Sample records for waste slurries based

  1. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; King, W. D.; Coleman, C. J.

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less

  2. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  3. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, Arun S.; Singh, Dileep

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  4. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  5. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  6. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  7. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essentialmore » elements of a feed delivery strategy that drives the Hanford clean-up mission.« less

  8. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  9. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings.

  10. A new procedure for treatment of oily slurry using geotextile filters.

    PubMed

    Mendonça, M B; Cammarota, M C; Freire, D D C; Ehrlich, M

    2004-07-05

    A new procedure to mitigate the environmental impacts and reduce the cost of disposal of oil slurry is present in this paper. Waste from the petroleum industry has a high environmental impact. Systems for oil-water separation have been used to mitigate the contamination potential of these types of effluents. At the outlet of these systems, the oil is skimmed-off the surface, while the slurry is removed from the base. Due to the high concentration of contaminants, the disposal of this slurry is an environmentally hazardous practice. Usually this type of waste is disposed of in tanks or landfills after removal from the industrial plant. Basically, the proposed procedure utilizes drying beds with geotextile filters to both reduce the water content in the slurry and obtain a less contaminated effluent. Laboratory tests were carried out to simulate the drying system. Four types of filters were analyzed: two non-woven geotextiles, one woven geotextile, and a sand filter.

  11. Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KP Recknagle; Y Onishi

    Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how wellmore » a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.« less

  12. Solids, organic load and nutrient concentration reductions in swine waste slurry using a polyacrylamide (PAM)-aided solids flocculation treatment.

    PubMed

    Walker, Paul; Kelley, Tim

    2003-11-01

    Increased swine production results in concentration of wastes generated within a limited geographical area, which may lead to land application rates exceeding the local or regional assimilatory capacity. This may result in pollutant transfer through surface water or soil-groundwater systems, environmental degradation, and/or odor concerns. Existing swine waste pit storage and lagoon treatment technologies may be inadequate to store or treat waste prior to land application without these concerns resulting. Efficient swine waste solids separation may reduce environmental health concerns and generate a value-added bioresource (solids). This study evaluated the efficiency of a polyacrylamide (PAM) flocculant-aided solids separation treatment to reduce pollution indicator concentrations in raw (untreated) swine waste slurry. Swine waste slurry solids separation efficiency through gravity settling (sedimentation) was evaluated before and after the addition of a proprietary polymeric (PAM) flocculant. Results indicated that polymer amendments at concentrations of 62.5-750 mg/l improved slurry solids separation efficiency and significantly reduced concentrations of other associated aquatic pollution indicators in a majority of analyses conducted (33 of 50 total analyses conducted). Results also suggested that PAM-aided solids separation from swine waste slurry might facilitate further treatment and/or disposal and therefore reduce associated environmental degradation potential.

  13. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    PubMed

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  14. Determination of Waste Groupings for Safety Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARKER, S.A.

    2000-04-27

    Two workshops were held in May and July 1999 to review data analysis methodologies associated with the analysis of flammable gas behavior. The workshop participants decided that missing data could he estimated by using a distribution of values that encompassed tanks with wastes that behaved in a similar fashion. It was also determined that because of the limited amount of tank data pertaining to flammable gas generation and retention, it was not justified to divide the tanks into many small waste groupings. The purpose for grouping tanks is so that limited gas retention and release data, which may be availablemore » for some tanks within a group, can be applied to other tanks containing the same waste form. This is necessary when estimating waste properties for tanks with missing or incomplete information. Following the workshop, a preliminary tank grouping was prepared based on content of solids, liquids, sludge, saltcake, or salt slurry The saltcake and salt slurry were then grouped together and referred to as saltcake/salt slurry. Initial tank classifications were based on waste forms from the Rest Basis Inventory, the Hanford Defined Waste (HDW) (''Agnew'') Model, or the Waste Tank Summary (''Hanlon'') Report The results of this grouping arc presented in ''Flamable Gas Safety Analysis Data Review'', SNL-000 198 (Barker, et al., 1999). At the time of the release of SNL-000198, tank waste inventories were not consistent between published sources, such as the ''Best Basis Inventory'' and the ''Waste Tank Summary Report for Month Ending August 31, 1999'' (Hanlon l999). This calculation note documents the process and basis used when revising the waste groupings following the release of SNL-000198. The waste layer volume information is compared between the various databases, including information obtained from process measurements. Differences are then resolved based on tank characterization information and waste behavior.« less

  15. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  16. Low Cost Dewatering of Waste Slurries

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Sharma, S. K.; Church, R. H.; Scheiner, B. J.

    1993-01-01

    The U.S. Bureau of Mines has developed a technique for dewatering mineral waste slurries which utilizes polymer and a static screen. A variety of waste slurries from placer gold mines and crushed stone operations have been successfully treated using the system. Depending on the waste, a number of polymers have been used successfully with polymer costs ranging from $0.05 to $0.15 per 1,000 gal treated. The dewatering is accomplished using screens made from either ordinary window screen or wedge wire. The screens used are 8 ft wide and 8 ft long. The capacity of the screens varies from 3 to 7 gpm/sq. ft. The water produced is acceptable for recycling to the plant or for discharge to the environment. For example, a fine grain dolomite waste slurry produced from a crushed stone operation was dewatered from a nominal 2.5 pct solids to greater than 50 pct solids using $0.10 to $0.15 worth of polymer per 1,000 gal of slurry. The resulting waste water had a turbidity of less than 50 NTU and could be discharged or recycled. The paper describes field tests conducted using the polymer-screen dewatering system.

  17. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.

    2009-05-22

    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonianmore » slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.« less

  18. Rheological characterisation of concentrated domestic slurry.

    PubMed

    Thota Radhakrishnan, A K; van Lier, J B; Clemens, F H L R

    2018-05-03

    The much over-looked element in new sanitation, the transport systems which bridge the source and treatment facilities, is the focus of this study. The knowledge of rheological properties of concentrated domestic slurry is essential for the design of the waste collection and transport systems. To investigate these properties, samples were collected from a pilot sanitation system in the Netherlands. Two types of slurries were examined: black water (consisting of human faecal waste, urine, and flushed water from vacuum toilets) and black water with ground kitchen waste. Rheograms of these slurries were obtained using a narrow gap rotating rheometer and modelled using a Herschel-Bulkley model. The effect of concentration on the slurry are described through the changes in the parameters of the Herschel-Bulkley model. A detailed method is proposed on estimating the parameters for the rheological models. For the black water, yield stress and consistency index follow an increasing power law with the concentration and the behaviour index follows a decreasing power law. The influence of temperature on the viscosity of the slurry is described using an Arrhenius type relation. The viscosity of black water decreases with temperature. As for the black water mixed with ground kitchen waste, it is found that the viscosity increases with concentration and decreases with temperature. The viscosity of black-water with ground kitchen waste is found to be higher than that of black water, which can be attributed to the presence of larger particles in the slurry. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  20. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  1. DEMONSTRATION BULLETIN: SLURRY BIODEGRADATION, International Technology Corporation

    EPA Science Inventory

    This technology uses a slurry-phase bioreactor in which the soil is mixed with water to form a slurry. Microorganisms and nutrients are added to the slurry to enhance the biodegradation process, which converts organic wastes into relatively harmless byproducts of microbial metabo...

  2. Impact of physical pre-treatment of source-sorted organic fraction of municipal solid waste on greenhouse-gas emissions and the economy in a Swedish anaerobic digestion system.

    PubMed

    Carlsson, My; Holmström, David; Bohn, Irene; Bisaillon, Mattias; Morgan-Sagastume, Fernando; Lagerkvist, Anders

    2015-04-01

    Several methods for physical pre-treatments of source sorted organic fraction of municipal solid waste (SSOFMSW) before for anaerobic digestion (AD) are available, with the common feature that they generate a homogeneous slurry for AD and a dry refuse fraction for incineration. The selection of efficient methods relies on improved understanding of how the pre-treatment impacts on the separation and on the slurry's AD. The aim of this study was to evaluate the impact of the performance of physical pre-treatment of SSOFMSW on greenhouse-gas (GHG) emissions and on the economy of an AD system including a biogas plant with supplementary systems for heat and power production in Sweden. Based on the performance of selected Swedish facilities, as well as chemical analyses and BMP tests of slurry and refuse, the computer-based evaluation tool ORWARE was improved as to accurately describe mass flows through the physical pre-treatment and anaerobic degradation. The environmental and economic performance of the evaluated system was influenced by the TS concentration in the slurry, as well as the distribution of incoming solids between slurry and refuse. The focus to improve the efficiency of these systems should primarily be directed towards minimising the water addition in the pre-treatment provided that this slurry can still be efficiently digested. Second, the amount of refuse should be minimised, while keeping a good quality of the slurry. Electricity use/generation has high impact on GHG emissions and the results of the study are sensitive to assumptions of marginal electricity and of electricity use in the pre-treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. WASTE CONDITIONING FOR TANK HEEL TRANSFER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tankmore » waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate that the viscosity of the slurries follow the Bingham plastic model, especially when the solids concentration is increased. At low concentrations slurries may behave as Newtonian fluids. The three simulants follow a similar settling rate behavior. This behavior can be explained as a combination of one or more decreasing exponential curves. This means that the particle settling rate of the simulants decreases exponentially as time increases. The pH range for the three simulants was from 8 to 13 at all concentrations. The SRS simulant showed the highest pH, around 12; the other two simulants, Hanford and Fernald, had about the same pH range, from 3 to 9. When comparing volubility of the three simulants at the same concentration, SRS simulant showed higher volubility, followed by the Hanford simulant and the Fernald simulant, in that order. Further work is scheduled for next year (FY99) in this project, when other parameters like simulants particle size distribution, particle shape, and crystallization behavior will be studied. The same tests performed this period also will be performed at different temperatures for data comparison.« less

  4. Effects of total solids concentrations of poultry, cattle, and piggery waste slurries on biogas yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itodo, I.N.; Awulu, J.O.

    1999-12-01

    The effects of total solids concentrations of poultry, cattle and piggery waste slurries on biogas yield was investigated. Twelve laboratory-size anaerobic batch digesters with 25 L volume were constructed and used for the experiments. Three replicates of 5%, 10%, 15%, and 20% TS concentrations of poultry, cattle, and piggery waste slurries were anaerobically digested for a 30-day detention period and gas yield was measured by the method of water displacement. Temperature variation within the digesters was measured with a maximum and minimum thermometer. Anaerobic digestion of the slurries was undertaken in the mesophilic temperature range (20--40 C). The carbon:nitrogen ratiomore » of each of the slurries digested was determined. The carbon content was determined using the wackley-Black method, and nitrogen content was determined by the regular kjeldhal method. The pH was measured weekly during the period of digestion from a digital pH meter. Gas quality (% methane fraction) was also measured weekly from an analyzer. Coefficient of variation was computed to ascertain the status of the digestion process. Analysis of variance was used to determine the significant difference in gas yield at p < 0.05. Duncan's New Multiple Range Test at p < 0.05 was used to analyze the difference in gas yield among the various TS concentrations of the slurries investigated. The results indicate that biogas yield is of the order: 5% TS > 10% TS > 15% TS > 20% TS. This result shows that gas yield increases with decreasing TS concentration of the slurries. The ANOVA showed that the gas yield from the various TS % was significantly different (p < 0.05). DNMRT showed that there was significant difference in gas yield from the slurries and wastetypes investigated. Poultry waste slurries had the greatest gas yield (L CH4/kg TS) as the gas yield from the waste types was of the order: Poultry > Piggery > Cattle. The pH of the slurries was of the range 5.5 to 6.8 (weakly acidic). The C:N of the slurries varied between 6:1 and 9:1. The Coefficient of Variation (CV) for 10 consecutive days of digestion was less than 10% indicating a steady state in all the digesters.« less

  5. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry.

    PubMed

    Yokoyama, Hiroshi; Waki, Miyoko; Moriya, Naoko; Yasuda, Tomoko; Tanaka, Yasuo; Haga, Kiyonori

    2007-02-01

    We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85 degrees C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75 degrees C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60 degrees C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75 degrees C was not detected, at least for 24 days. At both 60 and 75 degrees C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75 degrees C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.

  6. Rapid screening procedure to optimise the anaerobic codigestion of industrial biowastes and agricultural livestock wastes in Cyprus.

    PubMed

    Monou, M; Kythreotou, N; Fatta, D; Smith, S R

    2009-02-01

    Small-scale experimental investigations were undertaken on the anaerobic digestion (AD) and codigestion of livestock waste and industrial biowastes. A simple procedure was developed to rapidly determine the suitability of wastes for digestion. The experiment was split into two phases; initially, the seed (digested brewery waste) was replaced by the test waste over a period of 5 days. During the second phase, the test waste was incubated and monitored for methanogenesis. Dairy cattle slurry was the most efficient co-substrate which, when codigested with pig slurry in an equal ratio achieved volatile solids destruction of 32%, CH(4) production rate of 97.4 ml d(-1), maximum CH(4) content of 61.6% and total gas yield of 2229 ml after 529 h. High fat content wastes were unsuitable for AD due to low pH value and because the dominant microbial reaction was fermentation. Codigestion was investigated to overcome any inhibitions; however, dairy cattle slurry, abattoir wastewater and NaOH additions did not lead to methanogenesis. Treating these wastes by AD is feasible but without CH(4) production.

  7. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Newell, J. D.; Crawford, C. L.

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  8. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young

    1998-01-01

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.

  9. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  10. Process for removing thorium and recovering vanadium from titanium chlorinator waste

    DOEpatents

    Olsen, Richard S.; Banks, John T.

    1996-01-01

    A process for removal of thorium from titanium chlorinator waste comprising: (a) leaching an anhydrous titanium chlorinator waste in water or dilute hydrochloric acid solution and filtering to separate insoluble minerals and coke fractions from soluble metal chlorides; (b) beneficiating the insoluble fractions from step (a) on shaking tables to recover recyclable or otherwise useful TiO.sub.2 minerals and coke; and (c) treating filtrate from step (a) with reagents to precipitate and remove thorium by filtration along with acid metals of Ti, Zr, Nb, and Ta by the addition of the filtrate (a), a base and a precipitant to a boiling slurry of reaction products (d); treating filtrate from step (c) with reagents to precipitate and recover an iron vanadate product by the addition of the filtrate (c), a base and an oxidizing agent to a boiling slurry of reaction products; and (e) treating filtrate from step (d) to remove any remaining cations except Na by addition of Na.sub.2 CO.sub.3 and boiling.

  11. Characterization methodology for re-using marble slurry in industrial applications

    NASA Astrophysics Data System (ADS)

    Marras, Graziella; Careddu, Nicola; Peretti, Roberto; Bortolussi, Augusto

    2017-04-01

    In the effort towards waste minimization and circular economy, natural stone waste is one of the foremost parameter to turn scientific community attention. At this time, calcium carbonate has a great importance in industrial fields and currently there is the necessity of appreciate the potential value of marble waste and convert it into marketable products. A large amount of residues is produced in ornamental stone sector with different dimension and particle size. The research focused on marble slurry, recovered at the end of the treatment plant in the filter-press section. The aim of this paper is to propose a defined way to characterize marble slurry, primarily composed of micronized particles, in order to obtain useful data to make a comparison with market specifications. In particular the proposed characterization methodology follows the indicated steps: Leaching test (TCLP) - Grain size distribution and bulk density - Mineralogical analyses - X-Ray diffraction - Chemical analysis - Loss on ignition - SEM determination - Colorimetric and bright analysis. Marble slurry samples, collected by different dimension stone treatment plants in Orosei marble district (Sardinia - Italy), were analyzed by physical, mineralogical and chemical determinations and the obtained data were evaluated for compatibility with the CaCO3 specifications required by a definite industrial sector, seeing as how CaCO3 product specifications vary depending on the utilization. The importance of this investigation is to characterize completely the "waste" that must apply for further uses and to identify the feasibility to substitute marketable micronized CaCO3 with marble slurry. Further goal is to enhance the environmental advantages of re-using stone waste by reducing marble waste landfills and by applying raw material substitution, in accordance with regulatory requirements, thus pursuing the objective to convert natural stone waste into by-product with a renewed environmental and economic value. Consequently what until now was considered as a waste, can be an important economic resource capable of promoting the sustainability.

  12. The new idea of transporting tailings-logs in tailings slurry pipeline and the innovation of technology of mining waste-fill method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Yu; Wang Fuji; Tao Yan

    2000-07-01

    This paper introduced a new idea of transporting mine tailings-logs in mine tailings-slurry pipeline and a new technology of mine cemented filing of tailings-logs with tailings-slurry. The hydraulic principles, the compaction of tailings-logs and the mechanic function of fillbody of tailings-logs cemented by tailings-slurry have been discussed.

  13. Slurry-phase biodegradation of weathered oily sludge waste.

    PubMed

    Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R

    2008-01-01

    We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.

  14. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, Terry L.

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  15. Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRAWFORD, CHARLES L.

    2004-05-26

    In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks.more » Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.« less

  16. Batch co-digestion of multi-component agro-wastes.

    PubMed

    Misi, S N; Forster, C F

    2001-10-01

    In certain parts of the developing world conventional energy supplies such as electricity, gas, coal and petroleum by-products are either unavailable, too capital intensive to install, are unjustifiable due to low population densities in some semi-arid regions, or are simply unaffordable to the target population. In Zimbabwe, it has been assessed that only biomass energy can conveniently provide both lighting and space heating. Therefore, means of generating biogas from agricultural and other organic wastes, and to encourage their use is a policy which has been adopted by Zimbabwe's Department of Energy. In this study cattle slurry was mixed with a range of solid wastes and allowed to digest in 11 batch digesters. The mixtures which were used were selected on the basis of centroid design with the objective of determining whether there was either synergism or antagonism. Two trials were carried out, one based on cattle slurry, chicken manure (CM) and molasses (Mol), the other based on sheep and goat manure, chicken manure and surplus activated sludge. The criteria for judging the success of a co-digestion were volatile solids (VS) reduction, total methane production and methane yield. In the first trial, the analysis based on the methane yield showed that there was no antagonism and that the mixture of 30% cattle slurry/30% CM/40% Mol gave a synergistic effect. The analysis based on the VS destruction, however, did show that there was some very slight antagonism. In the second trial, the analysis based on the methane yield showed that there was both antagonism and synergism and that the synergism produced an extra 6.7% methane. The analysis based on the VS destruction also showed that there was both antagonism and synergism but that the effects were small.

  17. Interpretation of leaching data for cementitious waste forms using analytical solutions based on mass transport theory and empiricism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, R.D.; Godbee, H.W.; Tallent, O.K.

    1989-01-01

    The analysis of leaching data using analytical solutions based on mass transport theory and empiricism is presented. The waste forms leached to generate the data used in this analysis were prepared with a simulated radioactive waste slurry with traces of potassium ion, manganese ions, carbonate ions, phosphate ions, and sulfate ions solidified with several blends of cementitious materials. Diffusion coefficients were estimated from the results of ANS - 16.1 tests. Data of fraction leached versus time is presented and discussed.

  18. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    PubMed

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  20. Interaction effects of metals and salinity on biodegradation of a complex hydrocarbon waste.

    PubMed

    Amatya, Prasanna L; Hettiaratchi, Joseph Patrick A; Joshi, Ramesh C

    2006-02-01

    The presence of high levels of salts because of produced brine water disposal at flare pits and the presence of metals at sufficient concentrations to impact microbial activity are of concern to bioremediation of flare pit waste in the upstream oil and gas industry. Two slurry-phase biotreatment experiments based on three-level factorial statistical experimental design were conducted with a flare pit waste. The experiments separately studied the primary effect of cadmium [Cd(II)] and interaction effect between Cd(II) and salinity and the primary effect of zinc [Zn(II)] and interaction effect between Zn(II) and salinity on hydrocarbon biodegradation. The results showed 42-52.5% hydrocarbon removal in slurries spiked with Cd and 47-62.5% in the slurries spiked with Zn. The analysis of variance showed that the primary effects of Cd and Cd-salinity interaction were statistically significant on hydrocarbon degradation. The primary effects of Zn and the Zn-salinity interaction were statistically insignificant, whereas the quadratic effect of Zn was highly significant on hydrocarbon degradation. The study on effects of metallic chloro-complexes showed that the total aqueous concentration of Cd or Zn does not give a reliable indication of overall toxicity to the microbial activity in the presence of high salinity levels.

  1. The on-line characterization of a radium slurry by gamma-ray spectrometry.

    PubMed

    Philips, S; Croft, S

    2005-01-01

    We have developed an in-line monitor to directly measure the (226)Ra concentration in a nuclear waste stream using quantitative gamma-ray spectrometry applied to the 186keV emission. The waste stream is in the form of a slurry composed of the solid waste material mixed with water. The concentration measurement includes a self-attenuation correction factor determined from a transmission measurement using the 122keV gamma from (57)Co. Presented here is the model for the measurement system and results from some initial tests.

  2. Making Plant-Support Structures From Waste Plant Fiber

    NASA Technical Reports Server (NTRS)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  3. Colloidal and electrochemical aspects of copper-CMP

    NASA Astrophysics Data System (ADS)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  4. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester.

    PubMed

    Browne, James D; Allen, Eoin; Murphy, Jerry D

    2013-01-01

    This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.

  5. Evaluation of Heavy Metals in Solid Waste Disposal Sites in Campinas City, Brazil Using Synchrotron Radiation Total Reflection X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    de Faria, Bruna Fernanda; Moreira, Silvana

    2011-12-01

    The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.

  6. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less

  7. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    PubMed

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Field test of methane fermentation system for treating swine wastes.

    PubMed

    Kataoka, N; Suzuki, T; Ishida, K; Yamada, N; Kurata, N; Katayose, M; Honda, K

    2002-01-01

    A methane fermentation system for treating swine wastes was developed and successfully demonstrated in a field test plant (0.5 m3/d). The system was composed of a screw-press dehydrator, a methanogenic digester, a sludge separator, an oxidation ditch (OD) and composting equipment. A performance evaluation was carried out regarding physical pre-treatment using the screw-press dehydrator, methane fermentation for pre-treated slurry, and post-treatment for digested effluent by OD. Total solids (TS) and chemical oxygen demand (CODCr) removal by the screw-press pre-treatment were 38% and 22%, respectively. Properties of the screenings were as follows: water content 57%, ignition loss 93%, specific gravity 0.33. The pretreated strong slurry was digested under mesophilic conditions. Digestion gas (biogas) production rate was 25 m3/m3-slurry (NTP) and methane content of the biogas was 67%. CODCr removal of 65% with methane fermentation treatment of the slurry operating at 35 degrees C was observed. No inhibition of methane fermentation reaction occurred at the NH4(+)-N concentration of 3,000 mg/l or less during methane fermentation by the system. Mass balance from the present pilot-scale study showed that 1 m3 of mixture of excrement and urine of swine waste (TS 90 kg/m3) was biologically converted to 25 m3/m3-slurry (NTP) of biogas (methane content 67%), 100 kg of compost (water content 40%, ignition loss 75%), and 0.80 m3 of treated water (SS 30-70 mg/l).

  10. Characterization of Diarrheagenic Escherichia coli Isolated in Organic Waste Products (Cattle Fecal Matter, Manure and, Slurry) from Cattle's Markets in Ouagadougou, Burkina Faso.

    PubMed

    Bako, Evariste; Kagambèga, Assèta; Traore, Kuan Abdoulaye; Bagre, Touwendsida Serge; Ibrahim, Hadiza Bawa; Bouda, Soutongnooma Caroline; Bonkoungou, Isidore Juste Ouindgueta; Kaboré, Saidou; Zongo, Cheikna; Traore, Alfred Sababenejo; Barro, Nicolas

    2017-09-22

    Cattle farming can promote diarrheal disease transmission through waste, effluents or cattle fecal matter. The study aims to characterize the diarrheagenic Escherichia coli (DEC) isolated from cattle feces, manure in the composting process and slurry, collected from four cattle markets in Ouagadougou. A total of 585 samples (340 cattle feces, 200 slurries and 45 manures in the composting process) were collected from the four cattle markets between May 2015 and May 2016. A multiplex Polymerase Chain Reaction (PCR), namely 16-plex PCR, was used to screen simultaneously the virulence genes specific for shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and enteroaggregative E. coli (EAEC). DEC was detected in 10.76% of samples. ETEC was the most prevalent (9.91%). STEC and EAEC have been observed with the same rate (0.51%). ETEC were detected in 12.64% of cattle feces, in 6.66% of manure in the composting process and in 5% of slurry. STEC were detected in 0.58% of cattle feces and in 2.22% of manure in the composting process. EAEC was detected only in 1% of slurry and in 2.22% of manure in the composting process. ETEC strains were identified based on estIa gene and/or estIb gene and/or elt gene amplification. Of the 58 ETEC, 10.34% contained astA , 17.24% contained elt , 3.44% contained estIa and 79.31% contained estIb . The two positive EAEC strains contained only the aggR gene, and the third was positive only for the pic gene. The results show that effluent from cattle markets could contribute to the spreading of DEC in the environment in Burkina Faso.

  11. Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles.

    PubMed

    Formentini, Thiago Augusto; Legros, Samuel; Fernandes, Cristovão Vicente Scapulatempo; Pinheiro, Adilson; Le Bars, Maureen; Levard, Clément; Mallmann, Fábio Joel Kochem; da Veiga, Milton; Doelsch, Emmanuel

    2017-03-01

    Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil.

    PubMed

    Garg, R N; Pathak, H; Das, D K; Tomar, R K

    2005-08-01

    This study explores the potential use of by-products of energy production, i.e., (i) flyash from coal-powered electricity generation and (ii) biogas slurry from agricultural waste treatment, as nutrient sources in agriculture. These residues are available in large amounts and their disposal is a major concern for the environment. As both residues contain considerable amounts of plant nutrients, their use as soil amendment may offer a promising win-win opportunity to improve crop production and, at the same time, preventing adverse environmental impacts of waste disposal. Effect of flyash and biogas slurry on soil physical properties and growth and yield of wheat (Triticum aestivum) was studied in a field experiment. Leaf area index, root length density and grain yield of wheat were higher in plots amended with flyash or biogas slurry compared to unamended plots. Both types of amendments reduced bulk density, and increased saturated hydraulic conductivity and moisture retention capacity of soil. The study showed that flyash and biogas slurry should be used as soil amendments for obtaining short-term and long-term benefits in terms of production increments and soil amelioration.

  13. Ethanol production from rice winery waste-rice wine cake by simultaneous saccharification and fermentation without cooking.

    PubMed

    Vu, Van Hanh; Kim, Keun

    2009-10-01

    Ethanol production by simultaneous saccharification and fermentation (SSF) of low-value rice wine cake (RWC) without cooking was investigated. RWC is the filtered solid waste of fermented rice wine mash and contains 53% of raw starch. RWC slurry was mixed with raw-starch-digesting enzyme of Rhizopus sp. and yeast for SSF. The yeast strain used was selected from 300 strains for RWC fermentation and identified as Saccharomyces cerevisiae KV25. High efficiency (94%) of ethanol production was achieved at optimal condition of uncooked RWC slurry containing 23.03% of starch. The optimal SSF condition determined was 1.125 unit of raw-starch-digesting enzyme per one gram of RWC, 30 degrees C of fermentation temperature, 4.5 of pH slurry, 36 h-age of seeding culture, initial yeast cell 2 x 10(7) per ml slurry, 17 mM urea as nitrogen additive, 0.25 mM Cu(2+) as metal ion additives, 90 h of fermentation time. In this optimal condition, ethanol production by SSF of uncooked RWC slurry was improved to 16.8% (v/v) from 15.1% (v/v) of pre-optimization.

  14. Laboratory and in-situ reductions of soluble phosphorus in swine waste slurries.

    PubMed

    Burns, R T; Moody, L B; Walker, F R; Raman

    2001-11-01

    Laboratory and field experiments were conducted using magnesium chloride (MgCl2) to force the precipitation of struvite (MgNH4PO4 x 6H2O) and reduce the concentration of soluble phosphorus (SP) in swine waste. In laboratory experiments, reductions of SP of 76% (572 to 135 mg P l(-1)) were observed in raw swine manure after addition of magnesium chloride (MgCl2) at a rate calculated to provide a 1.6:1 molar ratio of magnesium (Mg) to total phosphorus. Adjusting the pH of the treated manure to pH 9.0 with sodium hydroxide (NaOH) increased SP reduction to 91% (572 to 50 mg P l(-1)). X-ray diffraction of the precipitate recovered from swine waste slurry treated only with MgCl2 confirmed the presence ofstruvite. The molar N:P:Mg ratio of the recovered precipitate was 1:1.95:0.24, suggesting that compounds in addition to struvite were formed. In a field experiment conducted in a swine manure holding pond, a 90% reduction in SP concentration was observed in approximately 140,000 l of swine manure slurry treated before land application with 2,000 l MgCl2 (64% solution) at ambient slurry temperatures ranging from 5 to 10 degrees C.

  15. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Bruna Fernanda de; Moreira, Silvana

    The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate themore » content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.« less

  17. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL wasmore » to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.« less

  18. Strategy Plan A Methodology to Predict the Uniformity of Double-Shell Tank Waste Slurries Based on Mixing Pump Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Bamberger; L.M. Liljegren; P.S. Lowery

    This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less

  19. 40 CFR 436.31 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... deposits. (e) The term “process generated waste water” shall mean any waste water used in the slurry... rainfall and ground water seepage. However, if a mine is also used for treatment of process generated waste... waste water. (c) The term “10-year 24-hour precipitation event” shall mean the maximum 24 hour...

  20. Double-plasma enhanced carbon shield for spatial/interfacial controlled electrodes in lithium ion batteries via micro-sized silicon from wafer waste

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Hong; Chuang, Shang-I.; Duh, Jenq-Gong

    2016-11-01

    Using spatial and interfacial control, the micro-sized silicon waste from wafer slurry could greatly increase its retention potential as a green resource for silicon-based anode in lithium ion batteries. Through step by step spatial and interfacial control for electrode, the cyclability of recycled waste gains potential performance from its original poor retention property. In the stages of spatial control, the electrode stabilizers of active, inactive and conductive additives were mixed into slurries for maintaining architecture and conductivity of electrode. In addition, a fusion electrode modification of interfacial control combines electrolyte additive, technique of double-plasma enhanced carbon shield (D-PECS) to convert the chemical bond states and to alter the formation of solid electrolyte interphases (SEIs) in the first cycle. The depth profiles of chemical composition from external into internal electrode illustrate that the fusion electrode modification not only forms a boundary to balance the interface between internal and external electrodes but also stabilizes the SEIs formation and soothe the expansion of micro-sized electrode. Through these effect approaches, the performance of micro-sized Si waste electrode can be boosted from its serious capacity degradation to potential retention (200 cycles, 1100 mAh/g) and better meet the requirements for facile and cost-effective in industrial production.

  1. Spatial and Temporal Changes in the Microbial Community in an Anaerobic Swine Waste Treatment Lagoon

    USDA-ARS?s Scientific Manuscript database

    Swine slurry is stored in pits beneath confinement buildings or in adjacent lagoons. This slurry is a valuable resource for crop fertilization and soil conditioning, but may also be a source of unpleasant odors. Microorganisms are crucial to all of the important processes that occur in anaerobic sto...

  2. Influence of seasonal changes on the microbial community in an anaerobic swine waste treatment lagoon

    USDA-ARS?s Scientific Manuscript database

    Swine slurry is stored in pits beneath confinement buildings or in adjacent lagoons. This slurry is a valuable resource for crop fertilization and soil conditioning, but may also be a source of unpleasant odors. Microorganisms are crucial to all of the important processes that occur in anaerobic sto...

  3. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    PubMed

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. ECONOMICS OF DISPOSAL OF LIME/LIMESTONE SCRUBBING WASTES: UNTREATED AND CHEMICALLY TREATED WASTES

    EPA Science Inventory

    The report gives results of a detailed, comparative economic evaluation of four alternatives available to the utility industry for the disposal of wastes from flue gas desulfurization using limestone or lime slurry scrubbing. The alternatives are untreated sludge (pond or landfil...

  5. Hazardous Waste Management Systems: Identification and Listing of Hazardous Waste - Federal Register Notice, May 1, 1991

    EPA Pesticide Factsheets

    The EPA is announcing an administrative stay of a portion of the hazardous waste listing K069 so that the listing does not apply to slurries generated from air pollution control devices that are intended to capture acid gases.

  6. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine.

    PubMed

    Rodríguez-Abalde, Ángela; Flotats, Xavier; Fernández, Belén

    2017-03-01

    The feasibility of co-digestion of blends of two different animal by-products (pig manure and pasteurized slaughterhouse waste) and recovered glycerine was studied in mesophilic conditions. Experiments were performed in a lab-scale CSTR along 490days, with a hydraulic retention time of 21-33days and with a step-wise increased organic loading rate, by adding and/or changing the wastes ratio, from 0.8 to 3.2kg COD m -3 d -1 . The best methane production rate (0.64Nm 3 CH4 m -3 d -1 ) represented an increment of 2.9-fold the initial one (0.22Nm 3 CH4 m -3 d -1 with pig manure solely). It was attained with a ternary mixture composed, in terms of inlet volatile solids, by 35% pig slurry, 47% pasteurized slaughterhouse waste and 18% glycerine. This blend was obtained through a stepwise C/N adjustment: this strategy led to a more balanced biodegradation due to unstressed bacterial populations through the performance, showed by the VFA-related indicators. Besides this, an improved methane yield (+153%) and an organic matter removal efficiency (+83%), regarding the digestion of solely pig slurry, were attained when the C/N ratio was adjusted to 10.3. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dioxin and trace metal emissions from combustion of carbonized RDF slurry fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klosky, M.; Fisher, M.; Singhania, A.

    1997-12-01

    In 1994, the U.S. generated approximately 209 million tons of Municipal Solid Waste (MSW), with 61% landfilled, 24% recycled, and 15% processed through Municipal Waste Combustion (MWC). In order to divert a larger portion of this generated MSW from landfills, MWC will have to play a growing role in MSW disposal. However, recently promulgated New Source Performance Standards (NSPS) for MWC will add an additional financial burden, through mandated emission reductions and air pollution control technologies, to an already financially pressured MWC marketplace. In the past, Refuse Derived Fuel (RDF), a solid fuel produced from MSW, has been fired inmore » industrial and coal boilers as an alternative means of MWC. While lower sulfur dioxide (SO{sub 2}) emissions provided the impetus, firing RDF in industrial and coal boilers frequently suffered from several disadvantages including increased solids handling, increased excess air requirements, increased air emissions, increased slag formation in the boiler, and higher fly ash resistivity. This paper summarizes the latest emissions and combustion tests with the carbonized RDF slurry fuel. With EnerTech`s SlurryCarb{trademark} process, a pumpable slurry of RDF is continuously pressurized with a pump to between 1200 and 2500 psi. The RDF slurry is pressurized above the saturated steam curve to maintain a liquid state when the slurry is heated to approximately 480-660{degrees}F. Slurry pressure and temperature then are maintained for less than 30 minutes in plug-flow reactors. At this temperature and pressure, oxygen functional groups in the molecular structure of the RDF are split off as carbon dioxide gas. This evolved carbon dioxide gas comprises a significant weight percentage of the feed RDF, but only a minimal percentage of the heating value.« less

  8. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  9. Characterization of Diarrheagenic Escherichia coli Isolated in Organic Waste Products (Cattle Fecal Matter, Manure and, Slurry) from Cattle’s Markets in Ouagadougou, Burkina Faso

    PubMed Central

    Bako, Evariste; Kagambèga, Assèta; Traore, Kuan Abdoulaye; Bagre, Touwendsida Serge; Ibrahim, Hadiza Bawa; Bouda, Soutongnooma Caroline; Bonkoungou, Isidore Juste Ouindgueta; Kaboré, Saidou; Zongo, Cheikna; Traore, Alfred Sababenejo; Barro, Nicolas

    2017-01-01

    Cattle farming can promote diarrheal disease transmission through waste, effluents or cattle fecal matter. The study aims to characterize the diarrheagenic Escherichia coli (DEC) isolated from cattle feces, manure in the composting process and slurry, collected from four cattle markets in Ouagadougou. A total of 585 samples (340 cattle feces, 200 slurries and 45 manures in the composting process) were collected from the four cattle markets between May 2015 and May 2016. A multiplex Polymerase Chain Reaction (PCR), namely 16-plex PCR, was used to screen simultaneously the virulence genes specific for shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and enteroaggregative E. coli (EAEC). DEC was detected in 10.76% of samples. ETEC was the most prevalent (9.91%). STEC and EAEC have been observed with the same rate (0.51%). ETEC were detected in 12.64% of cattle feces, in 6.66% of manure in the composting process and in 5% of slurry. STEC were detected in 0.58% of cattle feces and in 2.22% of manure in the composting process. EAEC was detected only in 1% of slurry and in 2.22% of manure in the composting process. ETEC strains were identified based on estIa gene and/or estIb gene and/or elt gene amplification. Of the 58 ETEC, 10.34% contained astA, 17.24% contained elt, 3.44% contained estIa and 79.31% contained estIb. The two positive EAEC strains contained only the aggR gene, and the third was positive only for the pic gene. The results show that effluent from cattle markets could contribute to the spreading of DEC in the environment in Burkina Faso. PMID:28937656

  10. On-site production of crude glucoamylase for kitchen waste hydrolysis.

    PubMed

    Wang, Xiao Qiang; Wang, Qun Hui; Liu, Ying Ying; Ma, Hong Zhi

    2010-06-01

    Kitchen waste from dining rooms accounts for a considerable proportion of municipal solid garbage, and economical recycle ways are needed to be developed. This study investigated glucoamylase production from kitchen waste and the feasibility of kitchen waste hydrolysis by the crude enzymes produced. The key problems of high water content and poor porosity in kitchen waste for glucoamylase production under solid-state fermentation could be solved readily by the addition of corn stover or paddy husk. As a support medium, corn stover was better than paddy husk. Smashed kitchen waste (sKW) mixed with corn stover in the ratio of 3.75 : 1 (dry basis) produced 1838 U g(-1) of glucoamylase by Aspergillus niger UV-60 within 96 h. The enzyme productivity from kitchen waste was over two-fold higher than that from wheat bran with additional nutrients. Without any recovery treatment, the produced glucoamylase could be used directly to hydrolyse sKW slurry. The optimum enzyme dose 8% (crude enzyme/kichen waste, w/w) was not too big, and was sufficient to hydrolyse 10% (dry basis) sKW slurry to produce a maximum amount of reducing sugar of 55.4 g L(-1).

