Sample records for waste stabilization maws

  1. Proximate composition, amino acid and fatty acid composition of fish maws.

    PubMed

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  2. Seismic instantaneous frequency extraction based on the SST-MAW

    NASA Astrophysics Data System (ADS)

    Liu, Naihao; Gao, Jinghuai; Jiang, Xiudi; Zhang, Zhuosheng; Wang, Ping

    2018-06-01

    The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic exploration for decades, such as detecting seismic absorption and characterizing depositional thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF directly, which is a traditional method and susceptible to noise. In this paper, a robust approach based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data. In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is called the modified analytical wavelet (MAW) and comes from the three parameter wavelet. After transforming the seismic signal into a sparse time-frequency domain via the SST taking the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method, we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest that the proposed procedure yields the higher resolution and the better anti-noise performance compared to the conventional IF extraction methods based on the HT method and continuous wavelet transform. Moreover, geological features (such as the channels) are well characterized, which is insightful for further oil/gas reservoir identification.

  3. Comparison of nutritional quality in fish maw product of croaker Protonibea diacanthus and perch Lates niloticus

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Zeng, Ling; Chen, Ziming; Xu, Youhou

    2016-08-01

    Fish maw (the dried swimbladders of fish) is ranked in the list of the four sea treasures in Chinese cuisine. Fish maw is mainly produced from croaker, which is the most highly priced. However, some of the fish maw being sold as croaker maw are in fact not from croaker, but from the Nile perch Lates niloticus. The present work determined and compared the proximate composition, amino acid and fatty acid composition of croaker Protonibea diacanthus maw and perch L. niloticus maw. The results indicated that both maws were high protein sources and low in fat content. The dominant amino acids in both maws were glycine, proline, glutamic acid, alanine and arginine. These amino acids constituted 66.2% and 66.4% of the total amino acids in P. diacanthus and L. niloticus, respectively. The ratio of FAA: TAA (functional amino acids: total amino acids) in both maws were 0.69. This is a good explanation for why fish maws have been widely utilized as a traditional tonic and remedy in Asia. Except valine and histidine, all the essential amino acid contents in P. diacanthus were higher than in L. niloticus. Moreover, croaker P. diacanthus maw contained more AA and DHA than perch L. niloticus maw, showing a higher ratio of n-3 / n-6, which is more desirable.

  4. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, Donna J; Kyrouac, Jenni A

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variablesmore » are mounted at the standard heights defined for each variable.« less

  5. 17 CFR 249.1320 - Form MA-W, for withdrawal from registration as a municipal advisor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Form MA-W, for withdrawal from... Municipal Advisors and for Providing Information Regarding Certain Natural Persons § 249.1320 Form MA-W, for... 1, 2014. Editorial Note: For Federal Register citations affecting Form MA-W, see the List of CFR...

  6. Effect of drying and frying conditions on physical and chemical characteristics of fish maw from swim bladder of seabass (Lates calcarifer).

    PubMed

    Sinthusamran, Sittichoke; Benjakul, Soottawat

    2015-12-01

    Swim bladder is generated as a by-product during evisceration. It has been used for the production of fish maw, in which several processing parameters determine the characteristics or quality of the resulting fish maw. The present study aimed to investigate the characteristics of fish maws from seabass swim bladder as influenced by drying and frying conditions. The expansion ratio and oil uptake content of fish maw increased as the moisture content of swim bladder increased (P < 0.05). Nevertheless, the expansion ratio of fish maw decreased when the moisture content was higher than 150 g kg(-1) . The L*-value decreased, whilst the a*- and b*-values of fish maw increased with increasing moisture content. When pre-frying and frying temperatures increased, the expansion ratio of fish maw increased (P < 0.05). However, the expansion ratio decreased when the frying was performed at a temperature higher than 200 °C. The oil uptake contents of fish maw with frying temperatures of 180 and 200 °C were in the range of 451.06-578.06 g kg(-1) , whereas the lower contents (378.60-417.17 g kg(-1) ) were found in those having frying temperatures of 220-240 °C. Hardness of fish maw decreased but no changes in fracturability were observed with increasing pre-frying temperature when subsequent frying was carried out 200 °C. Drying temperatures, moisture content, pre-frying and frying temperatures were the factors influencing the characteristics and properties of fish maws from seabass swim bladder. Fish maw could be prepared by pre-frying swim bladder, dried at 60 °C to obtain 150 g kg(-1) moisture content, at 110 °C for 5 min, followed by frying at 200 °C for 20 s. © 2014 Society of Chemical Industry.

  7. Organic matter dynamics in Technosols created with metalliferous mine residues, biochar and marble waste

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Acosta, José A.; Ángeles Muñoz, M.; Faz, Ángel; Zornoza, Raúl

    2017-04-01

    Creation of Technosols by use of different materials can be a sustainable strategy to reclaim mine tailings spread on the environment. A proper selection of materials is critical to efficiently contribute to soil creation, with development of soil structure, organic matter stabilization and stimulation of microbial growth. For this purpose, a short-term incubation experiment was designed with biochars derived from different feedstocks, added to tailings alone or in combination with marble waste (MaW). We aimed to assess the effects of the different materials on the evolution of C and N contents and pools, greenhouse gas (GHG) emissions, aggregate stability, and microbial biomass and activity. Results showed that carbonates provided by MaW increased pH around the target value of 8, with significant decrease in salinity by precipitation of soluble salts. Organic C and total N remained stable during the incubation, with high recalcitrant indices. Labile and soluble C and N pools were low in Technosols, with no differences with unamended tailings at the end of incubation. All biochars increased aggregate stability with regard to control by 40%, with no effect of addition of MaW. Biochars significantly increased microbial biomass C during the first 7 days of incubation; however, from this date, there were no significant differences with unamended tailings. The β-glucosidase activity was below detection limit in all samples, while arylesterase activity increased in biochar-amended samples favored by increases in pH. CO2 emissions were not significantly affected by any amendment, while N2O emissions increased with the addition of biochars with lower recalcitrance. CH4 emissions decreased in all Technosols receiving biochar. Thus, the combined use of biochar and MaW contributed to soil C sequestration and improved soil structure. However, labile sources of organic compounds would be needed to stimulate microbial populations in the Technosols. Acknowledgements This work

  8. Evaluation of the Mountain Athlete Warrior (MAW) Program in a Light Infantry Brigade, March 2011 February 2012

    DTIC Science & Technology

    2016-06-15

    Walking/ hiking /road marches were the second leading cause of injury before (24%) but moved to third leading cause after MAW (13%). Lifting or...leading cause of injury before (40%) and after MAW (34%). Walking/ hiking /road marches were the second leading cause of injury before (24%), but moved to...Elbow 0 (0) 1 (1) +1% Cause of unintentional injury Running 52 (40) 43 (34) -9% Walking/ hiking /road marching 31 (24) 16 (13) -9% Other Exercise

  9. WASTE STABILIZATION FUNDAMENTALS FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Waste stabilization is the process where putrescible waste is biodegraded by microorganisms resulting in an end-product being a relatively inert substrate (e.g., like compost). When exposed to moisture, biologically stabilized waste should not produce substantial quantitie...

  10. AFTI/F-111 MAW flight control system and redundancy management description

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    1987-01-01

    The wing on the NASA F-111 transonic aircraft technology (TACT) airplane was modified to provide flexible leading and trailing edge flaps; this modified wing is known as the mission adaptive wing (MAW). A dual digital primary fly-by-wire flight control system was developed with analog backup reversion for redundancy. This report discusses the functions, design, and redundancy management of the flight control system for these flaps.

  11. Overview of waste stabilization with cement.

    PubMed

    Batchelor, B

    2006-01-01

    Cement can treat a variety of wastes by improving physical characteristics (solidification) and reducing the toxicity and mobility of contaminants (stabilization). Potentially adverse waste-binder interactions are an important consideration because they can limit solidification. Stabilization occurs when a contaminant is converted from the dissolved (mobile) phase to a solid (immobile) phase by reactions, such as precipitation, sorption, or substitution. These reactions are often strongly affected by pH, so the presence of components of the waste that control pH are critical to stabilization reactions. Evaluating environmental impacts can be accomplished in a tiered strategy in which simplest approach would be to measure the maximum amount of contaminant that could be released. Alternatively, the sequence of release can be determined, either by microcosm tests that attempt to simulate conditions in the disposal zone or by mechanistic models that attempt to predict behavior using fundamental characteristics of the treated waste.

  12. Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec

    NASA Astrophysics Data System (ADS)

    Adamczyk, Justyna; Cała, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Michał

    2013-03-01

    This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.

  13. Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Lorenzo-Martin, Cinta

    Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.

  14. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment.

    PubMed

    Clancy, Tara M; Snyder, Kathryn V; Reddy, Raghav; Lanzirotti, Antonio; Amrose, Susan E; Raskin, Lutgarde; Hayes, Kim F

    2015-12-30

    Cement stabilization of arsenic-bearing wastes is recommended to limit arsenic release from wastes following disposal. Such stabilization has been demonstrated to reduce the arsenic concentration in the Toxicity Characteristic Leaching Procedure (TCLP), which regulates landfill disposal of arsenic waste. However, few studies have evaluated leaching from actual wastes under conditions similar to ultimate disposal environments. In this study, land disposal in areas where flooding is likely was simulated to test arsenic release from cement stabilized arsenic-bearing iron oxide wastes. After 406 days submersed in chemically simulated rainwater, <0.4% of total arsenic was leached, which was comparable to the amount leached during the TCLP (<0.3%). Short-term (18 h) modified TCLP tests (pH 3-12) found that cement stabilization lowered arsenic leaching at high pH, but increased leaching at pH<4.2 compared to non-stabilized wastes. Presenting the first characterization of cement stabilized waste using μXRF, these results revealed the majority of arsenic in cement stabilized waste remained associated with iron. This distribution of arsenic differed from previous observations of calcium-arsenic solid phases when arsenic salts were stabilized with cement, illustrating that the initial waste form influences the stabilized form. Overall, cement stabilization is effective for arsenic-bearing wastes when acidic conditions can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  16. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  17. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, Arun S.; Singh, Dileep

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  18. A simplified approach for slope stability analysis of uncontrolled waste dumps.

    PubMed

    Turer, Dilek; Turer, Ahmet

    2011-02-01

    Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.

  19. Criteria: waste tank isolation and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  20. STABILIZATION OF LEAD-BASED PAINT WASTE

    EPA Science Inventory

    This study evaluated the ability of a cementitious stabilizing agent to reduce leachable lead from lead-based paint waste removed from substrate via blasting, and to evaluate the mechanism by which the reduction occurs. Testing demonstrated that the representative cementitious ag...

  1. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    PubMed

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  2. Technical area status report for waste destruction and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less

  3. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  4. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less

  5. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    PubMed

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  6. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less

  7. Radioactive nuclear waste stabilization - Aspects of solid-state molecular engineering and applied geochemistry

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.

    1983-01-01

    Stabilization techniques for the storage of radioactive wastes are surveyed, with emphasis on immobilization in a primary barrier of synthetic rock. The composition, half-life, and thermal-emission characteristics of the wastes are shown to require thermally stable immobilization enduring at least 100,000 years. Glass materials are determined to be incapable of withstanding the expected conditions, average temperatures of 100-500 C for the first 100 years. The geological-time stability of crystalline materials, ceramics or synthetic rocks, is examined in detail by comparing their components with similar naturally occurring minerals, especially those containing the same radioactive elements. The high-temperature environment over the first 100 years is seen as stabilizing, since it can recrystallize radiation-induced metamicts. The synthetic-rock stabilization technique is found to be essentially feasible, and improvements are suggested, including the substitution of nepheline with freudenbergite and priderite for alkaline-waste stabilization, the maintenance of low oxygen fugacity, and the dilution of the synthetic-rock pellets into an inert medium.

  8. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less

  9. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  10. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattus, C.H.

    2001-04-19

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOEmore » Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with {approx}4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel

  11. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  12. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive

  13. SURVEY OF SOLIDIFICATION/STABILIZATION TECHNOLOGY FOR HAZARDOUS INDUSTRIAL WASTES

    EPA Science Inventory

    Stabilization/solidification or fixation is a process for treating industrial solid wastes (primarily sludges) that contain hazardous constituents to prevent dissolution and loss of toxic materials into the environment. Most of these treatment processes are designed to produce a ...

  14. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  15. Stabilization/solidification of an alkyd paint waste by carbonation of waste-lime based formulations.

    PubMed

    Arce, R; Galán, B; Coz, A; Andrés, A; Viguri, J R

    2010-05-15

    The application of solvent-based paints by spraying in paint booths is extensively used in a wide range of industrial activities for the surface treatment of a vast array of products. The wastes generated as overspray represent an important environmental and managerial problem mainly due to the hazardous characteristics of the organic solvent, rendering it necessary to appropriately manage this waste. In this paper a solidification/stabilization (S/S) process based on accelerated carbonation was investigated as an immobilization pre-treatment prior to the disposal, via landfill, of an alkyd solvent-based paint waste coming from the automotive industry; the purpose of this S/S process was to immobilize the contaminants and reduce their release into the environment. Different formulations of paint waste with lime, lime-coal fly-ash and lime-Portland cement were carbonated to study the effect of the water/solid ratio and carbonation time on the characteristics of the final product. To assess the efficiency of the studied S/S process, metals, anions and dissolved organic carbon (DOC) were analyzed in the leachates obtained from a battery of compliance and characterization leaching tests. Regarding the carbonation of paint waste-lime formulations, a mathematical expression has been proposed to predict the results of the leachability of DOC from carbonated mixtures working at water/solid ratios from 0.2 to 0.6. However, lower DOC concentrations in leachates (400mg/kg DOC in L/S=10 batch leaching test) were obtained when carbonation of paint waste-lime-fly-ash mixtures was used at 10h carbonation and water to solid ratio of 0.2. The flammability characteristics, the total contents of contaminants and the contaminant release rate in compliance leaching tests provide evidence for a final product suitable for deposition in non-hazardous landfills. The characterization of this carbonated sample using a dynamic column leaching test shows a high stabilization of metals, partial

  16. Technology Demonstration Summary: International Waste Technologies In Situ Stabilization/Solidification, Hialeah, Florida

    EPA Science Inventory

    An evaluation was performed of the International Waste Technologies (IWT) HWT-20 additive and the Geo-Con, Inc. deep-soil-mixing equipment for an in situ stabilization/solidification process and its applicability as an on-site treatment method for waste site cleanup. The analysis...

