated with polychlorinated biphenyls (PCBs). The contaminated soil on-site has been found to contain very high levels of PCBs. In November 1980, the Environmental Protection Agency (EPA) collected soil samples at Neal's Dump. Results indicated a high concentration of PCBs. Several other organicmore » contaminants have been found on-site. There are several environmental pathways of concern. The migration of PCBs off-site via contaminated groundwater potentially contaminate private residential wells. Also of concern is potential surface water contamination. Additional pathways include contamination of fish and other wildlife from surface water run-off or direct contact with contaminated sediments and soils and wind-driven contaminated soil. This site is of public health concern because a risk to human health exists from exposure to hazardous substances at concentrations that may result in adverse human health effects.« less

  14. Impact of informal electronic waste recycling on metal concentrations in soils and dusts.

    PubMed

    Ohajinwa, Chimere May; van Bodegom, Peter M; Vijver, Martina G; Peijnenburg, Willie J G M

    2018-07-01

    Electronic and electrical equipment contains over 1000 different substances, including metals. During informal e-waste recycling some of these substances such as metals, are released into the environment causing environmental pollution. This study assessed the impact of different informal e-waste recycling activities (burning, dismantling, and repairing) on metal concentrations in top soils and various dust. A comparative cross-sectional study design was adopted to assess metal concentrations in top soils and in various dust samples from multiple e-waste recycling sites. Metal concentrations at e-waste recycling sites were compared to the concentrations at control sites in three study locations in Nigeria (Lagos, Ibadan, and Aba). In the three study locations, mean metal concentrations at the e-waste recycling sites exceeded the concentrations at the control sites and the Nigerian standard guideline values by 100 s to 1000 s times. Burning sites showed the highest pollution level, followed by dismantling sites, then repair sites. Our findings show serious environmental and public health concerns. The metal concentrations were also higher than levels reported in other studies at the same locations in Nigeria, indicating that the situation is worsening. This study provides scientific evidence for an urgent need to develop effective strategies to strengthen enforcement of existing e-waste regulations in Nigeria. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Health assessment for Welsh Road/Barkman Landfill, Honey Brook, Chester County, Pennsylvania, Region 3. CERCLIS No. PAD980829527. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-02

    The Welsh Road/Barkman Landfill site in Honey Brook, Pennsylvania was an unpermitted residential and commercial refuse disposal facility that operated from 1963 to sometime in the 1980s. After 1977, the landfill continued to operate in defiance of legal action to support a closure plan. Various investigations conducted in the 1980s revealed that industrial and hazardous waste had been accepted by the site. The environmental contamination on-site consists of copper, lead, 1,2-dichloropropane, toluene, chloroform and methylene chloride in drummed wastes; and mercury, toluene, dichlorofluoromethane, methylene chloride, trichlorofluoromethane, 5-methyl-2-hexanone, trichloroethylene, 1,2-dichloroethane, and 1,3,5-cycloheptatriene in groundwater. One time sampling indicated the presence ofmore » volatile compounds in air (hydrogen chloride and chloroform). The environmental contamination off-site consists of cadmium in sediment; and chloromethane, chloroform, xylenes, dichlorofluoromethane, 1,1-dichloroethane, tetrachloroethylene, p-cresol, toluene, methyl isobutyl ketone, di-n-butyl phthalate, lead, mercury, and zinc in residential well water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, soil, sediment, and airborne gases, vapors, and particulate.« less

  16. All hazardous waste politics is local: Grass-roots advocacy and public participation in siting and cleanup decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, R.C.

    1998-12-31

    The combined effects of federalism and interest group pluralism pose particularly difficult problems for hazardous waste siting and cleanup decisions. Most national environmental groups have only limited involvement in local hazardous waste politics, while local grass-roots advocates have very different interests and sometimes are pitted against one another. Both the Environmental protection Agency and the Department of energy recently have begun to use site-specific citizen advisory boards at cleanup sites. This approach appears to improve communications at some sites, but does not address the issues of ``not in my back yard`` politics and alleged inequitable exposure to hazardous wastes.