  11. Predicting characteristics of rainfall driven estrogen runoff and transport from swine AFO spray fields.

    PubMed

    Lee, Boknam; Kullman, Seth W; Yost, Erin E; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H

    2015-11-01

    Animal feeding operations (AFOs) have been implicated as potentially major sources of estrogenic contaminants into the aquatic environment due to the relatively minimal treatment of waste and potential mobilization and transport of waste components from spray fields. In this study a Bayesian network (BN) model was developed to inform management decisions and better predict the transport and fate of natural steroidal estrogens from these sites. The developed BN model integrates processes of surface runoff and sediment loss with the modified universal soil loss equation (MUSLE) and the soil conservation service curve number (SCS-CN) runoff model. What-if scenario simulations of lagoon slurry wastes to the spray fields were conducted for the most abundant natural estrogen estrone (E1) observed in the system. It was found that E1 attenuated significantly after 2 months following waste slurry application in both spring and summer seasons, with the overall attenuation rate predicted to be higher in the summer compared to the spring. Using simulations of rainfall events in conjunction with waste slurry application rates, it was predicted that the magnitude of E1 runoff loss is significantly higher in the spring as compared to the summer months, primarily due to spray field crop management plans. Our what-if scenario analyses suggest that planting Bermuda grass in the spray fields is likely to reduce runoff losses of natural estrogens near the water bodies and ecosystems, as compared to planting of soybeans. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Predicting Characteristics of Rainfall Driven Estrogen Runoff and Transport from Swine AFO Spray Fields

    PubMed Central

    Lee, Boknam; Kullman, Seth W.; Yost, Erin E.; Meyer, Michael T.; Worley-Davis, Lynn; Williams, C. Michael; Reckhow, Kenneth H.

    2017-01-01

    Animal feeding operations (AFOs) have been implicated as potentially major sources of estrogenic contaminants into the aquatic environment due to the relatively minimal treatment of waste and potential mobilization and transport of waste components from spray fields. In this study a Bayesian network (BN) model was developed to inform management decisions and better predict the transport and fate of natural steroidal estrogens from these sites. The developed BN model integrates processes of surface runoff and sediment loss with the modified universal soil loss equation (MUSLE) and the soil conservation service curve number (SCS-CN) runoff model. What-if scenario simulations of lagoon slurry wastes to the spray fields were conducted for the most abundant natural estrogen estrone (E1) observed in the system. It was found that E1 attenuated significantly after 2 months following waste slurry application in both spring and summer seasons, with the overall attenuation rate predicted to be higher in the summer compared to the spring. Using simulations of rainfall events in conjunction with waste slurry application rates, it was predicted that the magnitude of E1 runoff loss is significantly higher in the spring as compared to the summer months, primarily due to spray field crop management plans. Our what-if scenario analyses suggest that planting Bermuda grass in the spray fields is likely to reduce runoff losses of natural estrogens near the water bodies and ecosystems, as compared to planting of soybeans. PMID:26102057

  13. Disposal of metal fragments released during polycrystalline slicing by multi-wire saw

    NASA Astrophysics Data System (ADS)

    Boutouchent-Guerfi, N.; Drouiche, N.; Medjahed, S.; Ould-Hamou, M.; Sahraoui, F.

    2016-08-01

    The environmental and economic impacts linked with solar systems are largely based on discharges of slurry generated during the various stages of sawing and cutting ingots. These discharges into the environment are subject to the general regulations on hazardous and special industrial waste disposal. Therefore, they should not be abandoned or burned in open air. The cutting of Silicon ingots leads to the production of Silicon wafers additional costs, losing more than 30% of Silicon material. Abrasive grains (Silicon Carbide) trapped between the wire and the block of Silicon need to be removed by various mechanisms to be later evacuated by slurry fragments. In the interest of decreasing operational costs during polycrystalline ingot slicing at Semiconductors Research Center, and, avoid environmental problems; it is necessary to recover the solar grade Silicon from the Silicon sawing waste. For this reason, the removal of metal fragments has become a preliminary requirement to regenerate the slurry; in addition, the solid phase needs to be separated from the liquid phase after the dissolution PEG with the solvent. In the present study, magnetic separation and centrifugation methods were adopted for metals removal, followed by the analysis of some operating parameters such as: washing time, pH, and initial concentration of Silicon. Finally, analytical, morphological and basic methods were performed in order to evaluate the efficiency of the process undertaken.

  14. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hujova, Miroslava; Pokorny, Richard; Klouzek, Jaroslav

    The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feedmore » in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.« less

  15. The Development of Environmentally Friendly Technologies of Using Coals and Products of Their Enrichment in the Form of Coal Water Slurries

    NASA Astrophysics Data System (ADS)

    Murko, Vasily; Hamalainen, Veniamin

    2017-11-01

    The article presents the current state of the technology for production and combustion of fuel coal water slurries in Russia and foreign countries. Experimental and industrial facilities show the technological and economic efficiency of using this technology for disposal of wastes resulting after coal processing and enrichment. The feasibility studies of use of the technology at large Kuzbass thermal power stations are presented. The possibility of solving a serious environmental problem of reducing storage of the most toxic waste of coal enrichment in the location areas of coal washing plants and coal mining enterprises is demonstrated.

  16. ECONOMICS OF GROUND FREEZING FOR MANAGEMENT OF UNCONTROLLED HAZARDOUS WASTE SITES

    EPA Science Inventory

    Ground freezing for hazardous waste containment is an alternative to the traditional and expensive slurry wall or grout curtain barrier technologies. The parameters quantified in this analysis of it include thermal properties, refrigeration line spacing, equipment mobilization an...

  17. Approach for Configuring a Standardized Vessel for Processing Radioactive Waste Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Enderlin, Carl W.; Minette, Michael J.

    2015-09-10

    A standardized vessel design is being considered at the Waste Treatment and Immobilization Plant (WTP) that is under construction at Hanford, Washington. The standardized vessel design will be used for storing, blending, and chemical processing of slurries that exhibit a variable process feed including Newtonian to non-Newtonian rheologies over a range of solids loadings. Developing a standardized vessel is advantageous and reduces the testing required to evaluate the performance of the design. The objectives of this paper are to: 1) present a design strategy for developing a standard vessel mixing system design for the pretreatment portion of the waste treatmentmore » plant that must process rheologically and physically challenging process streams, 2) identify performance criteria that the design for the standard vessel must satisfy, 3) present parameters that are to be used for assessing the performance criteria, and 4) describe operation of the selected technology. Vessel design performance will be assessed for both Newtonian and non-Newtonian simulants which represent a range of waste types expected during operation. Desired conditions for the vessel operations are the ability to shear the slurry so that flammable gas does not accumulate within the vessel, that settled solids will be mobilized, that contents can be blended, and that contents can be transferred from the vessel. A strategy is presented for adjusting the vessel configuration to ensure that all these conditions are met.« less

  18. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Geeting, John GH; Bredt, Ofelia P.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes." The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEPmore » also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-1, the 19-M NaOH is added to un-concentrated waste slurry (3-8 wt% solids), while for leaching in UFP-2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. In both scenarios, following the caustic leach, the slurry was then concentrated to 17 wt% and washed with inhibited water to remove NaOH and other soluble salts. Next, the slurry was oxidatively leached using sodium permanganate to solubilize chrome. The slurry was then washed to remove the dissolved chrome and concentrated.« less

  20. Controlled low strength materials (CLSM), reported by ACI Committee 229

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, N.

    1997-07-01

    Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavementmore » bases, conduit bedding, erosion control, void filling, and radioactive waste management.« less

  1. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into amore » 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.« less

  2. Tank 40 final sludge batch 9 chemical and fissile radionuclide characterization results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Kubilius, W. P.; Pareizs, J. M.

    A sample of Sludge Batch (SB) 9 was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS)i. The SB9 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is fed to the Defense Waste Processing Facility (DWPF) as SB9. At the Savannah River National Laboratory (SRNL), the 3-L Tank 40 SB9 sample was transferred from the shippingmore » container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 547 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO3/HCl (aqua regiaii) in sealed Teflon® vessels and four with NaOH/Na2O2 (alkali or peroxide fusioniii) using Zr crucibles. Three Analytical Reference Glass – 1iv (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma – mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB9 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the SB9 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.v« less

  3. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.

    2009-08-14

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processesmore » using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).« less

  4. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  5. Effect of Silica Particle Size of Nuclear Waste-to-Glass Conversion - 17319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Cutforth, Derek A.; Vanderveer, Bradley J.

    The process for converting nuclear waste-to-glass in an electric melter occurs in the cold cap, a crust of reacting solids floating on the glass pool. As the melter feed (a mixture of the nuclear waste and glass forming and modifying additives) heats up in the cold cap, glass-forming reactions ensue, causing the feed matrix to connect, trapping reaction gases to create a foam layer. The foam layer reduces the rate of melting by separating the reacting feed from the melt pool. The size of the silica particle additives in the melter feed affects melt viscosity and, hence, foam stability. Tomore » investigate this effect, seven nuclear waste simulant feeds of a high-level waste were batched as slurries and prepared with dissimilar ranges of silica particle size. Each slurry feed was charged into a laboratory-scale melter (LSM) to produce a cold cap and the propensity of feeds to foam was determined by pressing dried feeds into pellets and monitoring the change of pellet volume in response to heating. Two of these slurries were designed to have dissimilar glass viscosities at 1150°C. In the low temperature region of the cold cap, before the melter feed connects, the feeds without fine silica particles behaved similar to the high viscosity feed as their volume contracted while the feed with silica particles no larger than 5 µm reacted like the low viscosity feed. However, the feed volume similarities reversed as the feed connected and expanded through the foam region of the cold cap.« less

  6. GROUTING TECHNIQUES IN BOTTOM SEALING OF HAZARDOUS WASTE SITES

    EPA Science Inventory

    Bottom sealing of hazardous waste sites involves the injection or insertion of an inert impermeable and continuous horizontal barrier in soil below the source of contamination. This type of containment strategy could be used in conjunction with other technology such as slurry wal...

  7. Demonstration and Optimization of BNFL's Pulsed Jet Mixing and RFD Sampling Systems Using NCAW Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JR Bontha; GR Golcar; N Hannigan

    2000-08-29

    The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systemsmore » are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%.« less

  8. Inhibiting localized corrosion during storage of dilute SRP wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblath, S.B.; Congdon, J.W.

    1986-01-01

    High-level radioactive waste will be incorporated in borosilicate glass in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). As part of this process, large volumes of inorganic salt wastes will be decontaminated for disposal as low-level waste. The principal contaminants, /sup 137/Cs and /sup 90/Sr, are removed by treatment with sodium tetraphenylborate and sodium titanate. The resulting solids will be slurried with a dilute salt solution and stored in existing carbon steel tanks for several years prior to processing and disposal. Initial tests indicated a tendency for localized corrosion of the tanks. An investigation, using nonradioactivemore » simulants for the expected solution compositions, identified inhibitors which would protect the steel. Changes in solution compositions over time, due to radiolytic effects, were also accounted for by the simulants. Six inhibitors were identified which would protect the steel tanks. The effects these inhibitors would have on later processing steps in the DWPF were then evaluated. After this process, only sodium nitrite remained as an inhibitor that was both effective and compatible with the DWPF. The use of this inhibitor has been demonstrated on a real waste slurry.« less

  9. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste.

    PubMed

    Marañón, E; Salter, A M; Castrillón, L; Heaven, S; Fernández-Nava, Y

    2011-08-01

    Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66kg CH(4)cow(-1)year(-1) for dairy cows and from 13 to 25kg CH(4)cow(-1)year(-1) for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776kg CO(2)eq year(-1), with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  11. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy.

    PubMed

    Zhou, Weizheng; Wang, Zhongming; Xu, Jingliang; Ma, Longlong

    2018-05-22

    The high cost of large-scale cultivation of microalgae has limited their industrial application. This study investigated the potential use of mixed biogas slurry and municipal wastewater to cultivate microalgae. Pig biogas slurry as the sole nutrient supplement, was assessed for the cultivation of Chlorella zofingiensis in municipal wastewater. Batch culture of various ratios of pig biogas slurry and municipal wastewater were compared. The characteristics of algal growth and lipid production were analyzed, and the removal rates of nitrogen and phosphate were examined. Results indicate that 8% pig bio-gas slurry in municipal wastewater, had a significant effect on microalgal growth. C. zofingiensis, with 2.5 g L -1 biomass, 93% total nitrogen and 90% total phosphorus removal. Lipid content was improved by 8% compared to BG11 medium. These findings show that mixing pig biogas slurry and municipal wastewater, without additional nutrition sources, allows efficient cultivation of C. zofingiensis. This is of high research and industrial significance, allowing cultivation of C. zofingiensis in mixed waste culture solution without additional nutrition sources. Copyright © 2018. Published by Elsevier B.V.

  12. Extracting lignins from mill wastes

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1977-01-01

    Addition of quaternary ammonium compound and activated charcoal to pulp and mill wastes precipitates lignins in sludge mixture. Methanol dissolves lignins for separation from resulting slurry. Mineral acid reprecipitates lignins in filtered solution. Quaternary ammonium compound, activated charcoal, as well as water may be recovered and recycled from this process.

  13. Experimental evaluation of main emissions during coal processing waste combustion.

    PubMed

    Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A

    2018-02-01

    The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Interaction, transformation and toxicity assessment of particles and additives used in the semiconducting industry.

    PubMed

    Dumitrescu, Eduard; Karunaratne, Dinusha P; Babu, S V; Wallace, Kenneth N; Andreescu, Silvana

    2018-02-01

    Chemical mechanical planarization (CMP) is a widely used technique for the manufacturing of integrated circuit chips in the semiconductor industry. The process generates large amounts of waste containing engineered particles, chemical additives, and chemo-mechanically removed compounds. The environmental and health effects associated with the release of CMP materials are largely unknown and have recently become of significant concern. Using a zebrafish embryo assay, we established toxicity profiles of individual CMP particle abrasives (SiO 2 and CeO 2 ), chemical additives (hydrogen peroxide, proline, glycine, nicotinic acid, and benzotriazole), as well as three model representative slurries and their resulting waste. These materials were characterized before and after use in a typical CMP process in order to assess changes that may affect their toxicological profile and alter their surface chemistry due to polishing. Toxicity outcome in zebrafish is discussed in relation with the physicochemical characteristics of the abrasive particles and with the type and concentration profile of the slurry components pre and post-polishing, as well as the interactions between particle abrasives and additives. This work provides toxicological information of realistic CMP slurries and their polishing waste, and can be used as a guideline to predict the impact of these materials in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOCmore » and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program.« less

  16. Fermentation of Anaerobic Cow Waste as Bio-Slurry Organic Fertilizer and Nitrogen Chemical Fertilizer on Soybean

    NASA Astrophysics Data System (ADS)

    Yafizham; Sutarno

    2018-02-01

    The study aimed was to evaluate the effect of bio-slurry organic fertilizer and urea chemical fertilizer combination on fresh material weight, phosphorus and potassium soybean straw, and seed weight per soybean plant plot. The experiment was conducted with a randomized block design with a single treatment repeated 5 times consisting of P0: control (without fertilizer), P1: bio-slurry 10 t/ha + 25 kg of N/ha, P2: bio-slurry 10 t/ha + 50 kg of N/ha, P3: bio-slurry 10 t/ha + 75 kg of N/ha, P4: bio-slurry 10 t/ha + 100 kg of N/ha and P5: bio-slurry 10 t/ha. The results showed that bio-slurry treatment of 10 t/ha + 25 kg of N/ha resulted in the highest fresh weight and dry weight of soybean plants, respectively of 240.7 g and 22.33 g, but not significantly different from the bio-slurry treatment of 10 t/ha + 50 kg of N/ha which yielded fresh weight of 197.7 g and a dry weight of 19.08 g. P production of 10.23 g per plant was significantly higher than other treatments but didn’t differ significantly between P2 and P4 treatments of 8.05 and 7.17 g per plant. The bio-slurry treatment of 10 t/ha + 25 kg of N/ha also yielded K of 6.46 g per plant butn’t unlike the bio-slurry treatment of 10 t/ha + 50 kg of N/ha. While the number of pods per plant and weight of 100 grains of the highest soybean seeds were also produced from bio-slurry treatment of 10 t/ha + 25 kg of N/ha.

  17. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.« less

  18. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. © The Author(s) 2016.

  19. Fate of pathogens present in livestock wastes spread onto fescue plots.

    PubMed

    Hutchison, Mike L; Walters, Lisa D; Moore, Tony; Thomas, D John I; Avery, Sheryl M

    2005-02-01

    Fecal wastes from a variety of farmed livestock were inoculated with livestock isolates of Escherichia coli O157, Listeria monocytogenes, Salmonella, Campylobacter jejuni, and Cryptosporidium parvum oocysts at levels representative of the levels found in naturally contaminated wastes. The wastes were subsequently spread onto a grass pasture, and the decline of each of the zoonotic agents was monitored over time. There were no significant differences among the decimal reduction times for the bacterial pathogens. The mean bacterial decimal reduction time was 1.94 days. A range of times between 8 and 31 days for a 1-log reduction in C. parvum levels was obtained, demonstrating that the protozoans were significantly more hardy than the bacteria. Oocyst recovery was more efficient from wastes with lower dry matter contents. The levels of most of the zoonotic agents had declined to below detectable levels by 64 days. However, for some waste types, 128 days was required for the complete decline of L. monocytogenes levels. We were unable to find significant differences between the rates of pathogen decline in liquid (slurry) and solid (farmyard manure) wastes, although concerns have been raised that increased slurry generation as a consequence of more intensive farming practices could lead to increased survival of zoonotic agents in the environment.

  20. Effect of Poultry Litter on Biomethanation from Swine Slurry

    USDA-ARS?s Scientific Manuscript database

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane p...

  1. Choosing co-substrates to supplement biogas production from animal slurry--a life cycle assessment of the environmental consequences.

    PubMed

    Croxatto Vega, Giovanna Catalina; ten Hoeve, Marieke; Birkved, Morten; Sommer, Sven G; Bruun, Sander

    2014-11-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then produced from conventional fossil fuels. The scenarios can often provide benefits for one impact category while causing impacts in another. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Numerical simulation of filtration of mine water from coal slurry particles

    NASA Astrophysics Data System (ADS)

    Dyachenko, E. N.; Dyachenko, N. N.

    2017-11-01

    The discrete element method is applied to model a technology for clarification of industrial waste water containing fine-dispersed solid impurities. The process is analyzed at the level of discrete particles and pores. The effect of filter porosity on the volume fraction of particles has been shown. The degree of clarification of mine water was also calculated depending on the coal slurry particle size, taking into account the adhesion force.

  3. Isolation of animal viruses from farm livestock waste, soil and water.

    PubMed Central

    Derbyshire, J. B.; Brown, E. G.

    1978-01-01

    Ten porcine enteroviruses, 2 porcine adenoviruses and 1 coronavirus were isolated directly from 32 samples of slurry collected from a pig fattening house. Concentration of the same samples by adsorption with the polyelectrolyte PE-60 yielded 24 porcine enteroviruses and 3 porcine adenoviruses. A porcine enterovirus was isolated, following PE-60 concentration, from 1 to 6 slurry samples from a sow farrowing house. No virus was isolated from 12 samples of slurry from dairy cows nor from 6 slurry samples from a calf-rearing unit. A porcine enterovirus was isolated from soil samples, after concentration with PE-60, collected 1, 2 and 8 days after pig slurry was spread on hay stubble. Two porcine enteroviruses were isolated by membrane filtration from 26 samples of surface run-off from land on which pig slurry was routinely spread, and 2 bovine enteroviruses were isolated from cattle feedlot run-off after adsorption to layers of talc and celite followed by hydroextraction. A porcine enterovirus was also isolated from 1 of 33 samples of surface water collected on farms on which pig slurry was routinely spread on the land, but no virus was isolated from 36 samples of ground water from the same farms. The surface water and ground water samples were concentrated by talc-celite adsorption and hydroextraction. PMID:100551

  4. Use of a germination bioassay to test compost maturity in Tekelan Village

    NASA Astrophysics Data System (ADS)

    Oktiawan, Wiharyanto; Zaman, Badrus; Purwono

    2018-02-01

    Livestock waste from cattle farms in Tekelan village, Getasan Subdistrict, Semarang Regency can be grouped into three types, namely solid waste, slurry and waste water. Solid waste (cow dung) was processed into compost, while slurry and waste water were used to make liquid fertilizer. This compost was used as a component of planting media in horticultural crops and potted plants production. We evaluated the toxicity (phytochemical and ecotoxicological) test of compost by using germination index (GI). Vigna radiata seeds are sown on filter paper dampened with compost extract for different times. GI was calculated by relative germination (G) and relative radical length (L). The germination index (GI) = G / G0 x L / L0 x 100, where G0 and L0 are values obtained by distilled water as a control. The results showed that germination bioassay and radical length using aquades and groundwater in Tekelan village did not affect the radical length of Vigna radiata . Technically, groundwater in Tekelan village can be used as a germination bioassay control. The cow dung compost substrate appears to have a major influence on compost toxicity. Mature compost was produced on day 14 with a GI of 104.03.

  5. Iron-phosphate ceramics for solidification of mixed low-level waste

    DOEpatents

    Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

    2000-01-01

    A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

  6. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land.

    PubMed

    Nicholson, Fiona; Bhogal, Anne; Cardenas, Laura; Chadwick, Dave; Misselbrook, Tom; Rollett, Alison; Taylor, Matt; Thorman, Rachel; Williams, John

    2017-09-01

    The anaerobic digestion of food waste for energy recovery produces a nutrient-rich digestate which is a valuable source of crop available nitrogen (N). As with any 'new' material being recycled to agricultural land it is important to develop best management practices that maximise crop available N supply, whilst minimising emissions to the environment. In this study, ammonia (NH 3 ) and nitrous oxide (N 2 O) emissions to air and nitrate (NO 3 - ) leaching losses to water following digestate, compost and livestock manure applications to agricultural land were measured at 3 sites in England and Wales. Ammonia emissions were greater from applications of food-based digestate (c.40% of total N applied) than from livestock slurry (c.30% of total N applied) due to its higher ammonium-N content (mean 5.6 kg/t compared with 1-2 kg/t for slurry) and elevated pH (mean 8.3 compared with 7.7 for slurry). Whilst bandspreading was effective at reducing NH 3 emissions from slurry compared with surface broadcasting it was not found to be an effective mitigation option for food-based digestate in this study. The majority of the NH 3 losses occurred within 6 h of spreading highlighting the importance of rapid soil incorporation as a method for reducing NH 3 emissions. Nitrous oxide losses from food-based digestates were low, with emission factors all less than the IPCC default value of 1% (mean 0.45 ± 0.15%). Overwinter NO 3 - leaching losses from food-based digestate were similar to those from pig slurry, but much greater than from pig farmyard manure or compost. Both gaseous N losses and NO 3 - leaching from green and green/food composts were low, indicating that, in these terms, compost can be considered as an 'environmentally benign' material. These findings have been used in the development of best practice guidelines which provide a framework for the responsible use of digestates and composts in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities.

    PubMed

    Pardo, Tania; Clemente, Rafael; Bernal, M Pilar

    2011-07-01

    The use of organic wastes as amendments in heavy metal-polluted soils is an ecological integrated option for their recycling. The potential use of alperujo (solid olive-mill waste) compost and pig slurry in phytoremediation strategies has been studied, evaluating their short-term effects on soil health. An aerobic incubation experiment was carried out using an acid mine spoil based soil and a low OM soil from the mining area of La Unión (Murcia, Spain). Arsenic and heavy metal solubility in amended and non-amended soils, and microbial parameters were evaluated and related to a phytotoxicity test. The organic amendments provoked an enlargement of the microbial community (compost increased biomass-C from non detected values to 35 μg g(-1) in the mine spoil soil, and doubled control values in the low OM soil) and an intensification of its activity (including a twofold increase in nitrification), and significantly enhanced seed germination (increased cress germination by 25% in the mine spoil soil). Organic amendments increased Zn and Pb EDTA-extractable concentrations, and raised As solubility due to the influence of factors such as pH changes, phosphate concentration, and the nature of the organic matter of the amendments. Compost, thanks to the greater persistence of its organic matter in soil, could be recommended for its use in (phyto)stabilisation strategies. However, pig slurry boosted inorganic N content and did not significantly enhance As extractability in soil, so its use could be specifically recommended in As polluted soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Recovering low-turbidity cutting liquid from silicon slurry waste.

    PubMed

    Tsai, Tzu-Hsuan; Shih, Yu-Pei

    2014-04-30

    In order to recover a low-turbidity polyalkylene glycol (PAG) liquid from silicon slurry waste by sedimentation, temperatures were adjusted, and acetone, ethanol or water was used as a diluent. The experimental results show that the particles in the waste would aggregate and settle readily by using water as a diluent. This is because particle surfaces had lower surface potential value and weaker steric stabilization in PAG-water than in PAG-ethanol or PAG-acetone solutions. Therefore, water is the suggested diluent for recovering a low-turbidity PAG (<100 NTU) by sedimentation. After 50 wt.% water-assisted sedimentation for 21 days, the solid content of the upper liquid reduced to 0.122 g/L, and the turbidity decreased to 44 NTU. The obtained upper liquid was then vacuum-distillated to remove water. The final recovered PAG with 0.37 NTU had similar viscosity and density to the unused PAG and could be reused in the cutting process. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Celine; Courtois, Simone; Peysson, Sandrine

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL{sup -1}. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. Cmore » by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.« less

  10. Phase II test plan for the evaluation of the performance of container filling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOGER, R.M.

    The PHMC will provide tank wastes for final treatment by BNFL from Hanford's waste tanks. Concerns about the ability for ''grab'' sampling to provide large volumes of representative waste samples has led to the development of a nested, fixed-depth sampling system. Preferred concepts for filling sample containers that meet RCRA organic sample criteria were identified by a PHMC Decision Board. These systems will replace the needle based sampling ''T'' that is currently on the sampling system. This test plan document identifies cold tests with simulants that will demonstrate the preferred bottle filling concepts abilities to provide representative waste samples andmore » will meet RCRA criteria. Additional tests are identified that evaluate the potential for cross-contamination between samples and the ability for the system to decontaminate surfaces which have contacted tank wastes. These tests will be performed with kaolid/water and sand/water slurry simulants in the test rig that was used by AEAT to complete Phase 1 tests in FY 1999.« less

  11. Environmentally and economically efficient utilization of coal processing waste.

    PubMed

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2017-11-15

    High concentrations of hazardous anthropogenic emissions (sulfur, nitrogen and carbon oxides) from solid fuel combustion in coal burning plants cause environmental problems that have been especially pressing over the last 20-30 years. A promising solution to these problems is a switch from conventional pulverized coal combustion to coal-water slurry fuel. In this paper, we pay special attention to the environmental indicators characterizing the combustion of different coal ranks (gas, flame, coking, low-caking, and nonbaking coals) and coal-water slurry fuels based on the coal processing waste - filter cakes. There have been no consistent data so far on the acceptable intervals for the anthropogenic emissions of sulfur (SO x ), nitrogen (NO x ) and carbon (CO, CO 2 ) oxides. Using a specialized combustion chamber and gas analyzing system, we have measured the concentrations of typical coal and filter-cake-based CWS combustion products. We have also calculated the typical combustion heat of the fuels under study and measured the ratio between environmental and energy attributes. The research findings show that the use of filter cakes in the form of CWS is even better than coals in terms of environment and economy. Wide utilization of filter cakes solves many environmental problems: the areas of contaminated sites shrink, anthropogenic emissions decrease, and there is no need to develop new coal mines anymore. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Potential for Waste Stratification from Back-Dilution in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Meyer, P.A.

    Since late 1997, the floating crust layer in Hanford Tank 241-SY-101 (SY-101) has grown about two meters by gas accumulation. To reverse crust growth and reduce its retained gas volume, the waste in SY-101 will be diluted by transferring at least 300,000 gal of waste out of the tank and replacing it with water. In the fall of 1999, approximately 100,000 gal of this waste will be transferred into Tank SY-102; within a few days of that initial transfer, approximately 100,000 gal of water will be added to SY-101. This initial back-dilution is being planned to ensure that the basemore » of the floating crust layer will be lifted away from the mixer pump inlet with minimal effect on the crust itself. The concern is that the added water will pool under the crust, so the resulting fluid mixture will be too light to lift the crust away from the mixer pump and dissolution at the crust base could cause unwanted gas release. To ensure sufficient mixing to prevent such stratification, water will be added near the tank bottom either through an existing sparge ring on the base of the mixer pump or through the dilution line at the inlet of the transfer pump. A number of simulations using the TEMPEST code showed that the mixing of the water and waste by this method is rapid, and the water does not pool under the crust. Although a density gradient is present, its magnitude is small compared with the difference between the slurry and water density. The result is essentially the same whether water is introduced at the base of the mixer pump or at the transfer pump. There is little effect of water flowrate up to the 500 gpm studied. In all cases, the minimum density remained above that required to float the crust and well above the density of saturated liquid. This indicates that the base of the crust will rise during back-dilution and there will be little or no dissolution of the crust base because the water will be close to saturation from the dissolution of solids in the mixed slurry.« less

  13. Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization.

    PubMed

    da Rosa Couto, Rafael; Faversani, Jéssica; Ceretta, Carlos Alberto; Ferreira, Paulo Ademar Avelar; Marchezan, Carina; Basso Facco, Daniela; Garlet, Luana Paula; Silva, Jussiane Souza; Comin, Jucinei José; Bizzi, Cezar Augusto; Flores, Erico Marlon Moraes; Brunetto, Gustavo

    2018-05-30

    Heavy metals and bromine (Br) derived from organic and industrialized fertilizers can be absorbed, transported and accumulated into parts of plants ingested by humans. This study aimed to evaluate in an experiment conducted under no-tillage for 10 years, totaling 14 applications of pig slurry manure (PS), pig deep-litter (PL), dairy slurry (DS) and mineral fertilizer (MF), the heavy metal and Br contents in soil and in whether the grains produced by corn (Zea mays L.) and wheat (Triticum aestivum L.) under these conditions could result in risk to human health. The total contents of As, Cd, Pb, Cr, Ni, Cu, Zn and Br were analyzed in samples of fertilizers, waste, soil, shoots and grains of corn and wheat. Afterwards, enrichment factor (EF), accumulation factor (AF), health risk index (HRI), target hazard quotient (THQ) and target cancer risk (TCR) were determined. Mineral fertilizer exhibited the highest As and Cr content, while the highest levels of Cu and Zn were found in animal waste. The contents of As, Cd, Cr, Cu, Ni, Pb and Zn in soil were below the limits established by environmental regulatory agencies. However, a significant enrichment factor was found for Cu in soil with a history of PL application. Furthermore, high Zn contents were found in shoots and grains of corn and wheat, especially when the plants were grown in soil with organic waste application. Applications of organic waste and mineral fertilizer provided high HRI and THQ for Br and Zn, posing risks to human health. The intake of corn and wheat fertilized with pig slurry manure, swine deep bed, liquid cattle manure and industrialized mineral fertilizer did not present TCR. Copyright © 2018. Published by Elsevier Inc.

  14. Nitrification during extended co-composting of extreme mixtures of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Martínez-Farré, F Xavier; López, Marga; Soliva, Montserrat; Marfà, Oriol

    2016-12-01

    Next generation of waste management systems should apply product-oriented bioconversion processes that produce composts or biofertilisers of desired quality that can be sold in high priced markets such as horticulture. Natural acidification linked to nitrification can be promoted during composting. If nitrification is enhanced, suitable compost in terms of pH can be obtained for use in horticultural substrates. Green waste compost (GW) represents a potential suitable product for use in growing medium mixtures. However its low N provides very limited slow-release nitrogen fertilization for suitable plant growth; and GW should be composted with a complementary N-rich raw material such as the solid fraction of cattle slurry (SFCS). Therefore, it is important to determine how very different or extreme proportions of the two materials in the mixture can limit or otherwise affect the nitrification process. The objectives of this work were two-fold: (a) To assess the changes in chemical and physicochemical parameters during the prolonged composting of extreme mixtures of green waste (GW) and separated cattle slurry (SFCS) and the feasibility of using the composts as growing media. (b) To check for nitrification during composting in two different extreme mixtures of GW and SFCS and to describe the conditions under which this process can be maintained and its consequences. The physical and physicochemical properties of both composts obtained indicated that they were appropriate for use as ingredients in horticultural substrates. The nitrification process occurred in both mixtures in the medium-late thermophilic stage of the composting process. In particular, its feasibility has been demonstrated in the mixtures with a low N content. Nitrification led to the inversion of each mixture's initial pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Glass former composition and method for immobilizing nuclear waste using the same

    DOEpatents

    Cadoff, Laurence H.; Smith-Magowan, David B.

    1988-01-01

    An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.

  16. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun

    This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiationmore » fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.« less

  17. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  18. 40 CFR 355.61 - How are key words in this part defined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste when mixed or commingled with bedding, compost, feed, soil and other typical materials found with... aqueous or organic solutions, slurries, viscous solutions, suspensions, emulsions, or pastes. State means...

  19. 40 CFR 355.61 - How are key words in this part defined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste when mixed or commingled with bedding, compost, feed, soil and other typical materials found with... aqueous or organic solutions, slurries, viscous solutions, suspensions, emulsions, or pastes. State means...

  20. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J. M.

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washedmore » Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.« less

  1. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set ofmore » unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours to weeks. The unusual shape of the slurry flow curves was not an artifact of the rheometric measurement. Adjusting the user-specified parameters in the rheometer measurement jobs can alter the shape of the flow curve of these time dependent samples, but this was not causing the unusual behavior. Variations in the measurement parameters caused the time dependence of a given slurry to manifest at different rates. The premise of the controlled shear rate flow curve measurement is that the dynamic response of the sample to a change in shear rate is nearly instantaneous. When this is the case, the data can be fitted to a time independent rheological equation, such as the Bingham plastic model. In those cases where this does not happen, interpretation of the data is difficult. Fitting time dependent data to time independent rheological equations, such as the Bingham plastic model, is also not appropriate.« less

  2. Silver doped catalysts for treatment of exhaust

    DOEpatents

    Park, Paul Worn [Peoria, IL; Boyer, Carrie L [Shiloh, IL

    2006-12-26

    A method of making an exhaust treatment catalyst includes dispersing a metal-based material in a first solvent to form a first slurry and allowing polymerization of the first slurry to occur. Polymerization of the first slurry may be quenched and the first slurry may be allowed to harden into a solid. This solid may be redistributed in a second solvent to form a second slurry. The second slurry may be loaded with a silver-based material, and a silver-loaded powder may be formed from the second slurry.