  17. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gori, Manuela, E-mail: manuela.gori@dicea.unifi.it; Bergfeldt, Britta; Reichelt, Jürgen

    2013-04-15

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of themore » mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.« less

  18. Chemical stabilization of air pollution control residues from municipal solid waste incineration.

    PubMed

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2010-07-15

    The by-products of the municipal solid waste incineration (MSWI) generally contain hazardous pollutants, with particular relevance to air pollution control (APC) residues. This waste may be harmful to health and detrimental to the environmental condition, mainly due to soluble salts, toxic heavy metals and trace organic compounds. Solidification/stabilization (S/S) with binders is a common industrial technology for treating such residues, involving however, a significant increase in the final mass that is landfilled. In our work, the chemical stabilization of APC residues by using NaHS x xH(2)O, H(3)PO(4), Na(2)CO(3), C(5)H(10)NNaS(2) x 3 H(2)O, Na(2)O x SiO(2) was investigated, and it was possible to conclude that all these additives lead to an improvement of the stabilization process of the most problematic heavy metals. Indeed, compliance leaching tests showed that after the stabilization treatment the waste becomes non-hazardous with respect to heavy metals. Chromium revealed to be a problematic metal, mainly when H(3)PO(4), Na(2)CO(3) and Na(2)O x SiO(2) were used for stabilization. Nevertheless, soluble phosphates are the most efficient additives for stabilizing the overall metals. The effect of the additives tested on the elements associated with soluble salts (K, Na, Cl(-)) is almost negligible, and therefore, the soluble fraction is hardly reduced without further treatment, such as pre-washing. 2010 Elsevier B.V. All rights reserved.

  19. Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment.

    PubMed

    Morello, Luca; Raga, Roberto; Sgarbossa, Paolo; Rosson, Egle; Cossu, Raffaello

    2018-05-01

    The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    NASA Astrophysics Data System (ADS)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  1. Electrochemical extraction of gold from wastes as nanoparticles stabilized by phospholipids.

    PubMed

    Moriwaki, Hiroshi; Yamada, Kotaro; Usami, Hisanao

    2017-02-01

    A simple one-step method for the extraction of gold from wastes as nanoparticles stabilized by phospholipids is demonstrated. This is achieved by applying an AC voltage for 5s to the gold-containing wastes, which act as the electrodes in a buffer solution containing a dispersed phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC). This is an environmentally friendly and rapid method for recovering gold from wastes. The extracted gold nanoparticles have significant potential as a catalyst or biomedical material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of concentrated leachate injection modes on stabilization of landfilled waste.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Chen, Min; Su, Yao; Tian, Bao-Hu

    2016-02-01

    Injection of concentrated leachate to landfills is a simple and cost-effective technology for concentrated leachate treatment. In this study, the effects of injection mode of concentrated leachate and its hydraulic loading rate on the stabilization of landfilled waste were investigated. Compared with the injection of concentrated leachate, the joint injection of leachate and concentrated leachate (1:1, v/v) was more beneficial to the degradation of landfilled waste and mitigated the discharge amount of pollutants at the hydraulic loading rate of 5.9 L m(-2) day(-1). As the hydraulic loading rate of the joint injection of leachate and concentrated leachate was increased from 5.9 to 17.6 L m(-2) day(-1), the organic matter, biologically degradable matter, and total nitrogen of landfilled waste were degraded more rapidly, with the degradation constant of the first-order kinetics of 0.005, 0.004, and 0.003, respectively. Additionally, NO2(-)-N and NO3(-)-N in the concentrated leachate could be well removed in the landfill bioreactors. These results showed that a joint injection of concentrated leachate and raw leachate might be a good way to relieve the inhibitory effect of high concentrations of toxic pollutants in the concentrated leachate and accelerate the stabilization of landfilled waste.

  3. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    PubMed

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  4. Review of Literature on Waste Solidification/Stabilization with Emphasis on Metal-Bearing Wastes

    DTIC Science & Technology

    1989-08-01

    applicability to treating a wide variety of waste types, and the ease with 4 which they are implemented in the field (Wiles and Apel , undated). Asphaltic...Wiles, C.C., 1987. A Review of Solidification/Stabilization Technology. Journal of Hazardous Materials, 14:5-21. Wiles, C.C., and Apel , M.L., undated...Personal correspondence and attachments from William McLaughlin, 1-714-693-1818, 1988. Trident Engineering Associates, 48 Maryland Ave., Annapolis, Maryland

  5. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    NASA Astrophysics Data System (ADS)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  6. EFFECTS OF LEACHING ON PORE SIZE DISTRIBUTION OF SOLIDIFIED/STABILIZED WASTES

    EPA Science Inventory

    Chemical solidification/stabilization processes are commonly used to immobilize metals in fly ash and flue gas desulfurization (FGD) sludges and to convert these wastes into monolithic or granular materials with better handling properties and reduced permeabilities. his study eva...

  7. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    PubMed

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW. © The Author(s) 2015.

  8. OVERVIEW OF THE HISTORY, PRESENT STATUS, AND FUTURE DIRECTION OF SOLIDIFICATION/STABILIZATION TECHNOLOGIES FOR HAZARDOUS WASTE TREATMENT

    EPA Science Inventory

    Solidification/stabilization (S/S) technology processes are currently being utilized in the United States to treat inorganic and organic hazardous waste and radioactive waste. These wastes are generated from operating industry or have resulted from the uncontrolled management of ...

  9. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    NASA Astrophysics Data System (ADS)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  10. Application of landfill treatment approaches for stabilization of municipal solid waste.

    PubMed

    Bolyard, Stephanie C; Reinhart, Debra R

    2016-09-01

    This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  12. Long-term anaerobic digestion of food waste stabilized by trace elements.

    PubMed

    Zhang, Lei; Jahng, Deokjin

    2012-08-01

    The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.

  13. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  14. Long-term anaerobic digestion of food waste stabilized by trace elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less

  15. Integrated waste management as a climate change stabilization wedge.

    PubMed

    Bahor, Brian; Van Brunt, Michael; Stovall, Jeff; Blue, Katherine

    2009-11-01

    Anthropogenic sources of greenhouse gas emissions are known to contribute to global increases in greenhouse gas concentrations and are widely believed to contribute to climate change. A reference carbon dioxide concentration of 383 ppm for 2007 is projected to increase to a nominal 500 ppm in less than 50 years according to business as usual models. This concentration change is equivalent to an increase of 7 billion tonnes of carbon per year (7 Gt C year(-1)). The concept of a stabilization wedge was introduced by Pacala and Socolow (Science, 305, 968-972, 2004) to break the 7 Gt C year(- 1) into more manageable 1 Gt C year(- 1) reductions that would be achievable with current technology. A total of fifteen possible 'wedges' were identified; however, an integrated municipal solid waste (MSW) management system based on the European Union's waste management hierarchy was not evaluated as a wedge. This analysis demonstrates that if the tonnage of MSW is allocated to recycling, waste to energy and landfilling in descending order in lieu of existing 'business-as-usual' practices with each option using modern technology and best practices, the system would reduce greenhouse gas emissions by more than 1 Gt C year( -1). This integrated waste management system reduces CO(2) by displacing fossil electrical generation and avoiding manufacturing energy consumption and methane emissions from landfills.

  16. Vermicomposting of food waste: assessing the stability and maturity

    PubMed Central

    2012-01-01

    The vermicompost using earthworms (Eisenia Fetida) was produced from food waste and chemical parameters (EC, pH, carbon to nitrogen contents (C/N)) and germination bioassay was examined in order to assess the stability and maturity indicators during the vermicomposting process. The seed used in the germination bioassay was cress. The ranges of EC, pH, C/N and germination index were 7.5-4.9 mS/cm, 5.6-7.53, 30.13-14.32% and 12.8-58.4%, respectively. The germination index (GI) value revealed that vermicompost rendered as moderate phytotoxic to cress seed. Pearson correlation coefficient was used to evaluate the relationship between the parameters. High statistically significant correlation coefficient was calculated between the GI value and EC in the vermicompost at the 99% confidence level. The C/N value showed that the vermicompost was stable. As a result of these observations, stability test alone, was not able to ensure high vermicompost quality. Therefore, it appears that determining vermicompost quality requires a simultaneous use of maturity and stability tests. PMID:23369642

  17. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Colombo, Peter; Kalb, Paul D.; Heiser, III, John H.

    1997-11-14

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  18. Oxidative Stability of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Hall, Gabriel B.; Levitskaia, Tatiana G.

    Technetium (Tc), which exists predominately in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site, is one of the most difficult contaminants to dispose of and/or remediate. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO 4 -, oxidation state +7). However, based on experimentation to-date, a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non-pertechnetate species. The presence of a non pertechnetate species significantly complicates disposition of low-activity waste (LAW),more » and the development of methods to either convert them to pertechnetate or to separate the non-pertechnetate species directly is needed. The challenge is the uncertainty regarding the nature and stability of the alkaline-soluble, low-valence, non pertechnetate species in the liquid tank waste. One objective of the Tc management project is to address this knowledge gap. This fiscal year (FY) 2015 report summarizes experimental work exploring the oxidative stability of model low-valence Tc(I) tricarbonyl species, derived from the [Tc(CO) 3] + moiety. These compounds are of interest due to their implied presence in several Hanford tank waste supernatants. Work in part was initiated in FY 2014, and a series of samples containing non-pertechnetate Tc generated ex situ or in situ in pseudo-Hanford tank supernatant simulant solutions was prepared and monitored for oxidation to Tc(VII) (Levitskaia et al. 2014). This experimentation continued in FY 2015, and new series of samples containing Tc(I) as [Tc(CO) 3] +•Ligand was tested. The monitoring method used for these studies was a combination of 99Tc NMR and EPR spectroscopies.« less

  19. EVALUATION OF CHEMICALLY BONDED PHOSPHATE CERAMICS FOR MERCURY STABILIZATION OF A MIXED SYNTHETIC WASTE

    EPA Science Inventory

    This experimental study was conducted to evaluate the stabilization and encapsulation technique developed by Argonne National Laboratory, called the Chemically Bonded Phosphate Ceramics technology for Hg- and HgCl2-contaminated synthetic waste materials. Leachability ...

  20. Creation of Technosols to decrease metal availability in pyritic tailings with addition of biochar and marble waste

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Acosta, José A.; Ángeles Muñoz, María; Faz, Ángel; Zornoza, Raúl

    2017-04-01

    Creation of Technosols with the use of different materials is a sustainable strategy to reclaim mine tailings and reduce metal mobility. For this purpose, a short-term incubation experiment was designed with biochars derived from pig manure (PM), crop residues (CR) and municipal solid waste (MSW) added to tailings alone or in combination with marble waste (MaW). We aimed to assess the efficiency of the different amendments to decrease Cd, Pb and Zn availability in the Technosols and the fractions where metals were retained. Results showed that all amendments reduced metal mobility, directly related to increases in pH. Those materials with higher content of carbonates were more effective to immobilize metals ( 99%). MSW was highly effective to decrease metal mobility owing to the higher carbonate content, but addition of MaW was needed to enhance metal immobilization with PM and CR. Decreases in Cd mobility were related to retention by the carbonate, Mn/Fe oxides and oxidizable (organic compounds) fractions. Decreases in Pb mobility were related to retention in the Mn/Fe oxides and residual fractions, while decreases in Zn mobility were related to retention in Mn/Fe oxides and oxidizable fractions. The increase in the retention of metals in all fractions was directly associated to increases in pH. Association of Zn and Pb with the oxidizable fraction was also related to the recalcitrance of the organic compounds, and so dependent on biochar type. SEM/EDX showed that biochar showed great affinity to interact with iron oxides, calcium sulfates and phyllosilicates. Acknowledgements This work was supported by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) [grant number 18920/JLI/13].

  1. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].

    PubMed

    Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding

    2014-04-01

    Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues.

  2. Use of cement-fly ash-based stabilization techniques for the treatment of waste containing aromatic contaminants

    NASA Astrophysics Data System (ADS)

    Banaszkiewicz, Kamil; Marcinkowski, Tadeusz

    2017-11-01

    Research on evaluation of evaporation rate of volatile organic compounds from soil beds during processing is presented. For the experiment, soil samples were prepared with the same amounts of benzene and stabilized using a mixture of CEMI 42.5R cement and fly ash from pit-coal combustion. Solidification of soils contaminated with BTEX hydrocarbons using hydraulic binders involves a risk of releasing vapours of these compounds during homogenization of waste with stabilizing mixture introduced and its dilution with water. The primary purposes of the research were: analysis of benzene volume emitted from soil during stabilization/solidification process and characterization of factors that may negatively affect the quality of measurements/the course of stabilization process. Analysis of benzene emission intensity during the process was based on concentration (C6H6) values, recorded with flame-ionization detector above the surface of reacting mixture. At the same time, gaseous contaminants emitted during waste stabilization were passed through pipes filled with activated carbon (SCK, Anasorb CSC). Benzene vapours adsorbed on activated carbon were subjected to analysis using gas chromatograph Varian 450-GC. Evaporation characteristics of benzene during processing contaminated soils revealed the stages creating the highest danger to workers' health, as well as a need for actions connected with modification of technological line.

  3. Madden-Julian Oscillation (MJO) Signal over Kototabang, West Sumatera Based on the Mini Automatic Weather Station (MAWS) Data Analysis Using the Wavelet Technique

    NASA Astrophysics Data System (ADS)

    Hermawan, E.

    2018-04-01

    This study is mainly concerned an application of Mini Automatic Weather Station (MAWS) at Kototabang, West Sumatera nearby the location of an Equatorial Atmosphere Radar (EAR) side. We are interest to use this data to investigate the propagation of the Madden-Julian Oscillation (MJO). We examined of daily MAWS data for 3 years observations started from January 2001 to Mei 2004. By applying wavelet analysis, we found the MJO at Kototabang have 32 days oscillations as shown in Fig.1 below. In this study, we concentrate just for local mechanis only. We will show in this paper that at the phase of the MJO with a dipole structure to the convection anomalies, there is enhanced tropical convection over the eastern Indian Ocean and reduced convection over the western Pacific. Over the equatorial western Indian Ocean, the equatorial Rossby wave response to the west of the enhanced convection includes a region of anomalous surface divergence associated with the anomalous surface westerlies and pressure ridge. This tends to suppress ascent in the boundary layer and shuts off the deep convection, eventually leading to a convective anomaly of the opposite sign. Over the Indonesian sector, the equatorial Kelvin wave response to the east of the enhanced convection includes a region of anomalous surface convergence into the anomalous equatorial surface easterlies and pressure trough, which will tend to favour convection in this region. The Indonesian sector is also influenced by an equatorial Rossby wave response (of opposite sign) to the west of the reduced convection over the western Pacific, which also has a region of anomalous surface convergence associated with its anomalous equatorial surface easterlies and pressure trough. Hence, convective anomalies of either sign tend to erode themselves from the west and initiate a convective anomaly of opposite sign via their equatorial Rossby wave response, and expand to the east via their equatorial Kelvin wave response.