  17. Rock mechanics evaluation of potential repository sites in the Paradox, Permian, and Gulf Coast Basins: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-01

    Thermal and thermomechanical analyses of a conceptual radioactive waste repository containing commercial and defense high-level wastes and spent fuel have been performing using finite element models. The thermal and thermomechanical responses of the waste package, disposal room, and repository regions were evaluated. four bedded salt formations, in Davis and Lavender Canyons in the Paradox Basin of southeastern Utah and in Deaf Smith and Swisher counties in the Permian Basin of northwestern Texas, and three salt domes, Vacherie Dome in northwestern Louisiana and Richton and Cypress Creek Domes in southeastern Mississippi, located in the Gulf Coast Basin, were examined. In themore » Paradox Basin, the pressure exerted on the waste package overpack was much greater than the initial in situ stress. The disposal room closure was less than 10 percent after 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Permian Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Gulf Coast Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. No significant thermomechanical perturbation of the overlying geology was observed. 40 refs., 153 figs., 32 tabs.« less

  18. Radioactive Waste Management Complex performance assessment: Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Resultsmore » of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.« less

  19. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, J.C.; Hochreitner, J.J.

    Investigations of potential sources of groundwater contamination conducted by various regulatory agencies and consultants at four industrial sites in Logan Township, New Jersey found groundwater contamination at all four sites and at properties adjoining two of the sites. The four sites directly overlie the Potomac-Raritan-Magothy aquifer system, the Township's sole source of potable water. One site was a waste-oil processing and storage facility. The major source of groundwater contamination at the site is a lagoon containing waste oil. Groundwater within 1,000 ft of the lagoon is contaminated. The second site is used to maintain, dispatch, and clean chemical-transportation tanks. Potentialmore » sources of groundwater contamination at the site include former wastewater lagoons, leaking storage drums, and leaking tank trucks. Groundwater at and immediately north of the property is contaminated. Organic compounds are manufactured at the third site. Potential sources of groundwater contamination at this site include landfilled industrial wastes. Groundwater underlying the property is contaminated, but there is no evidence of offsite groundwater contamination from this source. The fourth site is used to treat and dispose of hazardous wastes. The major source of groundwater contamination at this site is landfilled residue from waste-treatment processes. Groundwater underlying the property is contaminated, but there is no evidence of off-site groundwater contamination from this source.« less

  1. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.

    PubMed

    Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

    2014-12-01

    This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.

  2. Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece).

    PubMed

    Liakopoulos, Alexandros; Lemière, Bruno; Michael, Konstantinos; Crouzet, Catherine; Laperche, Valérie; Romaidis, Ioannis; Drougas, Iakovos; Lassin, Arnault

    2010-11-01

    The Kirki project aimed to identify, among the mining waste abandoned at a mine and processing plant, the most critical potential pollution sources, the exposed milieus and the main pathways for contamination of a littoral area. This was accompanied by the definition of a monitoring network and remedial options. For this purpose, field analytical methods were extensively used to allow a more precise identification of the source, to draw relevant conceptual models and outline a monitoring network. Data interpretation was based on temporal series and on a geographical model. A classification method for mining waste was established, based on data on pollutant contents and emissions, and their long-term pollution potential. Mining waste present at the Kirki mine and plant sites comprises (A) extraction waste, mainly metal sulfide-rich rocks; (B) processing waste, mainly tailings, with iron and sulfides, sulfates or other species, plus residues of processing reagents; and (C) other waste, comprising leftover processing reagents and Pb-Zn concentrates. Critical toxic species include cadmium and cyanide. The stormy rainfall regime and hilly topography favour the flush release of large amounts of pollutants. The potential impacts and remedial options vary greatly. Type C waste may generate immediate and severe chemical hazards, and should be dealt with urgently by careful removal, as it is localised in a few spots. Type B waste has significant acid mine drainage potential and contains significant amounts of bioavailable heavy metals and metalloids, but they may also be released in solid form into the surface water through dam failure. The most urgent action is thus dams consolidation. Type A waste is by far the most bulky, and it cannot be economically removed. Unfortunately, it is also the most prone to acid mine drainage (seepage pH 1 to 2). This requires neutralisation to prevent acid water accelerating heavy metals and metalloids transfer. All waste management options require the implementation of a monitoring network for the design of a remediation plan, efficiency control, and later, community alert in case of accidental failure of mitigation/remediation measures. A network design strategy based on field measurements, laboratory validation and conceptual models is proposed.

  3. Assessment and evaluation of engineering options at a low-level radioactive waste storage site

    NASA Astrophysics Data System (ADS)

    Kanehiro, B. Y.; Guvanasen, V.