  3. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less

  4. Impacts of zeolite, alum and polyaluminum chloride amendments mixed with agricultural wastes on soil column leachate, and CO2 and CH4 emissions.

    PubMed

    Murnane, J G; Fenton, O; Healy, M G

    2018-01-15

    This study aimed to quantify leaching losses of nitrogen (N), phosphorus (P) and carbon (C), as well as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions from stored slurry, and from packed soil columns surface applied with unamended and chemically amended dairy and pig slurries, and dairy soiled water (DSW). The amendments to the slurries, which were applied individually and together, were: polyaluminum chloride (PAC) and zeolite for pig and dairy slurry, and liquid aluminium sulfate (alum) and zeolite for DSW. Application of pig slurry resulted in the highest total nitrogen (TN) and nitrate-nitrogen (NO 3 -N) fluxes (22 and 12 kg ha -1 ), whereas corresponding fluxes from dairy slurries and DSW were not significantly (p < 0.05) higher than those from the control soil. There were no significant (p < 0.05) differences in leachate N losses between unamended and amended dairy slurries, unamended and amended pig slurries, and unamended and amended DSW. There were no leachate P losses measured over the experimental duration. Total cumulative organic (TOC) and inorganic C (TIC) losses in leachate were highest for unamended dairy slurry (82 and 142 kg ha -1 ), and these were significantly (p < 0.05) reduced when amended with PAC (38 and 104 kg ha -1 ). The highest average cumulative CO 2 emissions for all treatments were measured for pig slurries (680 kg CO 2 -C ha -1 ) followed by DSW (515 kg CO 2 -C ha -1 ) and dairy slurries (486 kg CO 2 -C ha -1 ). The results indicate that pig slurry, either in raw or chemically amended form, poses the greatest environmental threat of leaching losses and gaseous emissions of CO 2 and CH 4 and, in general, amendment of wastewater with PAC, alum or zeolite, does not mitigate the risk of these losses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Yield Stress Reduction of DWPF Melter Feed Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.E.; Smith, M.E.

    2007-07-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process. Yield stress reduction was measured by preparing melter feed slurries (using nonradioactive HLW simulants) that contain beads and comparing the yield stress with melter feed containing frit. A second set of tests was performed with beads of various diameters to determine if a decrease in diameter affected the results. Smaller particle size was shown to increase yield stress when frit is utilized. The settling rate of the beads was required to match the settling rate of the frit, therefore a decrease in particle size was anticipated. Settling tests were conducted in water, xanthan gum solutions, and in non-radioactive simulants of the HLW. The tests used time-lapse video-graphy as well as solids sampling to evaluate the settling characteristics of beads compared to frit of the same particle size. A preliminary melt rate evaluation was performed using a dry-fed Melt Rate Furnace (MRF) developed by SRNL. Preliminary evaluation of the impact of beading the frit on the frit addition system were completed by conducting flow loop testing. A recirculation loop was built with a total length of about 30 feet. Pump power, flow rate, outlet pressure, and observations of the flow in the horizontal upper section of the loop were noted. The recirculation flow was then gradually reduced and the above items recorded until settling was noted in the recirculation line. Overall, the data shows that the line pressure increased as the solids were increased for the same flow rate. In addition, the line pressure was higher for Frit 320 than the beads at the same solids level and flow. With the observations, a determination of minimum velocity to prevent settling could be done, but a graph of the line pressures versus velocity for the various tests was deemed to more objective. The graph shows that the inflection point in pressure drop is about the same for the beads and Frit 320. This indicates that the bead slurry would not require higher flows rates than frit slurry at DWPF during transfers. Another key finding was that the pump impeller was not significantly damaged by the bead slurry, while the Frit 320 slurry rapidly destroyed the impeller. Evidence of this was first observed when black particles were seen in the Frit 320 slurry being recirculated and then confirmed by a post-test inspection of the impeller. Finally, the pumping of bead slurry could be recovered even if flow is stopped. The Frit 320 slurry could not be restarted after stopping flow due to the nature of the frit to pack tightly when settled. Beads were shown to represent a significant process improvement versus frit for the DWPF process in lowering yield stress of the melter feed. Lower erosion of process equipment is another expected benefit.« less

  6. Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment.

    PubMed

    Lopes, Madalena; Baptista, Patrícia; Duarte, Elizabeth; Moreira, António L N

    2018-01-02

    Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment. In this study, co-digestion of horse manure and pig slurry was investigated in a continuously stirred tank reactor, with a mechanical pre-treatment. Experiments were conducted at 37°C, with hydraulic retention times of 23 days and increasing shares of horse manure, corresponding to different horse manure to pig slurry ratios (HM:PS) equal to 0:100, 10:90, 13:87 and 20:80, in terms of percentage of inlet volatile solids (%VS inlet). The results show that the best synergetic effect between the microbial consortia of pig slurry and the high Carbon to Nitrogen ratio (C/N) of horse manure is obtained for the mixture of 20:80%VS inlet, yielding the highest specific methane production (SMP = 142.6 L kg TCOD -1 ) and the highest soluble chemical oxygen demand (SCOD) reduction (68.5%), due to the high volatile dissolved solids content and soluble chemical oxygen demand to total chemical oxygen demand ratio (SCOD/TCOD). Thus, co-digestion of horse manure and pig slurry is shown to be a promising approach for biogas production and as a waste treatment solution. Furthermore, the analysis provides a methodology for the pre-treatment of these substrates and to investigate into the best combination for improved biogas production.

  7. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  8. Preliminary investigation of air bubbling and dietary sulfur reduction to mitigate hydrogen sulfide and odor from swine waste.

    PubMed

    Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R

    2005-01-01

    When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales.

  9. Results from tests of TFL Hydragard sampling loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimke, J.L.

    When the Defense Waste Processing Facility (DWPF) is operational, processed radioactive sludge will be transferred in batches to the Slurry Mix Evaporator (SME), where glass frit will be added and the contents concentrated by boiling. Batches of the slurry mixture are transferred from the SME to the Melter Feed Tank (MFT). Hydragard{reg_sign} sampling systems are used on the SME and the MFT for collecting slurry samples in vials for chemical analysis. An accurate replica of the Hydragard sampling system was built and tested in the thermal Fluids Laboratory (TFL) to determine the hydragard accuracy. It was determined that the originalmore » Hydragard valve frequently drew a non-representative sample stream through the sample vial that ranged from frit enriched to frit depleted. The Hydragard valve was modified by moving the plunger and its seat backwards so that the outer surface of the plunger was flush with the inside diameter of the transfer line when the valve was open. The slurry flowing through the vial accurately represented the composition of the slurry in the reservoir for two types of slurries, different dilution factors, a range of transfer flows and a range of vial flows. It was then found that the 15 ml of slurry left in the vial when the Hydragard valve was closed, which is what will be analyzed at DWPF, had a lower ratio of frit to sludge as characterized by the lithium to iron ratio than the slurry flowing through it. The reason for these differences is not understood at this time but it is recommended that additional experimentation be performed with the TFL Hydragard loop to determine the cause.« less

  10. Biogas slurry pricing method based on nutrient content

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  11. DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Peeler, D.; Click, D.

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. In this report, the physical and chemical characterization results of the slurry solids and sump solids are reported. Crawford et al. (2010) provide the results of the supernate analysis. The results of the sump solidsmore » are reported on a mass basis given the samples were essentially dry upon receipt. The results of the slurry solids were converted to a volume basis given approximately 2.4 grams of slurry solids were obtained from the {approx}4 liters of liquid slurry sample. Although there were slight differences in the analytical results between the sump solids and slurry solids the following general summary statements can be made. Slight differences in the results are also captured for specific analysis. (1) Physical characterization - (a) SEM/EDS analysis suggested that the samples were enriched in Li and Si (B and Na not detectable using the current EDS system) which is consistent with two of the four principle oxides of Frit 418 (B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O and SiO{sub 2}). (b) SEM/EDS analysis also identified impurities which were elementally consistent with stainless steel (i.e., Fe, Ni, Cr contamination). (c) XRD results indicated that the sump solids samples were amorphous which is consistent with XRD results expected for a Frit 418 based sample. (d) For the sump solids, SEM/EDS analysis indicated that the particle size of the sump solids were consistent with that of an as received Frit 418 sample from a current DWPF vendor. (e) For the slurry solids, SEM/EDS analysis indicated that the particle size range of the slurry solids was much broader than compared to the sump solids. More specifically, there were significantly more fines in the slurry solids as compared to the sump solids. (f) PSD results indicated that > 99% of both the sump and slurry solids were less than 350 microns. The PSD results also supported SEM/EDS analysis that there were significantly more fines in the slurry solids as compared to the sump solids. (2) Weight Percent Solids - Based on the measured supernate density and mass of insoluble solids (2.388 grams) filtered from the four liters of liquid slurry samples, the weight percent insoluble solids was estimated to be 0.060 wt%. This level of insoluble solids is higher than the ETP WAC limit of 100 mg/L, or 0.01 wt% which suggests a separation technology of some type would be required. (3) Chemical Analysis - (a) Elemental results from ICP-ES analysis indicated that the sump solids and slurry were very consistent with the nominal composition of Frit 418. There were other elements identified by ICP analysis which were either consistent with the presence of stainless steel (as identified by SEM/EDS analysis) or impurities that have been observed in 'as received' Frit 418 from the vendor. (b) IC anion analysis of the sump solids and slurry solids indicated all of the species were less than detection limits. (c) Radionuclide analysis of the sump solids also indicated that most of the analytes were either at or below the detection limits. (d) Organic analysis of the sump solids and slurry solids indicated all of the species were less than detection limits. It should be noted that the results of this study may not be representative of future decon frit solutions or sump/slurry solids samples. Therefore, future DWPF decisions regarding the possible disposal pathways for either the aqueous or solid portions of the Decon Frit system need to factor in the potential differences. More specifically, introduction of a different frit or changes to other DWPF flowsheet unit operations (e.g., different sludge batch or coupling with other process streams) may impact not only the results but also the conclusions regarding acceptability with respect to the ETF WAC limits or other alternative disposal options.« less

  12. Liquid fuels from food waste: An alternative process to co-digestion

    NASA Astrophysics Data System (ADS)

    Sim, Yoke-Leng; Ch'ng, Boon-Juok; Mok, Yau-Cheng; Goh, Sok-Yee; Hilaire, Dickens Saint; Pinnock, Travis; Adams, Shemlyn; Cassis, Islande; Ibrahim, Zainab; Johnson, Camille; Johnson, Chantel; Khatim, Fatima; McCormack, Andrece; Okotiuero, Mary; Owens, Charity; Place, Meoak; Remy, Cristine; Strothers, Joel; Waithe, Shannon; Blaszczak-Boxe, Christopher; Pratt, Lawrence M.

    2017-04-01

    Waste from uneaten, spoiled, or otherwise unusable food is an untapped source of material for biofuels. A process is described to recover the oil from mixed food waste, together with a solid residue. This process includes grinding the food waste to an aqueous slurry, skimming off the oil, a combined steam treatment of the remaining solids concurrent with extrusion through a porous cylinder to release the remaining oil, a second oil skimming step, and centrifuging the solids to obtain a moist solid cake for fermentation. The water, together with any resulting oil from the centrifuging step, is recycled back to the grinding step, and the cycle is repeated. The efficiency of oil extraction increases with the oil content of the waste, and greater than 90% of the oil was collected from waste containing at least 3% oil based on the wet mass. Fermentation was performed on the solid cake to obtain ethanol, and the dried solid fermentation residue was a nearly odorless material with potential uses of biochar, gasification, or compost production. This technology has the potential to enable large producers of food waste to comply with new laws which require this material to be diverted from landfills.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, S.; Wong, K.V.; Nemerow, N.

    Characterization of the following waste streams: air-classified light (ACL), digester slurry, filter cake, filtrate, washwater input and washwater effluent has been made for the Refcom facility in order to assess the effects of these waste streams, if discharged into the environment. Special laboratory studies to evaluate the effect of plastics on anaerobic digestion have been undertaken. A separate report has been furnished describing the studies of lab-model digesters. Data collected for ACL has been statistically analyzed.

  14. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  15. Gravitational sedimentation of flocculated waste activated sludge.

    PubMed

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  16. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: Towards cytostatic drug elimination.

    PubMed

    Janssens, Raphael; Mandal, Mrinal Kanti; Dubey, Kashyap Kumar; Luis, Patricia

    2017-12-01

    The potential of photocatalytic membrane reactors (PMR) to degrade cytostatic drugs is presented in this work as an emerging technology for wastewater treatment. Cytostatic drugs are pharmaceutical compounds (PhCs) commonly used in cancer treatment. Such compounds and their metabolites, as well as their degraded by-products have genotoxic and mutagenic effects. A major challenge of cytostatic removal stands in the fact that most drugs are delivered to ambulant patients leading to diluted concentration in the municipal waste. Therefore safe strategies should be developed in order to collect and degrade the micro-pollutants using appropriate treatment technologies. Degradation of cytostatic compounds can be achieved with different conventional processes such as chemical oxidation, photolysis or photocatalysis but the treatment performances obtained are lower than the ones observed with slurry PMRs. Therefore the reasons why slurry PMRs may be considered as the next generation technology will be discussed in this work together with the limitations related to the mechanical abrasion of polymeric and ceramic membranes, catalyst suspension and interferences with the water matrix. Furthermore key recommendations are presented in order to develop a renewable energy powered water treatment based on long lifetime materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    PubMed

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  18. Evolution of N-converting bacteria during the start-up of anaerobic digestion coupled biological nitrogen removal pilot-scale bioreactors treating high-strength animal waste slurry.

    PubMed

    Anceno, Alfredo J; Rouseau, Pierre; Béline, Fabrice; Shipin, Oleg V; Dabert, Patrick

    2009-07-01

    Animal wastes have been successfully employed in anaerobic biogas production, viewed as a pragmatic approach to rationalize energy costs in animal farms. Effluents resulting from that process however are still high in nitrogen such that attempts were made to couple biological nitrogen removal (BNR) with anaerobic digestion (AD). The demand for organic substrate in such system is partitioned between the anaerobic metabolism in AD and the heterotrophic denitrification cascade following the autotrophic nitrification in BNR. Investigation of underlying N-converting taxa with respect to process conditions is therefore critical in optimizing N-removal in such treatment system. In this study, a pilot-scale intermittently aerated BNR bioreactor was started up either independently or in series with the AD bioreactor to treat high-strength swine waste slurry. The compositions of NH(3)-oxidizing bacteria (AOB), NO(2)(-)-oxidizing bacteria (NOB) and denitrifiers (nosZ gene) were profiled by polymerase chain reaction-capillary electrophoresis/single strand conformation polymorphism (PCR-CE/SSCP) technique and clone library analysis. Performance data suggested that these two process configurations significantly differ in the modes of biological N-removal. PCR-CE/SSCP based profiling of the underlying nitrifying bacteria also revealed the selection of distinct taxa between process configurations. Under the investigated process conditions, correlation of performance data and composition of underlying nitrifiers suggest that the stand-alone BNR bioreactor tended to favor N-removal via NO(3)(-) whereas the coupled bioreactors could be optimized to achieve the same via a NO(2)(-) shortcut.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poloski, Adam P.; Adkins, Harold E.; Abrefah, John

    The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication ofmore » slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 μm in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.« less

  20. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  1. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.

    PubMed

    Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B

    2018-01-16

    This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  2. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E. K.

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  3. Impact of chemistry on Standard High Solids Vessel Design mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.

    2016-03-02

    The plan for resolving technical issues regarding mixing performance within vessels of the Hanford Waste Treatment Plant Pretreatment Facility directs a chemical impact study to be performed. The vessels involved are those that will process higher (e.g., 5 wt % or more) concentrations of solids. The mixing equipment design for these vessels includes both pulse jet mixers (PJM) and air spargers. This study assesses the impact of feed chemistry on the effectiveness of PJM mixing in the Standard High Solids Vessel Design (SHSVD). The overall purpose of this study is to complement the Properties that Matter document in helping tomore » establish an acceptable physical simulant for full-scale testing. The specific objectives for this study are (1) to identify the relevant properties and behavior of the in-process tank waste that control the performance of the system being tested, (2) to assess the solubility limits of key components that are likely to precipitate or crystallize due to PJM and sparger interaction with the waste feeds, (3) to evaluate the impact of waste chemistry on rheology and agglomeration, (4) to assess the impact of temperature on rheology and agglomeration, (5) to assess the impact of organic compounds on PJM mixing, and (6) to provide the technical basis for using a physical-rheological simulant rather than a physical-rheological-chemical simulant for full-scale vessel testing. Among the conclusions reached are the following: The primary impact of precipitation or crystallization of salts due to interactions between PJMs or spargers and waste feeds is to increase the insoluble solids concentration in the slurries, which will increase the slurry yield stress. Slurry yield stress is a function of pH, ionic strength, insoluble solids concentration, and particle size. Ionic strength and chemical composition can affect particle size. Changes in temperature can affect SHSVD mixing through its effect on properties such as viscosity, yield stress, solubility, and vapor pressure, or chemical reactions that occur at high temperatures. Organic compounds will affect SHSVD mixing through their effect on properties such as rheology, particle agglomeration/size, particle density, and particle concentration.« less

  4. PEP Support Laboratory Leaching and Permeate Stability Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.

    2009-09-25

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes.more » The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-VSL-T01A and B, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP-VSL-T02A, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic.« less

  5. Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures

    NASA Astrophysics Data System (ADS)

    Falacinski, Paweł; Szarek, Łukasz

    2016-06-01

    In Poland, in recent years, there has been a rapid accumulation of sewage sludge - a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. This type of hardening slurry with various types of additives, e.g. coal combustion products, is used in the construction of cut-off walls in hydraulic structures. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analysed on the basis of their basic properties, i.e. density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The mandated requirements for slurries employed in the construction of cut-off walls in flood embankments are listed as a usefulness criteria. The article presents the potential uses of fly ash from SSTT in hardening slurry technology. It also suggests directions for further research to fully identify other potential uses of this by-product in this field.

  6. Long-term Effects of Organic Waste Fertilizers on Soil Structure, Tracer Transport, and Leaching of Colloids.

    PubMed

    Lekfeldt, Jonas Duus Stevens; Kjaergaard, Charlotte; Magid, Jakob

    2017-07-01

    Organic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores. Total porosity was positively correlated with SOC content. Yearly applications of sewage sludge increased absolute microporosity (pores <30 μm) and decreased relative macroporosity (pores >30 μm) compared with the unfertilized control, whereas organic household waste compost fertilization increased both total porosity and the absolute porosity in all pore size classes (though not significant for 100-600 μm). Treatments receiving large amounts of organic fertilizers exhibited significantly lower levels of dispersible colloids compared with an unfertilized control and a treatment that had received moderate applications of cattle slurry. The content of water-dispersible colloids could not be explained by a single factor, but differences in SOC content, electrical conductivity, and sodium adsorption ratio were important factors. Moreover, we found that the fertilizer treatments did not significantly affect the solute transport properties of the topsoil. Finally, we found that the leaching of soil colloids was significantly decreased in treatments that had received large amounts of organic waste fertilizers, and we ascribe this primarily to treatment-induced differences in effluent electrical conductivity during leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until themore » 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m 3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.« less

  8. From fly ash waste slurry to functional adsorbent for valuable rare earth ion separation: An ingenious combination process involving modification, dewatering and grafting.

    PubMed

    Zhou, Qi; Luo, Tiantian; Yang, Heng; Liang, Cheng; Jing, Luru; Luo, Wenjun

    2018-03-01

    Acid extracting aluminum from fly ash would produce pestilent secondary fly ash slurry with strong acidity, high content of Cl - and residual Al 3+ that is difficult to be further used. In order to achieve the zero emission, a potential integrated treatment process for reutilization was proposed in this paper. By intelligent use of residual Al 3+ in sludge as catalyst, hydrophobic modification of solid particle was taken with fatty acid via a heterogeneous esterification at normal temperature. Due to the solvophobic force, moisture content of its filter cake was 36.46%, which reduced 11.14% compared with the unmodified one, hydrophobicity scale can achieve 100% with modifier accounting for only 0.8% of solid content and the Cl - concentrations decreased from 20 to 0.102 g/L in wash liquor, thus greatly saving water for washing and energy for drying. Subsequently, based on the appearance of hydrocarbon chains on particle surface, a high-efficiency ultraviolet-induced grafting polymerization was implemented to fabricate density polyacrylic acid decorated fly ash particles from the surface "CH" sites, the resultant composite was proved to efficiently separate valuable rare-earth Gd 3+ from wastewater with outstanding adsorption and regeneration performance, hence bringing high added-value utilization for these hazardous waste. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Industrial waste utilization for foam concrete

    NASA Astrophysics Data System (ADS)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  10. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm - Agronomical and environmental implications.

    PubMed

    Sáez, José A; Clemente, Rafael; Bustamante, M Ángeles; Yañez, David; Bernal, M Pilar

    2017-05-01

    The changes in livestock production systems towards intensification frequently lead to an excess of manure generation with respect to the agricultural land available for its soil application. However, treatment technologies can help in the management of manures, especially in N-surplus areas. An integrated slurry treatment system based on solid-liquid separation, aerobic treatment of the liquid and composting the solid fraction was evaluated in a pig farm (sows and piglets) in the South of Spain. Solid fraction separation using a filter band connected to a screw press had low efficiency (38%), which was greatly improved incorporating a rotatory sieve (61%). The depuration system was very efficient for the liquid, with total removal of 84% total solids, 87% volatile solids, and 98% phosphorus. Two composting systems were tested through mechanical turning of: 1- a mixture of solid fraction stored for 1 month after solid-liquid separation and cereal straw; 2- recently-separated solid fraction mixed with cotton gin waste. System 2 was recommended for the farm, as it exhibited a fast temperature rise and a long thermophilic phase to ensure compost sanitisation, and high recovery of nutrients (TN 77%, P and K > 85%) and organic matter (45%). The composts obtained were mature, stable and showed a high degree of humification of their organic matter, absence of phytotoxicity and concentrations of nutrients similar to other composts from pig manure or separated slurry solids. However, the introduction of slurry from piglets into the solid-liquid separation system should be avoided in order to reduce the content of Zn in the compost, which lowers its quality. The slurry separation followed by composting of the solid fraction using a passive windrow system, and aeration of the liquid phase, was the most recommendable procedure for the reduction of GHG emissions on the farm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Wastes and by-products - alternatives for agricultural use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfatemore » fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.« less

  12. A Simple Criterion to Estimate Performance of Pulse Jet Mixed Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, Leonard F.; Bamberger, Judith A.; Mahoney, Lenna A.

    Pulse jet mixed process vessels comprise a key element of the U.S. Department of Energy’s strategy to process millions of gallons of legacy nuclear waste slurries. Slurry suctioned into a pulse jet mixer (PJM) tube at the end of one pulse is pneumatically driven from the PJM toward the bottom of the vessel at the beginning of the next pulse, forming a jet. The jet front traverses the distance from nozzle outlet to the bottom of the vessel and spreads out radially. Varying numbers of PJMs are typically arranged in a ring configuration within the vessel at a selected radiusmore » and operated concurrently. Centrally directed radial flows from neighboring jets collide to create a central upwell that elevates the solids in the center of the vessel when the PJM tubes expel their contents. An essential goal of PJM operation is to elevate solids to the liquid surface to minimize stratification. Solids stratification may adversely affect throughput of the waste processing plant. Unacceptably high slurry densities at the base of the vessel may plug the pipeline through which the slurry exits the vessel. Additionally, chemical reactions required for processing may not achieve complete conversion. To avoid these conditions, a means of predicting the elevation to which the solids rise in the central upwell that can be used during vessel design remains essential. In this paper we present a simple criterion to evaluate the extent of solids elevation achieved by a turbulent upwell jet. The criterion asserts that at any location in the central upwell the local velocity must be in excess of a cutoff velocity to remain turbulent. We find that local velocities in excess of 0.6 m/s are necessary for turbulent jet flow through both Newtonian and yield stress slurries. By coupling this criterion with the free jet velocity equation relating the local velocity to elevation in the central upwell, we estimate the elevation at which turbulence fails, and consequently the elevation at which the upwell fails to further lift the slurry. Comparing this elevation to the vessel fill level predicts whether the jet flow will achieve the full vertical extent of the vessel at the center. This simple local-velocity criterion determines a minimum PJM nozzle velocity at which the full vertical extent of the central upwell in PJM vessels will be turbulent. The criterion determines a minimum because flow in regions peripheral to the central upwelling jet may not be turbulent, even when the center of the vessel in the upwell is turbulent, if the jet pulse duration is too short. The local-velocity criterion ensures only that there is sufficient wherewithal for the turbulent jet flow to drive solids to the surface in the center of the vessel in the central upwell.« less

  13. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  14. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

    1997-06-10

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.

  15. Sludge batch 9 (SB9) acceptance evaluation. Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Diprete, D. P.; Pareizs, J. M.

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less

  16. Sludge batch 9 (SB9) accepance evaluation: Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.; Diprete, D.; Pareizs, J.

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a compositioniv expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less

  17. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery wasmore » examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than the actual concentrations measured. Mercury metal present in the MWWT from previous batches could be dissolved by this acidic condensate. The test of the effect of higher SRAT condenser temperature on recovery of mercury in the MWWT and offgas system was inconclusive. The recovery at higher temperature was lower than several low temperature runs, but about the same as other runs. Factors other than temperature appear to affect the mercury recovery. The presence of chloride and iodide in simulants resulted in the formation of mercurous chloride and mercurous iodide, respectively, in the offgas system. Actual waste data shows that the chloride content is much less than the simulant concentrations. Future simulant tests should minimize the addition of chloride. Similarly, iodine addition should be eliminated unless actual waste analyses show it to be present; currently, total iodine is not measured on actual waste samples.« less

  18. Integrated management of organic wastes for remediation of massive tailings storage facilities under semiarid mediterranean climate type: efficacy of organic pork residues as study case

    NASA Astrophysics Data System (ADS)

    Ginocchio, Rosanna; Arellano, Eduardo; España, Helena; Gardeweg, Rosario; Bas, Fernando; Gandarillas, Mónica

    2016-04-01

    Remediation of large surface areas of massive mine wastes, such as tailings storage facilities (TSFs) is challenging, particularly when no topsoils have been stored for the mine closure stage. Worldwide, it has been demonstrated that the use of organic wastes as substrate amendments for remediation of hard rock mine wastes is a useful alternative to topsoils material. In the case of semi-arid climate conditions of north-central Chile, the copper mining industry has generated massive TSF (between 400 ha and 3,000 ha) which needs now to be properly closed according to recently established mine closure regulations. However, in most of the cases, there have been no topsoils savage that facilitate the initial stage of the site remediation. Industrial organic wastes (i.e. biosolids) are found in the area, but their availability is normally below the demand needed for remediation of TSFs and salt content is normally elevated, thus posing salinization risks to the substrate and negative plant growth. We focused on a large organic waste producing industry, the pork industry, whose growth has been restricted due to the limited possibilities for using pig slurries as amendments for croplands in north-central Chile and the strong odor generated, resulting in conflicts with local communities. Incorporation of pig slurries as amendments to post-operative TSFs has been scarcely evaluated at international level (i.e. Spain) and no evaluation at all exists for the solid organic fraction generated from pig slurry treatment plants (PSTP). In the present study, we evaluated the efficacy of both pig slurries (PS) and the solid fraction of PSTP (SF-PSTP) as tailings amendment for creating good plant productivity on TSFs located under semi-arid Mediterranean climate conditions in north-central Chile. A short-term greenhouse study was developed. Copper mine tailings were mixed either with PS (0, 40, 80, and 120 m3 ha-1) or SF-PSTP (0, 25, 50 and 75 t ha-1), distributed in 3 L pots, and seeded with Lolium perenne. Experimental pots were kept under controlled conditions and irrigated up to 70% field water capacity for 42 days. After this period, chemical characteristics of the substrate and productive plant variables were determined and contrasted. Results showed that both pig wastes evaluated had significant (positive) and dose-dependent effects on plant productivity (both aerial and root biomass), but an increase in copper and zinc contents in aerial tissues occurred. Metal increments in aerial plant tissues were, however, below plant toxicity thresholds and represent no risk for cattle consumption. Application of any pork waste to mine tailings increased organic matter and macronutrient contents, besides raising pH. No substrate salinization was detected under the evaluated doses. These promising results show that organic pork residues are useful amendments for remediation of TSFs in north-central Chile. Furthermore, a twofold solution for environmental problems generated by two very relevant industrial sectors of the country is thus possible. Further studies are, however needed. Study funded by Project DIP-FAIF of P. Universidad Católica de Chile and by Project FB 0002-2014 of CONICYT. CICAP is also acknowledged.

  19. Coal slurry fuel supply and purge system

    DOEpatents

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  20. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. Amore » three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.« less

  1. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu

    2015-12-01

    Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.

  2. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysismore » of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 μm and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter in this unwashed sample. Neither the washed nor unwashed PRFT solids TGA traces showed any features that would indicate presence of sodium oxalate solids. The PRFT Filtrate elemental analysis shows that Na, S and Al are major soluble species with trace levels of B, Cr, Cu, K, Li, Si, Tc, Th and U present. Nitrate, nitrite, sulfate, oxalate, carbonate and hydroxide are major soluble anion species. There is good agreement between the analyzed TOC and the total carbon calculated from the sum of oxalate and minor species formate. Comparison of the amount and speciation of the carbon species between filtrate and slurry indicates no significant carbon-containing species, e.g., sodium oxalate, are present in the slurry solids. Dissolution of the PRFT slurry and subsequent analysis shows that Na, Ti, Si and U are the major elements present on a Wt.% total dried solids basis with 30, 5.8 and 0.47 and 0.11 Wt.% total dried solids, respectively. The amount of Al in the dissolved PRFT slurry is less than that calculated from the PRFT filtrate alone which suggests that the mixed acid digestion used in this work is not optimized for Al recovery. The concentrations of Ca, Fe, Hg and U are all low (at or below 0.11 wt%) and there is no detectable Mn or Ni present which indicates no significant HLW sludge solids are present in the PRFT slurry sample.« less

  3. Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization.

    PubMed

    Kong, Xin; Xu, Shuang; Liu, Jianguo; Li, Huan; Zhao, Ke; He, Liang

    2016-01-15

    The inoculation for extruded food waste anaerobic digestion (AD) was optimized to improve methane (CH4) yield. The inoculum of acclimated anaerobic sludge resulted in high biodegradability, producing CH4 yields from 580 mLCH4 g(-1)·VSadded to 605 mLCH4 g(-1)·VSadded, with corresponding BDCH4 ranging from 90% to 94%. We also investigated inoculum to substrate ratios (ISRs). With regards to digested slurry as inoculum, we found that a decrease in ISR improved CH4 yield, while a lower ISR prolonged the lag time of the initial AD stage due to lipid inhibition caused by excessive food waste. These results demonstrate that minimal inocula are required to start the AD system for high-pressure extruded food waste because it is easily biodegraded. High ammonia concentration had a negative effect on CH4 production (i.e., when free ammonia nitrogen [FAN] increased from 20 to 30 mg L(-1) to 120-140 mg L(-1), the CH4 yield decreased by 25%), suggesting that FAN was a significant inhibitor in CH4 yield reduction. In terms of CH4 yield and lag time of the AD process, the optimal inoculation of digested slurry for the extruded food waste had an ISR of 0.33 with CH4 yield of 505 mLCH4 g(-1)VSadded, which was 20% higher than what was found for higher ISR controls of 2, 1 and 0.5. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Detoxification and generation of useful products from coal combustion wastes: Quarterly technical report, (October--December 1988)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1988-01-01

    This quarter, samples of dry fly ash, wet bottom ash, and desulfurization gypsum slurry were provided from an Ohio Edison power plant. Chemical analysis mineralogical examination, and an anion analysis were performed on the samples. 2 figs., 1 tab. (CBS)

  5. Evaluation of Subsurface Engineered Barriers at Waste Sites

    DTIC Science & Technology

    1998-08-01

    28 3-4 MATRIX FOR EVALUATING BARRIER CQA/CQC AGAINST ACCEPTABLE INDSUTRY PRACTICES...STANDARDS................................................................. 66 4-2 MATRIX FOR EVALUATING CAP AGAINST ACCEPTABLE INDSUTRY PRACTICES...stated previously, the most widely used technique for containment is the soil-bentonite slurry wall. It is typically the most economical , utilizes low

  6. DEVELOPMENT OF AN AFFORDABLE FAMILY-SCALE BIOGAS GENERATOR

    EPA Science Inventory

    From laboratory experiments we calculated that our system would have to deliver 262 liters/hr of biogas to cook a meal. Biogas produced by slurries of various wastes was measured with a two liter bench-top digester system designed by the team. Gas volume was measured by displa...

  7. Method for smoothing the surface of a protective coating

    DOEpatents

    Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur

    2001-01-01

    A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.

  8. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  9. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Newell; Pareizs, J. M.; Martino, C. J.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allowsmore » for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodiummore » aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.« less

  11. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.

    PubMed

    Ramos, M C; Quinton, J N; Tyrrel, S F

    2006-01-01

    The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.

  12. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive groutmore » slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL.« less

  13. A Bayesian Network Model for Assessing Estrogen Fate and Transport in a Swine Waste Lagoon

    PubMed Central

    Lee, Boknam; Kullman, Seth W.; Yost, Erin; Meyer, Michael T.; Worley-Davis, Lynn; Reckhow, Kenneth H.

    2017-01-01

    Commercial swine waste lagoons are regarded as a major reservoir of natural estrogens, which have the potential to produce adverse physiological effects on exposed aquatic organisms and wildlife. However, there remains limited understanding of the complex mechanisms of physical, chemical, and biological processes that govern the fate and transport of natural estrogens within an anaerobic swine lagoon. To improve lagoon management and ultimately help control the offsite transport of these compounds from swine operations, a Bayesian network model was developed to predict estrogen fate and budget and compared against data collected from a commercial swine field site. In general, the model was able to predict the estrogen fate and budget in both the slurry and sludge stores within the swine lagoon. Sensitivity analysis within the model, demonstrated that the estrogen input loading from the associated barn facility was the most important factor in controlling estrogen concentrations within the lagoon slurry storage, while the settling rate was the most significant factor in the lagoon sludge storage. The degradation reactions were shown to be minor in both stores based on prediction of average total estrogen concentrations. Management scenario evaluations showed that the best possible management options to reduce estrogen levels in the lagoon are either to adjust the estrogen input loading from swine barn facilities or to effectively enhancing estrogen bonding with suspended solids through the use of organic polymers or inorganic coagulants. PMID:24798317

  14. Laboratory study on metal attenuation capacity of fine grained soil near ash pond site.

    PubMed

    Ghosh, Sudipta; Mukherjee, Somnath; Sarkar, Sujoy; Kumar, Sunil

    2008-10-01

    Waste settling tanks of earthen containment nature are common in India for disposal of solid waste in slurry form. For a large pond system, e.g. ash slurry disposal tank of coal base thermal power plant, leachate generation and its migration pose a serious problem. A natural attenuation of controlling the migratory leachate is to use locally available clay material as lining system due to the adsorption properties of soil for reducing some metallic ions. The present investigation was carried out to explore the Ni2+ and Cr6+ removal capacity of surrounding soil of the ash pond site of Super Thermal Power Plant in West Bengal, India through some laboratory scale and field studies. The soil and water samples collected from the site showed the existence of Ni2+ and Cr6+ in excess to permissible limit. A two-dimensional adsorption behaviour of these pollutants through soil was assessed. The results showed that more than 80% of nickel and 72% of chromium were found to be sorbed by the soil corresponding to initial concentrations of two ions, i.e. 1.366 mg/L and 0.76 mg/L respectively. The batch adsorption data are tested Langmuir and Freundlich isotherm models and found reasonably fit. Breakthrough adsorption study uptake also showed a good adsorption capacity of the soil. The experimental results found to fit well with the existing two dimensional (2D) mathematical models as proposed by Fetter (1999).