  4. Changes in soil aggregate stability under different irrigation doses of waste water

    NASA Astrophysics Data System (ADS)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  5. Composting technology in waste stabilization: On the methods, challenges and future prospects.

    PubMed

    Onwosi, Chukwudi O; Igbokwe, Victor C; Odimba, Joyce N; Eke, Ifeanyichukwu E; Nwankwoala, Mary O; Iroh, Ikemdinachi N; Ezeogu, Lewis I

    2017-04-01

    Composting technology has become invaluable in stabilization of municipal waste due to its environmental compatibility. In this review, different types of composting methods reportedly applied in waste management were explored. Further to that, the major factors such as temperature, pH, C/N ratio, moisture, particle size that have been considered relevant in the monitoring of the composting process were elucidated. Relevant strategies to improve and optimize process effectiveness were also addressed. However, during composting, some challenges such as leachate generation, gas emission and lack of uniformity in assessing maturity indices are imminent. Here in, these challenges were properly addressed and some strategies towards ameliorating them were proffered. Finally, we highlighted some recent technologies that could improve composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    PubMed

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation.

  7. Optical characteristics of waste stabilization ponds: recommendations for monitoring.

    PubMed

    Davies-Colley, R J; Craggs, R J; Park, J; Nagels, J W

    2005-01-01

    The optical character of waste stabilization ponds (WSPs) is of concern for several reasons. Algal photosynthesis, which produces oxygen for waste oxidation in WSPs, is influenced by attenuation of sunlight in ponds. Disinfection in WSPs is influenced by optical characteristics because solar UV exposure usually dominates inactivation. The optical nature of WSPs effluent also affects assimilation by receiving waters. Despite the importance of light behaviour in WSPs, few studies have been made of their optical characteristics. We discuss simple optical measures suitable for routine monitoring of WSPs (including at sites remote from laboratories): optical density of filtrates - an index of dissolved coloured organic (humic) matter, visual clarity - to provide an estimate of the beam attenuation coefficient (a fundamental quantity needed for optical modelling) colour (hue) - as an indicator of general WSP 'condition' and irradiance attenuation quantifying depth of light penetration. The value of optical characterisation of WSPs is illustrated with reference to optical data for WSPs in NZ (including high-rate algal ponds) treating dairy cattle wastewater versus domestic sewage. We encourage increased research on optical characteristics of WSPs and the incorporation of optical measures in monitoring and modelling of WSP performance.

  8. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  9. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    PubMed

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. CASE STUDY: IN-SITU SOLIDIFICATION/STABILIZATION OF HAZARDOUS ACID WASTE OIL SLUDGE AND LESSONS LEARNED

    EPA Science Inventory

    The South 8th Street site contained a 2.5 acre oily sludge pit with very low pH waste produced by oil recycling activities. This sludge was treated using in-situ solidification/stabilization technology applied by deep soil mixing augers. The problems encountered, solutions develo...

  11. Oxygen respirometry to assess stability and maturity of composted municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iannotti, D.A.; Grebus, M.E.; Toth, B.L.

    1994-11-01

    The stability and maturity of compost prepared from municipal solid waste (MSW) at a full-scale composting plant was assessed through chemical, physical, and biological assays. Respiration bioassays used to determine stability (O{sub 2} and CO{sub 2} respirometry) were sensitive to process control problems at the composting plant and indicated increasing stability with time. Radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) growth bioassays revealed that immature compost samples inhibited growth. Growth of ryegrass in potting mix prepared with cured compost not amended with fertilizer was enhanced as compared to a pest control. Garden cress (Lepidium sativum L.) seed germination,more » used as an indicator of phytotoxicity, revealed inhibition of germination at all compost maturity levels. The phytotoxicity was though to be salt-related. Spearman rank-order correlations demonstrated that O{sub 2} respirometry, water-soluble organic C, and the water extract organic C to organic N ratio, significantly correlated with compost age and best indicated an acceptable level of stability. Oxygen respirometry also best predicted the potential for ryegrass growth, and an acceptable level of compost maturity. 31 refs., 4 figs., 5 tabs.« less

  12. STABILIZATION OF MERCURY IN WASTE MATERIAL FROM THE SULFUR BANK MERCURY MINE, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Three innovative technologies for stabilization of mercury were demonstrated in a treatability study performed on two waste rock materials from the Sulfur Bank Mercury Mine, a Superfund site in northern California. The treatability study was jointly sponsored by two EPA programs:...

  13. Anaerobic digestion of solid slaughterhouse waste: study of biological stabilization by Fourier Transform infrared spectroscopy and thermogravimetry combined with mass spectrometry.

    PubMed

    Cuetos, María José; Gómez, Xiomar; Otero, Marta; Morán, Antonio

    2010-07-01

    In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.

  14. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.

    PubMed

    Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-01-01

    Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain calcium-alginate microbeads with high polyphenol content and good morphological features. In this way, the effect of pressure, frequency, voltage and the distance to the gelling bath were optimized for two nozzles of 150 and 300 μm. Long-term stability of the microbeads was studied for 6 months taking into account different storage conditions: temperatures (4 °C and room temperature), in darkness and in presence of light, and the addition of chitosan to the gelling bath. Encapsulated polyphenols were found to be much more stable compared to free polyphenols regardless the encapsulation procedure and storage conditions. Moreover, slightly lower degradation rates were obtained when chitosan was added to the gelling bath. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Long-term leaching behavior of phenol in cement/activated-carbon solidified/stabilized hazardous waste.

    PubMed

    Liu, Jianguo; Nie, Xiaoqin; Zeng, Xianwei; Su, Zhaoji

    2013-01-30

    The long-term leaching behavior of phenol in solidified/stabilized (S/S) hazardous wastes cured for 28 d with different amounts of activated carbon (AC) was investigated using synthetic inorganic acid (H(2)SO(4):HNO(3) = 2:1, pH = 3.2), acetic acid buffer (HAc/NaAc, pH = 4.93), and deionized water as leachants to simulate the leaching of phenol in three exposure scenarios: acid-precipitation, co-disposal, and neutral-precipitation. Phenol immobilization was enhanced by AC adsorption and impaired by the growth of micropores with increasing amount of AC; thus the optimal added amount of AC to be to added S/S wastes was 2%. The leaching behavior of phenol in co-disposal scenario was unpredictable due to inadequate ionization of HAc in the HAc-NaAc buffer solution. The findings indicated that S/S products should be disposed of in hazardous waste landfills rather than municipal solid waste landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator.

    PubMed

    Benassi, L; Bosio, A; Dalipi, R; Borgese, L; Rodella, N; Pasquali, M; Depero, L E; Bergese, P; Bontempi, E

    2015-08-15

    The Stabilization of heavy metals from municipal solid waste incineration (MSWI) fly ash by rice husk ash (RHA) is under intense study as an effective strategy to recover and reuse industrial and agricultural waste together. We compare the metal entrapment performances of RHA from different Asian rice sources – namely from Japonica rice grown in Italy and Indica rice grown in India – Physicochemical and morphological characterization of the final stabilized material show that the same thermal treatment may result in marked structural differences in the silica contained in the two RHA. Remarkably, one of them displays a crystalline silica content, although obtained by a thermal treatment below 800 °C. We also find that the presence of an alkali metal ion (potassium) in the rice husk plays a crucial role in the attainment of the final silica phase. These physicochemical differences are mirrored by different stabilization yields by the two RHA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    PubMed Central

    Benassi, Laura; Franchi, Federica; Catina, Daniele; Cioffi, Flavio; Rodella, Nicola; Borgese, Laura; Pasquali, Michela; Depero, Laura E.; Bontempi, Elza

    2015-01-01

    A new technology was recently developed for municipal solid waste incineration (MSWI) fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA), an agricultural byproduct material (COSMOS-RICE project). The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC) was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste. PMID:28793605

  18. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    NASA Astrophysics Data System (ADS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  19. Cadmium tolerance and antibiotic resistance in Escherichia coli isolated from waste stabilization ponds.

    PubMed

    Patra, Sova; Das, T K; Avila, C; Cabello, V; Castillo, F; Sarkar, D; Lahiri, Susmita; Jana, B B

    2012-04-01

    The incidence pattern of cadmium tolerance and antibiotics resistance by Escherichia coli was examined periodically from the samples of water, sludge and intestine of fish raised in waste stabilization ponds in a sewage treatment plant. Samples of water and sludge were collected from all the selected ponds and were monitored for total counts of fecal coliform (FC), total coliform (TC) and the population of Escherichia coli, which was also obtained from the intestine of fishes. Total counts of both FC and TC as well as counts of E. coli were markedly reduced from the facultative pond to the last maturation pond. Tolerance limit to cadmium by E. coli tended to decline as the distance of the sewage effluent from the source increased; the effective lethal concentration of cadmium ranged from 0.1 mM in split chamber to 0.05 mM in first maturation pond. E. coli isolated from water, sludge and fish gut were sensitive to seven out of ten antibiotics tested. It appears that holistic functions mediated through the mutualistic growth of micro algae and heterotrophic bacteria in the waste stabilization ponds were responsible for the promotion of water quality and significant reduction of coliform along the sewage effluent gradient.

  20. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  1. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at; Hrad, Marlies; Huber-Humer, Marion

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated themore » isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of

  2. Influence of fiber treatment on dimensional stabilities of rattan waste composite boards

    NASA Astrophysics Data System (ADS)

    Zuraida, A.; Insyirah, Y.; Maisarah, T.; Zahurin, H.

    2018-01-01

    The main drawback of using natural fibers in composite boards is its hydrophilic properties which absorb a high volume of moisture. This results in low dimensional stability of the produced composite boards. Hence, the purpose of this study is to investigate the effects of fibers’ treatment processes of the rattan waste fibers on the dimensional stabilities of composite boards. The collected fibers underwent two types of retting processes, namely a water treatment and alkaline treatment retting processes; where the fibers were soaked in water and a 1% sodium hydroxide (NaOH) solution, respectively. The fibers were dried and mixed with poly(lactic) acid (PLA) pellets with ratio of 30% fibers: 70% matrix; before being fabricated into composite boards via a hot-pressing process and were labelled as RF/PLA, WRF/PLA, CRF/PLA for untreated rattan, rattan treated by water retting, rattan treated by chemical retting, respectively. The produced composite boards were cut and soaked in water for 24 hours for dimensional stability in terms of water absorption and thickness swelling tests. The results showed that WRF/PLA has the lowest water absorption (3.2%), and the CRF/PLA had the highest water absorption (23.2%). The thickness swelling showed a similar trend as water absorption. The presence of void contents and fibers damaged the insides of the boards, which contributed to low dimensional stabilities of the composite boards. It can be concluded that water retting facilitated in improving dimensional stability of the produced composite board.

  3. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa.

    PubMed

    Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique

    2010-02-01

    The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.

  4. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  5. Stability assessment of lycopene microemulsion prepared using tomato industrial waste against various processing conditions.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2017-11-01

    Green separation techniques are growing at a greater rate than solvent extraction as a result of the constant consumer drive to 'go natural'. Considering the increasing evidence of the health benefits of lycopene and massive tomato industrial waste, in the present study, lycopene was extracted from tomato industrial waste using microemulsion technique and its mean droplet size and size distribution was determined. Moreover, the effects of pasteurization, sterilization, freeze-thaw cycles and ultraviolet (UV) irradiation on the thermodynamic stability, turbidity and lycopene concentration of the lycopene microemulsion were monitored. Freeze-thaw cycles, pasteurization and short exposure to UV irradiation showed no or negligible influence on lycopene content and turbidity of the microemulsion. However, long exposure to UV (260 min) reduced the lycopene content and turbidity by 34% and 10%, respectively. HHST (higher-heat shorter-time) and sterilization also reduced lycopene content (25%) and increased turbidity (32%). The lycopene microemulsion showed satisfactory stability over a process where its monodispersity and nanosize could be of potential advantage to the food and related industries. Regarding the carcinogenicity of synthetic colourants, potential applications of the lycopene microemulsion include in soft drinks and minced meat, which would result in a better colour and well-documented health-promoting qualities. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Anaerobic co-digestion of livestock and vegetable processing wastes: fibre degradation and digestate stability.

    PubMed

    Molinuevo-Salces, Beatriz; Gómez, Xiomar; Morán, Antonio; García-González, Mari Cruz

    2013-06-01

    Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jose M., E-mail: joseman@sas.upenn.edu; Plaza, Cesar; Polo, Alfredo

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and providesmore » a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC

  8. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    PubMed

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  9. Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model. Part 1: Chemical representation of cementitious binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.Y.; Batchelor, B.

    1999-03-01

    Chemical equilibrium models are useful to evaluate stabilized/solidified waste. A general equilibrium model, SOLTEQ, a modified version of MINTEQA2 for S/S, was applied to predict the chemical speciations in the stabilized/solidified waste form. A method was developed to prepare SOLTEQ input data that can chemically represent various stabilized/solidified binders. Taylor`s empirical model was used to describe partitioning of alkali ions. As a result, SOLTEQ could represent chemical speciation in pure binder systems such as ordinary Portland cement and ordinary Portland cement + fly ash. Moreover, SOLTEQ could reasonably describe the effects on the chemical speciation due to variations in water-to-cement,more » fly ash contents, and hydration times of various binder systems. However, this application of SOLTEQ was not accurate in predicting concentrations of Ca, Si, and SO{sub 4} ions, due to uncertainties in the CSH solubility model and K{sub sp} values of cement hydrates at high pH values.« less

  10. Mercury stabilization in chemically bonded phosphate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, A. S.; Singh, D.; Jeong, S. Y.

    2000-04-04

    Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formationmore » of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount (< 1 wt.%) of Na{sub 2}S or K{sub 2}S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOX{trademark} residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient

  11. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    PubMed

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants.

  12. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  13. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    PubMed

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Performance Test on Polymer Waste Form - 12137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Se Yup

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing

  15. Validation of an in situ solidification/stabilization technique for hazardous barium and cyanide waste for safe disposal into a secured landfill.