    1982-09-01

    Solutions to hydrologic and geotechnical problems associated with existing disposal sites were sought and the efficiency of engineering options that were proposed to improve the integrity of such sites were evaluated. The Weldon Spring site is generally like other low-level nuclear waste sites, except that the wastes are primarily in the form of residues and contaminated rubble from the processing of uranium and thorium ores rather than industrial isotopes or mill tailings.

  4. The function of Sn(II)-apatite as a Tc immobilizing agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.

    2016-11-01

    Technetium-99 is a radioactive contaminant of high concern at many nuclear waste storage sites. At the U.S. Department of Energy Hanford Site, 99Tc is a component of low-activity waste (LAW) fractions of the nuclear tank waste, which are highly caustic, high ionic strength and have high concentrations of chromate. Removal of 99Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of 99Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant using two solid sorbents, tin (II) apatite (Sn-A) and SnCl2 through batch sorption testing and solid phase characterization. Sn-Amore » showed higher levels of removal of Tc from both DIW and LAW simulant compared with the SnCl2. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray adsorption spectroscopy (XAS) of Sn-A following batch experiments in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface with no incorporation into the lattice structure of Sn-A. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI) over Tc(VII).« less

  5. Investigative studies for the use of an inactive asbestos mine as a disposal site for asbestos wastes.

    PubMed

    Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas

    2008-05-30

    Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.

  6. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.« less

  7. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  8. Technical, economic and environmental feasibility of recycling nutrients in waste in Southern Thailand.

    PubMed

    Schouw, Nanette Levanius; Bregnhøj, Henrik; Mosbaek, Hans; Tjell, Jens Christian

    2003-06-01

    Technical, economic and environmental criteria were used to evaluate the feasibility of recycling plant nutrients in kitchen waste, human excreta and sullage from households in Phattalung (urban), Kuan Lang (peri urban) and Prik (rural) in Southern Thailand. The difference in situation and context of the three areas called for individual solutions, and for each area three sanitation systems were evaluated. However, in all three areas recycling human excreta and kitchen waste via composting latrines was found to be more environmental feasible than human excreta managed in septic tanks or sub surface trickle irrigation and kitchen waste disposed of at landfill sites or treated at composting plants. Sullage should in Kuan Lang and Prik be used directly on garden crops, but in Phattalung be treated in waste stabilisation ponds before discharge, to be environmentally feasible. The economic feasibility results varied among the three areas and among the involved stakeholders: farmers and Kuan Lang administration benefited from recycling waste, at the expense of other private users, Phattalung municipality and Prik municipality. The main cause of these conflicting interests was lack of cost recovery and public participation, which should therefore serve as the fundament of any future environmental and economic feasible sanitation system.

  9. Preliminary evaluation of the Knox Group in Tennessee for receiving injected wastes

    USGS Publications Warehouse

    Bradley, M.W.

    1986-01-01

    The EPA is authorized under the Safe Drinking Water Act to protect underground sources of drinking water from contamination. However, an aquifer may be exempted from protection and used for injected wastes where the aquifer meets criteria established in the EPA 's Underground Injection Control program. The Knox Group in Middle and West Tennessee occurs primarily in the subsurface, and the top of the Knox Group ranges from about 350 to 3,000 feet below land surface. The upper part of the Knox Group (upper Knox aquifer) is an important source of drinking water in parts of the Central Basin and the Highland Rim provinces. The lower part of the Knox Group is currently being used for injected wastes at New Johnsonville on the western Highland Rim and at Mount Pleasant in the Central Basin. There is no known contamination of the upper Knox aquifer but contamination of the lower part of the Know Group is known at three waste injection well sites. (Lantz-PTT)

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  11. Hydrologic data for a subsurface waste-injection site at Mulberry, Florida; 1972-77

    USGS Publications Warehouse

    Wilson, William Edward; Parsons, David C.; Spechler, R.M.

    1979-01-01

    Since October 1972, industrial liquid waste has been injected into a brine aquifer of limestone and dolomite in Mulberry, FL., at a depth of more than 4,000 feet below land surface. During 1977, the injection rate was about 8.8 million gallons per month. To determine what effect the injected waste has on the ground-water body, water levels have been measured and water samples collected from two monitor wells that tap different permeable zones above the injection zone, and from a satellite monitor well that taps the injection zone. The monitor wells are in the annulus of the injection well, and the satellite monitor well is 2,291 feet from the injection well. This report updates previous data reports and includes all hydrologic data collected by the U.S. Geological Survey during 1972-77. Included is a table of well-construction data, a graph showing the volume of waste injected each month, and hydrographs of the annulus monitor wells and the satellite monitor well. (Woodard-USGS)

  12. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    PubMed

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (<1%). These results are significantly different from those obtained for the incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Monitoring household waste recycling centres performance using mean bin weight analyses.