  15. Fate and survival of Salmonella Typhimurium and Escherichia coli O157:H7 in repacked soil lysimeters after application of cattle slurry and human urine.

    PubMed

    Nyberg, Karin A; Ottoson, Jakob R; Vinnerås, Björn; Albihn, Ann

    2014-09-01

    Use of cattle slurry as a fertiliser is common practice around the world. Human urine use is not as common, but owing to its fertiliser value this might change in the future. It is essential to minimise the transfer of enteric pathogens through fertilisation, with respect to both animal and public health. Therefore the objective of this research was to study the survival and transport of Salmonella Typhimurium and Escherichia coli O157:H7 in two agricultural soils when applied to soil along with either cattle slurry or human urine over a period of 180 days. Both Salmonella and E. coli O157:H7 were more rapidly reduced when applied together with human urine than when applied with cattle slurry. However, both pathogens persisted in low amounts at 20 and 50 cm depth in both soils throughout the whole study period. No Salmonella or E. coli O157:H7 was detected in the leachate over the 180 day study. The risk of disease transmission is higher when cattle slurry is used as fertiliser compared with human urine. However, the risk of groundwater infiltration would be low as long as water velocity through the soil is moderate. Increased knowledge of pathogen persistence in soil after fertiliser application is a valuable tool for improving risk evaluations and formulating guidelines for the use of cattle and/or human wastes in cropping soils. © 2014 Society of Chemical Industry.

  16. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most effective treatment process, achieving consistently significant leaching stabilization, while also effectively washing out Cl ions, a requirement for the utilization of the ashes in construction applications. The benefits of carbonation were linked to the formation of significant quantities of Ca-carbonates, including appreciable quantities of the Aragonite polymorph formed in the slurry carbonated samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, TJ

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75more » ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement device, did not operate effectively. Consequently, it is not suitable for application to the AWR process. (4) Initially, the spray ring (operated at approximately 2300 psi) and the nozzles provided by the pump vendor did not perform acceptably. The nozzles were replaced with a more robust model, and the performance was then acceptable. (5) The average solids concentration achieved in the slurry before Bentogrout addition was approximately 16% by weight. The solids concentration of the slurry after Bentogrout addition ranged from 26% to approximately 40%. The slurry pump and ITL system performed well at every concentration. No line plugging or other problems were noted. The results of the CTL runs and later ITL testing are summarized in an appendix to this report.« less

  18. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  19. Effect of turning frequency and season on composting materials from swine high-rise facilities

    USDA-ARS?s Scientific Manuscript database

    Composting of swine manure has several advantages, liquid slurries are converted to solid, the total volume of material is reduced and the stabilized product is more easily transported off-site. Despite this, swine waste is generally stored, treated and applied in its liquid form. The high-rise fini...

  20. Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.

  1. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine slurry

    USDA-ARS?s Scientific Manuscript database

    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine ...

  2. Tin recovery from tin slag using electrolysis method

    NASA Astrophysics Data System (ADS)

    Jumari, Arif; Purwanto, Agus; Nur, Adrian; Budiman, Annata Wahyu; Lerian, Metty; Paramita, Fransisca A.

    2018-02-01

    The process in industry, including in mining industry, would surely give negative effect such as waste polluting to the environment. Some of waste could be potentially reutilized to be a commodity with the higher economic value. Tin slag is one of them. The aim of this research was to recover the tin contained in tin slag. Before coming to the electrolysis, tin slag must be treated by dissolution. The grinded tin slag was dissolved into HCl solution to form a slurry. During dissolution, the slurry was agitated and heated, and finally filtered. The filtrate obtained was then electrolyzed. During the process of electrolysis, solid material precipitated on the used cathode. The precipitated solid was then separated and dried. The solid was then analyzed using XRD, XRF and SEM. The XRD analysis showed that the longest time of dissolution and electrolysis the highest the purity obtained in the product. The SEM analysis showed that the longest time of electrolysis the smallest tin particle obtained. Optimum time achieved in this research was 2 hours for the recovering time and 3 hours for the electrolysis time, with 9% tin recovered.

  3. Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties.

    PubMed

    Suresh, Arumuganainar; Choi, Hong Lim

    2011-10-01

    Swine waste land application has increased due to organic fertilization, but excess application in an arable system can cause environmental risk. Therefore, in situ characterizations of such resources are important prior to application. To explore this, 41 swine slurry samples were collected from Korea, and wide differences were observed in the physico-biochemical properties. However, significant (P<0.001) multiple property correlations (R²) were obtained between nutrients with specific gravity (SG), electrical conductivity (EC), total solids (TS) and pH. The different combinations of hydrometer, EC meter, drying oven and pH meter were found useful to estimate Mn, Fe, Ca, K, Al, Na, N and 5-day biochemical oxygen demands (BOD₅) at improved R² values of 0.83, 0.82, 0.77, 0.75, 0.67, 0.47, 0.88 and 0.70, respectively. The results from this study suggest that multiple property regressions can facilitate the prediction of micronutrients and organic matter much better than a single property regression for livestock waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol

    2015-03-01

    This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Results for the First, Second, and Third Quarter Calendar Year 2015 Tank 50H WAC slurry samples chemical and radionuclide contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2016-02-18

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2015 First, Second, and Third Quarter sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering (D&S-FE) to support the transfer of low-level aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50H Waste Characterization System. Previous memorandamore » documenting the WAC analyses results have been issued for these three samples.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  7. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating digestate spreading onto land to minimize emissions of ammonia and related environmental impacts.

  8. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

    PubMed Central

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating digestate spreading onto land to minimize emissions of ammonia and related environmental impacts. PMID:27014689

  9. Tank 40 Final SB7b Chemical Characterization Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2012-11-06

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thoroughmore » mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method.« less

  10. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    NASA Astrophysics Data System (ADS)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  11. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    NASA Astrophysics Data System (ADS)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  12. Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery

    NASA Astrophysics Data System (ADS)

    Feng, Caimei; Chen, Yongchong; Liu, Dandan; Zhang, Ping

    2017-06-01

    Lithium slurry battery is a new type of energy storage technique which uses the slurry of solid active materials, conductive additions and liquid electrolyte as the electrode. The proportion of conductive addition and the active material has significant influence on the conductivity and electrochemical performance of the slurry electrode. In the present work, slurries with different volume ratios of LiFePO4 (LFP) and Ketjenblack (KB) were investigated by the electrochemical workstation and charge-discharge testing system (vs. Li/Li+). Results show that the conductivity of the slurry increases linearly with the addition of KB, and the measured specific capacity of the slurry reaches its theoretical value when the volume ratio of KB to LFP is around 0.2. Based on this ratio, a slurry battery with higher loading of LFP (19.1 wt.% in the slurry) was tested, and a specific capacity of 165 mAh/g at 0.2 mA/cm2 and 102 mAh/g at 5 mA/cm2 was obtained for LFP.

  13. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  14. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2006-04-18

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  15. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2002-01-01

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  16. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, Paul

    1995-01-01

    A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

  17. Results of Hg speciation testing on DWPF SMECT-8, OGCT-1, AND OGCT-2 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.

    2016-02-22

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The sixteenth shipment of samples was designated to include a Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) sample from Sludge Receipt and Adjustment Tank (SRAT) Batch 738 processing and two Off-Gas Condensate Tank (OGCT) samples, one following Batch 736 and one following Batch 738. The DWPF sample designations for the three samples analyzed are provided. The Batch 738 ‘End ofmore » SME Cycle’ SMECT sample was taken at the conclusion of Slurry Mix Evaporator (SME) operations for this batch and represents the fourth SMECT sample examined from Batch 738. Batch 738 experienced a sludge slurry carryover event, which introduced sludge solids to the SMECT that were particularly evident in the SMECT-5 sample, but less evident in the ‘End of SME Cycle’ SMECT-8 sample.« less

  18. Construction material

    DOEpatents

    Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  19. Using Frozen Barriers for Containment of Contaminants

    DTIC Science & Technology

    2017-09-21

    barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Enderlin, Carl W.

    Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less

  1. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich

    2017-06-30

    Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solids Erosion Patterns Developed by Pulse Jet Mixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Pease, Leonard F.; Minette, Michael J.

    Millions of gallons of radioactive waste are stored in underground storage tanks at the Hanford Site in Washington State. This waste will be vitrified at the Waste Treatment and Immobilization Plant that is under construction. Vessels in the pretreatment portion of the plant are being configured for processing waste slurries with challenging physical and rheological properties that range from Newtonian slurries to non-Newtonian sludge. Pulse jet mixing technology has been selected for mobilizing and mixing this waste. In the pulse jet mixing process, slurry is expelled from pulse tube nozzles directed towards the vessel floor. The expelled fluid forms amore » radial jet that erodes the settled layer of solids. The pulse tubes are configured in a ring or multiple rings and operate concurrently. The expelled fluid and mobilized solids traverse toward the center of the tank. At the tank center the jets from pulse tubes in the ring collide and lift solids upward in a central plume. At the end of the pulse, when the desired fluid volume is expelled from the pulse tube, the applied pressure switches to suction and the pulse tube is refilled. This cycle is used to mobilize and mix the tank contents. An initial step of the process is the erosion of solids from the vessel floor by the radial jets that form on the vessel flow beneath each pulse tube. Experiments have been conducted using simulants to evaluate the ability of the pulse jet mixing system radial jets to combine to develop the central upwell and lift solids into the vessel. These experiments have been conducted at three scales using a range of granular simulants over a range of concentrations. The vessels have elliptical, spherical, or flanged and dished bottoms. Process parameters evaluated include the velocity of fluid expelled from the pulse tube, the duration of the pulse and the duty cycle, the ratio of pulse duration to cycle time. Videos taken from beneath the vessel show the growth of the cleared area from each pulse tube as a function of time. All solids are lifted from the vessel bottom when the system is operating at the critical suspension velocity. The focus of this paper is to compare and contrast erosion patterns developed from different simulants and pulse tube configurations. The cases are evaluated to determine how changes in process parameters affects the PJM ability to mobilize solids from the vessel floor.« less

  3. Chemical-mechanical planarization of aluminum and copper interconnects with magnetic liners

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    2000-10-01

    Chemical Mechanical Planarization (CMP) has been employed to achieve Damascene patterning of aluminum and copper interconnects with unique magnetic liners. A one-step process was developed for each interconnect scheme, using a double-layered pad with mesh cells, pores, and perforations on a top hard layer. In a hydrogen peroxide-based slurry, aluminum CMP was a process of periodic removal and formation of a surface oxide layer. Cu CMP in the same slurry, however, was found to be a dissolution dominant process. In a potassium iodate-based slurry, copper removal was the result of two competing reactions: copper dissolution and a non-native surface layer formation. Guided by electrochemistry, slurries were developed to remove nickel in different regimes of the corrosion kinetics diagram. Nickel CMP in a ferric sulfate-based slurry resulted in periodic removal and formation of a passive surface layer. In a potassium permanganate-based slurry, nickel removal is a dissolution dominant process. Visible Al(Cu) surface damages obtained with copper-doped aluminum could be eliminated by understanding the interactions between the substrate, the pad, and the abrasive agglomerate. Increasing substrate hardness by annealing prior to CMP led to a surface finish free of visible scratches. A similar result was also obtained by preventing formation of abrasive agglomerates and minimizing their contact with the substrate.

  4. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  5. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  6. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, P.

    1995-03-28

    A method is disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product. 1 figure.

  7. Casting of particle-based hollow shapes

    DOEpatents

    Menchhofer, P.

    1997-09-09

    A method is disclosed for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product. 9 figs.

  8. Casting of particle-based hollow shapes

    DOEpatents

    Menchhofer, P.

    1995-05-30

    A method is disclosed for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product. 9 figs.

  9. Casting of particle-based hollow shapes

    DOEpatents

    Menchhofer, Paul

    1997-01-01

    A method for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product.

  10. Casting of particle-based hollow shapes

    DOEpatents

    Menchhofer, Paul

    1995-01-01

    A method for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product.

  11. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO{sub 2} slurry-based photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jiaoping; Chen, Zexiang, E-mail: zxchen@uestc.edu.cn; Li, Jun

    2015-02-15

    A new titanium dioxide (TiO{sub 2}) slurry formulation is herein reported for the fabrication of TiO{sub 2} photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO{sub 2} photoanode featured a highly uniform mesoporous structure with well-dispersed TiO{sub 2} nanoparticles. The energy conversion efficiency of the resulting TiO{sub 2} slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO{sub 2} slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO{sub 2} slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on themore » performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO{sub 2} photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO{sub 2} slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.« less

  12. Construction Material And Method

    DOEpatents

    Wagh, Arun S.; Antink, Allison L.

    2006-02-21

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  13. Method of binding structural material

    DOEpatents

    Wagh, Arun S.; Antink, Allison L.

    2007-12-25

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  14. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  15. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  16. Production of bio ethanol from waste potatoes

    NASA Astrophysics Data System (ADS)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  17. Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes.

    PubMed

    Edelmann, W; Baier, U; Engeli, H

    2005-01-01

    In order to obtain more detailed information for better decision making in future biogenic waste treatment, different processes to treat biogenic wastes in plants with a treatment capacity of 10,000 tons of organic household wastes per year as well as agricultural codigestion plants were compared by life cycle assessments (LCA). With the tool EcoIndicator, anaerobic digestion is shown to be advantageous as compared to composting, incineration or a combination of digestion and composting, mainly because of a better energy balance. The management of the liquid manure in agricultural codigestion of organic solid wastes causes increased gaseous emissions, which have negative effects on the LCA, however. It is recommended to cover the slurry pit and to use an improved manure management in order to compensate for the additional gaseous emissions. In the LCAs, the quality of the digester output could only be taken into account to a small extent; the reasons are discussed.

  18. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Trent, D.S.

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less

  19. Fused slurry silicide coatings for columbium alloy reentry heat shields. Volume 2: Experimental and coating process details

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The experimental and coating process details are presented. The process specifications which were developed for the formulation and application of the R-512E fused slurry silicide coating using either an acrylic or nitrocellulose base slurry system is also discussed.

  20. The effect of anaerobic digestion and storage on indicator microorganisms in swine and dairy manure.

    PubMed

    Costa, Annamaria; Gusmara, Claudia; Gardoni, Davide; Zaninelli, Mauro; Tambone, Fulvia; Sala, Vittorio; Guarino, Marcella

    2017-11-01

    The aim of this experimental study was to evaluate the influence of anaerobic digestion and storage on indicator microorganisms in swine and dairy excreta. Samples were collected every 90 days for 15 months at eight farms, four pig, and four dairy farms, four of them having a biogas plant. Moreover, to evaluate storage effects on samples, 20 l of manure and slurry taken at each farm (digested manure only in farms with a biogas plant) were stored in a controlled climatic chamber at 18 °C, for 6 months. The bacterial load and the chemical-physical characteristics of excreta were evaluated at each sampling time, stored slurry, and manure were sampled and analyzed every 2 months. A high variability of the concentration of bacteria in the different excreta types was observed during the experiment, mainly depending on the type and time of treatment. No sample revealed either the presence of Escherichia coli O157:H7 or of Salmonella, usually linked to the temporary rearing of infected animals in facilities. Anaerobic digestion and storage affected in a significant way the reduction of indicator bacteria like lactobacilli, coliforms, and streptococci. Anaerobic digestion lowered coliforms in pig slurry (- 2.80 log, P < 0.05), streptococci in dairy manure (- 2.44 log, P < 0.001) and in pig slurry (- 1.43 log, P < 0.05), and lactobacilli in pig slurry (- 3.03 log, P < 0.05). Storage lowered coliforms and the other indicators counts, in particular in fresh wastes, while clostridia did not show a reduction in concentration.

  1. A new magnetic compound fluid slurry and its performance in magnetic field-assisted polishing of oxygen-free copper

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Wu, Yongbo; Guo, Huiru; Fujimoto, Masakazu; Nomura, Mitsuyoshi; Shimada, Kunio

    2015-05-01

    In nano-precision surface finishing of engineering materials using MCF (magnetic compound fluid) slurry, the water-based MCF slurry is preferable from the viewpoint of the environmental issue and the running cost of cleaning workpiece and equipment. However, the uncoated-CIPs (carbonyl-iron-powders) within the conventional MCF slurry have low ability against aqueous corrosion, leading to the performance deterioration and working life shortening of the conventional MCF slurry. This study proposed a new MCF slurry containing ZrO2-coated CIPs instead of the uncoated CIPs. Its performance in the polishing of oxygen-free copper was compared experimentally with that of the conventional one. The results showed that the work-surface finish polished with the new slurry was in the same level as that with the conventional one when the slurry was used soon after prepared, i.e., the settling time was 0 min; however, as the settling time increased the uncoated-CIPs got rusty, leading to a deterioration in the slurry performance. By contrast, no rust was observed on ZrO2-coated CIPs even the settling time reached several days, indicating the employment of ZrO2-coated CIPs prolonged the working-life of the MCF slurry greatly.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, T.; Melick, T.; Morrison, D.

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to themore » boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.« less

  3. Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon

    2015-09-01

    We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

  4. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to unit crack extension and the rock fracture toughness. It allows to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, which breadth is known a priori, the final breadth of a finger-like fracture is a result of the fracturing process in the fracture head. To resolve the breadth, we relax the local elasticity assumption in the fracture head by neglecting viscous pressure drop there. The resulting fracture head model is a 3D analog of the Weertman's hydrostatic pulse, and yields expressions for the terminal breadth, b = 0.34 (K / Delta rho g))^(2/3), and for the head volume, V = 10.4 K b^(5/2) / E'. We then combine the finger crack solution for the viscous tail with the 3-D pulse solution for the fracture head. The obtained closed-form solution is compared to numerical simulations. Based on this solution, we analyzed the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of the heavy waste injection technique and low viscosity magma diking.

  5. DWPF DECON FRIT SUPERNATE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D.; Crawford, C.

    2010-09-22

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. This report contains the results of the supernate analyses, while the solids (sump and slurry) results will be reported in a supplemental report. The analytical data from the decon frit supernate indicate that all ofmore » the radionuclide, organic, and inorganic concentrations met the limits in Revision 4 of the Effluent Treatment Plant (ETP) Waste Acceptance Criteria (WAC) with the exception of boron. The ETP WAC limit for boron is 15.0 mg/L while the average measured concentration (based on quadruplicate analysis) was 15.5 mg/L. The measured concentrations of Li, Na, and Si were also relatively high in the supernate analysis. These results are consistent with the relatively high measured value of B given the compositional make-up of Frit 418. Given these results, it was speculated that either (a) Frit 418 was dissolving into the supernate or aqueous fraction and/or (b) fine frit particulates were carried forward to the analytical instrument based on the sampling procedure used (i.e., the supernate samples were not filtered - only settled with the liquid fraction being transferred with a pipette). To address this issue, a filtered supernate sample (using a 0.45 um filter) was prepared and submitted for analysis. The results of the filtered sample were consistent with 'unfiltered or settled' sample - relatively high values of B, Li, Na, and Si were found. This suggests that Frit 418 is dissolving in the liquid phase which could be enhanced by the high surface area of the frit fines or particulates in suspension. Based on the results of this study, it is recommended that DWPF re-evaluate the technical basis for the B WAC limit (the only component that exceeds the ETP WAC limit from the supernate analyses) or assess if a waiver or exception can be obtained for exceeding this limit. Given the possible dissolution of B, Li, Na, and Si into the supernate (due to dissolution of frit), DWPF may need to assess if the release of these frit components into the supernate are a concern for the disposal options being considered. It should be noted that the results of this study may not be representative of future decon frit solutions or sump/slurry solids samples. Therefore, future DWPF decisions regarding the possible disposal pathways for either the aqueous or solid portions of the Decon Frit system need to factor in the potential differences. More specifically, introduction of a different frit or changes to other DWPF flowsheet unit operations (e.g., different sludge batch or coupling with other process streams) may impact not only the results but also the conclusions regarding acceptability with respect to the ETF WAC limits.« less

  6. A Life Cycle Assessment of integrated dairy farm-greenhouse systems in British Columbia.

    PubMed

    Zhang, Siduo; Bi, Xiaotao Tony; Clift, Roland

    2013-12-01

    The purpose of this study was to evaluate the anticipated environmental benefits from integrating a dairy farm and a greenhouse; the integration is based on anaerobic digestion of manures to produce biogas energy, biogenic CO2, and digested slurry. A full Life Cycle Assessment (LCA) has been conducted on six modeled cases applicable in British Columbia, to evaluate non-renewable energy consumption, climate change, acidification, eutrophication, respiratory effects and human toxicity. Compared to conventional practice, an integrated system has the potential to nearly halve eutrophication and respiratory effects caused by inorganic emissions and to reduce non-renewable energy consumption, climate change, and acidification by 65-90%, while respiratory effects caused by organic emissions become negative as co-products substitute for other materials. Co-digestion of other livestock manures, greenhouse plant waste, or food and food processing waste with dairy manure can further improve the performance of the integrated system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Converting baker's waste into alcohol. Revised final progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, R.; Wilson, P.B.

    All types of baker's waste (including waste from candy manufacturers) can be converted into alcohol to be used as a fuel. All types of waste at any stage in process can be converted, such as: basic ingredients (including floor sweepings); dry mixes (including floor sweepings); dough at any stage; partially or fully cooked products; and day old returned products. The basic steps are the same, only the initial preparation will vary slightly. The variation will be: amount of water to be added and amount and type of nutrients (if any) to be added. The basic steps are: slurrying, liquefying tomore » put starch into liquid state, saccharifying to convert starch into fermentable sugars, fermentation to convert sugars into alcohol, and distillation to separate the alcohol from the mash. Each step is discussed in detail along with problems that may arise. Directions are given and materials (enzymes, yeast, etc.) and equipment are descibed briefly.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory (PNNL), Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford wastemore » analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted.« less

  9. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    PubMed

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  10. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less

  11. Diversity of thermophilic populations during thermophilic aerobic digestion of potato peel slurry.

    PubMed

    Ugwuanyi, J O; Harvey, L M; McNeil, B

    2008-01-01

    To study the diversity of thermophiles during thermophilic aerobic digestion (TAD) of agro-food waste slurries under conditions similar to full-scale processes. Population diversity and development in TAD were studied by standard microbiological techniques and the processes monitored by standard fermentation procedures. Facultative thermophiles were identified as Bacillus coagulans and B. licheniformis, while obligate thermophiles were identified as B. stearothermophilus. They developed rapidly to peaks of 10(7) to 10(8) in

  12. Potential nitrification in alum-treated soil slurries amended with poultry manure.

    PubMed

    Gandhapudi, S K; Coyne, M S; D'Angelo, E M; Matocha, C

    2006-03-01

    Alum is used to reduce environmental pollutants in poultry production. Alum decreases NH3 volatilization and increases total N and NH4+-N compared to untreated poultry manure. Nitrification in poultry wastes could therefore be stimulated due to higher NH4+ concentrations or could be inhibited because the soil environment is acidified. A 10-day laboratory study was conducted to study potential nitrification rates in soil slurries (20 g soil in 150 ml water) amended with 2.0 g alum-treated poultry manure. Fecal bacteria, NH4+, NO2-, NO3-, orthophosphate, pH, and NH3 were measured at 2-day intervals. Alum significantly reduced fecal bacteria concentrations through day 6. Water-soluble P was reduced 82% by day 10. Alum-treated manure had significantly increased NH4+ concentrations by day 8 and 10, and significantly decreased NO2- and NO3- concentrations by days 6-10. Alum's effect on potential nitrification was inhibitory in the soil environment. Slurries with alum-treated poultry manure had reduced nitrification rates, fecal bacteria, and soluble P. Therefore, in addition to reducing P loss, alum could temporarily reduce the risk for environmental pollution from land-applied manures in terms of both NO3- and fecal bacteria loss.

  13. The use of functionalized monoalkyl phosphates and phosphonates in the colloidal processing of oxide ceramic powders

    NASA Astrophysics Data System (ADS)

    Radsick, Timothy Carl

    The purpose of this study was to develop phosphorous-based chemicals that could be used to modify the interparticle pair potential of several oxide ceramic particles, thereby enabling their use in colloidal processing schemes. Several procedures for the synthesis of 11-12 carbon alpha,o-functionalized monoalkyl phosphates and phosphonates were developed. Because of its simplicity and its use of mild reagents, a procedure based on the Michaelis-Arbuzov rearrangement was selected to produce the bulk of the chemicals used in this study. Carboxyl- and hydroxyl-terminated monoalkyl phosphonates were adsorbed onto alumina and zirconia powders using either aqueous-based or solvent-based methods to produce a monolayer of "brushlike" steric molecules. In the aqueous-based methods, powders were processed at pH values below their isoelectric point in order to produce a positive charge on the powder, thereby attracting the negatively charged phosphate or phosphonate group onto the powder surface to form the steric monolayer. In solvent-based methods, powder was suspended in an acetone solution of the phosphonates, heated at reflux, washed, dried and heat treated at 120°C under vacuum. The zeta potential of the coated powders was measured to quantify the degree of steric layer adsorption and the shift in the isoelectric point. Slurries of coated alumina and zirconia were prepared having 20 vol % powder. Rheological behavior was studied by measuring viscosity as a function of shear rate for slurries of various pH values and counterion concentrations. Slurries with powder processed via the solvent method were the least sensitive to changes in slurry pH and were straightforward to prepare. It is thought that the solvent-based coating procedure produced a stronger, multi-dentate powder-phosphonate bond than that of the aqueous-based procedure. Dispersed and coagulated slurries were able to be prepared over a wide pH range, including at the isoelectric point of the uncoated powders where a flocculated slurry would typically occur. Slurries were consolidated using pressure filtration. Compressive stress-strain behavior and packing efficiencies were determined. Through consolidation, powder volume fraction was increased to a maximum of 56%, yet through vibration the slurry could be induced to flow, enabling its use in Colloidal Isopressing.

  14. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resistmore » a backflow of the slurry from the first outlet to the first inlet.« less

  15. Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2015-05-01

    Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.

  16. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  17. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  18. Thermophilic aerobic digestion process for producing animal nutrients and other digested products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulthard, T.L.; Townsley, P.M.; Saben, H.S.

    1981-09-29

    Waste materials are digested by thermophilic bacteria to produce single-cell protein and vitamin B12. The bacteria are contained in the waste and are not inoculated. Thus, a hog manure slurry containing 10% solids was stirred with aeration in an insulated reactor to allow the temperature to be maintained at greater than 55/sup 0/. The temperature was maintained at 55-65/sup 0/ and the dissolved O/sub 2/ concentration at 1.5-3 ppm for 6 days. After 10 days reaction, the product was fed to hogs as 10% of their nutrient supply with no apparent adverse effects.

  19. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  20. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  1. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  2. Electrode Slurry Particle Density Mapping Using X-ray Radiography

    DOE PAGES

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...

    2017-01-05

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  3. Technical Development of Slurry Three-Dimensional Printer

    NASA Astrophysics Data System (ADS)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  5. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  6. Pseudoplasticity of Propellant Slurry with Varied Aluminium Content for Castability Development

    NASA Astrophysics Data System (ADS)

    Restasari, A.; Budi, R. S.; Hartaya, K.

    2018-04-01

    The modification of the percentage of aluminium is necessary to obtain certain specific impulse. But, it affects the pseudoplasticity of propellant in elapsed time that is important in casting. Therefore, this research attempts to investigate the pseudoplasticity of propellant slurry with varied aluminium contents and as time elapsed, the range of percentage of aluminium and time that allows propellant slurry to be well processed. The methods include measuring the viscosity of propellant slurries that contain 6, 8, 10, 12, 14, 16 and 18% of aluminium at varied shear rates until 40 minutes after mixing by using Brookfield viscometer. The graphs of viscosity versus shear rate were made to determine pseudoplasticity index. After that, the graph volume fraction versus pseudoplasticity index were made to be investigated. It is concluded that the more aluminium contents, the slurries with 6 to 12% aluminium contents exhibit more pseudoplastic behaviour, but the slurries with 12 to 16% aluminium exhibit less pseudoplastic. While, slurry of 18% aluminium exhibit high pseudoplasticity. In the correlation with the time, the slurry compositions of 6, 8, 14, 16% aluminium become more pseudoplastic as time elapsed. While, for compositions of 10, 12 and 18% aluminium, the trend becomes contrary. Based on the pseudoplasticity index, propellant slurries that contain 10 and 14% of aluminium are suitable for pressure casting. While for slurries with 6, 8 and 16% of aluminium are also suitable for vacuum casting. All of those suitability are possesed until 40 minutes after mixing. While, the composition of slurries that contain 12 and 18% of aluminium need to be modified to enhanced its castability.

  7. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity andmore » transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.« less

  8. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Protein enrichment of corn cob heteroxylan waste slurry by thermophilic aerobic digestion using Bacillus stearothermophilus.

    PubMed

    Ugwuanyi, J Obeta; Harvey, Linda M; McNeil, Brian

    2008-10-01

    Thermophilic aerobic digestion (TAD) of heteroxylan waste was implemented at waste load of 30gL(-1) with mineral nitrogen supplementation to study effect of the process on waste degradation, protein accretion and quality. Digestions were carried out at 45 50, 55, 60 and 65 degrees C using Bacillusstearothermophilus in a CSTR under batch conditions at 1.0vvm aeration rate, pH 7.0 for a maximum of 120h. Amylase and xylanase activities appeared rapidly in the digest, while basal protease activity appeared early in the digestion and increased towards end of the processes. Highest degradation of volatile suspended solid, hemicellulose and fibre occurred at 55 degrees C while highest degradation of total suspended solid occurred at 60 degrees C. Highest protein accretion (258.8%) and assimilation of mineral nitrogen and soluble protein occurred at 55 degrees C. The % content of amino acids of digest crude protein increased relative to raw waste and with digestion temperature. Quality of digest protein was comparable to the FAO standard for feed use. TAD has potentials for use in the protein enrichment of waste.

  10. Characterizations of mortar-degraded spinney waste composite nominated as solidifying agent for radwastes due to immersion processes

    NASA Astrophysics Data System (ADS)

    Saleh, H. M.; Eskander, S. B.

    2012-11-01

    Immobilization process of radioactive wastes is a compromise between economic and reliability factors. It involves the use of inert and cheap matrices to fix the wastes in homogenous monolithic solid forms. The characteristics of the resulting waste form were studied in various disposal options before coming to the final conclusion concerning the solidification process. A proposed mortar composite is formed from a mixture of Portland cement and sand in the weight ratio of 0.33 which by slurry of degraded spinney waste fibers at the ratio of 0.7 relative to the Portland cement. The composite was prepared at the laboratory ambient conditions (25 ± 5 °C). The temperature changes accompanying the hydration process were followed up to 96 h. At the end of 28 days, curing period, the performance of the obtained composite was evaluated under immersion circumstances imitating a flooding scenario that could happen at a disposal site. Compressive strength, porosity and mass changes were investigated under complete static immersion conditions in three different leachants, namely acetic acid, groundwater and seawater for 48 weeks. X-ray and scanning electron microscopy were used to follow and evaluate the changes that may occur for the proposed composite under flooding conditions. Based on the experimental data reached, it could be concluded that the prepared mortar composite can be nominated as a matrix for solidification/stabilization of some radwaste categories, even under the aggressive attacks of various immersion media.

  11. Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, William D.; Hobbs, David T.

    Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and E h values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizingmore » with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry E h value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO 2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an E h range of approximately 0.7 V. However, the highest and lowest E h values achieved of ~+0.5 V and ~-0.2 V were significantly less positive and less negative, respectively, than the target values. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively.« less

  12. Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings.

    PubMed

    Kabas, S; Faz, A; Acosta, J A; Arocena, J M; Zornoza, R; Martínez-Martínez, S; Carmona, D M

    2014-02-01

    Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg(-1)) than the El Lirio (up to 26 μg N kg(-1)). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg(-1). We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.

  13. Corrosion inhibitors for water-base slurry in multiblade sawing

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Odonnell, T. P.

    1982-01-01

    The use of a water-base slurry instead of the standard PC oil vehicle was proposed for multiblade sawing (MBS) silicon wafering technology. Potential cost savings were considerable; however, significant failures of high-carbon steel blades were observed in limited tests using a water-based slurry during silicon wafering. Failures were attributed to stress corrosion. A specially designed fatigue test of 1095 steel blades in distilled water with various corrosion inhibitor solutions was used to determine the feasibility of using corrosion inhibitors in water-base MBS wafering. Fatigue tests indicate that several corrosion inhibitors have significant potential for use in a water-base MBS operation. Blade samples tested in these specific corrosion-inhibitor solutions exhibited considerably greater lifetime than those blades tested in PC oil.

  14. Design and development of a prototype wet oxidation system for the reclamation of water and the disposition of waste residues onboard space vehicles

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1972-01-01

    Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.

  15. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    EPA Science Inventory

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  16. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skeel, V.A.; Nawrot, J.R.

    Since the Cooperative Wildlife Research Laboratory`s (CWRL) Mined Land Reclamation Program`s first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surfacemore » (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow ({le}12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled.« less

  17. Corrosion Evaluation of Stellite Alloys 12 and 712

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.I.

    2000-10-30

    The High Level Waste Division requested the Materials Technology Section (MTS) to evaluate the use of Waukesha Metal 88 (WM88) and Stellite alloys 12 (S12) and 712 (S712) as materials of construction for slurry pumps. As candidate materials, WM88 was chosen for the tilt pad column bearings and S12 and S712 were selected for the impeller bearings. The Stellite alloys are cobalt-based alloys typically used for their resistance to both corrosion and wear. WM88 is noted for resistance to galling and seizing. These materials, however, had not been evaluated for use in high level radioactive waste, which have a highmore » pH. A series of electrochemical corrosion tests were performed in support of this evaluation to determine the general corrosion rate and corrosion characteristics of these alloys. The tests were conducted at room temperature in simulated three waste tank environments. For WM88, the test solution was inhibited water, which is commonly used in the tank farm. For S12 and S712, the test solutions were a simulated Tank 8 waste solution and a 3 M sodium hydroxide solution. The general corrosion rates of all alloys in these solutions were less than 0.1 mils per year (mpy). The alloys displayed passive behavior in these solutions due to the protective nature of their oxides.« less

  18. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less

  19. Goethite Bench-scale and Large-scale Preparation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetiummore » that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.« less

  20. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.; Crawford, C.; Duignan, M.

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so itsmore » disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.« less

  1. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  2. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  3. Environmental Assessment of a Central Heating Plant.

    DTIC Science & Technology

    1983-02-01

    control equipment will be required. One proven system for SO2 control is flue gas desulfurization (FGt). A variety of systems are currently in use on...low sulfur coal, but it could be further reduced by flue gas desulfur - ization. This option, however, entails greater capital and operating costs and an... wet or dry. Wet processes involve contacting the flue gas with aqueous slurries or solutions of absorbents and produce liquid wastes for direct

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbonmore » particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.« less

  5. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  6. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  7. PEP Integrated Test D Run Report Caustic and Oxidative Leaching in UFP-VSL-T02A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Bredt, Ofelia P.; Burns, Carolyn A.

    2009-12-11

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes" of the External Flowsheet Review Team (EFRT) issue response plan. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. Themore » PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario (Test B and D) has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario (Test A) has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP VSL-00001A and B in the WTP PTF). In Test D, 19M sodium hydroxide (NaOH, caustic) was added to the waste slurry in the UFP VSL T02 vessel after the solids were concentrated to ~20% undissolved solids. The NaOH was added to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by heating to 85°C using direct injection of steam to accelerate the leach process. The main difference of Test D compared to Test B is that the leach temperature is 85°C for 24 hrs as compared to 100°C for 12 hours. The other difference is the Test D simulant had Cr in the simulant from the start of processing and Test B had Cr added to adjust the simulant composition after aluminum leaching. Following the caustic leach, the UFP-VSL-T02A vessel contents are cooled using the vessel cooling jacket. The slurry was then concentrated to 17 wt% undissolved solids and washed with inhibited water to remove NaOH and other soluble salts. Next, the slurry was oxidatively leached using sodium permanganate to solubilize chrome. The slurry was then washed to remove the dissolved chrome and concentrated.« less

  8. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    1999-08-11

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of ironmore » catalyst particles and the formation of ultra-fine particles.« less

  10. Leaching Characteristics of Hanford Ferrocyanide Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.

    2009-12-21

    A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less

  11. Effects of soil structure destruction on methane production and carbon partitioning between methanogenic pathways in tropical rain forest soils

    NASA Astrophysics Data System (ADS)

    Teh, Yit Arn; Silver, Whendee L.