    PubMed

    Vaidya, Rucha; Kodam, Kisan; Ghole, Vikram; Surya Mohan Rao, K

    2010-09-01

    The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 x 5 x 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions - 50% of [waste + (120 g Ca(OCl)(2) + 290 g Na(2)SO(4)) kg(-1) of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF. 2010 Elsevier Ltd. All rights reserved.

  16. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  17. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application.

    PubMed

    Fernández, José M; Plaza, César; Polo, Alfredo; Plante, Alain F

    2012-01-01

    The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO(2) respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic

  19. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    PubMed

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  20. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Phase Stability Determinations of DWPF Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  2. Avocado waste for finishing pigs: Impact on muscle composition and oxidative stability during chilled storage.

    PubMed

    Hernández-López, Silvia H; Rodríguez-Carpena, Javier G; Lemus-Flores, Clemente; Grageola-Nuñez, Fernando; Estévez, Mario

    2016-06-01

    The utilization of agricultural waste materials for pig feeding may be an interesting option for reducing production costs and contributing to sustainability and environmental welfare. In the present study, a mixed diet enriched with avocado waste (TREATED) is used for finishing industrial genotype pigs. The muscle longissimus thoracis et lomborum (LTL) from TREATED pigs was analyzed for composition and oxidative and color stability and compared with muscles obtained from pigs fed a CONTROL diet. Dietary avocado had significant impact on the content and composition of intramuscular fat (IMF), reducing the lipid content in LTL muscles and increasing the degree of unsaturation. This did not increase the oxidative instability of samples. On the contrary, muscles from TREATED pigs had significantly lower lipid and protein oxidation rates during chilled storage. The color of the muscles from TREATED pigs was also preserved from oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    PubMed

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW.

  4. Ceramics in nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T D; Mendel, J E

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  5. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.

    PubMed

    Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E

    2016-08-01

    Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems. Published by Elsevier Ltd.

  6. MAEWEST expression in flower development of two petunia species.

    PubMed

    Segatto, Ana Lúcia A; Turchetto-Zolet, Andreia Carina; Aizza, Lilian Cristina B; Monte-Bello, Carolina C; Dornelas, Marcelo C; Margis, Rogerio; Freitas, Loreta B

    2013-07-03

    Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription-quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions.

  7. MAEWEST Expression in Flower Development of Two Petunia Species

    PubMed Central

    Segatto, Ana Lúcia A.; Turchetto-Zolet, Andreia Carina; Aizza, Lilian Cristina B.; Monte-Bello, Carolina C.; Dornelas, Marcelo C.; Margis, Rogerio; Freitas, Loreta B.

    2013-01-01

    Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription–quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions. PMID:23823801

  8. Fault Frictional Stability in a Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the

  9. Design and characterization of microporous zeolitic hydroceramic waste forms for the solidification and stabilization of sodium bearing wastes

    NASA Astrophysics Data System (ADS)

    Bao, Yun

    During the production of nuclear weapon by the DOE, large amounts of liquid waste were generated and stored in millions of gallons of tanks at Savannah River, Hanford and INEEL sites. Typically, the waste contains large amounts of soluble NaOH, NaNO2 and NaNO3 and small amounts of soluble fission products, cladding materials and cleaning solution. Due to its high sodium content it has been called sodium bearing waste (SBW). We have formulated, tested and evaluated a new type of hydroceramic waste form specifically designed to solidify SBW. Hydroceramics can be made from an alumosilicate source such as metakaolin and NaOH solutions or the SBW itself. Under mild hydrothermal conditions, the mixture is transformed into a solid consisting of zeolites. This process leads to the incorporation of radionuclides into lattice sites and the cage structures of the zeolites. Hydroceramics have high strength and inherent stability in realistic geologic settings. The process of making hydroceramics from a series of SBWs was optimized. The results are reported in this thesis. Some SBWs containing relatively small amounts of NaNO3 and NaNO2 (SigmaNOx/Sigma Na<25 mol%) can be directly solidified with metakaolin. The remaining SBW having high concentrations of nitrate and nitrite (SigmaNOx/Sigma Na>25 mol%) require pretreatment since a zeolitic matrix such as cancrinite is unable to host more than 25 mol% nitrate/nitrite. Two procedures to denitrate/denitrite followed by solidification were developed. One is based on calcination in which a reducing agent such as sucrose and metakaolin have been chosen as a way of reducing nitrate and nitrite to an acceptable level. The resulting calcine can be solidified using additional metakaolin and NaOH to form a hydroceramic. As an alternate, a chemical denitration/denitrition process using Si and Al powders as the reducing agents, followed by adding metakaolin to the solution prepare a hydroceramic was also investigated. Si and Al not only are

  10. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    PubMed

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. LEACHING BOUNDARY MOVEMENT IN SOLIDIFIED/STABILIZED WASTE FORMS

    EPA Science Inventory

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indica- tors. The movement of the leach...

  12. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition.

    PubMed

    Bouallagui, H; Lahdheb, H; Ben Romdan, E; Rachdi, B; Hamdi, M

    2009-04-01

    The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46-2.51 g volatile solids (VS)l(-1)d(-1), of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.

  13. Methods and system for subsurface stabilization using jet grouting

    DOEpatents

    Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.

    1999-01-01

    Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.

  14. New factors in the design, operation and performance of waste-stabilization ponds

    PubMed Central

    Marais, G. v. R.

    1966-01-01

    In the developing countries, the unit costs of waste-stabilization ponds are generally low. Moreover, in the tropics and subtropics, the environmental conditions are conducive to a high level of pond performance. In view of this, the theory, operation and performance of such ponds under these conditions have been studied. It is shown that the Hermann & Gloyna and Marais & Shaw theories of the degradation action in oxidation ponds can be integrated, and that account can be taken of the effect of the sludge layer. In Lusaka, Zambia, anaerobic conditions are much more likely to occur in summer than in winter, because of intense stratification. It is confirmed that a series of maturation or oxidation ponds is more efficient than a single pond of equivalent volume. When aqua privies and septic tanks are used as anaerobic pretreatment units, the area of the primary oxidation ponds can be reduced and there is less likelihood that anaerobic conditions will develop in them in summer. The use of self-topping aqua privies, discharging through sewers to oxidation ponds, has made possible the economic installation of water-carriage systems of waste disposal in low-cost high-density housing areas. In the oxidation ponds, typhoid bacteria appear to be more resistant than indicator organisms; helminths, cysts and ova settle out; there are no snails and, if peripheral vegetation is removed, mosquitos will not breed. PMID:5296235

  15. ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS

    EPA Science Inventory

    Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...

  16. Leaching boundary movement in solidified/stabilized waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang Ye Cheng; Bishop, P.L.

    1992-02-01

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indicators. The movement of the leaching boundary was found to be a single diffusion-controlled process.

  17. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    PubMed

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  18. Determining Optimal Waste Volume From an Intravenous Catheter

    PubMed Central

    Baker, Rachel B.; Summer, Suzanne S.; Lawrence, Michelle; Shova, Amy; McGraw, Catherine A.; Khoury, Jane

    2013-01-01

    Waste is blood drawn from an intravenous (IV) catheter to remove saline before obtaining a blood sample. This study examines the minimum waste volume resulting in an undiluted sample. A repeated measures design was used. Investigators placed an IV catheter in 60 healthy adults and obtained samples at baseline and following waste volume ranging from 0.5 mL to 3 mL. A random effects mixed model was used to determine the stabilizing point. For sodium and glucose measurements, this stabilizing point was 1 mL of waste. Knowing that only 1 mL of waste is needed will prevent clinicians from obtaining extra waste and discarding blood needlessly. PMID:23455970

  19. Analysis of the stability of high-solids anaerobic digestion of agro-industrial waste and sewage sludge.

    PubMed

    Aymerich, E; Esteban-Gutiérrez, M; Sancho, L

    2013-09-01

    The pilot-scale high-solids anaerobic digestion (HS-AD) of agro-industrial wastes and sewage sludge was analysed in terms of stability by monitoring the most common parameters used to check the performance of anaerobic digesters, i.e. Volatile Fatty Acids (VFA), ammonia nitrogen, pH, alkalinity and methane production. The results reflected similar evolution for the parameters analysed, except for an experiment that presented an unsuccessful start-up. The rest of the experiments ran successfully, although the threshold values proposed in the literature for the detection of an imbalance in wet processes were exceeded, proving the versatility of HS-AD to treat different wastes. The results evidence the need for understanding the dynamics of a high-solids system so as to detect periods of imbalance and to determine inhibitory levels for different compounds formed during anaerobic decomposition. Moreover, the findings presented here could be useful in developing an experimental basis to construct new control strategies for HS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Leachates from solid wastes: chemical and eco(geno)toxicological differences between leachates obtained from fresh and stabilized industrial organic sludge.

    PubMed

    Chiochetta, Claudete G; Goetten, Luís C; Almeida, Sônia M; Quaranta, Gaetana; Cotelle, Sylvie; Radetski, Claudemir M

    2014-01-01

    The chemical and ecotoxicological characteristics of fresh and stabilized industrial organic sludge leachates were compared to obtain information regarding how the stabilization process can influence the ecotoxic potential of this industrial waste, which could be used for the amendment of degraded soil. Physicochemical analysis of the sludge leachates, as well as a battery of eco(geno)toxicity tests on bacteria, algae, daphnids, and higher plants (including Vicia faba genotoxicity test) and the determination of hydrolytic enzyme activity, was performed according to standard methods. The chemical comparison of the two types of leachate showed that the samples obtained from stabilized sludge had a lower organic content and higher metal content than leachates of the fresh sludge. The eco(geno)toxicological results obtained with aquatic organisms showed that the stabilized sludge leachate was more toxic than the fresh sludge leachate, both originating from the same industrial organic sludge sample. Nevertheless, phytotoxicity tests carried out with a reference peat soil irrigated with stabilized sludge leachate showed the same toxicity as the fresh sludge leachate. In the case of the industrial solid organic sludge studied, stabilization through a biodegradation process promoted a higher metal mobility/bioavailability/eco(geno)toxicity in the stabilized sludge leachate compared to the fresh sludge leachate.

  1. Stabilization of tannery sludge by co-treatment with aluminum anodizing sludge and phytotoxicity of end-products.

    PubMed

    Pantazopoulou, E; Zebiliadou, O; Mitrakas, M; Zouboulis, A

    2017-03-01

    A global demand for efficient re-utilization of produced solid wastes, which is based on the principles of re-use and recycling, results to a circular economy, where one industry's waste becomes another's raw material and it can be used in a more efficient and sustainable way. In this study, the influence of a by-product addition, such as aluminum anodizing sludge, on tannery waste (air-dried sludge) stabilization was examined. The chemical characterization of tannery waste leachate, using the EN 12457-2 standard leaching test, reveals that tannery waste cannot be accepted even in landfills for hazardous wastes, according to the EU Decision 2003/33/EC. The stabilization of tannery waste was studied applying different ratios of tannery waste and aluminum anodizing sludge, i.e. 50:50, 60:40, 70:30 and 80:20 ratios respectively. Subsequently, the stabilization rate of the qualified as optimum homogenized mixture of 50:50 ratio was also tested during time (7, 15 and 30days). Moreover, this stabilized product was subjected to phytotoxicity tests using the Lepidium sativum, Sinapis alba and Sorghum saccharatum seeds. The experimental results showed that aluminum anodizing sludge managed to stabilize effectively chromium and organic content of tannery waste, which are the most problematic parameters influencing its subsequent disposal. As a result, tannery waste stabilized with the addition of aluminum anodizing sludge at 50:50 ratio can be accepted in non-hazardous waste landfills, as chromium and dissolved organic carbon concentrations in the respective leachate are below the relevant regulation limits, while the stabilized waste shows decreased phytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Enhancement of poly(3-hydroxybutyrate) thermal and processing stability using a bio-waste derived additive.

    PubMed

    Persico, Paola; Ambrogi, Veronica; Baroni, Antonio; Santagata, Gabriella; Carfagna, Cosimo; Malinconico, Mario; Cerruti, Pierfrancesco

    2012-12-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its brittleness and narrow processing window. In this study a pomace extract (EP), from the bio-waste of winery industry, was used as thermal and processing stabilizer for PHB, aimed to engineer a totally bio-based system. The results showed that EP enhanced the thermal stability of PHB, which maintained high molecular weights after processing. This evidence was in agreement with the slower decrease in viscosity over time observed by rheological tests. EP also affected the melt crystallization kinetics and the overall crystallinity extent. Finally, dynamic mechanical and tensile tests showed that EP slightly improved the polymer ductility. The results are intriguing, in view of the development of sustainable alternatives to synthetic polymer additives, thus increasing the applicability of bio-based materials. Moreover, the reported results demonstrated the feasibility of the conversion of an agro-food by-product into a bio-resource in an environmentally friendly and cost-effective way. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Reuse of Boron Waste as an Additive in Road Base Material

    PubMed Central

    Zhang, Yutong; Guo, Qinglin; Li, Lili; Jiang, Ping; Jiao, Yubo; Cheng, Yongchun

    2016-01-01

    The amount of boron waste increases year by year. There is an urgent demand to manage it in order to reduce the environmental impact. In this paper, boron waste was reused as an additive in road base material. Lime and cement were employed to stabilize the waste mixture. Mechanical performances of stabilized mixture were evaluated by experimental methods. A compaction test, an unconfined compressive test, an indirect tensile test, a modulus test, a drying shrinkage test, and a frost resistance test were carried out. Results indicated that mechanical strengths of lime-stabilized boron waste mixture (LSB) satisfy the requirements of road base when lime content is greater than 8%. LSB can only be applied in non-frozen regions as a result of its poor frost resistance. The lime–cement-stabilized mixture can be used in frozen regions when lime and cement contents are 8% and 5%, respectively. Aggregate reduces the drying shrinkage coefficient effectively. Thus, aggregate is suggested for mixture stabilization properly. This work provides a proposal for the management of boron waste. PMID:28773539

  4. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  5. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste.