    PubMed

    Maynard, Sarah; Cherrett, Tom; Waterson, Ben

    2009-02-01

    This paper describes a modelling approach used to investigate the significance of key factors (vehicle type, compaction type, site design, temporal effects) in influencing the variability in observed nett amenity bin weights produced by household waste recycling centres (HWRCs). This new method can help to quickly identify sites that are producing significantly lighter bins, enabling detailed back-end analyses to be efficiently targeted and best practice in HWRC operation identified. Tested on weigh ticket data from nine HWRCs across West Sussex, UK, the model suggests that compaction technique, vehicle type, month and site design explained 76% of the variability in the observed nett amenity weights. For each factor, a weighting coefficient was calculated to generate a predicted nett weight for each bin transaction and three sites were subsequently identified as having similar characteristics but returned significantly different mean nett bin weights. Waste and site audits were then conducted at the three sites to try and determine the possible sources of the remaining variability. Significant differences were identified in the proportions of contained waste (bagged), wood, and dry recyclables entering the amenity waste stream, particularly at one site where significantly less contaminated waste and dry recyclables were observed.

  14. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussionsmore » with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.« less

  15. Effects and quantification of acid runoff from sulfide-bearing rock deposited during construction of Highway E18, Norway

    USGS Publications Warehouse

    Hindar, Atle; Nordstrom, D. Kirk

    2015-01-01

    The Highway E18 between the cities of Grimstad and Kristiansand, southern Norway, constructed in the period 2006–2009, cuts through sulfide-bearing rock. The geology of this area is dominated by slowly-weathering gneiss and granites, and oxidation of fresh rock surfaces can result in acidification of surface water. Sulfide-containing rock waste from excavations during construction work was therefore deposited in three waste rock deposits off-site. The deposits consist of 630,000–2,360,000 metric tons of waste rock material. Shell sand and limestone gravel were added in layers in adequate amounts to mitigate initial acid runoff in one of the deposits. The shell sand addition was not adequate in the two others. The pH in the effluents from these two was reduced from 4.9–6.5 to 4.0–4.6, and Al concentrations increased from below 0.4 mg/L to 10–20 mg/L. Stream concentrations of trace metals increased by a factor of 25–400, highest for Ni, and then in decreasing order for Co, Mn, Cd, Zn and Cu. Concentrations of As, Cr and Fe remained unchanged. Ratios of Co/Ni and Cd/Zn indicate that the metal sources for these pair of metals are sphalerite and pyrite, respectively. Based on surveys and established critical limits for Al, surface waters downstream became toxic to fish and invertebrates. The sulfur release rates were remarkably stable in the monitoring period at all three sites. Annual sulfur release was 0.1–0.4% of the total amount of sulfur in the deposit, indicating release periods of 250–800 years. Precipitates of Al-hydroxysulfates, well-known from mining sites, were found at the base of the deposits, in streams and also along the ocean shore-line. The effects of added neutralization agents in the deposits and in treatment areas downstream gradually decreased, as indicated by reduced stream pH over time. Active measures are needed to avoid harmful ecological effects in the future.

  16. Potential for Gulls to Transport Bacteria from Human Waste Sites to Beaches

    EPA Science Inventory

    Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human-associated fecal microorganisms associated with that waste. If these gulls also visit beach...

  17. Evaluation of the geologic and hydrologic factors related to the waste-storage potential of Mesozoic aquifers in the southern part of the Atlantic Coastal Plain, South Carolina and Georgia

    USGS Publications Warehouse

    Brown, Philip M.; Brown, D.L.; Reid, M.S.; Lloyd, O.B.