    2006-03-01

    Controls on methanogenesis are often determined from laboratory incubations of soils converted to slurries. Destruction of soil structure during slurry conversion may disrupt syntrophic associations, kill methanogens, and/or alter the microsite distribution of methanogenic activity, suppressing CH4 production. The effects of slurry conversion on methanogenesis were investigated to determine if disruption of aggregate structure impacted methanogenesis, substrate utilization, and C partitioning between methanogenic pathways. Soils were collected from the tropical rain forest life zone of the Luquillo Experimental Forest, Puerto Rico, and exposed to different physical disturbances, including flooding and physical homogenization. Slurry conversion negatively impacted methanogenesis. Rates of CH4 production declined by a factor of 17 after well-aggregated soils were converted to slurries. Significantly more 13C-acetate was recovered in CO2 compared to CH4 after slurry conversion, suggesting that methanogens consumed less acetate after slurry conversion and may have competed less effectively with other anaerobes for acetate. Isotopic data indicate that the relative partitioning of C between aceticlastic and hydrogenotrophic pathways was unchanged after slurry conversion. These data suggest that experiments which destroy soil structure may significantly underestimate methanogenesis and overestimate the potential for other microorganisms to compete with methanogens for organic substrates. Current knowledge of the factors that regulate methanogenesis in soil may be biased by the findings of slurry-based experiments, that do not accurately represent the complex, spatially heterogeneous conditions found in well-aggregated soils.

  12. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.

  13. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  14. Methane production from thermophilic co‐digestion of dairy manure and waste milk obtained from therapeutically treated cows

    PubMed Central

    Iwasaki, Masahiro; Umetsu, Kazutaka

    2016-01-01

    Abstract Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. PMID:27169788

  15. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  16. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  17. Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite

    PubMed Central

    Malenab, Roy Alvin J.; Ngo, Janne Pauline S.; Promentilla, Michael Angelo B.

    2017-01-01

    The use of natural fibers in reinforced composites to produce eco-friendly materials is gaining more attention due to their attractive features such as low cost, low density and good mechanical properties, among others. This work thus investigates the potential of waste abaca (Manila hemp) fiber as reinforcing agent in an inorganic aluminosilicate material known as geopolymer. In this study, the waste fibers were subjected to different chemical treatments to modify the surface characteristics and to improve the adhesion with the fly ash-based geopolymer matrix. Definitive screening design of experiment was used to investigate the effect of successive chemical treatment of the fiber on its tensile strength considering the following factors: (1) NaOH pretreatment; (2) soaking time in aluminum salt solution; and (3) final pH of the slurry. The results show that the abaca fiber without alkali pretreatment, soaked for 12 h in Al2(SO4)3 solution and adjusted to pH 6 exhibited the highest tensile strength among the treated fibers. Test results confirmed that the chemical treatment removes the lignin, pectin and hemicellulose, as well as makes the surface rougher with the deposition of aluminum compounds. This improves the interfacial bonding between geopolymer matrix and the abaca fiber, while the geopolymer protects the treated fiber from thermal degradation. PMID:28772936

  18. Public health assessment for Plymouth Avenue Landfill, Deland, Volusia County, Florida, Region 4. Cerclis No. FLD984167569. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-24

    The Plymouth Avenue Landfill is about 1.75 miles west of the City of DeLand in rural western Volusia County, Florida. From 1971 to 1988 it was a Class I landfill and received all types of nonhazardous industrial and municipal solid waste. From June 1978 to October 1980, the landfill reportedly received 4,500 gallons per week of process waste slurry from the Brunswick Corporation. The authors selected the following contaminants of concern: barium, chromium, 1,2-dichloroethene, iron, nitrate, sulfate, and vinyl chloride. Ingestion of ground water is a past completed human exposure pathway. Concentrations of the contaminants of concern found so farmore » are unlikely to have caused illness in the nearby residents. Analysis of water samples has been inadequate, however, to assess the public health threat from ingestion of sulfate, giardia, or vinyl chloride. Based on the information currently available, the authors classify the public health hazard at this landfill as indeterminate. Groundwater sampling is needed to determine the extent of vinyl chloride contamination.« less

  19. Oxidative degradation and toxicity reduction of trichloroethylene (TCE) in water using TiO2/solar light: comparative study of TiO2 slurry and immobilized systems.

    PubMed

    Cho, Il-Hyoung; Park, Jae-Hong; Kim, Young-Gyu

    2005-01-01

    A solar-driven, photocatalyzed degradation system using TiO2 slurry and immobilized systems was constructed and applied to the degradation of trichloroethylene (TCE) contaminated water using TiO2 with solar light. The experiments were carried out under constant weather conditions on a sunny day. Solar photocatalytic treatment efficiency of the solar light/TiO2 slurry system was compared with that of the solar light/TiO2 immobilized system. The operation of the solar light/TiO2 slurry and immobilized systems showed 100% (TiO2 slurry system), 80% (TiO2 immobilized system) degradation of the TCE after 6 h, with a chloride production yield of approximately 89% (TiO2 slurry system), 72% (TiO2 immobilized system). The oxidants such as H2O2 and S2O8(2-) in the TiO2 slurry and immobilized systems increased TCE degradation rate by suppressing the electron/hole recombination process. The degradation rate and relative toxicity reduction of TCE followed the order of solar light/TiO2 slurry + S2O8(2-) > solar light/TiO2 slurry + H2O2 > solar light/TiO2 immobilized + S2O8(2-) > solar light/TiO2 slurry > solar light/TiO2 immobilized + H2O2 > solar light/TiO2 immobilized. Finally, following to the toxicity result, the acute toxicity was reduced by below toxicity endpoint (EC50 concentration) following the treatment. It means that many of the metabolites of TCE reduction are less toxic to Vibrio fischeri than the parent compound. Based on these results, TCE can be efficiently and safely treated in a solar-driven, photocatalyzed degradation system.

  20. Fluid mechanics of slurry flow through the grinding media in ball mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then themore » slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.« less

  1. A Randomized Controlled Comparison of Esophageal Clearance Times of Oral Budesonide Preparations.

    PubMed

    Hefner, Jody N; Howard, Robin S; Massey, Robert; Valencia, Miland; Stocker, Derek J; Philla, Katherine Q; Goldman, Matthew D; Nylund, Cade M; Min, Steve B

    2016-06-01

    Topical steroids prepared as oral viscous slurries have become common in the treatment of eosinophilic esophagitis. Esophageal mucosal contact time correlates with clinical and histologic improvement. To compare the mucosal contact time of alternative oral viscous budesonide (OVB) slurries with the conventional sucralose OVB. A blinded randomized crossover trial investigating esophageal clearance of three OVB slurry preparations was done on healthy adults. Honey and xanthan gum OVB slurries were compared with standard sucralose OVB in 24 randomly assigned subjects. Each subject ingested the sucralose OVB and either the honey or xanthan gum OVB slurries. The esophageal clearance of each slurry was evaluated as an area under the curve (AUC) using 1 millicurie of technetium-99m-sulfur colloid (Tc99) co-administered in each OVB preparation using nuclear scintigraphy. A standardized taste survey was also administered. Xanthan gum had greater mucosal contact time compared to sucralose as measured by a higher AUC at 3 min (P = 0.002), while honey showed no significant difference in esophageal clearance relative to sucralose. Taste scores were significantly higher in the honey group, while scores for xanthan gum were no different from standard sucralose. OVB slurries utilizing xanthan gum may be a superior alternative to a sucralose-based slurry due to its increased mucosal contact time and similar taste tolerance. Honey may be a suitable alternative as well, due to its similar contact time and favorable taste.

  2. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    NASA Astrophysics Data System (ADS)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  3. Nonlinear Autoregressive Exogenous modeling of a large anaerobic digester producing biogas from cattle waste.

    PubMed

    Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra

    2014-10-01

    In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within ±8% deviation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quercia, G., E-mail: g.quercia@tue.nl; Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven; Putten, J.J.G. van der

    2013-12-15

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO{sub 2}, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopymore » (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO{sub 2} footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. •Dispersability studies demonstrated that nSS agglomerates are broken to nano-size. •nSS can be classified as a pozzolanic material with activity index higher than 100. •nSS can be use as a potential SCM to partly replace cement in concrete.« less

  5. Stabilization of 238Pu-contaminated combustible waste by molten salt oxidation

    NASA Astrophysics Data System (ADS)

    Stimmel, Jay J.; Remerowski, Mary Lynn; Ramsey, Kevin B.; Heslop, J. Mark

    2000-07-01

    Surrogate studies were conducted using the molten salt oxidation system at the Naval Surface Warfare Center-Indian Head Division. This system uses a rotary feed system and an alumina molten salt oxidation vessel. The combustible materials were tested individually and together in a homogenized mixture. A slurry containing pyrolyzed cheesecloth ash spiked with cerium oxide, which is used as a surrogate for plutonium, and ethylene glycol were also treated in the molten salt oxidation vessel.

  6. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Schmidt, Andrew J.; Hart, Todd R.

    Wet waste feedstocks present an apt opportunity for biomass conversion to fuels by hydrothermal processing. In this study, grape pomace slurries from two varieties, Montepulciano and cabernet sauvignon, have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale, continuous-flow reactor system. Carbon conversion to gravity-separable biocrude product up to 56 % was accomplished at relatively low temperature (350 C) in a pressurized (sub-critical liquid water) environment (20 MPa) when using grape pomace feedstock slurry with a 16.8 wt% concentration of dry solids processed at a liquid hourly space velocity of 2.1 h-1. Direct oil recovery was achievedmore » without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup using a Ru on C catalyst in a fixed bed producing a gas composed of methane and carbon dioxide from water soluble organics. Conversion of 99.8% of the chemical oxygen demand (COD) left in the aqueous phase was demonstrated. As a result, high conversion of grape pomace to liquid and gas fuel products was found with residual organic contamination in byproduct water reduced to <150 mg/kg COD.« less

  7. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  8. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong.

    PubMed

    Hossain, Md Uzzal; Xuan, Dongxing; Poon, Chi Sun

    2017-03-01

    With the promotion of environmental protection in the construction industry, the mission to achieve more sustainable use of resources during the production process of concrete is also becoming important. This study was conducted to assess the environmental sustainability of concrete slurry waste (CSW) management by life cycle assessment (LCA) techniques, with the aim of identifying a resource-efficient solution for utilisation of CSW in the production of partition wall blocks. CSW is the dewatered solid residues deposited in the sedimentation tank after washing out over-ordered/rejected fresh concrete and concrete trucks in concrete batching plants. The reuse of CSW as recycled aggregates or a cementitious binder for producing partition wall blocks, and the life cycle environmental impact of the blocks were assessed and compared with the conventional one designed with natural materials. The LCA results showed that the partition wall blocks prepared with fresh CSW and recycled concrete aggregates achieved higher sustainability as it consumed 59% lower energy, emitted 66% lower greenhouse gases, and produced lesser amount of other environmental impacts than that of the conventional one. When the mineral carbonation technology was further adopted for blocks curing using CO 2 , the global warming potential of the corresponding blocks production process was negligible, and hence the carbonated blocks may be considered as carbon neutral eco-product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    PubMed

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  10. New-Generation Sealing Slurries For Borehole Injection Purposes

    NASA Astrophysics Data System (ADS)

    Stryczek, Stanisław; Gonet, Andrzej; Wiśniowski, Rafał; Złotkowski, Albert

    2015-12-01

    The development of techniques and technologies thanks to which parameters of the ground medium can be modified makes specialists look for new recipes of geopolymers - binders for the reinforcing and sealing of unstable and permeable grounds. The sealing slurries are expected to meet a number of strict requirements, therefore it is important to find new admixtures and additives which could modify the fresh and hardened slurry. Special attention has been recently paid to the fluid ash - a by-product of the combustion of hard coals. However, the use of this additive is associated with the application of appropriate superplastifier. Laboratory analyses of rheological parameters of fresh sealing slurries and the ways of improving their liquidity by a properly selected third-generation superplastifier are presented in the paper. The slurries were based on Portland cement CEM I, milled granulated large-furnace slag and fly ash from fluidized-bed combustion of hard coal.

  11. Effect of liquid-to-solid ratio on semi-solid Fenton process in hazardous solid waste detoxication.

    PubMed

    Hu, Li-Fang; Feng, Hua-Jun; Long, Yu-Yang; Zheng, Yuan-Ge; Fang, Cheng-Ran; Shen, Dong-Sheng

    2011-01-01

    The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg(-1), 1 g kg(-1), 10 g kg(-1), and 100 gk g(-1) on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ≥ 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times, which may eventually impact canister production rates, the Liquid Waste Organization (LWO) performed a 100K gallon supernate decant of Tank 40 in April 2008. SRNLmore » performed a supplemental glass variability study to support the April 2008 100K gallon decant incorporating the impact of coupled operations (addition of the Actinide Removal Process (ARP) stream). Recently LWO requested that SRNL assess the impact of a second decant (up to 100K gallon) to the Frit 510-SB4 system. This second decant occurred in June 2008. LWO provided nominal compositions on May 6, 2008 representing Tank 40 prior to the second decant, following the second decant, and the SB4 Heel prior to blending with Tank 51 to constitute SB5. Paper study assessments were performed for these options based on sludge-only and coupled operations processing (ARP addition), as well as possible Na{sub 2}O additions (via NaOH additions) to both flowsheets. A review of the ComProTM database relative to the compositional region defined by the projections after the second decant coupled with Frit 510 identified only a few glasses with similar glass compositions. These glasses were acceptable from a durability perspective, but did not sufficiently cover the new glass compositional region. Therefore, SRNL recommended that a supplemental variability study be performed to support the June 2008 Tank 40 decant. Glasses were selected for the variability study based on three sludge compositional projections (sludge-only, coupled and coupled + 2 wt% Na{sub 2}O) at waste loadings (WLs) of interest to DWPF (32%, 35% and 38%). These nine glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT). All of the glasses that were selected for this study satisfy the Product Composition Control System (PCCS) criteria and are deemed processable and acceptable for the DWPF, except for the SB4VS2-03 (sludge-only at 38% WL) target composition. This glass fails the T{sub L} criterion and would not be considered processable based on Slurry Mix Evaporator (SME) acceptability decisions. The durabilities of all of the study glasses (both quenched and ccc) are well below that of the normalized leachate for boron (NL [B]) of the reference EA glass (16.695 g/L) and are predictable using the current PCCS models. Very little variation exists between the NL [B] of the quenched and ccc versions of the glasses. There is some evidence of a trend toward a less durable glass as WL increases for some of the sludge projections. Frit 510 is a viable option for the processing of SB4 after a second Tank 40 decant with or without the addition of products from the ARP stream as well as the 2 wt% Na{sub 2}O addition. The addition of ARP had no negative impacts on the acceptability and predictability of the variability study glasses.« less

  13. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  14. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  15. Modelling approaches for pipe inclination effect on deposition limit velocity of settling slurry flow

    NASA Astrophysics Data System (ADS)

    Matoušek, Václav; Kesely, Mikoláš; Vlasák, Pavel

    2018-06-01

    The deposition velocity is an important operation parameter in hydraulic transport of solid particles in pipelines. It represents flow velocity at which transported particles start to settle out at the bottom of the pipe and are no longer transported. A number of predictive models has been developed to determine this threshold velocity for slurry flows of different solids fractions (fractions of different grain size and density). Most of the models consider flow in a horizontal pipe only, modelling approaches for inclined flows are extremely scarce due partially to a lack of experimental information about the effect of pipe inclination on the slurry flow pattern and behaviour. We survey different approaches to modelling of particle deposition in flowing slurry and discuss mechanisms on which deposition-limit models are based. Furthermore, we analyse possibilities to incorporate the effect of flow inclination into the predictive models and select the most appropriate ones based on their ability to modify the modelled deposition mechanisms to conditions associated with the flow inclination. A usefulness of the selected modelling approaches and their modifications are demonstrated by comparing model predictions with experimental results for inclined slurry flows from our own laboratory and from the literature.

  16. Multi-stage slurry system used for grinding and polishing materials

    DOEpatents

    Hed, P. Paul; Fuchs, Baruch A.

    2001-01-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  17. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    NASA Astrophysics Data System (ADS)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  18. Nitrogen fertilizer replacement value of cattle slurry in grassland as affected by method and timing of application.

    PubMed

    Lalor, S T J; Schröder, J J; Lantinga, E A; Oenema, O; Kirwan, L; Schulte, R P O

    2011-01-01

    Slurry application with methods such as trailing shoe (TS) results in reduced emissions of ammonia (NH3) compared with broadcast application using splashplate (SP). Timing the application during cool and wet weather conditions also contributes to low NH3 emissions. From this perspective, we investigated whether reduced NH3 emissions due to improved slurry application method and timing results in an increase in the nitrogen (N) fertilizer replacement value (NFRV). The effects of application timing (June vs. April) and application method (TS vs. SP) on the apparent N recovery (ANR) and NFRV from cattle slurry applied to grassland were examined on three sites over 3 yr in randomized block experiments. The NFRV was calculated using two methods: (i) NFRV(N) based on the ANR of slurry N relative to mineral N fertilizer; and (ii) NFRV(DM) based on DM yield. The TS method increased the ANR, NFRV(N), and NFRV(DM) compared with SP in the 40- to 50-d period following slurry application by 0.09, 0.10, and 0.10 kg kg(-1), respectively. These values were reduced to 0.07, 0.06, and 0.05 kg kg(-1), respectively, when residual harvests during the rest of the year were included. The highest NFRV(DM) for the first harvest period was with application in April using STS (0.30 kg kg(-1)), while application in June with SP had the Slowest (0.12 kg kg(-1)). The highest NFRV(DM) for the cumulative harvest period was with application in April using TS (0.38 kg kg(-1)), while application in June with SP had the lowest (0.17 kg kg(-1)). Improved management of application method, by using TS instead of SP, and timing, by applying slurry in April rather than June, offer potential to increase the NFRV(DM) of cattle slurry applied to grassland.

  19. Simple technologies for on-farm composting of cattle slurry solid fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, L.M., E-mail: miguelbrito@esa.ipvc.pt; Mourao, I.; Coutinho, J., E-mail: j_coutin@utad.pt

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Simple management techniques were examined for composting slurry solid fraction. Black-Right-Pointing-Pointer Composting slurry solids was effective without bulking agents, turning or rewetting. Black-Right-Pointing-Pointer Maximum rates of organic matter destruction were observed in short piles. Black-Right-Pointing-Pointer Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. Black-Right-Pointing-Pointer The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animalmore » slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m{sup 3} h{sup -1} and 1 m{sup 3} h{sup -1} and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 Degree-Sign C) were measured in tall piles compared to short piles (52 Degree-Sign C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg{sup -1} dry solids and the net loss of OM significantly (P < 0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low final pile temperatures and C/N ratio, low concentrations of NH{sub 4}{sup +} and increased concentrations of NO{sub 3}{sup -} in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772-856 g kg{sup -1}) and plant nutrients. The implications of a minimal intervention management approach to composting SF on compost pathogen reduction are discussed and possible measures to improve sanitation are suggested.« less

  20. Liquid CO 2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO 2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO 2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO 2 is much lower than water. This means it should take less energy to pump liquid CO 2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, whichmore » should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO 2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO 2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO 2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO 2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO 2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO 2/coal slurry properties.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, R.P.

    As part of the DOE-sponsored contract Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas'' experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al[sub 2]O[sub 3] methanol synthesis catalyst, developed in Air Products' laboratories, has the highest performance in terms of rate and selectivity for C[sub 2+]-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, R.P.

    As part of the DOE-sponsored contract ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas`` experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst, developed in Air Products` laboratories, has the highest performance in terms of rate and selectivity for C{sub 2+}-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less

  3. The stability of a novel weakly alkaline slurry of copper interconnection CMPfor GLSI

    NASA Astrophysics Data System (ADS)

    Yao, Caihong; Wang, Chenwei; Niu, Xinhuan; Wang, Yan; Tian, Shengjun; Jiang, Zichao; Liu, Yuling

    2018-02-01

    Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive (colloidal silica), complexing agent (glycine), inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine, 200 ppm BTA, 20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness (Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Professional Degree Teaching Case Foundation of Hebei Province, China (No. KCJSZ2017008), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Natural Science Foundation of Tianjin, China (No. 16JCYBJC16100).

  4. Environmental vulnerability and phosphorus fractions of areas with pig slurry applied to the soil.

    PubMed

    da Rosa Couto, Rafael; Santos, Matheus Dos; Comin, Jucinei José; Pittol Martini, Luíz Carlos; Gatiboni, Luciano Colpo; Martins, Sérgio Roberto; Filho, Paulo Belli; Brunetto, Gustavo

    2015-01-01

    The application of pig slurry as a fertilizer can cause soil and water contamination. Intrinsic characteristics of the environment may enhance this effect and influence the vulnerability of the agricultural system. The goal of this study was to evaluate the accumulation of soil P fractions in areas treated with pig slurry and in forest areas and to propose an evaluation of the areas' vulnerability to P contamination. Soil samples were collected from 10 areas with pig slurry applied to the soil and one in forest without a history of pig slurry application, all located in the Coruja and Bonito rivers microbasin at Braço do Norte, Santa Catarina, southern Brazil. Samples were prepared and subjected to P chemical fractionation. Two versions of the P index method, based on soil P forms or only on P extracted by Mehlich-1, were used to evaluate the environmental risk of the studied areas. Estimated soil losses were lower for the forest and natural pasture and highest in areas with black oat ( Schreb.)-corn ( L.) crop cultivation. Concentrations of P fractions, especially of organic and inorganic P extracted by 0.1 and 0.5 mol L NaOH and NaHCO and of inorganic P extracted by anion exchange resin and HCl, were higher in areas with a longer history and higher frequency of pig slurry applications. Vulnerability to P contamination was mainly influenced by soil P concentrations and soil losses in the studied areas. The P index based on Hedley's fractionation P forms resulted in a more accurate risk scoring of the studied areas than the P index based on the concentration of available P extracted by Mehlich-1. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Method and apparatus for making articles from particle based materials

    DOEpatents

    Moorhead, Arthur J.; Menchhofer, Paul A.

    1995-01-01

    A method and apparatus for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product.

  6. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  7. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.D.; Collins, J.L.

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test usingmore » the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Steve E.

    The accuracy and precision of a new Isolok sampler configuration was evaluated using a recirculation flow loop. The evaluation was performed using two slurry simulants of Hanford high-level tank waste. Through testing, the capability of the Isolok sampler was evaluated. Sample concentrations were compared to reference samples that were simultaneously collected by a two-stage Vezin sampler. The capability of the Isolok sampler to collect samples that accurately reflect the contents in the test loop improved – biases between the Isolok and Vezin samples were greatly reduce for fast settling particles.

  9. Operational Test Report (OTR): On-Site Degradation of Oily Sludge in a Tenthousand Gallon Sequencing Batch Reactor at Navsta Pearl Harbor, HI

    DTIC Science & Technology

    2003-11-01

    treated anaerobically . To accommodate the longer residence times needed to treat waste anaerobically , the capacity is often much larger than a...the receiving tank (T1), where it is diluted and run through a trash pump (P1) to produce a homogenous slurry. 3 Figure 1. Sequencing...blower provides air to the reactor and receiving tank. The trash pump is also used to transfer sludge to the reactor and to recirculate sludge in

  10. Evaluation of Lime and Persulfate Treatment for Mixed Contaminant Soil from Plum Brook Ordnance Works (Sandusky, OH)

    DTIC Science & Technology

    2007-09-01

    sulfuric acid , and analyzed according to USEPA Method 8082 (1996) using a Hewlett Packard Series II 5890 Gas Chromatograph equipped with dual electron... sulfuric acid to reduce the slurry pH to approximately 4, and • 30 percent H2O2 to create a 100-mg/L final aqueous concentration. Cobble treatment...Wastes: Physical/Chemical Methods (USEPA SW 846). 1996. Method 3665A. Sulfuric acid /permanganate cleanup. Washington, DC. United States

  11. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.« less

  12. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa.

    PubMed

    Coblentz, W K; Muck, R E; Borchardt, M A; Spencer, S K; Jokela, W E; Bertram, M G; Coffey, K P

    2014-11-01

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy slurry was applied to 0.17-ha plots of alfalfa; applications were made to the second (HARV1) and third (HARV2) cuttings during June and July of 2012, respectively, at mean rates of 42,400 ± 5271 and 41,700 ± 2397 L/ha, respectively. Application strategies included (1) no slurry, (2) slurry applied directly to stubble immediately after the preceding harvest, (3) slurry applied after 1 wk of post-ensiled regrowth, or (4) slurry applied after 2 wk of regrowth. All harvested forage was packaged in large, rectangular bales that were ensiled as wrapped balage. Yields of DM harvested from HARV1 (2,477 kg/ha) and HARV2 (781 kg/ha) were not affected by slurry application treatment. By May 2013, all silages appeared to be well preserved, with no indication of undesirable odors characteristic of clostridial fermentations. Clostridium tyrobutyricum, which is known to negatively affect cheese production, was not detected in any forage on either a pre- or post-ensiled basis. On a pre-ensiled basis, counts for Clostridium cluster 1 were greater for slurry-applied plots than for those receiving no slurry, and this response was consistent for HARV1 (4.44 vs. 3.29 log10 genomic copies/g) and HARV2 (4.99 vs. 3.88 log10 genomic copies/g). Similar responses were observed on a post-ensiled basis; however, post-ensiled counts also were greater for HARV1 (5.51 vs. 5.17 log10 genomic copies/g) and HARV2 (5.84 vs. 5.28 log10 genomic copies/g) when slurry was applied to regrowth compared with stubble. For HARV2, counts also were greater following a 2-wk application delay compared with a 1-wk delay (6.23 vs. 5.45 log10 genomic copies/g). These results suggest that the risk of clostridial fermentations in alfalfa silages is greater following applications of slurry. Based on pre- and post-ensiled clostridial counts, applications of dairy slurry on stubble are preferred (and less risky) compared with delayed applications on growing alfalfa. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Estimation of Methane Emissions from Slurry Pits below Pig and Cattle Confinements

    PubMed Central

    Petersen, Søren O.; Olsen, Anne B.; Elsgaard, Lars; Triolo, Jin Mi; Sommer, Sven G.

    2016-01-01

    Quantifying in-house emissions of methane (CH4) from liquid manure (slurry) is difficult due to high background emissions from enteric processes, yet of great importance for correct estimation of CH4 emissions from manure management and effects of treatment technologies such as anaerobic digestion. In this study CH4 production rates were determined in 20 pig slurry and 11 cattle slurry samples collected beneath slatted floors on six representative farms; rates were determined within 24 h at temperatures close to the temperature in slurry pits at the time of collection. Methane production rates in pig and cattle slurry differed significantly at 0.030 and 0.011 kg CH4 kg-1 VS (volatile solids). Current estimates of CH4 emissions from pig and cattle manure management correspond to 0.032 and 0.015 kg CH4 kg-1, respectively, indicating that slurry pits under animal confinements are a significant source. Fractions of degradable volatile solids (VSd, kg kg-1 VS) were estimated using an aerobic biodegradability assay and total organic C analyses. The VSd in pig and cattle slurry averaged 0.51 and 0.33 kg kg-1 VS, and it was estimated that on average 43 and 28% of VSd in fresh excreta from pigs and cattle, respectively, had been lost at the time of sampling. An empirical model of CH4 emissions from slurry was reparameterised based on experimental results. A sensitivity analysis indicated that predicted CH4 emissions were highly sensitive to uncertainties in the value of lnA of the Arrhenius equation, but much less sensitive to uncertainties in VSd or slurry temperature. A model application indicated that losses of carbon in VS as CO2 may be much greater than losses as CH4. Implications of these results for the correct estimation of CH4 emissions from manure management, and for the mitigation potential of treatments such as anaerobic digestion, are discussed. PMID:27529692

  14. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, M.H.; Su, M.X.; Dong, L.L.

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluatedmore » on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.« less

  15. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    NASA Astrophysics Data System (ADS)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  16. AIBA as Free Radical Initiator for Abrasive-Free Polishing of Hard Disk Substrate

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Ren, Xiaoyan

    2015-04-01

    In order to optimize the existing slurry for abrasive-free polishing (AFP) of a hard disk substrate, a water-soluble free radical initiator, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was introduced into H2O2-based slurry in the present work. Polishing experiment results with AIBA in the H2O2 slurry indicate that the material removal rate (MRR) increases and the polished surface has a lower surface roughness. The mechanism of AIBA in AFP was investigated using electron spin-resonance spectroscopy and UV-Visible analysis, which showed that the concentration of hydroxyl radical (a stronger oxidizer than H2O2) in the slurry was enhanced in the present of AIBA. The structure of the film formed on the substrate surface was investigated by scanning electron microscopy, auger electron spectroscopy and electrochemical impedance spectroscopy technology, showing that a looser and porous oxide film was found on the hard disk substrate surface when treated with the H2O2-AIBA slurry. Furthermore, potentiodynamic polarization tests show that the H2O2-AIBA slurry has a higher corrosion current density, implying that a fast dissolution reaction can occur on the substrate surface. Therefore, we can conclude that the stronger oxidation ability, loose oxide film on the substrate surface, and the higher corrosion-wear rate of the H2O2-AIBA slurry lead to the higher MRR.

  17. Methane production from thermophilic co-digestion of dairy manure and waste milk obtained from therapeutically treated cows.

    PubMed

    Beneragama, Nilmini; Iwasaki, Masahiro; Umetsu, Kazutaka

    2017-02-01

    Methane production from co-digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (P m )/g volatile solids added followed by SM in both A and B. This P m of SMWM10 in A and B was statistically non-significant (P > 0.05). More than 96% of cefazolin-resistant bacteria and 100% of multi-drug-resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  18. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.

    2000-01-24

    Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solidsmore » dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.« less

  19. Method and apparatus for making articles from particle based materials

    DOEpatents

    Moorhead, A.J.; Menchhofer, P.A.

    1995-12-19

    A method and apparatus are disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product. 10 figs.

  20. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9more » by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.« less

  1. Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naskar, Amit K; Bi,; Saha, Dipendu

    2014-01-01

    Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm,more » reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.« less

  2. In-Situ Production of Calcium Carbonate Nanoparticles in Fresh Concrete Using Pre-carbonation Method

    NASA Astrophysics Data System (ADS)

    Qian, Xin

    To reduce the carbon footprint of ordinary Portland cement (OPC)-based concrete, a novel technique, pre-carbonation process, has been developed to produce CaCO3 nanoparticles in fresh concrete. In this technique, gaseous CO2 is first absorbed into a slurry of calcium-rich minerals which is then blended with other ingredients to produce mortar/concrete. The objective of this work is to obtain an in-depth understanding of the underlying scientific mechanisms associated with the enhancement of strength and durability of the concrete induced by the new method. A comprehensive research plan has been carried out to study the carbonated slaked lime slurry and the effect of carbonated slaked lime slurry on the performance of OPC-based concrete, and to evaluate the potentials of the pre-carbonation method. Experimental studies show that carbonating the calcium-rich mineral slurry with CO2 can produce CaCO3 nanoparticles and Ca(HCO 3)2 in the slurry, and these carbonation products were dictated by four parameters of the pre-carbonation method: the duration and temperature of the carbonation, the concentration of the calcium source slurry, and the stirring method of the calcium source slurry during the carbonation. The mechanical properties and durability of the mortar/concrete made with the carbonated slurry were significantly improved, which can be attributed to major mechanisms induced by the pre-carbonation method: promoted hydration of the cement and denser microstructure of the mortar/concrete. Calorimetry testing showed that the hydration of OPC was greatly improved by the pre-carbonation because of the extra heterogenous nucleation sites provided by the CaCO3 nanoparticles. XRD and TGA results revealed that more ettringite was produced in the mortar/concrete with pre-carbonated slaked lime slurry. The overall volume of the hydration products of the cement was increased by the pre-carbonation, leading to denser microstructure of the mortar/concrete. It has been found that the pre-carbonation can be used to the OPC-supplementary cementitious materials (SCMs) blended cement mortar/concrete, as evidenced by the improved mechanical properties achieved by these mortars produced by using the pre-carbonation method. A preliminary study was also conducted to examine whether other calcium-rich minerals, such as Class C fly ash and limestone, can be used as calcium source in the pre-carbonation method.

  3. Fate and impacts of pharmaceuticals and personal care products after repeated applications of organic waste products in long-term field experiments.

    PubMed

    Bourdat-Deschamps, Marjolaine; Ferhi, Sabrina; Bernet, Nathalie; Feder, Fréderic; Crouzet, Olivier; Patureau, Dominique; Montenach, Denis; Moussard, Géraud D; Mercier, Vincent; Benoit, Pierre; Houot, Sabine

    2017-12-31

    Recycling organic waste products in agriculture is a potential route for the dispersion of pharmaceutical residues in the environment. In this study, the concentrations of thirteen pharmaceuticals and the personal care product triclosan (PPCPs) were determined in different environmental matrices from long-term experimental fields amended with different organic waste products (OWPs), including sludge, composted sludge with green wastes, livestock effluents and composted urban wastes applied at usual agricultural rates. PPCP concentrations were different in OWPs, varying from a few micrograms to milligrams per kilogram dry matter or per litre for slurry. OWPs from sludge or livestock effluents primarily contained antibiotics, whereas composted urban wastes primarily contained anti-inflammatory compounds. PPCP contents in soils amended for several years were less than a few micrograms per kilogram. The most persistent compounds (fluoroquinolones, carbamazepine) were quantified or detected in soils amended with sludge or composted sludge. In soils amended with composted municipal solid waste, carbamazepine was quantified, and fluoroquinolones, ibuprofen and diclofenac were sometimes detected. The small increases in fluoroquinolones and carbamazepine in soils after individual OWP applications were consistent with the fluxes from the applied OWP. The measured concentrations of pharmaceuticals in soil after several successive OWP applications were lower than the predicted concentrations because of degradation, strong sorption to soil constituents and/or leaching. Dissipation half-lives (DT 50 ) were approximately 750-2500, 900 and <300days for fluoroquinolones, carbamazepine and ibuprofen, respectively, in temperate soils and <350 and <80days for fluoroquinolones and doxycycline, respectively, in tropical soils. Detection frequencies in soil leachates were very low (below 7%), and concentrations ranged from the limits of detection (0.002-0.03μg/L) and exceptionally to 0.27μg/L. The most frequently detected pharmaceuticals were carbamazepine and ibuprofen. Based on the risk quotient, the estimated ecotoxicological risks for different soil organisms were low. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Vermiconversion of wastewater sludge from textile mill mixed with anaerobically digested biogas plant slurry employing Eisenia foetida.

    PubMed

    Garg, V K; Kaushik, Priya; Dilbaghi, Neeraj

    2006-11-01

    Vermicomposting is commonly used for the management of organic wastes. We have investigated the potential of an epigeic earthworm, Eisenia foetida, to transform solid textile mill sludge (STMS) spiked with anaerobically digested biogas plant slurry (BPS) into vermicompost to evaluate the feasibility of vermicomposting in industries for waste management. The growth and reproduction of E. foetida was monitored in a range of different feed mixtures for 15 weeks in laboratory under controlled experimental conditions. E. foetida did not survive in fresh STMS. But worms grew and reproduced in STMS spiked with BPS feed mixtures. A greater percentage of STMS in feed mixture affected biomass gain and cocoon production by earthworms. The maximum growth was recorded in 100% BPS. The net weight gain by E. foetida in 100% BPS was two-four-fold higher than STMS-containing feed mixtures. After 15 weeks, maximum cocoons (78) were counted in 100% BPS and minimum (26) in 60% BPS+40% STMS feed. Vermicomposting resulted in pH shift toward acidic, significant reduction in C:N ratio, and increase in nitrogen, phosphorus, and potassium contents. Microbial activity measured as dehydrogenase activity increased with time up to day 75 but decreased on day 90, indicating the exhaustion of feed and decrease in microbial activity. These experiments demonstrate that vermicomposting can be an alternate technology for the recycling and environmentally safe disposal/management of textile mill sludge using an epigeic earthworm, E. foetida, if mixed with anaerobically digested BPS in appropriate ratios.