    PubMed

    Moestedt, J; Nordell, E; Shakeri Yekta, S; Lundgren, J; Martí, M; Sundberg, C; Ejlertsson, J; Svensson, B H; Björn, A

    2016-01-01

    This study used semi-continuous laboratory scale biogas reactors to simulate the effects of trace-element addition in different combinations, while degrading the organic fraction of municipal solid waste and slaughterhouse waste. The results show that the combined addition of Fe, Co and Ni was superior to the addition of only Fe, Fe and Co or Fe and Ni. However, the addition of only Fe resulted in a more stable process than the combined addition of Fe and Co, perhaps indicating a too efficient acidogenesis and/or homoacetogenesis in relation to a Ni-deprived methanogenic population. The results were observed in terms of higher biogas production (+9%), biogas production rates (+35%) and reduced VFA concentration for combined addition compared to only Fe and Ni. The higher stability was supported by observations of differences in viscosity, intraday VFA- and biogas kinetics as well as by the 16S rRNA gene and 16S rRNA of the methanogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Comparison of solidification/stabilization effects of calcite between Australian and South Korean cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongjin; Waite, T. David; Swarbrick, Gareth

    2005-11-15

    The differences in the effect of calcite on the strength and stability of Pb-rich wastes solidified and stabilized using Australian and South Korean ordinary Portland cements are examined in this study. Pb-rich waste stabilized using Australian OPC has been shown to possess both substantially higher unconfined compressive strength and lead immobilization ability than South Korean OPC as a result of its higher C{sub 3}S content and the associated enhanced degree of precipitation of lead on the surfaces of silicate phases present. Calcite addition is observed to have an accelerating effect on the OPC-induced solidification/stabilization of Pb-rich wastes as gauged bymore » the unconfined compressive strength and leachability of the solids formed. This effect is observed to be far more dramatic for South Korean OPC than for Australian OPC. Using scanning electron microscopy, waste stabilized with cement and calcite was observed to develop significantly greater proportions of hydrated crystals than wastes stabilized with cement alone. The results of X-ray diffraction studies have shown that the presence of calcite in South Korean OPC results in greater acceleration in the formation of portlandite than is the case for Australian OPC.« less

  7. Stabilization of lead in an alkali-activated municipal solid waste incineration fly ash-Pyrophyllite-based system.

    PubMed

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi

    2017-10-01

    This work focuses on the stabilization and speciation of lead (Pb) in a composite solid produced from an alkali-activated municipal solid waste incineration fly ash (MSWIFA)-pyophyllite-based system. The solid product was synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. The product could reduce the leaching of Pb and the Pb concentration in the leachate was 7.0 × 10 -3 using the Japanese leaching test and 9.7 × 10 -4  mg/L using toxicity characteristics leaching procedure method, which satisfied the respective test criteria and successfully stabilized Pb in this system. The solid product had a compressive strength of 2 MPa and consisted mainly of crystalline phases. Scanning electron microscopy with X-ray analysis and X-ray absorption fine structure suggested that Pb was present along with Al, Si, and O, and that the atomic environment around the Pb was similar to that of PbSiO 3 . These results suggest that the alkali-activated MSWIFA-pyrophyllite-based system could be used to stabilize Pb in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mercury stabilization in chemically bonded phosphate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.; Jeong, Seung-Young; Singh, Dileep

    1997-07-01

    We have investigated mercury stabilization in chemically bonded phosphate ceramic (CBPC) using four surrogate waste streams that represent U.S. Department of Energy (DOE) ash, soil, and two secondary waste streams resulting from the destruction of DOE`s high-organic wastes by the DETOX{sup SM} Wet Oxidation Process. Hg content in the waste streams was 0.1 to 0.5 wt.% (added as soluble salts). Sulfidation of Hg and its concurrent stabilization in the CBPC matrix yielded highly nonleachable waste forms. The Toxicity Characteristic Leaching Procedure showed that leaching levels were well below the U.S. Environmental Protection Agency`s regulatory limits. The American Nuclear Society`s ANSmore » 16.1 immersion test also gave very high leaching indices, indicating excellent retention of the contaminants. In particular, leaching levels of Hg in the ash waste form were below the measurement detection limit in neutral and alkaline water, negligibly low but measureable in the first 72 h of leaching in acid water, and below the detection limit after that. These studies indicate that the waste forms are stable in a wide range of chemical environments during storage. 9 refs., 5 tabs.« less

  9. Stabilization of cesium in alkali-activated municipal solid waste incineration fly ash and a pyrophyllite-based system.

    PubMed

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi

    2017-11-01

    Environmentally sound treatments are required to dispose of municipal solid waste incineration fly ash (MSWIFA) contaminated with radioactive cesium (Cs) from the Fukushima Daiichi nuclear power plant accident in Japan. This study focuses on the stabilization of Cs using an alkali-activated MSWIFA and pyophyllite-based system. Three composite solid products were synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. Three types of MSWIFAs were prepared as raw fly ash, raw fly ash with 0.1% CsCl, and raw fly ash with 40% CsCl to understand the stabilization mechanism of Cs. Cs stabilization in two solid products was successful, with less than 6.9% leaching observed from two types tests, and was partly successful for the solid product with the highest concentration of Cs. X-ray diffraction showed that all of the solid products produced several crystalline phases, and that pollucite was formed in the highest Cs concentration product. The X-ray absorption fine structure and scanning electron microscopy with X-ray analysis suggested that most Cs species formed pollucite in the two solid products from MSWIFA with added CsCl. This system provides a technique for the direct stabilization of Cs in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Does affective organizational commitment and experience of meaning at work predict risk of disability pensioning? An analysis of register-based outcomes using pooled data on 40,554 observations in four occupational groups.

    PubMed

    Clausen, Thomas; Burr, Hermann; Borg, Vilhelm

    2014-06-01

    The aim of this study is to investigate whether experience of meaning at work (MAW) and affective organizational commitment (AOC) predict risk of disability pensioning in four occupational groups. Survey data from 40,554 individuals were fitted to a national register (DREAM) containing information on payments of disability pension. Using multi-adjusted Cox-regression, observations were followed in the DREAM-register to assess risk of disability pensioning. Low levels of MAW significantly increased risk of disability pensioning during follow-up referencing high levels of MAW. Respondents with medium levels of AOC had a significantly reduced risk of disability pensioning, when compared to respondents with high levels of AOC. Furthermore, results indicate an interaction effect between AOC and MAW in predicting risk of disability pension. AOC and MAW are significantly associated with risk of disability pensioning. Promoting MAW and managing AOC in contemporary workplaces may contribute towards reducing risk of disability pensioning. © 2014 Wiley Periodicals, Inc.

  11. Using pig manure to promote fermentation of sugarcane molasses alcohol wastewater and its effects on microbial community structure.

    PubMed

    Shen, Peihong; Han, Fei; Su, Shuquan; Zhang, Junya; Chen, Zhineng; Li, Junfang; Gan, Jiayi; Feng, Bin; Wu, Bo

    2014-03-01

    Molasses alcohol wastewater (MAW) is difficult to be bio-treated and converted into biogas. In this study, MAW mixed with pig manure (PM) in different ratios was co-digested. Biogas production, chemical oxygen demand (COD) removal and the structure of microbial communities were monitored in the process. Our results showed that under the optimal COD ratio of PM:MAW (1.0:1.5), CODremoval and biogas yield were the highest. And in fermentation tanks with different PM to MAW ratios, the structure and composition of bacterial communities varied in the early and late stage. Furthermore, the type of main bacterial operational taxonomic units (OTUs) have no differences, yet the relative abundance of OTUs varied. The current research showed that there was a good potential to the use of PM as a co-digested material to anaerobic treatment of MAW and provided references for further improving bio-treatment of MAW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  13. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    PubMed

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  14. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  15. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells.

    PubMed

    Ok, Yong Sik; Lim, Jung Eun; Moon, Deok Hyun

    2011-02-01

    Large amounts of oyster shells are produced as a by-product of shellfish farming in coastal regions without beneficial use options. Accordingly, this study was conducted to evaluate the potential for the use of waste oyster shells (WOS) containing a high amount of CaCO₃ to improve soil quality and to stabilize heavy metals in soil. To accomplish this, an incubation experiment was conducted to evaluate the ability of the addition of 1-5 wt% WOS to stabilize the Pb (total 1,246 mg/kg) and Cd (total 17 mg/kg) in a contaminated soil. The effectiveness of the WOS treatments was evaluated using various single extraction techniques. Soil amended with WOS was cured for 30 days complied with the Korean Standard Test method (0.1 M·HCl extraction). The Pb and Cd concentrations were less than the Korean warning and countermeasure standards following treatment with 5 wt% WOS. Moreover, the concentrations of Cd were greatly reduced in response to WOS treatment following extraction using 0.01 M·CaCl₂, which is strongly associated with phytoavailability. Furthermore, the soil pH and exchangeable Ca increased significantly in response to WOS treatment. Taken together, the results of this study indicated that WOS amendments improved soil quality and stabilized Pb and Cd in contaminated soil. However, extraction with 0.43 M·CH₃ COOH revealed that remobilization of heavy metals can occur when the soil reaches an acidic condition.

  16. Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.

    PubMed

    Visvanathan, C; Visvanthan, C; Yin, Nang Htay; Karthikeyan, Obuli P

    2010-12-01

    Three pilot scale lysimeters were adopted to evaluate the stability pattern and leaching potential of heavy metals from MSW landfills under the E-waste co-disposed condition. One lysimeter served as control and solely filled with MSW, whereas the other two lysimeters were provided with 10% and 25% of E-waste scraps (% by weight), respectively. The reactors were monitored over a period of 280 days at ambient settings with continuous leachate recirculation. Stabilization pattern of carbon appears to be more than 50% in all the three lysimeters with irrespective of their operating conditions. Iron and zinc concentrations were high in leachate during bioreactor landfill operation and correlating with the TCLP leachability test results. In contrast, Pb concentration was around <0.6 mg/L, but which showed maximum leaching potential under TCLP test conditions. But, no heavy metal accumulation was found with leachate recirculation practices in lysimeters. Mobility of the metal content from the E-waste was found to be amplified with the long term disposal or stabilization within landfills. The results showed that the TCLP test cannot be completely reliable tool for measuring long-term leachability of toxic substances under landfill condition; rather landfill lysimeter studies are necessary to get the real scenario. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. A qualitative study of patient experiences of decentralized acute healthcare services.

    PubMed

    Linqvist Leonardsen, Ann-Chatrin; Del Busso, Lilliana; Abrahamsen Grøndahl, Vigdis; Ghanima, Waleed; Barach, Paul; Jelsness-Jørgensen, Lars-Petter

    2016-09-01

    Municipality acute wards (MAWs) have recently been launched in Norway as an alternative to hospitalizations, and are aimed at providing treatment for patients who otherwise would have been hospitalized. The objective of this study was to explore how patients normally admitted to hospitals perceived the quality and safety of treatment in MAWs. The study had a qualitative design. Thematic analysis was used to analyze the data. The study was conducted in a county in south-eastern Norway and included five different MAWs. Semi-structured interviews were conducted with 27 participants who had required acute health care and who had been discharged from the five MAWs. Three subthemes were identified that related to the overarching theme of hospital-like standards ("almost a hospital, but…"), namely (a) treatment and competence, (b) location and physical environment, and (c) adequate time for care. Participants reported the treatment to be comparable to hospital care, but they also experienced limitations. Participants spoke positively about MAW personnel and the advantages of having a single patient room, a calm environment, and proximity to home. Participants felt safe when treated at MAWs, even though they realized that the diagnostic services were not similar to that in hospitals. Geographical proximity, treatment facilities and time for care positively distinguished MAWs from hospitals, while the lack of diagnostic resources was stressed as a limitation. Key points   Municipality acute wards (MAWs) have been implemented across Norway. Research on patient perspectives on the decentralization of acute healthcare in MAWs is lacking.   • Patients perceive decentralized acute healthcare and treatment as being comparable to the quality they would have expected in hospitals.   • Geographical proximity, a home-like atmosphere and time for care were aspects stressed as positive features of the decentralized services.   • Lack of diagnostic

  18. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  19. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young

    1998-01-01

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.

  20. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  2. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, P. Kasinatha

    2018-03-01

    Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA), a waste by-product from the sugar industry and Coconut shell powder (CSP), a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS), plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  3. Anaerobic digestion of food waste stabilized by lime mud from papermaking process.

    PubMed

    Zhang, Jishi; Wang, Qinqing; Zheng, Pengwei; Wang, Yusong

    2014-10-01

    The effects of lime mud from papermaking process (LMP) addition as buffer agent and inorganic nutrient on the anaerobic digestion stability of food waste (FW) were investigated under mesophilic conditions with the aim of avoiding volatile fatty acids accumulation, and inorganic elements deficiency. When LMP concentration ranged from 6.0 to 10g/L, the FW anaerobic digestion could maintain efficient and stable state. These advantages are attributed to the existence of Ca, Na, Mg, K, Fe, and alkaline substances that favor the methanogenic process. The highest CH4 yield of 272.8mL/g-VS was obtained at LMP and VS concentrations of 10.0 and 19.8g/L, respectively, with the corresponding lag-phase time of 3.84d and final pH of 8.4. The methanogens from residue digestates mainly consisted of Methanobrevibacter, coccus-type and sarcina-type methanogens with LMP addition compared to Methanobacteria in control. However, higher concentration of LMP inhibited methanogenic activities and methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of scale and Froude number on the hydraulics of waste stabilization ponds.

    PubMed

    Vieira, Isabela De Luna; Da Silva, Jhonatan Barbosa; Ide, Carlos Nobuyoshi; Janzen, Johannes Gérson

    2018-01-01

    This paper presents the findings from a series of computational fluid dynamics simulations to estimate the effect of scale and Froude number on hydraulic performance and effluent pollutant fraction of scaled waste stabilization ponds designed using Froude similarity. Prior to its application, the model was verified by comparing the computational and experimental results of a model scaled pond, showing good agreement and confirming that the model accurately reproduces the hydrodynamics and tracer transport processes. Our results showed that the scale and the interaction between scale and Froude number has an effect on the hydraulics of ponds. At 1:5 scale, the increase of scale increased short-circuiting and decreased mixing. Furthermore, at 1:10 scale, the increase of scale decreased the effluent pollutant fraction. Since the Reynolds effect cannot be ignored, a ratio of Reynolds and Froude numbers was suggested to predict the effluent pollutant fraction for flows with different Reynolds numbers.

  5. AN EVALUATION OF FACTORS AFFECTING THE SOLIDIFICATION/STABILIZATION OF HEAVY METAL SLUDGE

    EPA Science Inventory

    Solidification/stabilization (SIS) of hazardous waste involves mixing the waste with a binder material to enhance the physical properties of the waste and to immobilize contaminants that may be detrimental to the environment. Many hazardous wastes contain materials that are know...