    1979-01-01

    The report describes the subsurface distribution of rocks of Cretaceous to Late Jurassic( ) age in the Atlantic Coastal Plain , South Carolina, and Georgia, and examines their potential for deep-well waste storage into th part of the regional sediment mass which lies below the deepest zones containing usable ground waters. For the study, usable ground water is considered to be that which contains less than 10,000 mg/L dissolved solids. Using a group of geohydrologic parameters derived from or combining 21 categories of basic data, established from study and interpretation of well cuttings and geophysical logs, a series of 32 regional maps and 8 stratigraphic cross sections was constructed. For each of the eight geologic units delineated in the subsurface, the maps illustrate the distribution of waste-storage potential in terms of areal extent, depth below land surface, sand-shale geometry, and the approximate sodium chloride concentration of a unit 's nonusable ground water. In areas where the geologic units contain nonusable ground water, the depth below land surface and the thickness of potential waste-storage reservoir and reservoir-seal combinations are variable. The range in variability appears to be broad enough to meet the need for a wide choice among the geologic requirements that would normally be considered in selecting specific waste-storage sites for detailed examination. (Woodard-USGS)

  18. Ecohealth approach to urban waste management: exposure to environmental pollutants and health risks in Yamoussoukro, Côte d'Ivoire.

    PubMed

    Kouamé, Parfait K; Dongo, Kouassi; Nguyen-Viet, Hung; Zurbrügg, Christian; Lüthi, Christoph; Hattendorf, Jan; Utzinger, Jürg; Biémi, Jean; Bonfoh, Bassirou

    2014-10-02

    Poor waste management is a key driver of ill-health in urban settlements of developing countries. The current study aimed at assessing environmental and human health risks related to urban waste management in Yamoussoukro, the political capital of Côte d'Ivoire. We undertook trans-disciplinary research within an Ecohealth approach, comprised of a participatory workshop with stakeholders and mapping of exposure patterns. A total of 492 randomly selected households participated in a cross-sectional survey. Waste deposit sites were characterised and 108 wastewater samples were subjected to laboratory examinations. The physico-chemical parameters of the surface water (temperature, pH, conductivity, potential oxidise reduction, BOD5, COD, dissolved oxygen, nitrates, ammonia and total Kendal nitrogen) did not comply with World Health Organization standards of surface water quality. Questionnaire results showed that malaria was the most commonly reported disease. Diarrhoea and malaria were associated with poor sanitation. Households having dry latrines had a higher risk of diarrhoea (odds ratio (OR) = 1.8, 95% confidence interval (CI) 1.2-2.7) compared to latrines with septic tanks and also a higher risk for malaria (OR = 1.9, 95% (CI) 1.1-3.3). Our research showed that combining health and environmental assessments enables a deeper understanding of environmental threats and disease burdens linked to poor waste management. Further study should investigate the sanitation strategy aspects that could reduce the environmental and health risks in the study area.

  19. Ecohealth Approach to Urban Waste Management: Exposure to Environmental Pollutants and Health Risks in Yamoussoukro, Côte d’Ivoire

    PubMed Central

    Kouamé, Parfait K.; Dongo, Kouassi; Nguyen-Viet, Hung; Zurbrügg, Christian; Lüthi, Christoph; Hattendorf, Jan; Utzinger, Jürg; Biémi, Jean; Bonfoh, Bassirou

    2014-01-01

    Poor waste management is a key driver of ill-health in urban settlements of developing countries. The current study aimed at assessing environmental and human health risks related to urban waste management in Yamoussoukro, the political capital of Côte d’Ivoire. We undertook trans-disciplinary research within an Ecohealth approach, comprised of a participatory workshop with stakeholders and mapping of exposure patterns. A total of 492 randomly selected households participated in a cross-sectional survey. Waste deposit sites were characterised and 108 wastewater samples were subjected to laboratory examinations. The physico-chemical parameters of the surface water (temperature, pH, conductivity, potential oxidise reduction, BOD5, COD, dissolved oxygen, nitrates, ammonia and total Kendal nitrogen) did not comply with World Health Organization standards of surface water quality. Questionnaire results showed that malaria was the most commonly reported disease. Diarrhoea and malaria were associated with poor sanitation. Households having dry latrines had a higher risk of diarrhoea (odds ratio (OR) = 1.8, 95% confidence interval (CI) 1.2–2.7) compared to latrines with septic tanks and also a higher risk for malaria (OR = 1.9, 95% (CI) 1.1–3.3). Our research showed that combining health and environmental assessments enables a deeper understanding of environmental threats and disease burdens linked to poor waste management. Further study should investigate the sanitation strategy aspects that could reduce the environmental and health risks in the study area. PMID:25279545

  20. Remaining Sites Verification Package for the 116-C-3, 105-C Chemical Waste Tanks, Waste Site Reclassification Form 2008-002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2008-01-31

    The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils.more » The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River.« less

Top