  5. Efficient production of methane from artificial garbage waste by a cylindrical bioelectrochemical reactor containing carbon fiber textiles

    PubMed Central

    2013-01-01

    A cylindrical bioelectrochemical reactor (BER) containing carbon fiber textiles (CFT; BER + CFT) has characteristics of bioelectrochemical and packed-bed systems. In this study, utility of a cylindrical BER + CFT for degradation of a garbage slurry and recovery of biogas was investigated by applying 10% dog food slurry. The working electrode potential was electrochemically regulated at −0.8 V (vs. Ag/AgCl). Stable methane production of 9.37 L-CH4 · L−1 · day−1 and dichromate chemical oxygen demand (CODcr) removal of 62.5% were observed, even at a high organic loading rate (OLR) of 89.3 g-CODcr · L−1 · day−1. Given energy as methane (372.6 kJ · L−1 · day−1) was much higher than input electric energy to the working electrode (0.6 kJ · L−1 · day−1) at this OLR. Methanogens were highly retained in CFT by direct attachment to the cathodic working electrodes (52.3%; ratio of methanogens to prokaryotes), compared with the suspended fraction (31.2%), probably contributing to the acceleration of organic material degradation and removal of organic acids. These results provide insight into the application of cylindrical BER + CFT in efficient methane production from garbage waste including a high percentage of solid fraction. PMID:23497472

  6. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  7. Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry

    DTIC Science & Technology

    2009-05-31

    inlet temperature of the fluid, melting range of PCM and base heat flux. 15. SUBJECT TERMS Phase Change Materials; microchannel cooling; slurry...such as particle concentration, inlet temperature of the fluid, melting range of PCM , base heat flux and base fluid. Nomenclature A Aspect ratio Ab...of fluid, J/kg.K cp,p Specific heat of MEPCM particle, J/kg.K Cp, pcm Specific heat of PCM , J/kg.K D Hydraulic diameter, m d, dp Particle diameter

  8. Enteric porcine viruses in farmed shellfish in Denmark.

    PubMed

    Krog, J S; Larsen, L E; Schultz, A C

    2014-09-01

    Bivalve shellfish are at constant risk of being exposed to pathogens as a consequence of contamination of the shellfish beds with human or animal waste originating from sewage treatment plants or slurry fertilized fields. Consumption of contaminated oysters and mussels are frequently reported as causes of disease outbreaks caused by norovirus or hepatitis A virus. Other zoonotic pathogens such as hepatitis E virus (HEV), rotavirus (RV) and Salmonella from livestock may also be transmitted to shellfish via this route. In this study, 29 pooled samples from commercial Danish blue mussels were tested for porcine pathogens and indicator bacteria Escherichia coli (E. coli). All samples tested negative for HEV, RV and Salmonella, whereas E. coli and the highly stable porcine circovirus type 2 (PCV2) were detected in eight and 12 samples, respectively. This is the first study to report the detection of PCV2 in commercial mussels. Based on the detection of PCV2 in clean areas with low prevalence of the normally applied fecal indicator E. coli, testing for PCV2 may be a more sensitive and robust specific porcine waste indicator in shellfish harvesting areas. Copyright © 2014. Published by Elsevier B.V.

  9. Mid-term effects of mine soil reclamation by use of aided phytostabilization

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Faz, Ángel; Martínez-Martínez, Silvia; Acosta, Jose Alberto; Gómez, María Dolores; Yanardag, Ibrahim

    2014-05-01

    Abandoned tailing ponds show environmental and human health hazards by the transfer of heavy metals through erosion or leaching. To reduce these hazards, a reclamation strategy has been developed on a tailing pond based on aided phytostabilization. In 2011 marble mud and pig slurry were applied on the tailing pond surface. In spring 2012 thirteen native vegetal species were introduced. During two years (2012-2013) the evolution of different soil properties and the bioavailable fraction of the heavy metals Cd, Pb and Zn has been monitored. Results showed that pH, aggregates stability, organic carbon, nitrogen and cation exchange capacity increased with the application of the amendments and the development of vegetation, while the bioavailable fraction of the heavy metals drastically decreased (90-99%). Thus, the strategy followed resulted positive to reduce the availability of heavy metals, improving soil quality and fertility. These results are promising in areas with extractive activity of carbonated materials, since the generated wastes can be used for reclamation of soils affected with heavy metals, turning a waste into a by-product. Key words: amendments, geochemistry, heavy metals, mining, tailing pond. Acknowledgements: This work has been funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439).

  10. Continuous magnetic separator and process

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  11. Dense protective coatings, methods for their preparation and coated articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.

    A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.

  12. Assessment of Present State-of-the-art Sawing Technology of Large Diameter Ingots for Solar Sheet Material

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.

    1978-01-01

    Work is reported on: (1) slicing of the ingots with the multiblade slurry saw, the multiwire slurry saw and the I.D. saw, (2) characterization of the sliced wafers, and (3) analysis of add-on slicing cost based on Solar Array Manufacturing Industry Costing Standard.

  13. Biocapture of CO2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods

    PubMed Central

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-01-01

    Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology. PMID:29543784

  14. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods.

    PubMed

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-03-15

    Abstract : Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO₂ in biogas. The microalgae-fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO 2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulga ris - Ganoderma lucidum > Chlorella vulga ris -activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m -2 s -1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology.

  15. SUMMARY TECHNICAL REPORT FOR THE PERIOD JANUARY 1, 1961-MARCH 31, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgett, R. ed

    1961-05-01

    Uranium and TBP Recovery from Waste Solvent. Laboratory and pilot-scale tests were carried out which demonstrated (1) that uranium in waste solvent can be removed by slurrying the solvent with activated charcoal, filtering the slurry, and washing the slurry with water and 3% Na/sub 2/CO/sub 3/ and (2) that TBP can be recovered from the waste solvent by splitting the solvent with HCl and distilling the TBP-rich phase. Improvement of Green Salt Quality. Denitration of ammonium uranyl trinitrate yielded a light, finely divided form of gamma -UO/ sub 3/ with a surface area higher than that of conventional batch potmore » powder; however, its reactivity in reduction and hydrofluorination tests was only moderately higher in comparison. Oxidation-reduction cycles were found to increase the reactivity of UO/sub 2/ toward hydrofluorination. The properties of various UO/sub 2/ samples were determined and correlated with the preparative methods used. Dehydration of Winlo Green Salt. About 27 tons of Winlo green salt was successfully dehydrated to a water content of -0.04% in a hydrofluorination reactor bank in the Green Salt Plant. Recovery of Uranium from MgF/sub 2/ Slag. A process for continuously digesting MgF/sub 2/ slag for uranium recovery was successfully tested on a plant scale. In this process, a water slurry of slag is transferred at a fixed rate and reacted with HCl, and the controlled feed rate reduces the hydrogen concentration. Graphite Liner for Bomb Reduction of Green Salt. An evaluation was made on machined graphite as a replacement for jolt-packed MgF/sub 2/ presently used to line reduction vessels for uranium metal production. Best results were obtained with a onepiece graphite liner fitted inside a steel vessel with an annulus of MgF/sub 2/ between liner and pot. Effects of Feed Material on Ingot Chemical Purity and Yields. The effects of various types of uranium feed stock on the chemical purity and yield of ingots were studied. The following results were obtained: (1) The H content was higher in ingots cast from melts contairing more derby material, (2) the O, N, and C contents of samples from ingot tops were signiicantly lower than those from ingot bottoms, (3) the crude ingot yields were lowest for pigots, briquettes, and heat-shocked grade III derbies, (4) pigots were deleterious to ingot chemical purity, (5) degreased drip crops and dingot extrnsion scrap were deleterious to core-to-good-core yield. Alpha Annealing of Uranium. The effect of a high alpha temperature anneal on the structure and growin index of beta heat treated uranium was evaluated. It was found that longer alpha annealing times gave greater recrystallization and that higher temperatures gave more rapid recrystallization. Delays of up to 6 months between beta heat treatment and alpha anneal did not affect either the recrystallization or the growth index. Billet Drilling. A LeBlond-Carlstedt Rapid Borer was tested as a urarium billet drilling machine and found to give satisfactory results, although some tool breakage occurred. (D.L.C.)« less

  16. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    NASA Astrophysics Data System (ADS)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  17. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry.

    PubMed

    Joy, Stacey R; Bartelt-Hunt, Shannon L; Snow, Daniel D; Gilley, John E; Woodbury, Bryan L; Parker, David B; Marx, David B; Li, Xu

    2013-01-01

    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine the effect of various manure land application methods on the fate and transport of antimicrobials and ARGs in soil and runoff following land application of swine manure slurry. Swine manure slurries were obtained from facilities housing pigs that were fed chlortetracyline, tylosin or bacitracin and were land applied via broadcast, incorporation, and injection methods. Three rainfall simulation tests were then performed on amended and control plots. Results show that land application methods had no statistically significant effect on the aqueous concentrations of antimicrobials in runoff. However, among the three application methods tested broadcast resulted in the highest total mass loading of antimicrobials in runoff from the three rainfall simulation tests. The aqueous concentrations of chlortetracyline and tylosin in runoff decreased in consecutive rainfall events, although the trend was only statistically significant for tylosin. For ARGs, broadcast resulted in significantly higher erm genes in runoff than did incorporation and injection methods. In soil, the effects of land application methods on the fate of antimicrobials in top soil were compound specific. No clear trend was observed in the ARG levels in soil, likely because different host cells may respond differently to the soil environments created by various land application methods.

  18. Submerged jet mixing in nuclear waste tanks: a correlation for jet velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daas, M.; Srivastava, R.; Roelant, D.

    2007-07-01

    Experimental studies were carried out in jet-stirred slurry tanks to correlate the influence of nozzle diameter, initial jet flow velocity, submerged depth of jet, tank diameter and slurry properties on the jet axial velocity. The tanks used in the experimental work had diameters of 0.3 m (1-ft) and 2.13 m (7-ft). The fluids emerged from nozzles of 0.003 m and 0.01 m in diameter, 1/8-inch and 3/8-inch respectively. The examined slurries were non-Newtonian and contained 5 weight percent total insoluble solids. The axial velocities along the centerline of a submerged jet stream were measured at different jet flow rates andmore » at various distances from the nozzle orifice (16 to 200 nozzle diameters) utilizing electromagnetic velocity meter. A new simplified correlation was developed to describe the jet axial velocity in submerged jet stirred tanks utilizing more than 350 data points. The Buckingham Pi theorem and non-linear regression method of multivariate approximation, in conjunction with the Gauss-Jordan elimination method, were used to develop the new correlation. The new correlation agreed well with the experimental data obtained from the current study. Good agreement was also possible with literature data except at large distances from the nozzle as the model slightly overestimated the jet axial velocity. The proposed correlation incorporates the contributions of system geometry, fluid properties, and external forces. Furthermore, it provides reasonable estimates of jet axial velocity. (authors)« less

  19. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment.

    PubMed

    Olsson, Jesper; Feng, Xin Mei; Ascue, Johnny; Gentili, Francesco G; Shabiimam, M A; Nehrenheim, Emma; Thorin, Eva

    2014-11-01

    In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  1. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was anmore » investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.« less

  2. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    PubMed

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (<100 nm) particles for comparative studies of their cytotoxic potential in macrophage (THP-1) and lung epithelial (BEAS-2B) cell lines. We found that nanosized III-V arsenides, including GaAs and InAs, could induce significantly more cytotoxicity over a 24-72 h observation period. In contrast, GaP and InP particulates of all sizes as well as ionic GaCl3 and InCl3 were substantially less hazardous. The principal mechanism of III-V arsenide nanoparticle toxicity is dissolution and shedding of toxic As(III) and, to a lesser extent, As(V) ions. GaAs dissolves in the cell culture medium as well as in acidifying intracellular compartments, while InAs dissolves (more slowly) inside cells. Chelation of released As by 2,3-dimercapto-1-propanesulfonic acid interfered in GaAs toxicity. Collectively, these results demonstrate that III-V arsenides, GaAs and InAs nanoparticles, contribute in a major way to the toxicity of III-V materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  3. Simple technologies for on-farm composting of cattle slurry solid fraction.

    PubMed

    Brito, L M; Mourão, I; Coutinho, J; Smith, S R

    2012-07-01

    Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animal slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4m(3)h(-1) and 1m(3)h(-1) and composted in tall (1.7 m) and short (1.2m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 °C) were measured in tall piles compared to short piles (52 °C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg(-1) dry solids and the net loss of OM significantly (P<0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low final pile temperatures and C/N ratio, low concentrations of NH(4)(+) and increased concentrations of NO(3)(-) in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772-856 g kg(-1)) and plant nutrients. The implications of a minimal intervention management approach to composting SF on compost pathogen reduction are discussed and possible measures to improve sanitation are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Phosphorus leaching from loamy sand and clay loam topsoils after application of pig slurry.

    PubMed

    Liu, Jian; Aronsson, Helena; Bergström, Lars; Sharpley, Andrew

    2012-12-01

    Appropriate management of animal waste is essential for guaranteeing good water quality. A laboratory leaching study with intact soil columns was performed to investigate the risk of phosphorus (P) leaching from a clay loam and a loamy sand. The columns (0.2 m deep) were irrigated before and after application of pig slurry on the surface or after incorporation, or application of mineral P, each at a rate of 30 kg P ha(-1). The two soils had different initial P contents (i.e. the ammonium lactate-extractable P was 65 and 142 mg kg(-1) for the clay loam and loamy sand, respectively), but had similar P sorption characteristics (P sorption index 3.0) and degree of P saturation (17-21%). Concentrations of dissolved reactive P (DRP) and total P (TP) before P application were significantly higher in leachate from the loamy sand (TP 0.21 mg L(-1)) than from the clay loam (TP 0.13 mg L(-1)), but only increased significantly after P application to the clay loam. The highest concentrations were found when slurry was surface-applied (DRP 1.77 mg L(-1)), while incorporation decreased the DRP concentration by 64% in the clay loam. Thus moderate slurry application to a sandy soil with low P saturation did not pose a major risk of P leaching. However, application of P increased the risk of P leaching from the clay loam, irrespective of application method and despite low P saturation. The results show the importance of considering soil texture and structure in addition to soil chemical characteristics in risk assessments of P leaching. Structured soils such as the clay loam used in this study are high risk soils and application of P to bare soil during wet periods, e.g. in autumn or spring, should be followed by incorporation or avoided completely.

  5. System and method for slurry handling

    DOEpatents

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  6. A site-specific slurry application technique on grassland and on arable crops.

    PubMed

    Schellberg, Jürgen; Lock, Reiner

    2009-01-01

    There is evidence that unequal slurry application on agricultural land contributes to N losses to the environment. Heterogeneity within fields demands adequate response by means of variable rate application. A technique is presented which allows site-specific application of slurry on grassland and arable land based on pre-defined application maps. The system contains a valve controlling flow rate by an on-board PC. During operation, flow rate is measured and scaled against set point values given in the application map together with the geographic position of the site. The systems worked sufficiently precise at a flow rate between 0 and 25 l s(-1) and an offset of actual slurry flow from set point values between 0.33 and 0.67 l s(-1). Long-term experimentation is required to test if site-specific application de facto reduces N surplus within fields and so significantly contributes to the unloading of N in agricultural areas.

  7. Vermiconversion of industrial sludge for recycling the nutrients.

    PubMed

    Sangwan, Pritam; Kaushik, C P; Garg, V K

    2008-12-01

    The aim of the present study was to investigate the transformation of sugar mill sludge (PM) amended with biogas plant slurry (BPS) into vermicompost employing an epigeic earthworm Eisenia fetida. To achieve the objectives experiments were conducted for 13 weeks under controlled environmental conditions. In all the waste mixtures, a decrease in pH, TOC, TK and C:N ratio, but increase in TKN and TP was recorded. Maximum worm biomass and growth rate was attained in 20% PM containing waste mixture. It was inferred from the study that addition of 30-50% of PM with BPS had no adverse effect on the fertilizer value of the vermicompost as well as growth of E. fetida. The results indicated that vermicomposting can be an alternate technology for the management and nutrient recovery from press mud if mixed with bulking agent in appropriate quantities.

  8. Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry.

    PubMed

    Li, Junhui; Lu, Qihong; de Toledo, Renata Alves; Lu, Ying; Shim, Hojae

    2015-12-01

    An indigenous Pseudomonas sp., isolated from the regional contaminated soil and identified as P. plecoglossicida, was evaluated for its aerobic cometabolic removal of cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) using toluene as growth substrate in a laboratory-scale soil slurry. The aerobic simultaneous bioremoval of the cis-DCE/TCE/toluene mixture was studied under different conditions. Results showed that an increase in toluene concentration level from 300 to 900 mg/kg prolonged the lag phase for the bacterial growth, while the bioremoval extent for cis-DCE, TCE, and toluene declined as the initial toluene concentration increased. In addition, the cometabolic bioremoval of cis-DCE and TCE was inhibited by the presence of hydrogen peroxide as the additional oxygen source, while the bioremoval of toluene (900 mg/kg) was enhanced after 9 days of incubation. The subsequent addition of toluene did not improve the cometabolic bioremoval of cis-DCE and TCE. The obtained results would help to enhance the applicability of bioremediation technology to the mixed waste contaminated sites.

  9. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Mei; Tang, Ming; Rim, Jung Ho

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulationsmore » and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent solution using a high lead content borate glass, or other low melting glass is also recommended for further evaluation and development. Additional laboratory studies of phase behavior and chemical durability of low-temperature glasses is also recommended to provide risk mitigation if one of the primary development paths proves infeasible. This report is a deliverable for the task “Candidate Low-T Glass Waste Forms for EMF Bottoms On-Site Disposition Alternative Option.”« less

  10. Method for molding ceramic powders using a water-based gel casting

    DOEpatents

    Janney, Mark A.; Omatete, Ogbemi O.

    1991-07-02

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product any be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  11. Method for molding ceramic powders using a water-based gel casting process

    DOEpatents

    Jenny, Mark A.; Omalete, Ogbemi O.

    1992-09-08

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  12. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    PubMed

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  13. Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings

    PubMed Central

    Zhang, Qinli; Xiao, Chongchun; Chen, Xin

    2017-01-01

    To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72–74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection. PMID:28662072

  14. Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings.

    PubMed

    Chen, Qiusong; Zhang, Qinli; Xiao, Chongchun; Chen, Xin

    2017-01-01

    To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72-74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection.

  15. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  16. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology.

    PubMed

    Rai, Suchita; Wasewar, Kailas L; Lataye, Dilip H; Mishra, Rajshekhar S; Puttewar, Suresh P; Chaddha, Mukesh J; Mahindiran, P; Mukhopadhyay, Jyoti

    2012-09-01

    'Red mud' or 'bauxite residue', a waste generated from alumina refinery is highly alkaline in nature with a pH of 10.5-12.5. Red mud poses serious environmental problems such as alkali seepage in ground water and alkaline dust generation. One of the options to make red mud less hazardous and environmentally benign is its neutralization with acid or an acidic waste. Hence, in the present study, neutralization of alkaline red mud was carried out using a highly acidic waste (pickling waste liquor). Pickling waste liquor is a mixture of strong acids used for descaling or cleaning the surfaces in steel making industry. The aim of the study was to look into the feasibility of neutralization process of the two wastes using Taguchi's design of experimental methodology. This would make both the wastes less hazardous and safe for disposal. The effect of slurry solids, volume of pickling liquor, stirring time and temperature on the neutralization process were investigated. The analysis of variance (ANOVA) shows that the volume of the pickling liquor is the most significant parameter followed by quantity of red mud with 69.18% and 18.48% contribution each respectively. Under the optimized parameters, pH value of 7 can be achieved by mixing the two wastes. About 25-30% of the total soda from the red mud is being neutralized and alkalinity is getting reduced by 80-85%. Mineralogy and morphology of the neutralized red mud have also been studied. The data presented will be useful in view of environmental concern of red mud disposal.

  17. Syrian bean-caper (Zygophyllum fabago L.) improves organic matter and other properties of mine wastes deposits.

    PubMed

    Kabas, S; Arocena, J M; Acosta, J A; Faz, A; Martínez-Martínez, S; Zornoza, R; Carmona, D M

    2014-01-01

    The omni-presence of Zygophyllum fabago L. (Syrian bean-caper) natural colonies in post mining areas prompted us to investigate its contributions to reclamation of mine wastes deposits in southeast Spain. Select plant-related (edaphic) characteristics and bio- and water soluble-Cd, Cu, Pb and Zn in rhizosphere of Z. fabago were compared to deposits one year since application of pig slurry and marble waste. Total N in rhizosphere increased up to a factor of 20X (339 vs 17 mg N kg(-1)) in El Gorguel and 27X (85 vs 3.1 mg N kg(-1)) in El Lirio sites. Organic matter accumulation in rhizosphere from litter and roots of Z. fabago increased organic C from 6.6 to 19.5 g kg(-1) in El Gorguel and from 2.1 to 5.7 g kg(-1) in El Lirio in one year. Dissolution of inorganic C takes place due to organic acids from root exudates of Z. fabago. Reduction in bio-available Cd, Cu, Pb, and Zn in rhizosphere of Z. fabago at El Lirio is attributed to increase in pH from 5.3 to 7.7 through marble waste addition, although increased cation exchange capacity may also have played a role. Addition of marble waste to encourage colonization by Z. fabago in acidic mine wastes deposits was recommended.

  18. Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry

    PubMed Central

    Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs

    2015-01-01

    Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103

  19. Adsorption effect on the degradation of 4,6-o-dinitrocresol and p-nitrophenol in a montmorillonite clay slurry by AFT.

    PubMed

    Ye, Peng; Lemley, Ann T

    2009-03-01

    The adsorption and degradation of 4,6-o-dinitrocresol (DNOC) and p-nitrophenol (PNP) in SWy-2 montmorillonite clay slurry were investigated. The pH and type of cation of the slurry were varied. Results showed that adsorption of DNOC and PNP increased at lower pH values, and when pH < pKa(4.4) of DNOC, DNOC was almost completely adsorbed on the clay under given experimental conditions. The specific cation also had a significant effect on adsorption, which was dramatically enhanced in the presence of K+ and NH4+, compared with the presence of Na+ or Ca2+. Anodic Fenton treatment (AFT) degradation of DNOC and PNP in the clay slurry was studied, and it was found that DNOC degradation rates were greatly affected by the initial pH and the types of electrolytes. Due to the higher adsorption, the degradation rate substantially decreased in the clay slurry system in the presence of K+ and low pH, with a large amount of DNOC residue remaining after 60 min treatment. AFT degradation of PNP was completed within 30 min treatment. Based on LC-MS data, a DNOC degradation pathway was proposed. Overall, the results showed the inhibition effect of adsorption on the degradation of nitroaromatic compounds in montmorillonite clay slurry by AFT, providing important implications for water and soil remediation.

  20. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.

    PubMed

    Camarillo, Mary Kay; Stringfellow, William T; Spier, Chelsea L; Hanlon, Jeremy S; Domen, Jeremy K

    2013-10-15

    Anaerobic digestion of manure and other agricultural waste streams with subsequent energy production can result in more sustainable dairy operations; however, importation of digester feedstocks onto dairy farms alters previously established carbon, nutrient, and salinity mass balances. Salt and nutrient mass balance must be maintained to avoid groundwater contamination and salination. To better understand salt and nutrient contributions of imported methane-producing substrates, a mass balance for a full-scale dairy biomass energy project was developed for solids, carbon, nitrogen, sulfur, phosphorus, chloride, and potassium. Digester feedstocks, consisting of thickened manure flush-water slurry, screened manure solids, sudan grass silage, and feed-waste, were tracked separately in the mass balance. The error in mass balance closure for most elements was less than 5%. Manure contributed 69.2% of influent dry matter while contributing 77.7% of nitrogen, 90.9% of sulfur, and 73.4% of phosphorus. Sudan grass silage contributed high quantities of chloride and potassium, 33.3% and 43.4%, respectively, relative to the dry matter contribution of 22.3%. Five potential off-site co-digestates (egg waste, grape pomace, milk waste, pasta waste, whey wastewater) were evaluated for anaerobic digestion based on salt and nutrient content in addition to bio-methane potential. Egg waste and wine grape pomace appeared the most promising co-digestates due to their high methane potentials relative to bulk volume. Increasing power production from the current rate of 369 kW to the design value of 710 kW would require co-digestion with either 26800 L d(-1) egg waste or 60900 kg d(-1) grape pomace. However, importation of egg waste would more than double nitrogen loading, resulting in an increase of 172% above the baseline while co-digestion with grape pomace would increase potassium by 279%. Careful selection of imported co-digestates and management of digester effluent is required to manage salt and nutrient mass loadings and reduce groundwater impacts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.

    2001-01-01

    A gelcasting method of making an internally graded article includes the steps of: preparing at least two slurries, each of the slurries including a different gelcastable powder suspended in a gelcasting solution, the slurries characterized by having comparable shrinkage upon drying and sintering thereof; casting the slurries into a mold having a selected shape, wherein relative proportions of the slurries is varied in at least one direction within the selected shape; gelling the slurries to form a solid gel while preserving the variation in relative proportions of the slurries; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying because of the variation in relative proportions of the starting slurries. A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  2. Apparatus and method for in Situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1999-09-28

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  3. Apparatus for in situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1998-06-16

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  4. Impacts of gold mine waste disposal on deepwater fish in a pristine tropical marine system.

    PubMed

    Brewer, D T; Milton, D A; Fry, G C; Dennis, D M; Heales, D S; Venables, W N

    2007-03-01

    Little is known about the impacts of mine waste disposal, including deep-sea tailings, on tropical marine environments and this study presents the first account of this impact on deepwater fish communities. The Lihir gold mine in Papua New Guinea has deposited both excavated overburden and processed tailings slurry into the coastal environment since 1997. The abundances of fish species and trace metal concentrations in their tissues were compared between sites adjacent to and away from the mine. In this study (1999-2002), 975 fish of 98 species were caught. Significantly fewer fish were caught close to the mine than in neighbouring regions; the highest numbers were in regions distant from the mine. The catch rates of nine of the 17 most abundant species were lowest, and in three species were highest, close to the mine. There appears to be limited contamination in fish tissues caused by trace metals disposed as mine waste. Although arsenic (several species) and mercury (one species) were found in concentrations above Australian food standards. However, as in the baseline (pre-mine) sampling, it appears they are accumulating these metals mostly from naturally-occurring sources rather than the mine waste.

  5. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    DOE PAGES

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less

  6. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbonmore » capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.« less

  7. Effect of H2O2 and nonionic surfactant in alkaline copper slurry

    NASA Astrophysics Data System (ADS)

    Haobo, Yuan; Yuling, Liu; Mengting, Jiang; Guodong, Chen; Weijuan, Liu; Shengli, Wang

    2015-01-01

    For improving the polishing performance, in this article, the roles of a nonionic surfactant (Fatty alcohol polyoxyethylene ether) and H2O2 were investigated in the chemical mechanical planarization process, respectively. Firstly, the effects of the nonionic surfactant on the within-wafer non-uniformity (WIWNU) and the surface roughness were mainly analyzed. In addition, the passivation ability of the slurry, which had no addition of BTA, was also discussed from the viewpoint of the static etch rate, electrochemical curve and residual step height under different concentrations of H2O2. The experimental results distinctly revealed that the nonionic surfactant introduced in the slurry improved the WIWNU and surface roughness, and that a 2 vol% was considered as an appropriate concentration relatively. When the concentration of H2O2 surpasses 3 vol%, the slurry will possess a relatively preferable passivation ability, which can effectively decrease the step height and contribute to acquiring a flat and smooth surface. Hence, based on the result of these experiments, the influences of the nonionic surfactant and H2O2 are further understood, which means the properties of slurry can be improved.

  8. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less

  9. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOEpatents

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  10. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts radiant heat transfer losses to the walls to be only approximately 3 percent of the fuel energy supplied. Additional work is required to determine the effects of secondary atomization on two-phase losses in the nozzle.

  11. An investigation on the rheological behavior of metallic semi-solid slurries of Al-6.5 pct Si and semi-solid composite slurries of SiC particulates in an Al-6.5 pct Si alloy matrix

    NASA Technical Reports Server (NTRS)

    Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.

    1993-01-01

    The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.

  12. Ammonia volatilization from farm tanks containing anaerobically digested animal slurry

    NASA Astrophysics Data System (ADS)

    Sommer, S. G.

    Ammonia (NH 3) volatilization from three full-scale tanks containing anaerobically digested animal slurry from one biogas plant was determined with a meteorological mass balance technique. No surface crust developed on the slurry. This provided an ideal system for analysing loss patterns from slurries without cover and to study the effect of a cover of straw and air-filled clay granules. Ammonia volatilization from uncovered slurry ranged from zero at subzero temperatures to 30 g N m -2 d -1 during summer. The high volatilization rate was attributed to a lack of surface cover, high slurry pH and high TAN (NH 3 + NH 4+) concentration. Ammonia volatilization from the covered slurry was insignificant. From the uncovered slurry the annual loss of NH3 was 3.3 kg N m -2 There was a significant effect of incident global radiation (ICR), air temperature at 20 cm (T_20) and rain on NH3 volatilization from the uncovered slurry. The straw covered slurry was significantly affected by T_20.

  13. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China.

    PubMed

    Bian, Bo; Lin, Cheng; Lv, Lin

    2016-09-01

    Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.

  14. Method for simultaneous use of a single additive for coal flotation, dewatering, and reconstitution

    DOEpatents

    Wen, Wu-Wey; Gray, McMahan L.; Champagne, Kenneth J.

    1995-01-01

    A single dose of additive contributes to three consecutive fine coal unit operations, i.e., flotation, dewatering and reconstitution, whereby the fine coal is first combined with water in a predetermined proportion so as to formulate a slurry. The slurry is then mixed with a heavy hydrocarbon-based emulsion in a second predetermined proportion and at a first predetermined mixing speed and for a predetermined period of time. The conditioned slurry is then cleaned by a froth flotation method to form a clean coal froth and then the froth is dewatered by vacuum filtration or a centrifugation process to form reconstituted products that are dried to dust-less clumps prior to combustion.

  15. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  16. CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE II REPORT, SEPT.1998-JULY 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUGAMA,T.YAGER,K.A.BLANKENHORN,D.

    1999-08-01

    Based upon the previous Phase I research program aimed at looking for ways of recycling the KeySpan-generated wastes, such as waste water treatment sludge (WWTS) and bottom ash (BA), into the potentially useful cementitious materials called chemically bonded cement (CBC) materials, the emphasis of this Phase II program done at Brookhaven National Laboratory, in a period of September 1998 through July 1999, was directed towards the two major subjects: One was to assess the technical feasibility of WWTS-based CBC material for use as Pb-exchange adsorbent (PEA) which remediates Pb-contaminated soils in the field; and the other was related to themore » establishment of the optimum-packaging storage system of dry BA-based CBC components that make it a promising matrix material for the steam-cured concrete products containing sand and coarse aggregate. To achieve the goal of the first subject, a small-scale field demonstration test was carried out. Using the PEA material consisting of 30 wt% WWTS, 13 wt% Type I cement and 57 wt% water, the PES slurry was prepared using a rotary shear concrete mixer, and then poured on the Pb-contaminated soil. The PEA-to-soil ratio by weight was a factor of 2.0. The placed PEA slurry was blended with soil using hand mixing tools such as claws and shovels. The wettability of soils with the PEA was very good, thereby facilitating the soil-PEA mix procedures. A very promising result was obtained from this field test; in fact, the mount of Pb leached out from the 25-day-aged PEA-treated soil specimen was only 0.74 mg/l, meeting the requirement for EPA safe regulation of < 5 mg/l. In contrast, a large amount (26.4 mg/l) of Pb was detected from the untreated soil of the same age. Thus, this finding demonstrated that the WWTS-based CBC has a potential for use as PEA material. Regarding the second subject, the dry-packed storage system consisting of 68.7 wt% BA, 13.0 wt% calcium aluminate cement (CAC), 13.0 wt% Type I portland cement and 5.3 wt% sodium polyphosphate (NaP), was designed in response to the identification of the most effective CBC formulation in strengthening the steam-cured concrete specimens. Using this storage system with the material cost of 6.32 cents/lb, the 80 C-20 hour-steam-cured concrete specimens displayed the compressive strength of 3980 psi, tensile splitting of 416 psi, flexural strength of 808 psi, and modulus of elasticity of 3.16 x 10{sup 6} psi. Furthermore, the specimens had a good resistance to acid erosion and a lower permeability of water, compared with those of the conventional Type I cement concrete specimens. Consequently, the cost-effective BA-based CBC gave the promise of being a potentially useful material for fabricating high-performance precast concrete products, such as building blocks, pipes, and slabs.« less

  17. Combustion characterization of carbonized RDF, Joint Venture Task No. 7. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1995-04-30

    The overall objective of this research program was to demonstrate EnerTech's and the Energy & Environmental Research Center's (EERC) process of slurry carbonization for producing homogeneous, pumpable titels from refuse-derived fuel (RDF) with continuous pilot plant facilities, and to characterize flue gas and ash emissions from combustion of the carbonizd RDF slurry fuel. Please note that "Wet Thermal Oxidation" is EnerTech's trademark mme for combustion of the carbonized RDF slurry fuel. Carbonized RDF slurry fuels were produced with the EERC'S 7.5-tpd (wet basis) pilot plant facility. A hose diaphragm pump pressurized a 7- lo-wt% feed RDF slurry, with a viscositymore » of 500 cP, to approximately 2500 psig. The pressurized RDF slurry was heated by indirect heat exchangers to between 5850 -626°F, and its temperature and pressure was maintained in a downflow reactor. The carbonized slurry was flashed, concentrated in a filter press, and ground in an attritor. During operation of the pilot plant, samples of the feed RDF slurry, carbonization gas, condensate, carbonized solids, and filtrate were taken and analyzed. Pilot-scale slurry carbonization experiments with RDF produced a homogeneous pumpable slurry fuel with a higher heating value (HHV) of 3,000-6,600 Btu/lb (as-received basis), at a viscosity of 500 CP at 100 Hz decreasing, and ambient temperature. Greater-heating-value slurry fuels were produced at higher slurry carbonization temperatures. During slurry carbonization, polyvinyl chloride (PVC) plastics in the feed RDF also decompose to form hydrochloric acid and salts. Pilot-scale slurty carbonization experiments extracted 82-94% of the feed RDF chlorine content as chloride salts. Higher carbonization temperatures and higher alkali additions to the feed slurry produced a higher chlorine extraction.« less

  18. The sustainable utilization of malting industry wastewater biological treatment sludge

    NASA Astrophysics Data System (ADS)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  19. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    NASA Astrophysics Data System (ADS)

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  20. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T.

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are presentmore » in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.« less

  1. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2003-04-15

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  2. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B [Chicago, IL; Hoek, Terry Vanden [Chicago, IL; Kasza, Kenneth E [Palos Park, IL

    2008-09-09

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  3. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  4. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  5. In-vessel composting of household wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyengar, Srinath R.; Bhave, Prashant P.

    The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for amore » period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.« less

  6. Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment.

    PubMed

    Theegala, Chandra S; Midgett, Jason S

    2012-03-01

    A bench scale hydrothermal liquefaction (HTL) system was tested using dairy manure to explore biooil production and waste treatment potential. Carbon monoxide was used as the process gas and sodium carbonate (Na(2)CO(3)) as catalyst. At a 350°C process temperature, the HTL unit produced 3.45 g (± 0.21) of acetone soluble oil fractions (ASF), with an average Higher Heating Value of 32.16 (± 0.23) MJ kg(-1). A maximum ASF yield of 4.8 g was produced at a process temperature of 350°C and 1g of catalyst. The best ASF yield corresponded to 67.6% of energy contained in the raw manure. GC-MS analysis of ASF indicated that the highest quantities of phenolic compounds were formed when 1g catalyst was used. Chemical Oxygen Demand (COD) reduction in the dischargeable slurry was as high as 75%. The results point to an alternative dairy waste treatment technology with a potential to generate transportable biooils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. SOx/NOx sorbent and process of use

    DOEpatents

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  8. SOX/NOX sorbent and process of use

    DOEpatents

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1995-05-09

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.