  6. High-level waste disposal, ethics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2008-06-01

    Moral philosophy applied to nuclear waste disposal can be linked to paradigmatic science. Simple thermodynamic principles tell us something about rightness or wrongness of our action. Ethical judgement can be orientated towards the chemical compatibility between waste container and geological repository. A container-repository system as close as possible to thermodynamic equilibrium is ethically acceptable. It aims at unlimited stability, similar to the stability of natural metal deposits within the Earth’s crust. The practicability of the guideline can be demonstrated.

  7. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  8. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  9. Stabilization/solidification of radioactive salt waste by using xSiO2-yAl2O3-zP2O5 (SAP) material at molten salt state.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Lee, Han-Soo

    2008-12-15

    The molten salt waste from the pyroprocess is one of the problematic wastes to directly apply a conventional process such as vitrification or ceramization. This study suggested a novel method using a reactive material for metal chlorides at a molten temperature of salt waste, and then converting them into manageable product at a high temperature. The inorganic composite, SAP (SiO2-Al2O3-P2O5), synthesized by a conventional sol-gel process has three or four distinctive domains that are bonded sequentially, Si-O-Si-O-A-O-P-O-P. The P-rich phase in the SAP composite is unstable for producing a series of reactive sites when in contact with a molten LiCl salt. After the reaction, metal aluminosilicate, metal aluminophosphate, metal phosphates and gaseous chlorines are generated. From this process, the volatile salt waste is stabilized and it is possible to apply a high temperature process. The reaction products were fabricated successfully by using a borosilicate glass with an arbitrary composition as a chemical binder. There was a low possibility for the valorization of radionuclides up to 1200 degrees C, based on the result of the thermo gravimetric analysis. The Cs and Sr leach rates by the PCT-A method were about 1 x 10(-3) g/(m2 day). For the final disposal of the problematic salt waste, this approach suggested the design concept of an effective stabilizer for metal chlorides and revealed the chemical route to the fabrication of monolithic wasteform by using a composite as an example. Using this method, we could obtain a higher disposal efficiency and lower waste volume, compared with the present immobilization methods.

  10. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.

    PubMed

    Dai, Xiaohu; Duan, Nina; Dong, Bin; Dai, Lingling

    2013-02-01

    System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A qualitative study of patient experiences of decentralized acute healthcare services

    PubMed Central

    Linqvist Leonardsen, Ann-Chatrin; Del Busso, Lilliana; Abrahamsen Grøndahl, Vigdis; Ghanima, Waleed; Barach, Paul; Jelsness-Jørgensen, Lars-Petter

    2016-01-01

    Objective Municipality acute wards (MAWs) have recently been launched in Norway as an alternative to hospitalizations, and are aimed at providing treatment for patients who otherwise would have been hospitalized. The objective of this study was to explore how patients normally admitted to hospitals perceived the quality and safety of treatment in MAWs. Design The study had a qualitative design. Thematic analysis was used to analyze the data. Setting The study was conducted in a county in south-eastern Norway and included five different MAWs. Patients Semi-structured interviews were conducted with 27 participants who had required acute health care and who had been discharged from the five MAWs. Results Three subthemes were identified that related to the overarching theme of hospital-like standards (“almost a hospital, but…”), namely (a) treatment and competence, (b) location and physical environment, and (c) adequate time for care. Participants reported the treatment to be comparable to hospital care, but they also experienced limitations. Participants spoke positively about MAW personnel and the advantages of having a single patient room, a calm environment, and proximity to home. Conclusions Participants felt safe when treated at MAWs, even though they realized that the diagnostic services were not similar to that in hospitals. Geographical proximity, treatment facilities and time for care positively distinguished MAWs from hospitals, while the lack of diagnostic resources was stressed as a limitation. Key Points Municipality acute wards (MAWs) have been implemented across Norway. Research on patient perspectives on the decentralization of acute healthcare in MAWs is lacking.  • Patients perceive decentralized acute healthcare and treatment as being comparable to the quality they would have expected in hospitals.  • Geographical proximity, a home-like atmosphere and time for care were aspects stressed as positive features of the decentralized

  12. Implementation plan for underground waste storage tank surveillance and stabilization improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.

    1989-04-01

    Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate themore » interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.« less

  13. Foaming in simulated radioactive waste.

    PubMed

    Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C

    2001-10-01

    Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella

  14. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    NASA Astrophysics Data System (ADS)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  15. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  16. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  17. Using the IMS infrasound network for the identification of mountain-associated waves and gravity waves hotspots

    NASA Astrophysics Data System (ADS)

    Hupe, Patrick; Ceranna, Lars; Pilger, Christoph; Le Pichon, Alexis

    2017-04-01

    The infrasound network of the International Monitoring System (IMS) has been established for monitoring the atmosphere to detect violations of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The IMS comprises 49 certified infrasound stations which are globally distributed. Each station provides data for up to 16 years. Due to the uniform distribution of the stations, the IMS infrasound network can be used to derive global information on atmospheric dynamics' features. This study focuses on mountain-associated waves (MAWs), i.e. acoustic waves in the frequency range between approximately 0.01 Hz and 0.05 Hz. MAWs can be detected in infrasound data by applying the Progressive Multi-Channel Correlation (PMCC) algorithm. As a result of triangulation, global hotspots of MAWs can be identified. Previous studies on gravity waves indicate that global hotspots of gravity waves are similar to those found for MAWs by using the PMCC algorithm. The objective of our study is an enhanced understanding of the excitation sources and of possible interactions between MAWs and gravity waves. Therefore, spatial and temporal correlation analyses will be performed. As a preceding step, we will present (seasonal) hotspots of MAWs as well as hotspots of gravity waves derived by the IMS infrasound network.

  18. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements.

    PubMed

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2011-02-28

    Herein is presented a study on the long-term leaching behaviour of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. Two different semi-dynamic leaching tests were carried out on monolithic materials: ANS 16.1 test with liquid-to-solid ratio (L/S) of 10 dm(3) kg(-1) and increasing renewal times, and ASTM C1308 test with liquid-to-solid ratio (L/S) of 100 dm(3) kg(-1) and constant renewal time of 1 day. ASTM C1308 provides a lower degree of saturation of the leachant with respect to the leached material. The effectiveness of magnesium potassium phosphate cements for the inertization of nickel was proved. XRD analyses showed the presence of bobierrite on the monolith's surface after the leaching test, which had not been detected prior to the leaching test. In addition, the calculated cumulative release of the main components of the stabilization matrix (Mg(2+), total P and K(+)) was represented versus time in logarithmic scale and it was determined if the leaching mechanism corresponds to diffusion. Potassium is released by diffusion, while total phosphorous and magnesium show dissolution. Magnesium release in ANS 16.1 is slowed down because of saturation of the leachant. Experimental results demonstrate the importance of L/S ratio and renewal times in semi-dynamic leaching tests. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  20. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  1. The management of arsenic wastes: problems and prospects.

    PubMed

    Leist, M; Casey, R J; Caridi, D

    2000-08-28

    Arsenic has found widespread use in agriculture and industry to control a variety of insect and fungicidal pests. Most of these uses have been discontinued, but residues from such activities, together with the ongoing generation of arsenic wastes from the smelting of various ores, have left a legacy of a large number of arsenic-contaminated sites. The treatment and/or removal of arsenic is hindered by the fact that arsenic has a variety of valence states. Arsenic is most effectively removed or stabilized when it is present in the pentavalent arsenate form. For the removal of arsenic from wastewater, coagulation, normally using iron, is the preferred option. The solidification/stabilization of arsenic is not such a clear-cut process. Factors such as the waste's interaction with the additives (e.g. iron or lime), as well as any effect on the cement matrix, all impact on the efficacy of the fixation. Currently, differentiation between available solidification/stabilization processes is speculative, partly due to the large number of differing leaching tests that have been utilized. Differences in the leaching fluid, liquid-to-solid ratio, and agitation time and method all impact significantly on the arsenic leachate concentrations. This paper reviews options available for dealing with arsenic wastes, both solid and aqueous through an investigation of the methods available for the removal of arsenic from wastewater as well as possible solidification/stabilization options for a variety of waste streams.

  2. Method for primary containment of cesium wastes

    DOEpatents

    Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.

  3. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.

    PubMed

    Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing

    2018-03-01

    Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.

  4. Sequential anaerobic/aerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge [corrected].

    PubMed

    Tomei, M Concetta; Carozza, Nicola Antonello

    2015-05-01

    Sequential anaerobic-aerobic digestion has been demonstrated as a promising alternative for enhanced sludge stabilization. In this paper, a feasibility study of the sequential digestion applied to real waste activated sludge (WAS) and mixed sludge is presented. Process performance is evaluated in terms of total solid (TS) and volatile solid (VS) removal, biogas production, and dewaterability trend in the anaerobic and double-stage digested sludge. In the proposed digestion lay out, the aerobic stage was operated with intermittent aeration to reduce the nitrogen load recycled to the wastewater treatment plant (WWTP). Experimental results showed a very good performance of the sequential digestion process for both waste and mixed sludge, even if, given its better digestibility, higher efficiencies are observed for mixed sludge. VS removal efficiencies in the anaerobic stage were 48 and 50% for waste and mixed sludge, respectively, while a significant additional improvement of the VS removal of 25% for WAS and 45% for mixed sludge has been obtained in the aerobic stage. The post-aerobic stage, operated with intermittent aeration, was also efficient in nitrogen removal, providing a significant decrease of the nitrogen content in the supernatant: nitrification efficiencies of 90 and 97% and denitrification efficiencies of 62 and 70% have been obtained for secondary and mixed sludges, respectively. A positive effect due to the aerobic stage was also observed on the sludge dewaterability in both cases. Biogas production, expressed as Nm(3)/(kgVSdestroyed), was 0.54 for waste and 0.82 for mixed sludge and is in the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days.

  5. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization.

    PubMed

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2013-05-01

    Numerous waste products have been widely studied and used as soil amendments and metal immobilizing agents. Waste utilization from ethanol production processes as soil amendments is one of the most promising and sustainable options to help utilize materials effectively, reduce waste disposal, and add value to byproducts. As a consequence, this present work carried out a four-month pot experiment of sugarcane (Saccharum officinarum L.) cultivation in Cd and Zn contaminated soil to determine the effect of three sugarcane waste products (boiler ash, filter cake and vinasse) as soil amendment on sugarcane growth, metal translocation and accumulation in sugarcane, and fractionation of Cd and Zn in soil by the BCR sequential extraction. Four treatments were tested: (1) non-amended soil; (2) 3% w/w boiler ash; (3) 3% w/w filter cake; and (4) a combination of 1.5% boiler ash and 1.5% vinasse (w/w). Our findings showed the improved biomass production of sugarcanes; 6 and 3-fold higher for the above ground parts (from 8.5 to 57.6 g per plant) and root (from 2.1 to 6.59 g per plant), respectively, as compared to non-amended soil. Although there was no significant difference in Cd and Zn uptake in sugarcane (mg kg(-1)) between the non-amended soil and the treated soils (0.44 to 0.52 mg Cd kg(-1) and 39.9 to 48.1 mg Zn kg(-1), respectively), the reduction of the most bioavailable Cd concentration (BCR1 + 2) in the treated soils (35.4-54.5%) and the transformation of metal into an insoluble fraction (BCR3) highlighted the beneficial effects of sugarcane waste-products in promoting the sugarcane growth and Cd stabilization in soil.

  6. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    PubMed

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  7. Liquid secondary waste: Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic

  8. System for Odorless Disposal of Human Waste

    NASA Technical Reports Server (NTRS)

    Jennings, Dave; Lewis, Tod

    1987-01-01

    Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.

  9. Recovery and safer disposal of phosphate coating sludge by solidification/stabilization.

    PubMed

    Ucaroglu, Selnur; Talinli, Ilhan

    2012-08-30

    Solidification/stabilization (S/S) of automotive phosphate coating sludge (PS) containing potentially toxic heavy metals was studied. The hazardous characteristics of this waste were assessed according to both Turkish and U.S. Environmental Protection Agency (EPA) regulations for hazardous solid waste. Unconfined compressive strength (UCS) and leaching behavior tests of the solidified/stabilized product were performed. Solidification studies were conducted using Portland cement (PC) as the binder. UCS was found to decrease with increasing waste content. It was found that recovery of the waste for construction applications was possible when the waste content of the mortar was 20% and below, but solidification for safe disposal was achieved only when higher waste concentrations were added. Cu, Cr, Ni, Pb and Zn were found to be significantly immobilized by the solidification/stabilization process. Ni and Zn, which were present at particularly high concentrations (2.281 and 135.318 g/kg respectively) in the PS, had highest the retention levels (94.87% and 98.74%, respectively) in the PC mortars. The organic contaminants and heavy metals present in PS were determined to be immobilized by the S/S process in accordance with the BS 6920 standard. Thus, the potential for hazardous PS waste to adversely impact human health and the environment was effectively eliminated by the S/S procedure. We conclude that S/S-treated PS is safe for disposal in landfills, while recovery of S/S-treated PS constituents remains possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. US Department of Energy Plutonium Stabilization and Immobilization Workshop, December 12-14, 1995: Final proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    The purpose of the workshop was to foster communication within the technical community on issues surrounding stabilization and immobilization of the Department`s surplus plutonium and plutonium- contaminated wastes. The workshop`s objectives were to: build a common understanding of the performance, economics and maturity of stabilization and immobilization technologies; provide a system perspective on stabilization and immobilization technology options; and address the technical issues associated with technologies for stabilization and immobilization of surplus plutonium and plutonium- contaminated waste. The papers presented during this workshop have been indexed separately.

  11. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  12. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  13. Alternative disposal options for transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, G.G.

    1994-12-31

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lensmore » around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area.« less

  14. Revegetation in abandoned quarries with landfill stabilized waste and gravels: water dynamics and plant growth - a case study

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-liang; Feng, Jing-jing; Rong, Li-ming; Zhao, Ting-ning

    2017-11-01

    Large amounts of quarry wastes are produced during quarrying. Though quarry wastes are commonly used in pavement construction and concrete production, in situ utilization during ecological restoration of abandoned quarries has the advantage of simplicity. In this paper, rock fragments 2-3 cm in size were mixed with landfill stabilized waste (LSW) in different proportions (LSW : gravel, RL), which was called LGM. The water content, runoff and plant growth under natural precipitation were monitored for 2 years using a runoff plot experiment. LGM with a low fraction of LSW was compacted to different degrees to achieve an appropriate porosity; water dynamics and plant growth of compacted LGM were studied in a field experiment. The results showed the following: (1) LGM can be used during restoration in abandoned quarries as growing material for plants. (2) RL had a significant effect on the infiltration and water-holding capacity of LGM and thus influenced the retention of precipitation, water condition and plant growth. LGM with RL ranging from 8:1 to 3:7 was suitable for plant growth, and the target species grew best when RL was 5:5. (3) Compaction significantly enhanced water content of LGM with a low RL of 2:8, but leaf water content of plants was lower or unchanged in the more compacted plots. Moderate compaction was beneficial to the survival and growth of Robinia pseudoacacia L. Platycladus orientalis (L.) Franco and Medicago sativa L. were not significantly affected by compaction, and they grew better under a high degree of compaction, which was disadvantageous for the uppermost layer of vegetation.

  15. Leaching characteristics of copper flotation waste before and after vitrification.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri

    2006-12-01

    Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.

  16. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  17. Modern technology for landfill waste placement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits ofmore » this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.« less

  18. Comparison of slope stability in two Brazilian municipal landfills.

    PubMed

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  19. STABILIZATION/SOLIDIFICATION OF CERCLA AND RCRA WASTES

    EPA Science Inventory

    This Handbook provides U.S. EPA regional staff responsible for reviewing CERCLA remedial action plans and RCRA permit applications with a tool for interpreting information on stabilization/solidification treatment. As a practical day-to-day reference guide, it will also provide t...

  20. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  1. Tritium systems test assembly stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasen, W. G.; Michelotti, R. A.; Anast, K. R.

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R&D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S&M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S&M. At the start of the stabilization project, withmore » an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now designated

  2. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.

    PubMed

    Zhou, Xian; Zhou, Min; Wu, Xian; Han, Yi; Geng, Junjun; Wang, Teng; Wan, Sha; Hou, Haobo

    2017-09-01

    Fly ash is a hazardous byproduct of municipal solid waste incineration (MSWI). Cementitious material that is based on ground-granulated blast furnace slag (GGBFS) has been tested and proposed as a binder to stabilize Pb, Cd, and Zn in MSWI fly ash (FA). Cr, however, still easily leaches from MSWI FA. Different reagents, such as ascorbic acid (VC), NaAlO 2 , and trisodium salt nonahydrate, were investigated as potential Cr stabilizers. The results of the toxicity characteristic leaching procedure (TCLP) showed that VC significantly improved the stabilization of Cr via the reduction of Cr(VI) to Cr(III). VC, however, could interfere with the hydration process. Most available Cr was transformed into stable Cr forms at the optimum VC content of 2 wt%. Cr leaching was strongly pH dependent and could be represented by a quintic polynomial model. The results of X-ray diffraction and scanning electron microscopy-energy dispersive analysis revealed that hollow spheres in raw FA were partially filled with hydration products, resulting in the dense and homogeneous microstructure of the solidified samples. The crystal structures of C-S-H and ettringite retained Zn and Cr ions. In summary, GGBFS-based cementitious material with the low addition of 2 wt% VC effectively immobilizes Cr-bearing MSWI FA. Copyright © 2017. Published by Elsevier Ltd.

  3. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  4. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  5. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  6. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  7. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  8. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  9. Benchmarking of DFLAW Solid Secondary Wastes and Processes with UK/Europe Counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elvie E.; Swanberg, David J.; Surman, J.

    This report provides information and background on UK solid wastes and waste processes that are similar to those which will be generated by the Direct-Feed Low Activity Waste (DFLAW) facilities at Hanford. The aim is to further improve the design case for stabilizing and immobilizing of solid secondary wastes, establish international benchmarking and review possibilities for innovation.

  10. A Citizen's Guide to Solidification and Stabilization

    EPA Pesticide Factsheets

    This guide describes how solidification and stabilization refer to a group of cleanup methods that prevent or slow the release of harmful chemicals from wastes, such as contaminated soil, sediment, and sludge.

  11. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION PROCESS, Hazcon, Inc.

    EPA Science Inventory

    The solidification/stabilization technology mixes hazardous wastes, cement, water and an additive called Chloranan. Chloranan, a nontoxic chemical, encapsulates organic molecules, rendering them ineffective in retarding or inhibiting solidification. This treatment technol...

  12. APPLICATIONS ANALYSIS REPORT: SITE PROGRAM DEMONSTRATION TEST SOLIDITECH, INC. SOLIDIFICATION/ STABILIZATION PROCESS

    EPA Science Inventory

    This Applications Analysis Report evaluates the Soliditech, Inc., solidification/ stabilization process for the on-site treatment of waste materials. The Soliditech process mixes and chemically treats waste material with Urrichem (a proprietary reagent), additives, pozzolanic mat...

  13. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  15. Photostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  16. Phytostabilization of a landfill containing coal combustion waste

    Treesearch

    Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake

    2005-01-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...

  17. Minimally processed beetroot waste as an alternative source to obtain functional ingredients.

    PubMed

    Costa, Anne Porto Dalla; Hermes, Vanessa Stahl; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2017-06-01

    Large amounts of waste are generated by the minimally processed vegetables industry, such as those from beetroot processing. The aim of this study was to determine the best method to obtain flour from minimally processed beetroot waste dried at different temperatures, besides producing a colorant from such waste and assessing its stability along 45 days. Beetroot waste dried at 70 °C originates flour with significant antioxidant activity and higher betalain content than flour produced from waste dried at 60 and 80 °C, while chlorination had no impact on the process since microbiological results were consistent for its application. The colorant obtained from beetroot waste showed color stability for 20 days and potential antioxidant activity over the analysis period, thus it can be used as a functional additive to improve nutritional characteristics and appearance of food products. These results are promising since minimally processed beetroot waste can be used as an alternative source of natural and functional ingredients with high antioxidant activity and betalain content.

  18. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity.

    PubMed

    Di Maria, Francesco; Sordi, Alessio; Cirulli, Giuseppe; Gigliotti, Giovanni; Massaccesi, Luisa; Cucina, Mirko

    2014-09-01

    The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m(3) day to 2.8 kg VS/m(3) day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m(3) day to 2.1 kg VS/m(3) day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was <0.1 indicating high stability for OLR <2.46 kg VS/m(3 )day. For higher OLR, FOS/TAC increased rapidly. Residual phytotoxicty of the digestate evaluated by the germination index (GI) (%) was quite constant for OLR<2.46 kg VS/m(3)day, which is lower than the 60% limit, indicating an acceptable toxicity level for crops. For OLR>2.46 kg VS/m(3) day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. EVALUATION OF WASTE STABILIZED BY THE SOLIDITECH SITE TECHNOLOGY

    EPA Science Inventory

    The Soliditech technology demonstration was conducted at the Imperial Oil Company/Champion Chemicals Superfund Site in Monmouth County, New Jersey. ontamination at this site includes PCBs, lead (with various other metals) and oil and grease. his process mixes the waste material w...

  20. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  1. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  2. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  3. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  4. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  5. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    PubMed

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  6. Morphology and pH changes in leached solidified/stabilized waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.Y.; Bishop, P.L.

    1996-12-31

    Leaching of cement-based waste forms in acetic acid solutions with different acidic strengths has been investigated in this work. The examination of the morphology and pH profile along the acid penetration route by an optical microscope and various pH color indicators is reported. A clear-cut leaching boundary, where the pH changes from below 6 in the leached surface layers to above 12 in the unleached waste form, was observed in every leached sample.

  7. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    USGS Publications Warehouse

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  8. SOLIDIFICATION/STABILIZATION: IS IT ALWAYS APPROPRIATE?

    EPA Science Inventory

    The findings of recent research and evaluation efforts are assessed to determine whether solidification/stabilization (S/S) has been properly and appropriately applied for different types of hazardous wastes. Results from these studies are mixed and, as a result, the need for pro...

  9. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less

  10. Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation.

    PubMed

    López, Félix A; Alguacil, Francisco J; Rodríguez, Olga; Sierra, María José; Millán, Rocío

    2015-01-01

    European Directive 2013/39/EU records mercury as a priority hazardous substance. Regulation n° 2008/1102/EC banned the exportation of mercury and required the safe storage of any remaining mercury compounds. The present work describes the encapsulation of three wastes containing combinations of HgS, HgSe, HgCl2, HgO2, Hg3Se2Cl2, HgO and Hg(0), according to patent of Spanish National Research Council WO2011/029970A2. The materials obtained were subjected to leaching tests according to standards UNE-EN-12457 and CEN/TS 14405:2004. The results are compared with the criteria established in the Council Decision 2003/33/EC for the acceptance of waste at landfills. The Hg concentrations of all leachates were <0.01mgHg/kg for a liquid/solid ratio of 10l/kg. All three encapsulated materials therefore meet the requirements for storage in inert waste landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  12. 76 FR 69321 - Intent To Rule On Request To Release Airport Property at the Malden Regional Airport and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Airport Property at the Malden Regional Airport and Industrial Park (MAW), Malden, MO AGENCY: Federal... comment on the release of land at the Malden Regional Airport & Industrial Park (MAW), Malden, Missouri... address: Lynn D. Martin, Airports Compliance Specialist, Federal Aviation Administration, Airports...

  13. DEMONSTRATION BULLETIN - SOLIDIFICATION/ STABILIZATION PROCESS, SOLIDTECH, INC.

    EPA Science Inventory

    The Soliditech solidification/stabilization technology mixes hazardous waste materials in soils or sludges with pozzolanic material (cement, fly ash, or kiln dust), a proprietary additive called Urrichem, other proprietary additives, and water. The process is designed to aid ...

  14. Stabilization process of metallic mercury by sulphur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaudey, Claire-Emilie; Bardy, Maud; Huc, Christelle

    2013-07-01

    The technical field of this subject can be described as the treatment of mercury based wastes in order to stock or eliminate them. Toxic mercury vapours prevent from directly stocking or incinerating the wastes. Therefore, some processes have already been implemented to reduce the mercury mobility. Those immobilization processes are created to avoid mercury release in the atmosphere by volatilization or in the soil by leaching. Among the 3 current processes: encapsulation, amalgamation and stabilization, we took an interest on the last one. Stabilization can be defined as an immobilization due to a combination between a molecule and motionless particlesmore » to reduce the release of dangerous elements in the atmosphere or the biosphere. The most common technique of metallic mercury stabilization found in readings is the sulphur amalgamation technique. It consists in the chemical reaction: Hg + S → HgS. A mercury sulphide is then produced and is very insoluble in the water. A 386 deg. C heating transforms it in red sulphide. The obtained mixture can be easily and safely stored in a waste storage. In this context, solid sulphur is added in wide excess compared to the liquid mercury to cause the reaction: Hg(l) + S(s) → HgS(s) with a molar ratio between 1/6.5 and 1/19. The main drawback of this technique is the generation of an important waste quantity: a mixture of HgS and sulphur. Moreover there's no guarantee about the absence of mercury vapours. Therefore there's a real need to improve the ratio and the safety of the reaction, which is the purpose of this study. The volume of the created product is greatly reduced in this case and authorizes significant savings on storage costs. The other experimental parameters discussed in this study are temperature, volume, flask type and mixing speed. (authors)« less

  15. The Geopolitics of Nuclear Waste.

    ERIC Educational Resources Information Center

    Marshall, Eliot

    1991-01-01

    The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)

  16. The use of waste ceramic tile in cement production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ay, N.; Uenal, M.

    In ceramic tile production, because of various reasons, unsold fired products come out. These are waste tiles and only a little part of them are used. Remainings create environmental problems. If these waste tiles are used in cement production, this pollution decreases. In this study, usage of waste tile as pozzolan was studied. Waste tile was added into Portland cement in 25%, 30%, 35%, and 40% weight ratios. Pozzolanic properties of waste tile and setting time, volume stability, particle size, density, specific surface area, and strength of cement including waste tile were investigated. The test results indicated that the wastemore » tiles show pozzolanic properties, and chemical and physical properties of the cement including tile conforms to cement standard up to the addition of 35% waste tile.« less

  17. TECHNOLOGY EVALUATION REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS - CLACKAMAS, OREGON - VOLUME II

    EPA Science Inventory

    The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environmental Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical...

  18. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  19. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  20. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  1. Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: A minireview.

    PubMed

    Lü, Fan; Shao, Li-Ming; Zhang, Hua; Fu, Wen-Ding; Feng, Shi-Jin; Zhan, Liang-Tong; Chen, Yun-Min; He, Pin-Jing

    2018-01-01

    Bio-stability is a key feature for the utilization and final disposal of biowaste-derived residues, such as aerobic compost or vermicompost of food waste, bio-dried waste, anaerobic digestate or landfilled waste. The present paper reviews conventional methods and advanced techniques used for the assessment of bio-stability. The conventional methods are reclassified into two categories. Advanced techniques, including spectroscopic (fluorescent, ultraviolet-visible, infrared, Raman, nuclear magnetic resonance), thermogravimetric and thermochemolysis analysis, are emphasized for their application in bio-stability assessment in recent years. Their principles, pros and cons are critically discussed. These advanced techniques are found to be convenient in sample preparation and to supply diversified information. However, the viability of these techniques as potential indicators for bio-stability assessment ultimately lies in the establishment of the relationship of advanced ones with the conventional methods, especially with the methods based on biotic response. Furthermore, some misuses in data explanation should be noted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Improved oxidative stability of biodiesel via alternative processing methods using cottonseed oil

    USDA-ARS?s Scientific Manuscript database

    Biodiesel from waste cooking oil (WCO) requires antioxidants to meet oxidation stability specifications set forth in ASTM D6751 or EN 14214. In contrast, unrefined cottonseed oil (CSO), containing tocopherols and gossypol, produces biodiesel of higher oxidation stability. However, only a portion of ...

  3. Method for the capture and storage of waste

    DOEpatents

    None

    2017-01-24

    Systems and methods for capturing waste are disclosed. The systems and methods provide for a high level of confinement and long term stability. The systems and methods include adsorbing waste into a metal-organic framework (MOF), and applying pressure to the MOF material's framework to crystallize or make amorphous the MOF material thereby changing the MOF's pore structure and sorption characteristics without collapsing the MOF framework.

  4. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    NASA Astrophysics Data System (ADS)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  5. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  6. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  7. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  8. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  9. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  10. TECHNOLOGY EVALUATION REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS - CLACKAMAS, OREGON - VOLUME I

    EPA Science Inventory

    The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environment Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical t...