  9. SOX/NOX sorbent and process of use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-01-01

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  10. SOx/NOx sorbent and process of use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  11. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    PubMed

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping.

    PubMed

    Brennan, Raymond B; Healy, Mark G; Fenton, Owen; Lanigan, Gary J

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

  13. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping

    PubMed Central

    Brennan, Raymond B.; Healy, Mark G.; Fenton, Owen; Lanigan, Gary J.

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called ‘pollution swapping’ potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application. PMID:26053923

  14. Transport of steroid hormones, phytoestrogens, and estrogenic activity across a swine lagoon/sprayfield system.

    PubMed

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Williams, C Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W

    2014-10-07

    The inflow, transformation, and attenuation of natural steroid hormones and phytoestrogens and estrogenic activity were assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet, particularly, daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at 2 months postapplication. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone was found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a livestock lagoon/sprayfield and provides global insight into the fate of these analytes in this widely used waste management system.

  15. Transport of Steroid Hormones, Phytoestrogens, and Estrogenic Activity across a Swine Lagoon/Sprayfield System

    PubMed Central

    Yost, Erin E.; Meyer, Michael T.; Dietze, Julie E.; Williams, C. Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W.

    2017-01-01

    The inflow, transformation, and attenuation of natural steroid hormones, phytoestrogens, and estrogenic activity was assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet; particularly daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at two months post-application. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a lagoon/sprayfield system, and provides global insight into the fate of these analytes in this widely used waste management system. PMID:25148584

  16. Influence of Specific Surface of Lignite Fluidal Ashes on Rheological Properties of Sealing Slurries / Wpływ Powierzchni Właściwej Popiołów Fluidalnych z Węgla Brunatnego na Właściwości Reologiczne Zaczynów Uszczelniających

    NASA Astrophysics Data System (ADS)

    Stryczek, Stanisław; Wiśniowski, Rafał; Gonet, Andrzej; Złotkowski, Albert

    2012-11-01

    New generation fly ashes come from the combustion of coal in fluid-bed furnaces with simultaneous sulphur-removal from gases at ca. 850°C. Accordingly, all produced ashes basically differ in their physicochemical properties from the traditional silica ones. The aim of the laboratory analyses was determining the influence of specific surface and granular composition of fluidal ash on rheological properties of slurries used for sealing up the ground and rock mass media with hole injection methods, geoengineering works and cementing casing pipes in deep boreholes. Fluidal ash from the combustion of lignite contain active Puzzolan appearing in the form of dehydrated clayey minerals and active components activating the process of hydration ashes, i.e. CaO, anhydrite II and CaCO3. The ashes have a weak point, i.e. their high water diment, which the desired rheological properties related with the range of their propagation in the rock mass cannot not be acquired for injection works in the traditional sealing slurries technology. Increasing the water-to-mixture ratio should eliminate this feature of fluidal ashes. Laboratory analyses were performed for slurries based on metallurgical cement CEM III/A 32,5 having water-to-mixture ratios: 0.5; 0.6 ; 0.7 and 0.8; the fluidal ash concentration in the slurries was 30 wt.% (with respect to the mass of dry cement). Basing on the obtained results there were determined optimum recipes of sealing slurries in view of their rheological parameters which could be applied both in drilling technologies (cementing casing pipes, closing of boreholes, plugging) and in geoengineering works related with sealing up and reinforcing ground and rock mass media.

  17. The differences between soil grouting with cement slurry and cement-water glass slurry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  18. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lijó, Lucía, E-mail: lucia.lijo@usc.es; González-García, Sara; Bacenetti, Jacopo

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidencedmore » the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.« less

  19. Transport of Cryptosporidium parvum Oocysts in Soil Columns following Applications of Raw and Separated Liquid Slurries

    PubMed Central

    Petersen, Heidi H.; Enemark, Heidi L.; Olsen, Annette; Amin, M. G. Mostofa

    2012-01-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4′,6′-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r = 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry. PMID:22706058

  20. Relationship between operational variables, fundamental physics and foamed cement properties in lab and field generated foamed cement slurries

    DOE PAGES

    Glosser, D.; Kutchko, B.; Benge, G.; ...

    2016-03-21

    Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here in this paper, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the “atomization energy” imparted by themore » high pressure injection of nitrogen gas into the field mixed foamed cement slurry is – by a significant margin – the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance.« less

  1. Techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch/ZSM-5 process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Sawy, A.; Gray, D.; Neuworth, M.

    1984-11-01

    A techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch reactor system was carried out. Mobil bench-scale data were evaluated and scaled to a commercial plant design that produced specification high-octane gasoline and high-cetane diesel fuel. Comparisons were made with three reference plants - a SASOL (US) plant using dry ash Lurgi gasifiers and Synthol synthesis units, a modified SASOL plant with a British Gas Corporation slagging Lurgi gasifier (BGC/Synthol) and a BGC/slurry-phase process based on scaled data from the Koelbel Rheinpreussen-Koppers plant. A conceptual commercial version of the Mobil two-stage process shows a higher process efficiency than a SASOL (US)more » and a BGC/Synthol plant. The Mobil plant gave lower gasoline costs than obtained from the SASOL (US) and BGC/Synthol versions. Comparison with published data from a slurry-phase Fischer-Tropsch (Koelbel) unit indicated that product costs from the Mobil process were within 6% of the Koelbel values. A high-wax version of the Mobil process combined with wax hydrocracking could produce gasoline and diesel fuel at comparable cost to the lowest values achieved from prior published slurry-phase results. 27 references, 18 figures, 49 tables.« less

  2. Study on the antiseepage mechanism of the PBFC slurry for landfill site

    NASA Astrophysics Data System (ADS)

    Dai, Guozhong; Shi, Weicheng; Jiang, Xiaoshu; Shi, Guicai; Zhang, Yaxing

    2017-07-01

    In order to develop a kind of slurry with low permeability which has some adsorption and retardation to the pollutants in leachate to be used in antiseepage engineering of leachate for landfill site, experiments based on orthogonal method were performed. The optimal PBFC slurry was selected: bentonite 18-26%, cement 16-24%, fly ash 18-20%, TOJ800-10 water reducing agent 0.01-0.03%, polyvinyl alcohol 0.2-0.8%, sodium carbonate 0.8-1.5% and water 680-780/1000 mL seriflus. The material has good groutability and a concretion stone ratio which is greater than 99.6%. The coefficient of permeability of 28-day concretion body is 0.53 × 10-8-1.86 × 10-8 cm/s and the compressive strength is 0.64-1.04 MPa. The slurry has good adsorption and retardation properties. The block rate of NH4-N and phosphorus reached 98.28%, and the block rate of CODCr and BOD5 reached 85.67%. The block rate of Hg, Pb and other heavy metal ions reached 99.8%. The PBFC slurry improved the retardation capability of the pollutants of the leachate at the landfill site by its infiltration sedimentation and adsorption fixation.

  3. Continuous inline blending of antimisting kerosene

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Yavrouian, A.; Sarohia, V.

    1985-01-01

    A continuous inline blender was developed to blend polymer slurries with a stream of jet A fuel. The viscosity of the slurries ranged widely. The key element of the blender was a static mixer placed immediately downstream of the slurry injection point. A positive displacement gear pump for jet A was employed, and a progressive cavity rotary screw pump was used for slurry pumping. Turbine flow meters were employed for jet A metering while the slurry flow rate was calibrated against the pressure drop in the injection tube. While using one of the FM-9 variant slurries, a provision was made for a time delay between the addition of slurry and the addition of amine sequentially into the jet A stream.

  4. Bioconversion of water hyacinth-Coastal Bermuda grass-MSW-sludge blends to methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Klass, D.L.

    1979-01-01

    Continuous operation of a biomethanation plant could be acheved more readily if mixtures of biomass and organic wastes could be utilized as feedstock. The research reported in this paper was directed to a laboratory evaluation of a blend of terrestrial and aquatic biomass with organic wastes as an anaerobic digester feed. Specifically, a blend of water hyacinth, Coastal Bermuda grass, the combustible fraction of municipal solid waste, and a small quantity of sludge was digested under standard, high-rate mesophilic conditions. Good methane production was achieved without the addition of external nutrients. As expected, biodegradabilities in decreasing order were hemicellulose, cellulose,more » crude protein, and lignin. The digester effluent was easily dewatered by filtration without chemical conditioning. Pretreatment of the feed slurry with 3 wt % sodium hydroxide solution under ambient conditions improved methane yield about 20% over that of the fresh untreated feed. A kinetic analysis of the experimental data indicated that hydrolysis or acidification was the rate limiting step of digestion of the biomass-waste blend. It was concluded from this work that biomass-waste blends of the type studied in this work can sustain anaerobic digestion under conventional conditions for long periods with little difficulty. Substantial improvements in methane yield should be possible, however, by use of advanced digestion techniques because methane recovery efficiencies in this work ranged up to about 46%.« less

  5. Effects of cattle slurry acidification on ammonia and methane evolution during storage.

    PubMed

    Petersen, Søren O; Andersen, Astrid J; Eriksen, Jørgen

    2012-01-01

    Slurry acidification before storage is known to reduce NH(3) emissions, but recent observations have indicated that CH(4) emissions are also reduced. We investigated the evolution of CH(4) from fresh and aged cattle slurry during 3 mo of storage as influenced by pH adjustment to 5.5 with sulfuric acid. In a third storage experiment, cattle slurry acidified with commercial equipment on two farms was incubated. In the manipulation experiments, effects of acid and sulfate were distinguished by adding hydrochloric acid and potassium sulfate separately or in combination, rather than sulfuric acid. In one experiment sulfur was also added to slurry as the amino acid methionine in separate treatments. In each treatment 20-kg portions of slurry (n = 4) were stored for 95 d. All samples were subsampled nine to 10 times for determination of NH(3) and CH(4) evolution rates using a 2-L flow-through system. In all experiments, the pH of acidified cattle slurry increased gradually to between 6.5 and 7. Acidification of slurry reduced the evolution of CH(4) by 67 to 87%. The greatest reduction was observed with aged cattle slurry, which had a much higher potential for CH(4) production than fresh slurry. Sulfate and methionine amendment to cattle slurry without pH adjustment also significantly inhibited methanogenesis, probably as a result of sulfide production. The study suggests that complex microbial interactions involving sulfur transformations and pH determine the potential for CH(4) emission during storage of cattle slurry, and that slurry acidification may be a cost-effective greenhouse gas mitigation option. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Development of High-Speed Copper Chemical Mechanical Polishing Slurry for Through Silicon Via Application Based on Friction Analysis Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko

    2011-05-01

    In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.

  7. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  8. Zeolite Combined with Alum and Polyaluminum Chloride Mixed with Agricultural Slurries Reduces Carbon Losses in Runoff from Grassed Soil Boxes.

    PubMed

    Murnane, J G; Brennan, R B; Fenton, O; Healy, M G

    2016-11-01

    Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products, which are potentially harmful to human health. This study aimed to quantify total organic carbon (TOC) and total inorganic C losses in runoff after application of dairy slurry, pig slurry, or milk house wash water (MWW) to land and to mitigate these losses through coamendment of the slurries with zeolite (2.36-3.35 mm clinoptilolite) and liquid polyaluminum chloride (PAC) (10% AlO) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% AlO) for MWW. Four treatments under repeated 30-min simulated rainfall events (9.6 mm h) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide, 1 m long; 10% slope): control soil, unamended slurries, PAC-amended dairy and pig slurries (13.3 and 11.7 kg t, respectively), alum-amended MWW (3.2 kg t), combined zeolite and PAC-amended dairy (160 and 13.3 kg t zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t zeolite and PAC, respectively), and combined zeolite and alum-amended MWW (72 and 3.2 kg t zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34, and 50 t ha for pig and dairy slurries and MWW, respectively. Significant reductions of TOC in runoff compared with unamended slurries were measured for PAC-amended dairy and pig slurries (52 and 56%, respectively) but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared with alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, although effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared with the amounts applied. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Surface-water hydrology at three coal-refuse disposal sites in southern Illinois: Staunton 1, New Kathleen, and Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mele, L.M.; Prodan, P.F.

    1983-04-01

    Hydrologic data were collected and analyzed for three coal refuse disposal sites in southern Illinois. The disposal sites were associated with underground mines and consisted of piles of coarse waste (gob) and slurry areas where fine waste rejected from coal washing was deposited. Prereclamation data were available for the Superior washer site in Macoupin County and the New Kathleen site in Perry County. Post-reclamation data were available for the Staunton 1 site in Macoupin County and the New Kathleen site. Data analyzed from each phase (i.e., pre- or post-reclamation) were limited to one year. Storm event runoff coefficients were calculatedmore » for each site. Average runoff coefficients were compared for sites within the same reclamation phase to determine the effects of topographical parameters such as gob pile slope and percentage of drainage basin covered by the gob pile. Average runoff coefficients were then compared for pre- and post-reclamation data. Multiple regression analyses were performed on rainfall-runoff data for each site to determine the significance of independent variables other than rainfall in determining runoff. A generalized regression equation corrected data for topographical differences and included only those independent variables that were significant at all sites. Regression coefficients were compared for pre- and post-reclamation sites. The results of rainfall-runoff analysis indicate that the runoff coefficient increases because of reclamation. It is hypothesized that this effect is due to the placement of a soil cover that is less permeable than gob or slurry and occurs despite reduction in slope and the establishment of vegetation.« less

  10. Conversion of municipal solid waste to hydrogen

    NASA Astrophysics Data System (ADS)

    Richardson, J. H.; Rogers, R. S.; Thorsness, C. B.

    1995-04-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL's focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  11. Research of Cemented Paste Backfill in Offshore Environments

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Peng; Lyu, Wensheng; Lin, Zhixiang

    2018-01-01

    To promote comprehensive utilization of mine waste tailings and control ground pressure, filling mine stopes with cement paste backfill (CPB) is becoming the most widely used and applicable method in contemporary underground mining. However, many urgent new problems have arisen during the exploitation in offshore mines owing to the complex geohydrology conditions. A series of rheological, settling and mechanical tests were carried out to study the influences of bittern ions on CPB properties in offshore mining. The results showed that: (1) the bittern ion compositions and concentrations of backfill water sampled in mine filling station were similar to seawater. Backfill water mixed CPB slurry with its higher viscosity coefficient was adverse to pipeline gravity transporting; (2) Bleeding rate of backfill water mixed slurry was lower than that prepared with tap water at each cement-tailings ratio; (3) The UCS values of backfill water mixed samples were higher at early curing ages (3d, 7d) and then became lower after longer curing time at 14d and 28d. Therefore, for mine production practice, the offshore environments can have adverse effects on the pipeline gravity transporting and have positive effects on stope dewatering process and early-age strength growth.

  12. Biogas production from plant biomass used for phytoremediation of industrial wastes.

    PubMed

    Verma, V K; Singh, Y P; Rai, J P N

    2007-05-01

    In present study, potentials of water hyacinth (Eichhornia crassipes) and water chestnut (Trapa bispinnosa) employed for phytoremediation of toxic metal rich brass and electroplating industry effluent, were examined in terms of biogas generation. Inability of the plants to grow in undiluted effluent directed to select 20%, 40% and 60% effluent concentrations (with deionized water) for phytoremediation experiments. Slurry of both the plants used for phytoremediation produced significantly more biogas than that by the control plants grown in unpolluted water; the effect being more pronounced with plants used for phytoremediation of 20% effluent. Maximum cumulative production of biogas (2430c.c./100gdm of water hyacinth and 1940c.c./100gdm of water chest nut) and per cent methane content (63.82% for water hyacinth and 57.04% for water chestnut) was observed at 5mm particle size and 1:1 substrate/inoculum ratio, after twenty days incubation. Biogas production was quicker (maximum from 8-12days) in water hyacinth than in water chestnut (maximum from 12-16days). The qualitative and quantitative variations in biogas production were correlated with COD, C, N, C/N ratio and toxic metal contents of the slurry used.

  13. Evaluation of hybrid slurry resulting from the introduction of additives to mineral slurry.

    DOT National Transportation Integrated Search

    2011-09-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during excavation : and concreting. Florida Department of Transportation (FDOT) specifications require the use of mineral slurry : for all primary struct...

  14. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    PubMed

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis. Copyright © 2016. Published by Elsevier Ltd.

  15. Method and apparatus for improved wire saw slurry

    DOEpatents

    Costantini, Michael A.; Talbott, Jonathan A.; Chandra, Mohan; Prasad, Vishwanath; Caster, Allison; Gupta, Kedar P.; Leyvraz, Philippe

    2000-09-05

    A slurry recycle process for use in free-abrasive machining operations such as for wire saws used in wafer slicing of ingots, where the used slurry is separated into kerf-rich and abrasive-rich components, and the abrasive-rich component is reconstituted into a makeup slurry. During the process, the average particle size of the makeup slurry is controlled by monitoring the condition of the kerf and abrasive components and making necessary adjustments to the separating force and dwell time of the separator apparatus. Related pre-separator and post separator treatments, and feedback of one or the other separator slurry output components for mixing with incoming used slurry and recirculation through the separator, provide further effectiveness and additional control points in the process. The kerf-rich component is eventually or continually removed; the abrasive-rich component is reconstituted into a makeup slurry with a controlled, average particle size such that the products of the free-abrasive machining method using the recycled slurry process of the invention are of consistent high quality with less TTV deviation from cycle to cycle for a prolonged period or series of machining operations.

  16. TANK 40 FINAL SB7B CHEMICAL CHARACTERIZATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.

    2012-03-15

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB7b. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred frommore » the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon{reg_sign} vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH{sup -}/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described. The following conclusions were drawn from the analytical results reported here: (1) The ratios of the major elements for the SB7b WAPS sample are different from those measured for the SB7a WAPS sample. There is less Al and Mn relative to Fe than the previous sludge batch. (2) The elemental composition of this sample and the analyses conducted here are reasonable and consistent with DWPF batch data measurements in light of DWPF pre-sample concentration and SRAT product heel contributions to the DWPF SRAT receipt analyses. The element ratios for Al/Fe, Ca/Fe, Mn/Fe, and U/Fe agree within 10% between this work and the DWPF Sludge Receipt and Adjustment Tank (SRAT) receipt analyses. (3) Sulfur in the SB7b WAPS sample is 82% soluble, slightly less than results reported for SB3, SB4, and SB6 samples but unlike the 50% insoluble sulfur observed in the SB5 WAPS sample. In addition, 23% of the soluble sulfur is not present as sulfate in SB7b. (4) The average activities of the fissile isotopes of interest in the SB7b WAPS sample are (in {mu}Ci/g of total dried solids): 4.22E-02 U-233, 6.12E-04 U-235, 1.08E+01 Pu-239, and 5.09E+01 Pu-241. The full radionuclide composition will be reported in a future document. (5) The fission product noble metal and Ag concentrations appear to have largely peaked in previous DWPF sludge batches, with the exception of Ru, which still shows a slight increase in SB7b.« less

  17. Progression towards optimization of viscosity of highly concentrated carbonaceous solid-water slurries by incorporating and modifying surface chemistry parameters with and without additives

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amrita

    Carbonaceous solid-water slurries (CSWS) are concentrated suspensions of coal, petcoke bitumen, pitch etc. in water which are used as feedstock for gasifiers. The high solid loading (60-75 wt.%) in the slurry increases CSWS viscosity. For easier handling and pumping of these highly loaded mixtures, low viscosities are desirable. Depending on the nature of the carbonaceous solid, solids loading in the slurry and the particle size distribution, viscosity of a slurry can vary significantly. Ability to accurately predict the viscosity of a slurry will provide a better control over the design of slurry transport system and for viscosity optimization. The existing viscosity prediction models were originally developed for hard-sphere suspensions and therefore do not take into account surface chemistry. As a result, the viscosity predictions using these models for CSWS are not very accurate. Additives are commonly added to decrease viscosity of the CSWS by altering the surface chemistry. Since additives are specific to CSWS, selection of appropriate additives is crucial. The goal of this research was to aid in optimization of CSWS viscosity through improved prediction and selection of appropriate additive. To incorporate effect of surface chemistry in the models predicting suspension viscosity, the effect of the different interfacial interactions caused by different surface chemistries has to be accounted for. Slurries of five carbonaceous solids with varying O/C ratio (to represent different surface chemistry parameters) were used for the study. To determine the interparticle interactions of the carbonaceous solids in water, interfacial energies were calculated on the basis of surface chemistries, characterized by contact angles and zeta potential measurements. The carbonaceous solid particles in the slurries were assumed to be spherical. Polar interaction energy (hydrophobic/hydrophilic interaction energy), which was observed to be 5-6 orders of magnitude higher than the electrostatic interaction energy, and the van der Waals interaction energy, was clearly the dominant interaction energy for such a system. Hydrophobic interactions lead to the formation of aggregation networks of solids in the suspensions, entrapping a part of the bulk water, whereas hydrophilic interactions result in the formation of hydration layers around carbonaceous solids. Both of these phenomena cause a loss of bulk water from the slurry and increase the effective solid volume fraction, resulting in an increase in slurry viscosity. The water in the bulk of the slurry, responsible for the fluidity of the slurry is called free water. The amount of free water was determined using thermogravimetric analysis and was observed to increase with an increase in the O/C ratio of a carbonaceous solid (up to ˜20%). The free water to total water ratio was observed to be constant for the slurry of a particular carbonaceous solid for various loadings of solids (44 wt.% to 67 wt.%). The increase in the effective solid volume fractions of slurries was determined using viscosity measurements. A relationship between the effective solid volume fraction and the O/C ratio of the carbonaceous solid was developed. This correlation was then incorporated into the existing equation for viscosity prediction (developed based on particle size distribution and solid volume fraction), to account for the surface chemistry of the carbonaceous solid and hence improve the predictive capabilities. This modified equation was validated using three concentrated carbonaceous slurries with different particle size distributions and was observed to significantly improve accuracy of prediction (deviation of predicted results decreased from up to 96% to 25%). The validation was performed with a lignite, bituminous coal and a petcoke-all with low ash yield. Additives modify the surface chemistry of the carbonaceous solids, thereby affecting the interfacial interactions. Through this research, the effects of additives on the interfacial interactions and hence on slurry viscosity were determined. Since the additives used are specific to the surface chemistry of the solids in the slurry, this knowledge aids in the selection of the appropriate additive. The study was conducted using three carbonaceous solids with different O/C ratios and an anionic and a non-ionic additive. The adsorption of the additives on the carbonaceous solids, the change in the zeta potential and hydrophobicity/hydrophilicity of the solids and the change in the free water content of the slurries were determined. The adsorption of the additives increased with an increase in the mineral matter content of the carbonaceous solids. There was also an increase in the zeta potential of the carbonaceous solids in water upon the addition of the anionic additive (up to ˜30%). However, the calculated resultant electrostatic repulsion energy upon the addition of the anionic additive was 5-6 orders of magnitude lower than the polar interaction energy of the carbonaceous solids in water. Contact angle measurements indicated that both additives changed the hydrophobicity/hydrophilicity of the solid surface (by up to 70°). This resulted in the release of bound water into the bulk slurries (up to 6%), resulting in greater fluidity. The increase in free water content of the slurries with additives was confirmed by thermogravimetric analysis (TGA). A correlation predicting the slurry viscosity on the basis of the weight fraction of free water in the slurries with additives was also developed.

  18. Toughened uni-piece fibrous insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B (Inventor); Smith, Marnell (Inventor); Churchward, Rex A. (Inventor); Katvala, Victor W. (Inventor)

    1992-01-01

    A porous body of fibrous, low density silica-based insulation material is at least in part impregnated with a reactive boron oxide containing borosilicate glass frit, a silicon tetraboride fluxing agent and a molybdenum silicide emittance agent. The glass frit, fluxing agent and emittance agent are separately milled to reduce their particle size, then mixed together to produce a slurry in ethanol. The slurry is then applied to the insulation material and sintered to produce the porous body.

  19. Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes

    DTIC Science & Technology

    2012-03-01

    preparation setup under the fume hood with NMP solvent, glass pipette with dispenser, and the ball milled powder mixture containing LiFePO4 , acetylene...minutes. ............................................................................. 18 Figure 12. (a) LiFePO4 slurry applied on foil current collector...and (b) LiFePO4 slurry casted with applicator and (c) LiFePO4 casted (From [15])....... 18 Figure 13. MTI disc cutter used to cut individual

  20. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    NASA Astrophysics Data System (ADS)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  1. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of storage in ozonised slurry ice on the sensory and microbial quality of sardine (Sardina pilchardus).

    PubMed

    Campos, Carmen A; Rodríguez, Oscar; Losada, Vanesa; Aubourg, Santiago P; Barros-Velázquez, Jorge

    2005-08-25

    The use of slurry ice, both alone and in combination with ozone, as compared with traditional flake ice was investigated as a new refrigeration system for the storage of sardine (Sardina pilchardus). Microbiological, chemical and sensory analyses were carried out throughout a storage period of 22 days. According to sensory analyses, sardine specimens stored in ozonised slurry ice had a shelf life of 19 days, while counterpart batches stored in slurry ice or flake ice had shelf lives of 15 and 8 days, respectively. Storage in ozonised slurry ice led to significantly lower counts of aerobic mesophiles, psychrotrophic bacteria, anaerobes, coliforms, and both lipolytic and proteolytic microorganisms in sardine muscle, and of surface counts of mesophiles and psychrotrophic bacteria in sardine skin as compared with the slurry ice and the flake ice batches. In all cases, the slurry ice batch also exhibited significantly lower microbial counts, both in muscle and skin, than the flake ice batch. Chemical parameters revealed that the use of slurry ice slowed down the formation of TVB-N and TMA-N to a significant extent in comparison with storage in flake ice. A combination of slurry ice with ozone also allowed a better control of pH and TMA-N formation as compared with slurry ice alone. This work demonstrates that the combined use of slurry ice and ozone for the storage of sardine can be recommended to improve the quality and extend the shelf life of this fish species.

  3. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less

  4. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.; Moorhead, Arthur J.

    2002-01-01

    A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  5. Ultrasound Analysis of Slurries

    DOEpatents

    Soong, Yee and Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  6. Ultrasound Analysis Of Slurries

    DOEpatents

    Soong, Yee; Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  7. Ammonia emission from a permanent grassland on volcanic soil after the treatment with dairy slurry and urea

    NASA Astrophysics Data System (ADS)

    Salazar, F.; Martínez-Lagos, J.; Alfaro, M.; Misselbrook, T.

    2014-10-01

    Ammonia (NH3) is an air pollutant largely emitted from agricultural activities including the application of livestock manures and fertilizers to grassland. This gas has been linked with important negative impacts on natural ecosystems. In southern Chile, the use of inorganic and organic fertilizers (e.g. slurries) has increased in cattle production systems over recent years, heightening the risk of N losses to the wider environment. The objectives of this study were to evaluate on permanent grasslands on a volcanic ash soil in southern Chile: 1) the N loss due to NH3 volatilization following surface application of dairy slurry and urea fertilizer; and 2) the effect of a urease inhibitor on NH3 emissions from urea fertilizer application. Small plot field experiments were conducted over spring, fall, winter and summer seasons, using a system of wind tunnels to measure ammonia emissions. Ammonia losses ranged from 1.8 (winter) to 26.0% (fall) and 3.1 (winter) to 20.5% (summer) of total N applied for urea and slurry, respectively. Based on the readily available N applied (ammoniacal N for dairy slurry and urea N for urea fertilizer), losses from dairy slurry were much greater, at 16.1 and 82.0%, for winter and summer, respectively. The use of a urease inhibitor proved to be an effective option to minimize the N loss due NH3 volatilization from urea fertilizer, with an average reduction of 71% across all seasons. The results of this and other recent studies regarding N losses suggest that ammonia volatilization is the main pathway of N loss from grassland systems in southern Chile on volcanic ash soils when urea and slurry are used as an N source. The use of good management practices, such as the inclusion of a urease inhibitor with urea fertilizer could have a beneficial impact on reducing N losses due NH3 volatilization and the environmental and economic impact of these emissions.

  8. Organic wastes from bioenergy and ecological sanitation as soil fertility improver: a field experiment in a tropical Andosol

    NASA Astrophysics Data System (ADS)

    Krause, A.; Nehls, T.; George, E.; Kaupenjohann, M.

    2015-11-01

    Andosols require the regular application of phosphorus (P) to sustain crop productivity. In a practice oriented field experiment at an Andosol site in NW Tanzania, the effects of various soil amendments (standard compost, urine, biogas slurry and CaSa-compost [biochar and sanitized human excreta]) on (i) the productivity of locally grown crop species, on (ii) the plants' nutrient status and on (iii) the soil's physico-chemical properties were studied. None of the amendments had any significant effect on soil moisture, so the observed variation in crop yield and plant nutrition reflected differences in nutrient availability. The application of CaSa-compost increased the level of available P in the top-soil from 0.5 to 4.4 mg kg-1 and the soil pH from 5.3 to 5.9. Treatment with biogas slurry, standard compost and CaSa-compost increased the above-ground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa-compost were, respectively, 2.63, 3.18 and 4.40 t ha-1, compared to only 1.10 t ha-1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa-compost was especially effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as substitute for synthetic fertilizers. However, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the loop can be closed.

  9. The composition, localization and function of low-temperature-adapted microbial communities involved in methanogenic degradations of cellulose and chitin from Qinghai-Tibetan Plateau wetland soils.

    PubMed

    Dai, Y; Yan, Z; Jia, L; Zhang, S; Gao, L; Wei, X; Mei, Z; Liu, X

    2016-07-01

    To reveal the microbial communities from Qinghai-Tibetan Plateau wetland soils that have the potential to be used in the utilization of cellulosic and chitinous biomass at low temperatures (≤25°C). Soil samples collected from six wetlands on Qinghai-Tibetan Plateau were supplemented with or without cellulose and chitin flakes, and anaerobically incubated at 25 and 15°C; high-throughput 16S rRNA gene sequencing was used to access the composition and localization (in the slurry and on the surface) of enriched microbial communities; a hypothetical model was constructed to demonstrate the functional roles of involved microbes mainly at genus level. Overall, microbial communities from Qinghai-Tibetan Plateau wetlands showed significant potential to convert both cellulose and chitin to methane at low temperatures; Clostridium III, Clostridium XIVa, Paludibacter, Parcubacteria, Saccharofermentans, Pelotomaculum, Methanosaeta, Methanobrevibacter, Methanoregula, Methanospirillum and Methanosarcina participated in methanogenic degradation of both cellulose and chitin through the roles of hydrolytic, saccharolytic and secondary fermenters and methanogens respectively. Acetotrophic methanogens were mainly enriched in the slurries, while hydrogenotrophic methanogens could be both in the slurries and on the surface. The composition and localization of microbial communities that could effectively convert cellulose and chitin to methane at low temperatures have been revealed by high-throughput 16S rRNA gene sequencing methods, and reviewing the literatures on the microbial pure culture helped to elucidate functional roles of significantly enriched microbes. This study will contribute to the understanding of carbon and nitrogen cycling of cellulose and chitin in cold-area wetlands and provide fundamental information to obtain microbial resources for the utilization of biomass wastes at low temperatures. © 2016 The Society for Applied Microbiology.

  10. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.; Zamecnik, J.; Best, D.

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah Rivermore » National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.« less

  11. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    USGS Publications Warehouse

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  12. Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flessa, H.; Beese, F.

    2000-02-01

    Applying cattle slurry to soil may induce emissions of the greenhouse gases N{sub 2}O and CH{sub 4}. Their objective was to determine the effects of different application techniques (surface application and slit injection) of cattle (Bostaurus) slurry on the decomposition of slurry organic matter and the emissions of N{sub 2}O and CH{sub 4}. The effects of slurry application (43.6 m{sup 3} ha{sup {minus}1}) were studied for 9 wk under controlled laboratory conditions using a soil microcosm system with automated monitoring of the CO{sub 2}, N{sub 2}O, and CH{sub 4} fluxes. The soil used was a silty loam (Ap horizon ofmore » a cambisol) with a constant water-filled pore space of 67% during the experiment. About 38% of the organic matter applied with the slurry was decomposed within 9 wk. Production of CO{sub 2} was not affected by the application technique. Emissions of N{sub 2}O and CH{sub 4} from the injected slurry were significantly higher than from the surface-applied slurry, probably because of restricted aeration at the injected-slurry treatment. Total N{sub 2}O-N emissions were 0.2% (surface application) and 3.3% (slit injection) of the slurry N added. Methane emission occurred only during the first few days following application. The total net flux of CH{sub 4}-C for 2 wk was {minus}12 g ha{sup {minus}1} for the control (CH{sub 4} uptake), 2 g ha{sup {minus}1} for the surface-applied slurry, and 39 g ha{sup {minus}1} for the injected slurry. Slurry injection, which is recommended to reduce NH{sub 3} volatilization, appears to increase emissions of the greenhouse gases N{sub 2}O and CH{sub 4} from the fertilized fields.« less

  13. Identification of bacterial contaminants from calcium carbonate filler production lines and an evaluation of biocide based decontamination procedures.

    PubMed

    Odić, Duško; Prah, Jana; Avguštin, Gorazd

    2017-04-01

    The aim of this study was to analyze the bacterial community in the production line of a calcium carbonate filler production company and to investigate possible causes for bacterial presence. Throughout 2012, 24 carbonate slurry and six groundwater samples were analyzed. Pseudomonas and Microbacterium were the most frequent contaminants in the slurry, whereas Pseudomonas and Brevundimonas dominated the groundwater samples. Of the 43 different bacterial strains isolated, only five were found both in the slurry and the groundwater, indicating that the latter was not a major source of contamination. The efficacy of 54 commercial biocidal formulations was tested against an artificial bacterial consortium composed of selected slurry isolates. A formulation containing 7.5-15% (v v -1 ) bronopol and 1.0-2.5% (v v -1 ) [chloroisothiazolinone (CIT) + methylisothiazolinone (MIT)] exhibited the highest efficacy. Of the possible causes for bacterial presence, sporogenesis and biocide adsorption to carbonate particles were found to be less probable compared to bacterial adsorption to particles, and the acquisition of resistance to biocides.

  14. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Kevin A.; Key, Baris; Li, Jianlin

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  15. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE PAGES

    Hays, Kevin A.; Key, Baris; Li, Jianlin; ...

    2018-04-24

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  16. Modeling Remineralization of Desalinated Water by Micronized Calcite Dissolution.

    PubMed

    Hasson, David; Fine, Larissa; Sagiv, Abraham; Semiat, Raphael; Shemer, Hilla

    2017-11-07

    A widely used process for remineralization of desalinated water consists of dissolution of calcite particles by flow of acidified desalinated water through a bed packed with millimeter-size calcite particles. An alternative process consists of calcite dissolution by slurry flow of micron-size calcite particles with acidified desalinated water. The objective of this investigation is to provide theoretical models enabling design of remineralization by calcite slurry dissolution with carbonic and sulfuric acids. Extensive experimental results are presented displaying the effects of acid concentration, slurry feed concentration, and dissolution contact time. The experimental data are shown to be in agreement within less than 10% with theoretical predictions based on the simplifying assumption that the slurry consists of uniform particles represented by the surface mean diameter of the powder. Agreement between theory and experiment is improved by 1-8% by taking into account the powder size distribution. Apart from the practical value of this work in providing a hitherto lacking design tool for a novel technology. The paper has the merit of being among the very few publications providing experimental confirmation to the theory describing reaction kinetics in a segregated flow system.

  17. Experimental Study of Heat Transfer Performance of Polysilicon Slurry Drying Process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Ma, Dongyun; Liu, Yaqian; Wang, Zhimin; Yan, Yangyang; Li, Yuankui

    2016-12-01

    In recent years, the growth of the solar energy photovoltaic industry has greatly promoted the development of polysilicon. However, there has been little research into the slurry by-products of polysilicon production. In this paper the thermal performance of polysilicon slurry was studied in an industrial drying process with a twin-screw horizontal intermittent dryer. By dividing the drying process into several subunits, the parameters of each unit could be regarded as constant in that period. The time-dependent changes in parameters including temperature, specific heat and evaporation enthalpy were plotted. An equation for the change in the heat transfer coefficient over time was calculated based on heat transfer equations. The concept of a distribution coefficient was introduced to reflect the influence of stirring on the heat transfer area. The distribution coefficient ranged from 1.2 to 1.7 and was obtained with the fluid simulation software FLUENT, which simplified the calculation of heat transfer area during the drying process. These experimental data can be used to guide the study of polysilicon slurry drying and optimize the design of dryers for industrial processes.

  18. 46 CFR Table 2 to Part 153 - Cargoes Not Regulated Under Subchapters D or O of This Chapter When Carried in Bulk on Non...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride solution D Clay slurry III Coal slurry III... acid, dimethylamine salt solution * Y Choline chloride solutions Z Clay slurry OS Coal slurry OS...

  19. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    NASA Astrophysics Data System (ADS)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  20. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    PubMed

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Recycling silicon wire-saw slurries: separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field.

    PubMed

    Tsai, Tzu-Hsuan; Shih, Yu-Pei; Wu, Yung-Fu

    2013-05-01

    The growing demand for silicon solar cells in the global market has greatly increased the amount of silicon sawing waste produced each year. Recycling kerf Si and SiC from sawing waste is an economical method to reduce this waste. This study reports the separation of Si and SiC using a ramp settling tank. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. The agreement between experimental results and predicted results shows that the particles traveled a short distance to reach the collection port in the ramp tank. Consequently, the time required for tiny particles to hit the tank bottom decreased, and the interference caused by the dispersion between particles and the fluid motion during settling decreased. In the ramp tank, the highest purities of the collected SiC and Si powders were 95.2 and 7.01 wt%, respectively. Using a ramp tank, the recycling fraction of Si-rich powders (SiC < 15 wt%) reached 22.67% (based on the whole waste). This fraction is greater than that achieved using rectangular tanks. Recycling Si and SiC abrasives from the silicon sawing waste is regarded as an economical solution to reduce the sawing waste. However, the separation of Si and SiC is difficult. This study reports the separation of Si and SiC using a ramp settling tank under an applied electrical field. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. Compared with the rectangular tanks, the recycling fraction of Si-rich powders using a ramp tank is greater, and the proposed ramp settling tank is more suitable for industrial applications.

  2. Modified starch containing liquid fuel slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, G.W.

    1978-04-04

    A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.

  3. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  4. Sox/Nox Sorbent And Process Of Use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-06-27

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  5. Sox/Nox Sorbent And Process Of Use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1996-12-17

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  6. Thermophilic biogasification of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Klass, D.L.; Christopher, R.W.

    1980-01-01

    Mesophilic and thermophilic digestion runs were conducted with the pure land-based biomass species, water hyacinth (Eichhornia crassipes) and Coastal Bermuda grass (Cynodon dactylon), and a blend of hyacinth, grass, MSW, and sewage sludge. A mixed biomass-waste hybrid feed was included because it has a superior nutritional balance relative to the pure feeds and it facilitates year-round operation of a biomass-to-SNG process. (7) The studies were conducted at 35/sup 0/ and 55/sup 0/C, generally believed to be optimum for mesophilic and thermophilic digestion of organic feeds. Results of mesophilic digestion were to provide baseline performance data for evaluation of thermophilic digestermore » performance. It was decided that the feed affording the best thermophilic performance would be pretreated with dilute sodium hydroxide solution at the selected digestion temperature of 55/sup 0/C to improve methane production rate and yield. In addition, thermophilic runs were planned to investigate ways to reduce chemical requirements for alkaline pretreatment and feed slurry neutralization.« less

  7. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    NASA Astrophysics Data System (ADS)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent cracking issue, and 3) the effect of composition and composition gradient of Ni and WC on the slurry erosion resistance over a wide range of erosion conditions. This thesis presents a set of numerical and experimental methods in order to address the challenges mentioned above. A three-dimensional (3-D) computational fluid dynamics (CFD) based powder flow model and three vision based techniques were developed in order to visualize the process of feeding the Ni-WC powder in the LBPD process. The results provide the guidelines for efficiently feeding the Ni-WC composite powder into the laser-formed molten pool. The finite element (FE) based experimentally verified 3-D thermal and thermo-mechanical models are developed in order to understand the thermal and stress evolutions in Ni-WC composite material during the LBPD process. The models address the effect of the process variables, preheating temperature, and different mass fractions of WC in Ni on thermal cycles and stress distributions within the deposited material. The slurry erosion behavior of the single and multilayered deposits of Ni-WC composite material produced by the LBPD process is investigated using an accelerated slurry erosion testing machine and a 3-D FE dynamic model. The verified model is used to identify the appropriate composition and composition gradient of Ni-WC composite material required to achieve erosion resistance over a wide range of erosion conditions.

  8. Water-assisted extrusion of bio-based PETG/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Naeun; Lee, Sangmook

    2018-02-01

    Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.

  9. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are oftenmore » added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.« less

  10. Ammonia volatilization following dairy slurry application to a permanent grassland on a volcanic soil

    NASA Astrophysics Data System (ADS)

    Martínez-Lagos, J.; Salazar, F.; Alfaro, M.; Misselbrook, T.

    2013-12-01

    Agriculture is the largest source of ammonia (NH3) emission to the atmosphere. Within the agricultural sector, the application of slurry to grasslands as fertilizer is one of the main emission sources. This is a common practice in southern Chile, where most dairy production systems are grazing-based. In Chile, there are few published data of gaseous emissions following slurry application to grassland. The aim of this study was to evaluate NH3 volatilization following dairy slurry application to a permanent grassland on an Andosol soil. Ammonia volatilization was measured in four field experiments (winters of 2009 and 2011 and early and late springs of 2011) using a micrometeorological mass balance method with passive flux samplers following dairy slurry application at a target rate of 100 kg total N ha-1. The accumulated N loss was equivalent to 7, 8, 16 and 21% of the total N applied and 22, 34, 88 and 74% of total ammoniacal nitrogen (TAN) applied for winters 2009 and 2011, and early and late spring 2011, respectively. Ammonia emission rates were high immediately after application and declined rapidly with time, with more than 50% of the total emissions within the first 24 h. Losses were highly influenced by environmental conditions, increasing with temperature and lack of rainfall. Taking into consideration the low N losses via leaching and nitrous oxide emissions reported for the study area, results indicate that NH3 volatilization is the main pathway of N loss in fertilized grasslands of southern Chile. However, dairy slurry application could be an important source of nutrients, if applied at a suitable time, rate and using an appropriate technique, and if soil and climate conditions are taken into consideration. This could improve N use efficiency and reduce N losses to the wider environment.

  11. Hydrotectonics; principles and relevance

    USGS Publications Warehouse

    Kopf, R.W.

    1982-01-01

    Hydrotectonics combines the principles of hydraulics and rock mechanics. The hypothesis assumes that: (1) no faults are truly planar, (2) opposing noncongruent wavy wallrock surfaces form chambers and bottlenecks along the fault, and (3) most thrusting occurs beneath the water table. These physical constraints permit the following dynamics. Shear displacement accompanying faulting must constantly change the volume of each chamber. Addition of ground water liquefies dry fault breccia to a heavy incompressible viscous muddy breccia I call fault slurry. When the volume of a chamber along a thrust fault decreases faster than its fault slurry can escape laterally, overpressurized slurry is hydraulically injected into the base of near-vertical fractures in the otherwise impervious overriding plate. Breccia pipes commonly form where such fissures intersect. Alternating decrease and increase in volume of the chamber subjects this injection slurry to reversible surges that not only raft and abrade huge clasts sporadically spalled from the walls of the conduit but also act as a forceful hydraulic ram which periodically widens the conduit and extends its top. If the pipe perforates a petroleum reservoir, leaking hydrocarbons float to its top. Sudden faulting may generate a powerful water hammer that can be amplified at some distal narrow ends of the anastomosing plumbing system, where the shock may produce shatter cones. If vented on the Earth's surface, the muddy breccia, now called extrusion slurry, forms a mud volcano. This hypothesis suggests that many highly disturbed features presently attributed to such catastrophic processes as subsurface explosions or meteorite impacts are due to the rheology of tectonic slurry in an intermittently reactivated pressure-relief tube rooted in a powerful reciprocating hydrotectonic pump activated by a long-lived deep-seated thrust fault.

  12. [Culture medium based on biogas slurry and breeding of oil Chlorella].

    PubMed

    Zhao, Feng-Min; Mei, Shuai; Cao, You-Fu; Ding, Jin-Feng; Xu, Jia-Jie; Li, Shu-Jun

    2014-06-01

    The oil chlorella cultivation and biogas slurry treatment were combined. The biogas slurry provided water and nutrient for growing chlorella, at the same time, harmless treatment of biogas slurry was realized. This paper cultivated 4 species of oil chlorella in the mixed medium of biogas slurry and green algae medium (the volume ratios were 1 : 9, 1 : 3, 1 : 1 and 3 : 1, respectively), and compared their oil productivity to select the best oil chlorella species and the optimal culture medium. The results showed that, the combination of medium and chlorella species to reach the highest oil productivity was a volume ratio of 1 : 3 and the chlorella species BJ05, and the oil productivity of chlorella BJ05 was 9.20 mg x (L x d)(-1), higher than that in green algae medium [8.66 mg x (L x d)(-1)]. In mixed medium with a volume ratio of 1:3, the effect of adding different nutrients into the green algae medium on the oil productivity was examined, and the results showed that, sodium carbonate and citric acid had no negative effect on the oil productivity of chlorella BJ05. in the absence of sodium carbonate and citric acid, the oil productivity of chlorella BJ05 was 9.36 mg x (L x d)(-1), and the removal of COD (chemical oxygen demand), total nitrogen, total phosphorus and ammonia nitrogen rates were 59%, 75%, 61% and 100%, respectively. Deficiency in other nutrients had negative effect on the oil productivity. Therefore, the culture medium was further optimized to the mixed medium of biogas slurry and green algae medium with a volume ratio of 1 : 3 and without addition of sodium carbonate and citric acid.

  13. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    NASA Astrophysics Data System (ADS)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  14. State of water in starch-water systems in the gelatinization temperature range as investigated using dielectric relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Motwani, Tanuj

    Starch-water interactions occurring during gelatinization are critical for developing a mechanistic understanding of the gelatinization process. The overall goal of this project was to investigate the state of water in starch-water systems in the gelatinization temperature range using dielectric relaxation spectroscopy. In the first part of the project, the dielectric response of native wheat starch-water slurries was measured at seven different starch concentrations between 5--60% starch (w/w) in the frequency range of 200 MHz--20 GHz at 25°C. The deconvolution of the dielectric spectra using the Debye model revealed presence of up to three relaxation processes. The relaxation time range of what were considered to be the high, intermediate and low frequency relaxations were 4--9 ps, 20--25 ps and 230--620 ps, respectively. The high frequency relaxation was observed at all starch concentrations, while the intermediate and low frequency relaxation were only observed at starch concentrations of 10% and above, and 30% and above, respectively. The high frequency relaxation was attributed to bulk water, while the intermediate and low frequency relaxations were attributed to rotationally restrained water molecules present in the starch-water system. To investigate the state of water in the gelatinization temperature range, the dielectric response, gelatinization enthalpy and water absorption by 10%, 30% or 50% starch slurries were measured after heating the slurries to different end temperatures between 40--90°C for 30 min. The high frequency relaxation time for 10% starch slurry dropped significantly (P<0.001) upon heating up to 60°C. For 30% and 50% starch slurries, high frequency relaxation times were not significantly influenced (P>0.159) by heating up to 80°C. The intermediate and low frequency relaxation times were not significantly influenced (P>0.712) by heating for all starch concentrations. Also, the amount of water associated with the three relaxations was not significantly influenced by heating (P >0.187). The water absorption results indicated that highest water uptake was achieved in the 10% starch slurry. The endothermic peak associated with gelatinization either vanished or was diminished after heating the slurries to 60°C and above, suggesting that native granular order was not necessary for the existence of the three separate states of water. In the second part of the project, the dielectric response of starch-water systems was investigated in the presence or absence of glucose or maltose. Dielectric response of 10% starch + 10% sugar, 10% starch + 20% sugar or 10% starch + 30% sugar slurries was measured in the frequency range of 200 MHz--20 GHz after heating the slurries to different end temperatures between 25--90°C for 30 min. The dielectric spectra of the slurries could be deconvoluted to obtain up to three Debye-type relaxations. The relaxation time range of high, intermediate and low frequency relaxations were 4--7 ps, 17--26 ps and 175--335 ps, respectively, at 25°C. The high frequency relaxation was the dominant relaxation in slurries containing 10% sugar, and the intermediate frequency relaxation was the dominant relaxation in slurries containing 30% sugar at 25°C. The high frequency relaxation time decreased upon heating up to 60°C but was not significantly influenced (P>0.102) by the concentration or the type of sugar. Intermediate and low frequency relaxation times were not significantly influenced (P>0.419) by heating or sugar type. The relative strengths of the intermediate frequency relaxation dropped while that of high frequency relaxation increased upon heating up to 50°C. The relative strength of low frequency relaxation (P>0.561) was not influenced by heating. The static dielectric constant decreased upon heating but was not influenced by the type of sugar or solids in the slurry. This indicated that the water molecules present in the system were the major contributors to the polarization observed. At the same concentration of solids, conductivity of the sugar containing slurries was lower than that of the non-sugar-containing starch slurries, which suggested that conductivity was mostly associated with starch. Glucose or maltose did not exert any differential effect on the swelling behavior or dielectric relaxation parameters of starch-water-sugar slurries. This project presents novel insights into the starch-water interactions occurring in the gelatinization temperature range. The results of this project can be used to develop a dielectric relaxation based technique to monitor water mobility during industrial processing of starch-based foods. Dielectric response was not unique to any of the solids used in the study suggesting that dielectric spectroscopy could be used for monitoring state of water in food systems containing different types of solids. Also, the dielectric relaxation parameters obtained in this study can be used to predict water mobility in simple food systems having water, sugar and starch as major components, and hence, can possibly be used to estimate shelf life of food products.

  15. Rheometry of natural sediment slurries

    USGS Publications Warehouse

    Major, Jon J.; ,

    1993-01-01

    Recent experimental analyses of natural sediment slurries yield diverse results yet exhibit broad commonality of rheological responses under a range of conditions and shear rates. Results show that the relation between shear stress and shear rate is primarily nonlinear, that the relation can display marked hysteresis, that minimum shear stress can occur following yield, that physical properties of slurries are extremely sensitive to sediment concentration, and the concept of slurry yield strength is still debated. New rheometric analyses have probed viscoelastic behavior of sediment slurries. Results show that slurries composed of particles ??? 125 ?? m exhibit viscoelastic responses, and that shear stresses are relaxed over a range of time scales rather than by a single response time.

  16. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  17. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  18. DEHYDRATION OF DEUTERIUM OXIDE SLURRIES

    DOEpatents

    Hiskey, C.F.

    1959-03-10

    A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.

  19. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  20. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  1. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    PubMed

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Experimental study on the application of paraffin slurry to high density electronic package cooling

    NASA Astrophysics Data System (ADS)

    Cho, K.; Choi, M.

    Experiments were performed by using water and paraffin slurry to investigate thermal characteristics from a test multichip module. The parameters were the mass fraction of paraffin slurry (0, 2.5, 5, 7.5%), heat flux (10, 20, 30, 40W/cm2) and channel Reynolds numbers. The size of paraffin slurry particles was within 10-40μm. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row. The paraffin slurry with a mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section were considered simultaneously. A new correlation for the water and the paraffin slurry with a mass fraction of 5% was obtained for a channel Reynolds number over 5300.

  3. Drilling Holes in Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Daniels, J. G.; Ledbetter, Frank E., III; Penn, B. G.; White, W. L.

    1986-01-01

    Slurry of silicon carbide powder in water fed onto bit while drilling. Slurry contains about 60 percent silicon carbide by weight. Slurry recirculated by low-power pump. With slurry, dull tools cut as fast as, or faster than, sharp ones. Holes drilled rapidly and efficiently regardless of ply orientation; whether unidirectional, quasi-isotropic symmetrical, or cross-ply.

  4. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  5. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  6. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  7. Rheological Behavior and Microstructure of Ceramic Particulate/Aluminum Alloy Composites. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Moon, Hee-Kyung

    1990-01-01

    The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.

  8. Interactions between soil texture and placement of dairy slurry application: I. Flow characteristics and leaching of nonreactive components.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.

  9. Removal of Suspended Solids in Anaerobically Digested Slurries of Livestock and Poultry Manure by Coagulation Using Different Dosages of Polyaluminum Chloride

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhang, C. J.; Zhao, T. K.; Zhong, H.

    2017-01-01

    In this study, anaerobically digested slurries of livestock and poultry manure were pretreated by coagulation-sedimentation using an inorganic polymer coagulant, polyaluminum chloride (PAC). The effect of different PAC dosages on suspended solids (SS) removal and pH in the biogas slurries was assessed to provide reference values for reducing the organic load of biogas slurry in the coagulation-sedimentation process and explore the feasibility of reducing the difficulty in subsequent utilization or processing of biogas slurry. The results showed that for the pig slurry containing approximately 5000 mg/L SS, the removal rate of SS reached up to 81.6% with the coagulant dosage of 0.28 g/L PAC. For the chicken slurry containing approximately 2600 mg/L SS, the removal rate of SS was 30.2% with the coagulant dosage of 0.33 g/L PAC. The removal rate of SS in both slurries of livestock and poultry manure exhibited a downward trend with high PAC dosage. Therefore, there is a need to control the PAC dosage in practical use. The pH changed little in the two types of biogas slurries after treatment with different PAC dosages and both were in line with the standard values specified in the “Standards for Irrigation Water Quality”.

  10. The influence of additives on rheological properties of limestone slurry

    NASA Astrophysics Data System (ADS)

    Jaworska, B.; Bartosik, A.

    2014-08-01

    Limestone slurry appears in the lime production process as the result of rinsing the processed material. It consists of particles with diameter smaller than 2 mm and the water that is a carrier of solid fraction. Slurry is directed to the settling tank, where the solid phase sediments and the excess water through the transfer system is recovered for re-circulation. Collected at the bottom of the tank sludge is deposited in a landfill located on the premises. Rheological properties of limestone slurry hinder its further free transport in the pipeline due to generated flow resistance. To improve this state of affairs, chemical treatment of drilling fluid, could be applied, of which the main task is to give the slurry properties suitable for the conditions encountered in hydrotransport. This treatment consists of applying chemical additives to slurry in sufficient quantity. Such additives are called as deflocculants or thinners or dispersants, and are chemical compounds which added to aqueous solution are intended to push away suspended particles from each other. The paper presents the results of research allowing reduction of shear stress in limestone slurry. Results demonstrate rheological properties of limestone slurry with and without the addition of modified substances which causes decrease of slurry viscosity, and as a consequence slurry shear stress for adopted shear rate. Achieving the desired effects increases the degree of dispersion of the solid phase suspended in the carrier liquid and improving its ability to smooth flow with decreased friction.

  11. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. IMPROVED WELL PLUGGING EQUIPMENT AND WASTE MANGEMENT TECHNIQUES EXCEED ALARA GOALS AT THE OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, R.; Pawlowicz, R.; Whitehead, L.

    2002-02-25

    In 2000, Bechtel Jacobs Company LLC (BJC) contracted Tetra Tech NUS, Inc. (TtNUS) and their sub-contractor, Texas World Operations, Inc. (TWO), to plug and abandon (P&A) 111 wells located in the Melton Valley area of Oak Ridge National Laboratory (ORNL). One hundred and seven of those wells were used to monitor fluid movement and subsurface containment of the low level radioactive liquid waste/grout slurry that was injected into the Pumpkin Valley Shale Formation, underlying ORNL. Four wells were used as hydrofracture injection wells to emplace the waste in the shale formation. Although the practice of hydrofracturing was and is consideredmore » by many to pose no threat to human health or the environment, the practice was halted in 1982 after the Federal Underground Injection Control regulations were enacted by United States Environmental Protection Agency (USEPA) making it necessary to properly close the wells. The work is being performed for the United States Department of Energy Oak Ridge Operations (DOE ORO). The project team is using the philosophy of minimum waste generation and the principles of ALARA (As Low As Reasonably Achievable) as key project goals to minimize personnel and equipment exposure, waste generation, and project costs. Achievement of these goals was demonstrated by the introduction of several new pieces of custom designed well plugging and abandonment equipment that were tested and used effectively during field operations. Highlights of the work performed and the equipment used are presented.« less

  13. Estimated vapor pressure for WTP process streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Poirier, M.

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less

  14. SCIX IMPACT ON DWPF CPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheetmore » includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not consider the impact of proposed future alternative DWPF CPC flowsheets. The impact of the SCIX streams on DWPF processing using the selected flowsheet need to be considered as part of the technical baseline studies for coupled processing with the selected flowsheet. In addition, the downstream impact of aluminum dissolution on waste containing CST and MST has not yet been evaluated. The current baseline would not subject CST to the aluminum dissolution process and technical concerns with performing the dissolution with CST have been expressed. Should this option become feasible, the downstream impact should be considered. The main area of concern for DWPF from aluminum dissolution is an impact on rheology. The SCIX project is planning for SRNL to complete MST, CST, and sludge rheology testing to evaluate any expected changes. The impact of ground CST transport and flush water on the DWPF CPC feed tank (and potential need for decanting) has not been defined or studied.« less

  15. Ice Slurry Ingestion and Physiological Strain During Exercise in Non-Compensable Heat Stress.

    PubMed

    Ng, Jason; Wingo, Jonathan E; Bishop, Phillip A; Casey, Jason C; Aldrich, Elizabeth K

    2018-05-01

    Precooling with ice slurry ingestion attenuates the increase in rectal temperature (Tre) during subsequent running and cycling. It remains unclear how this cooling method affects physiological strain during work while wearing protective garments. This study investigated the effect of ice slurry ingestion on physiological strain during work in hot conditions while wearing firefighter protective clothing. In three counterbalanced trials, eight men (mean ± SD; age = 21 ± 2 yr, height = 179.5 ± 3.5 cm, mass = 79.1 ± 4.1 kg, body fat = 11.4 ± 3.7%) wore firefighter protective clothing and walked (4 km · h-1, 12% incline, ∼7 METs) for 30 min in hot conditions (35°C, 40% RH). Every 2.5 min, subjects ingested 1.25 g · kg-1 (relative total: 15 g · kg-1, absolute total: 1186.7 ± 61.3 g) of a tepid (22.4 ± 1.7°C), cold (7.1 ± 1.5°C), or ice slurry (-1.3 ± 0.2°C) beverage. Heart rates (HR) were lower with ice slurry ingestion compared to both fluid trials starting 5 min into exercise (tepid = 158 ± 14, cold = 157 ± 11, ice slurry = 146 ± 13 bpm) and persisting for the remainder of the bout (min 30: tepid = 196 ± 10, cold = 192 ± 10, ice slurry = 181 ± 13 bpm). Tre was lower with ice slurry ingestion compared to cold and tepid trials (min 5: tepid = 37.17 ± 0.38, cold = 37.17 ± 0.39, ice slurry = 37.05 ± 0.43°C; min 30: tepid = 38.15 ± 0.29, cold = 38.31 ± 0.36, ice slurry = 37.95 ± 0.32°C). The physiological strain index (PSI) was lower with ice slurry ingestion compared to fluid trials starting at min 5 (tepid = 3.8 ± 0.7, cold = 3.8 ± 0.6, ice slurry = 3.0 ± 0.5) and remained lower throughout exercise (min 30: tepid = 8.2 ± 0.6, cold = 8.3 ± 0.9, ice slurry = 6.9 ± 1.2). A large quantity of ice slurry ingested under non-compensable heat stress conditions mitigated physiological strain during exercise by blunting the rise in heart rate and rectal temperature.Ng J, Wingo JE, Bishop PA, Casey JC, Aldrich EK. Ice slurry ingestion and physiological strain during exercise in non-compensable heat stress. Aerosp Med Hum Perform. 2018; 89(5):434-441.

  16. Nitride Fuel Development Using Cryo-process Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Brandi M; Windes, William E

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles heldmore » together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.« less

  17. Direct liquefaction proof-of-concept program. Finaltopical report, Bench Run 4 (227-95)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.

    This report presents the results of bench-scale work, Bench Run PB-04, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-04 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. Bench Run PB-04 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst system on the performance of direct liquefaction of a subbituminous Wyoming Black Thunder mine coal under extinction recycle (454{degrees}C+ recycle) condition; another goal was tomore » investigate the effects of the combined processing of automobile shredder residue (auto-fluff) with coal and other organic waste materials. PB-04 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. The HTI`s newly modified P/Fe catalyst was very effective for direct liquefaction and coprocessing of Black Thunder mine subbituminous coal with Hondo resid and auto-fluff; during `coal-only` liquefaction mode, over 93% maf coal conversion was obtained with about 90% residuum conversion and as high as 67% light distillate (C{sub 4}-975 F) yield, while during `coprocessing` mode of operation, distillate yields varied between 58 and 69%; the residuum conversions varied between 74 and 89% maf. Overall, it is concluded, based upon the yield data available from PB-04, that auto-effective as MSW plastics in improving coal hydroconversion process performance. Auto-fluff did not increase light distillate yields nor decrease light gas make and chemical hydrogen consumption in coal liquefaction, as was observed to occur with MSW plastics.« less

  18. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  19. Chemical Hydride Slurry for Hydrogen Production and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH 2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at amore » time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under another project. However, since the cost of reducing magnesium from magnesium oxide makes up 85% of the cost of the slurry, if hydrogen can be stored many times in the slurry, then the cost of storing hydrogen can be spread over many units of hydrogen and can be significantly reduced from the costs of a chemical hydride system. This may be the most important finding of this project. If the slurry is used to carry a rechargeable hydride, the slurry can be stored in a conventional liquid fuel tank and delivered to a release system as hydrogen is needed. The release system will contain only the hydride needed to produce the hydrogen desired. This is in contrast to conventional designs proposed for other rechargeable hydride systems that store all the hydride in a large and heavy pressure and heat transfer vessel.« less

  20. Eddy Covariance Measurements of Methane Emissions from a Dairy Farm Waste Lagoon

    NASA Astrophysics Data System (ADS)

    Sokol, A. B.; Lauvaux, T.; Richardson, S.; Hlywiak, J.; Davis, K. J.; Hristov, A. N.

    2016-12-01

    Livestock manure management in dairy operations is a known source of methane (CH4), a potent greenhouse gas. Anaerobic waste lagoons are a common manure management technique; thus, their associated CH4 emissions are relevant to national greenhouse gas inventories and local air quality. Our objective was to characterize the variability of summertime CH4 emissions from a lagoon at a dairy facility in central Pennsylvania. Continuous flux measurements were taken over two weeks in July using the eddy covariance method, which uses high-frequency gas concentration and three-dimensional wind speed measurements to calculate turbulent fluxes from a source area. After data filtration based on turbulence characteristics and source area, the average CH4 flux density from the lagoon was estimated to be 99 μmol m-2 s-1. This implies daily lagoon emissions of 881 kg CH4, corresponding to an average emission rate of 340 g CH4 per cow per day. We observed no apparent relationship between emissions and air temperature or relative humidity, though an extended measurement period is needed to better quantify the relationship that is expected to exist between air and/or slurry temperature and CH4 flux. Our measured per-area emission rate is toward the high end of the range of estimates found in the literature. These results contribute to greenhouse gas inventory development and could have important implications for emission mitigation strategies.

  1. Effect of Different Gums on Rheological Properties of Slurry

    NASA Astrophysics Data System (ADS)

    Weikey, Yogita; Sinha, S. L.; Dewangan, S. K.

    2018-02-01

    This paper presents the effect of different natural gums on water-bentonite slurry, which is used as based fluid in water based drilling fluid. The gums used are Babul gum (Acacia nilotica), Dhawda gum (Anogeissus latifolia), Katira gum (Cochlospermum religiosum) and Semal gum (Bombax ceiba). For present investigation, samples have been prepared by varying concentration of gums. The variation of shear stress and shear rate has been plotted and on the basis of this behaviour of fluids has been explained. The value of k and n are calculated by using Power law. R 2 values are also calculated to support the choice of gum selection.

  2. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  3. Counter-current acid leaching process for copper azole treated wood waste.

    PubMed

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  4. Absorption of mercuric cation by tannins in agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.

    1973-01-01

    Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less

  5. Hot-isostatically pressed wasteforms for Magnox sludge immobilisation

    NASA Astrophysics Data System (ADS)

    Heath, Paul G.; Stewart, Martin W. A.; Moricca, Sam; Hyatt, Neil C.

    2018-02-01

    Thermal treatment technologies offer many potential benefits for the treatment of radioactive wastes including the passivation of reactive species and significant waste volume reductions. This paper presents a study investigating the production of wasteforms using Hot-isostatic pressing technology for the immobilisation of Magnox sludges from the UK's Sellafield Site. Simulants considered physically representative of these sludges were used to determine possible processing parameters and to determine the phase assemblages and morphologies produced during processing. The study showed hot-isostatic pressing is capable of processing Magnox sludges at up to 60 wt% (oxide basis) into dense, mixed ceramic wasteforms. The wasteforms produced are a glass-bonded ceramic of mixed magnesium titanates, encapsulating localised grains of periclase. The ability to co-process Magnox sludges with SIXEP sand/clinoptilolite slurries has also been demonstrated. The importance of these results is presented through a comparison of volume reduction data, which shows HIPing may provide a 20-fold volume reduction over the current cementitious baseline and double the volume reduction attainable for vitrification technologies.

  6. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less

  7. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  8. Surface texture and composition of titanium brushed with toothpaste slurries of different pHs.

    PubMed

    Hossain, Awlad; Okawa, Seigo; Miyakawa, Osamu

    2007-02-01

    This in vitro study characterized the surface texture and composition of titanium brushed with toothpaste slurries of different pHs, and thereby elucidated mechanochemical interactions between the metal and abrasive material in dentifrice. Two fluoride-free toothpastes, which contained crystalline CaHPO(4).2H(2)O and amorphous SiO(2) particles as abrasive, were mixed with acidic buffers to provide slurries of pH 6.8 and 4.8. Specimens were cast from CP Ti, mirror-polished, and then toothbrushed at 120strokes/min for 350,400 strokes under a load of 2.45N. Specimen surfaces were characterized by means of SPM and EPMA. The obtained data were compared with the already reported results of water-diluted alkaline slurries. SPM data of each paste were analyzed using one-way ANOVA, followed by post hoc Tukey test. Irrespective of toothpaste, neutral slurries, as with alkaline slurries, yielded a chemically altered surface with rough texture, whereas acidic slurries formed a chemically clean surface with relatively smooth texture. Mechanochemical polishing effect might be mainly responsible for the cleanness and smoothness. Acidic slurry-induced smooth surface may minimize plaque formation. However, the augmentation of released titanium ions may be adverse to the human body. For evaluation of toothpaste abrasion effects on titanium, paste slurry pH should be taken into account.

  9. Apparatus and method for transferring slurries

    DOEpatents

    Horton, J.R.

    1982-08-13

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  10. Apparatus and method for transferring slurries

    DOEpatents

    Horton, Joel R.

    1984-01-01

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  11. SEPARATING LIQUID MODERATOR FROM A SLURRY TYPE REACTOR

    DOEpatents

    Vernon, H.C.

    1961-07-01

    A system for evaporating moderator such as D/sub 2/O from an irradiated slurry or sloution characterized by two successive evaproators is described. In the first of these the most troublesome radioactivity dissipates before the slurry becomes too thick to be pumped out; in the second the slurry, now easier to handle, can be safely reduced to a sludge.

  12. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  13. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste.

    PubMed

    Sasaki, Daisuke; Hori, Tomoyuki; Haruta, Shin; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2011-01-01

    The methanogenic pathway and microbial community in a thermophilic anaerobic digestion process of organic solid waste were investigated in a continuous-flow stirred-tank reactor using artificial garbage slurry as a feedstock. The decomposition pathway of acetate, a significant precursor of CH(4) and a key intermediate metabolite in the anaerobic digestion process, was analyzed by using stable isotopes. A tracer experiment using (13)C-labeled acetate revealed that approximately 80% of the acetate was decomposed via a non-aceticlastic oxidative pathway, whereas the remainder was converted to methane via an aceticlastic pathway. Archaeal 16S rRNA analyses demonstrated that the hydrogenotrophic methanogens Methanoculleus spp. accounted for >90% of detected methanogens, and the aceticlastic methanogens Methanosarcina spp. were the minor constituents. The clone library targeting bacterial 16S rRNA indicated the predominance of the novel Thermotogales bacterium (relative abundance: ~53%), which is related to anaerobic acetate oxidizer Thermotoga lettingae TMO, although the sequence similarity was low. Uncultured bacteria that phylogenetically belong to municipal solid waste cluster I were also predominant in the microflora (~30%). These results imply that the microbial community in the thermophilic degrading process of organic solid waste consists exclusively of unidentified bacteria, which efficiently remove acetate through a non-aceticlastic oxidative pathway. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolberg, Mark; Case, Glenn; Ferguson Jones, Andrea

    2013-07-01

    At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from themore » various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)« less

  15. Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammack, R.W.

    2008-01-01

    In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depthmore » images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.« less

  16. Mechanism of the development of a weakly alkaline barrier slurry without BTA and oxidizer

    NASA Astrophysics Data System (ADS)

    Xiaodong, Luan; Yuling, Liu; Xinhuan, Niu; Juan, Wang

    2015-07-01

    Controllable removal rate selectivity with various films (Cu, Ta, SiO2) is a challenging job in barrier CMP. H2O2 as an oxidizer and benzotriazole (BTA) as an inhibitor is considered to be an effective method in barrier CMP. Slurries that contain hydrogen peroxide have a very short shelf life because H2O2 is unstable and easily decomposed. BTA can cause post-CMP challenges, such as organic residue, toxicity and particle adhesion. We have been engaged in studying a weakly alkaline barrier slurry without oxidizer and benzotriazole. Based on these works, the objective of this paper is to discuss the mechanism of the development of the barrier slurry without oxidizer and benzotriazole by studying the effects of the different components (containing colloidal silica, FA/O complexing agent, pH of polishing solution and guanidine nitrate) on removal rate selectivity. The possible related polishing mechanism has also been proposed. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the National Natural Science Foundation of Hebei Province, China (No. E2013202247), and the Department of Education-Funded Research Projects of Hebei Province, China (No. QN2014208).

  17. Process for the production of liquid hydrocarbons

    DOEpatents

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  18. Interactions between phosphorus feeding strategies for pigs and dairy cows and separation efficiency of slurry.

    PubMed

    Sommer, S G; Maahn, M; Poulsen, H D; Hjorth, M; Sehested, J

    2008-01-01

    Phosphorus (P) in manure is a nutrient source for plants, but surplus P amended to fields represents a risk to the environment. This study examines the interactions between low-P diets for pigs and dairy cows and the separation of animal slurry into a solid P fraction and a liquid fraction. Replacing inorganic phosphates with phytase in pig feed reduced the concentration of P in slurry by 35%, but supplementing concentrates to dairy cows did not affect the P concentration in cattle slurry. Particle-size fractions of the slurry were not affected by these dietary changes. The amount of dry matter (DM) in the < 0.025 mm fraction was greater in pig slurry than in cattle slurry, but the relative amounts of P and nitrogen (N) were larger in the > 0.025 mm fraction. Replacing feed phosphate, in the form of mono-calcium phosphate, with phytase in the pig diet reduced the separation index (efficiency) of P from 80% to 60%.

  19. The importance of the solids loading on confirming the dielectric nanosize dependence of BaTiO₃ powders by slurry method.

    PubMed

    Zhou, Wei; Nie, Yi Mei; Li, Shu Jing; Liang, Hai Yan

    2013-01-01

    The dielectric nanosize dependence of BaTiO₃ powders was investigated by the slurry method, where two series of BaTiO₃ slurries with 10 vol% and 30 vol% solids loadings were prepared as model samples. Applying the Bruggeman-Hanai equation, the high-frequency limiting permittivity (ε(h)) of the slurries was extracted from the dielectric spectra. The ε(h) of the 10 vol% slurry showed abnormal size independence in the range from 100 nm to 700 nm, and the ε(h) of the 30 vol% slurry exhibited good agreement with the previous prediction. Through analysing quantitatively the response of ε(h) to the changing permittivity of the powders under different solids loading, it was found that the ε h of the slurry with lower solids loading is more inclined to be interfered by the systematic and random errors. Furthermore, a high permittivity value was found in the BaTiO₃ powders with 50 nm particle size.

  20. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    PubMed

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top