  11. Does affective organizational commitment and experience of meaning at work predict long-term sickness absence? An analysis of register-based outcomes using pooled data on 61,302 observations in four occupational groups.

    PubMed

    Clausen, Thomas; Burr, Hermann; Borg, Vilhelm

    2014-02-01

    To investigate whether experience of low meaning at work (MAW) and low affective organizational commitment (AOC) predicts long-term sickness absence (LTSA) for more than 3 consecutive weeks and whether this association is dependent on the occupational group. Survey data pooling 61,302 observations were fitted to the DREAM register containing information on payments of sickness absence compensation. Using multiadjusted Cox regression, observations were followed for an 18-month follow-up period to assess the risk for LTSA. Low levels of MAW and AOC significantly increased the risk for LTSA during follow-up. Subgroup analyses showed that associations were statistically significant for employees working with clients and office workers but not for employees working with customers and manual workers. Further analyses showed that associations between MAW and LTSA varied significantly across the four occupational groups. Meaning at work and affective organizational commitment significantly predict LTSA. Promoting MAW and AOC may contribute toward reducing LTSA in contemporary workplaces.

  12. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  13. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  14. Biodegradation and flushing of MBT wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, A.A., E-mail: aasiddiqui.cv@amu.ac.in; Richards, D.J.; Powrie, W.

    Highlights: • Stabilization was achieved for MBT wastes of different degrees of pretreatment. • About 92% reduction in the gas generation compared with raw MSW. • Pretreatment resulted in reduced TOC, nitrogen and heavy metals in leachate. • A large proportion of carbon and nitrogen remained in the waste material. - Abstract: Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratorymore » experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ∼320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.« less

  15. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test.

    PubMed

    Xue, Qiang; Wang, Ping; Li, Jiang-Shan; Zhang, Ting-Ting; Wang, Shan-Yong

    2017-01-01

    Long-term leaching behavior of contaminant from stabilization/solidification (S/S) treated waste stays unclear. For the purpose of studying long-term leaching behavior and leaching mechanism of lead from cement stabilized soil under different pH environment, semi-dynamic leaching test was extended to two years to investigate leaching behaviors of S/S treated lead contaminated soil. Effectiveness of S/S treatment in different scenarios was evaluated by leachability index (LX) and effective diffusion coefficient (D e ). In addition, the long-term leaching mechanism was investigated at different leaching periods. Results showed that no significant difference was observed among the values of the cumulative release of Pb, D e and LX in weakly alkaline and weakly acidic environment (pH value varied from 5.00 to 10.00), and all the controlling leaching mechanisms of the samples immersed in weakly alkaline and weakly acidic environments turned out to be diffusion. Strong acid environment would significantly affect the leaching behavior and leaching mechanism of lead from S/S monolith. The two-year variation of D e appeared to be time dependent, and D e values increased after the 210 th day in weakly alkaline and weakly acidic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Motivation at Work Scale: Validation Evidence in Two Languages

    ERIC Educational Resources Information Center

    Gagne, Marylene; Forest, Jacques; Gilbert, Marie-Helene; Aube, Caroline; Morin, Estelle; Malorni, Angela

    2010-01-01

    The Motivation at Work Scale (MAWS) was developed in accordance with the multidimensional conceptualization of motivation postulated in self-determination theory. The authors examined the structure of the MAWS in a group of 1,644 workers in two different languages, English and French. Results obtained from these samples suggested that the…

  17. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  18. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  19. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    EPA Science Inventory

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  20. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC.

    PubMed

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R

    2017-07-12

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.

  1. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  2. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  3. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  4. Mercury contamination - Amalgamate (contract with NFS and ADA). Stabilize Elemental Mercury Wastes. Mixed Waste Focus Area. OST Reference Number 1675

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not beenmore » tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.« less

  5. Co-digestion of pig slaughterhouse waste with sewage sludge.

    PubMed

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. APPLICATIONS ANALYSIS REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Program, this report evaluates the Chemfix Technologies, Inc. (Chemfix), solidification/stabilization technology for on-site treatment of hazardous waste. The Chemfix ...

  7. Siting industrial waste land disposal facilities in Thailand: A risk based approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fingleton, D.J.; Habegger, L.; Peters, R.

    The Thailand Industrial Works Department (IWD) has established a toxic industrial waste Central Treatment and Stabilization Center (CTSC) for textile dyeing and electroplating industries located in the Thonburi region of the Bangkok metropolitan area. Industrial waste is treated, stabilized, and stored at the CTSC. Although the IWD plans to ship the stabilized sludge to the Ratchaburi Province in western Thailand for burial, the location for the land disposal site has not been selected. Assessing the relative health risks from exposure to toxic chemicals released from an industrial waste land disposal site is a complicated, data-intensive process that requires a multidisciplinarymore » approach. This process is further complicated by the unique physical and cultural characteristics exhibited by the rapidly industrializing Thai economy. The purpose of this paper is to describe the research approach taken and to detail the constraints to health risk assessments in Thailand. issues discussed include data availability and quality, effectiveness of control or mitigation methods, cultural differences, and the basic assumptions inherent in many of the risk assessment components.« less

  8. Biostabilization of landfill waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-06-01

    In November 1991, the city of Albany, N.Y., together with the principals of Landfill Service Corp. (Apalachin, N.Y.), proposed to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double-composite-lined Interim Landfill located in the city of Albany. The small landfill covers just 12 acres and is immediately adjacent to residential neighbors. The benefits of this biostabilization practice include a dramatic improvement in the orderliness of waste placement, with significant reduction of windblown dust and litter. The process also reduces the presence of typical landfill vectors such as flies, crows, seagulls, and rodents. The physically andmore » biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of post-closure conditions and reduction or elimination of remedial costs attendant to post-closure gross differential settlement.« less

  9. Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Webb, Lannie D.; Mccain, William E.; Rose, Lucinda A.

    1988-01-01

    Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing.

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  11. Energy recovery from solid waste. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  12. Testing and Analysis of the First Plastic Melt Waste Compactor Prototype

    NASA Technical Reports Server (NTRS)

    Pace, Gregory S.; Fisher, John W.

    2005-01-01

    A half scale Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the testing being done on the prototype Plastic Melt Waste Compactor by the Solid Waste Management group at NASA Ames Research Center. The tests are designed to determine the prototype's functionality, simplicity of operation, ability to contain and control noxious off-gassing, biological stability of the processed waste, and water recovery potential using a waste composite that is representative of the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions.

  13. Secondary Waste Form Down Selection Data Package – Ceramicrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The

  14. Modulated amplitude waves in collisionally inhomogeneous Bose Einstein condensates

    NASA Astrophysics Data System (ADS)

    Porter, Mason A.; Kevrekidis, P. G.; Malomed, Boris A.; Frantzeskakis, D. J.

    2007-05-01

    We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length a subjected to a spatially periodic modulation, a=a(x)=a(x+L). This “collisionally inhomogeneous” BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of x. We transform this equation into a GP equation with a constant coefficient and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that “on-site” solutions, whose maxima correspond to maxima of a(x), are more robust and likely to be observed than their “off-site” counterparts.

  15. Method and article for primary containment of cesium wastes. [DOE patent application

    DOEpatents

    Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.

    1981-09-03

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.

  16. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  17. The influence of decreased hydraulic retention time on the performance and stability of co-digestion of sewage sludge with grease trap sludge and organic fraction of municipal waste.

    PubMed

    Grosser, Anna

    2017-12-01

    The effect of hydraulic retention time ranging from 12 to 20 d on process performance and stability was investigated in two anaerobic completely stirred tank reactors with a working liquid volume equal to 6 litres. The reactors were fed with mixtures containing (on volatile solids basis): 40% of sewage sludge, 30% of organic fraction of municipal waste and 30% of grease trap sludge. The change of hydraulic retention time did not significantly affect process stability. However, methane yields as well as volatile solids removal decreased from 0.54 to 0.47 l per kg of added volatile solids and 65% to 60% respectively, with the decrease of hydraulic retention time. Despite the fact that the best process performance was achieved for hydraulic retention time of 20 days, the obtained results showed that it is also possible to carry out the co-digestion process at shorter hydraulic retention times with good results. Furthermore, gas production rate as well as biogas production at the shortest hydraulic retention time were approximately 46% higher in comparison to results obtained at the longest hydraulic retention time. In this context, the proposed solution seems to be an interesting option, because it provides an unique opportunity for wastewater treatment plants to improve their profitability by enhancing energy recovery from sludge as well as full utilisation of the existing infrastructure and hence creates a new potential place for alternative treatment of organic industrial waste such as: fat-rich materials or food waste. However, implementation of the solution at wastewater treatment plants is still a big challenge and needs studies including identification of optimal digesting conditions, information about substrate pumping, inhibition thresholds and processing properties. Additionally, due to the characteristics of both co-substrates their introduction to the full-scale digester should be carefully planned due to a potential risk of overloading of the digester

  18. Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer

    NASA Astrophysics Data System (ADS)

    Nalbantoglu, Zalihe; Tawfiq, Salma

    2006-08-01

    The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.

  19. Review of hydrophilic PP membrane for organic waste removal

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Wardani, Anita Kusuma

    2017-05-01

    The acceleration of industrialization in developing countries has given an impact of environmental pollution rapidly, such as contamination of groundwater with organic waste. To solve this problem, some membrane techniques have been performed to remove organic waste from water, such as membrane contactors, membrane bioreactors, and supported liquid membranes. Polypropylene (PP) membrane is one of the promising candidates for these membrane processes due to its chemical stability, low cost, good mechanical resistance, and being easily available. However, different processes require membranes with different surface properties. Hydrophobic PP membranes with excellent chemical stability can be directly used in membrane contactors, in which the organic phase wets the porous membrane and slightly excessive pressure applied to the other phase. On the other hand, hydrophilization of PP membrane is necessary for some other processes, such as for fouling reduction on membrane bioreactors due to organic matters deposition. The aim of this paper is to give a brief overview of removal of organic waste by PP membrane. Moreover, the effects of PP surface hydrophilization on antifouling properties are also discussed.

  20. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE

    EPA Science Inventory

    This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the geneerator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...

  1. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC

    PubMed Central

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.

    2017-01-01

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958

  2. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology.

    PubMed

    Jin, Jian; Li, Xiaodong; Chi, Yong; Yan, Jianhua

    2010-12-01

    This study investigated the process of aluminosilicate formation in medical waste incinerator fly ash containing large amounts of heavy metals and treated with alkaline compounds at 375 degrees C and examined how this process affected the mobility and availability of the metals. As a consequence of the treatments, the amount of dissolved heavy metals, and thus their mobility, was greatly reduced, and the metal leaching concentration was below the legislative regulations for metal leachability. Moreover, this process did not produce a high concentration of heavy metals in the effluent. The addition of alkaline compounds such as sodium hydroxide and sodium carbonate can prevent certain heavy metal ions dissolving in water. In comparison with the alkaline-free condition, the extracted concentrations of As, Mn, Pb, Sr and Zn were decreased by about 51.08, 97.22, 58.33, 96.77 and 86.89% by the addition of sodium hydroxide and 66.18, 86.11, 58.33, 83.87 and 81.91% by the addition of sodium carbonate. A mechanism for how the formation of aluminosilicate occurred in supercritical water and affected the mobility and availability of the heavy metals is discussed. The reported results could be useful as basic knowledge for planning new technologies for the hydrothermal stabilization of heavy metals in fly ash.

  3. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp.

    PubMed

    Bayr, S; Ojanperä, M; Kaparaju, P; Rintala, J

    2014-10-01

    In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55°C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m(3)d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm(3)/kg VS(fed). On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500-680 dm(3)/kg VS(fed)). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    PubMed

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  5. Cement-based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2007-09-05

    Stabilization/solidification is a process widely applied for the immobilization of inorganic constituents of hazardous wastes, especially for metals. Cement is usually one of the most common binders for that purpose. However, limited results have been presented on immobilization of hydrocarbons in cement-based stabilized/solidified petroleum solid waste. In this study, real oil refinery sludge samples were stabilized and solidified with various additions of I42.5 and II42.5 cement (Portland and blended cement, respectively) and subject to leaching. The target analytes were total petroleum hydrocarbons, alkanes and 16 polycyclic aromatic hydrocarbons of the EPA priority pollutant list. The experiments showed that the waste was confined in the cement matrix by macroencapsulation. The rapture of the cement structure led to the increase of leachability for most of the hydrocarbons. Leaching of n-alkanes from II42.5 cement-solidified samples was lower than that from I42.5 solidified samples. Leaching of alkanes in the range of n-C(10) to n-C(27) was lower than that of long chain alkanes (>n-C(27)), regardless the amount of cement addition. Generally, increasing the cement content in the solidified waste samples, increased individual alkane leachability. This indicated that cement addition resulted in destabilization of the waste. Addition of I42.5 cement favored immobilization of anthracene, benzo[a]anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene, benzo[a]pyrene and dibenzo[a,h]anthracene. However, addition of II42.5 favored 5 out of 16, i.e., naphthalene, anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene and dibenzo[a,h]anthracene.

  6. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.

    PubMed

    Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu

    2018-05-01

    Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better

  7. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    PubMed

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  8. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  9. The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Cheng-Gang; Sun, Chang-Jung, E-mail: sun.3409@hotmail.com; Gau, Sue-Huai

    2013-04-15

    Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA)more » leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.« less

  10. After flow control: The steps taken by Dade County to ensure continued operation of its solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauriello, P.J.; Ragbeer, D.

    1997-12-01

    In the wake of the U.S. Supreme Court decision in the Carbone vs. Clarkstown case striking down waste flow control as unconstitutional, Dade County, Florida, one of the most severely impacted communities in the nation, has managed to stabilize its waste stream and balance its solid waste department finances; although the road taken to restabilization has been a difficult one. At its peak in 1995, Dade County experienced an annual loss of solid waste in excess of 1,000,000 tons, or over 40 percent of the waste stream normally handled by the County. This diversion of waste was accompanied by amore » net revenue loss of $30 million per year. The County lost its ability to plan for future capacity needs, or to assure sufficient future waste flows to meet its put-or-pay obligation to the County`s Resources Recovery plant operator. The County`s solid waste management system bonds were downgraded by Moody`s Investors Service and Standard and Poors. With the help of a special solid waste management team, appointed by the County Manager, the department was able to rightsize its waste disposal operations to fit its reduced waste flows, stabilize its waste stream, and develop strategies to solve its long-term funding shortfall.« less

  11. The quality study of recycled glass phosphor waste for LED

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  12. Fludrocortisone therapy in cerebral salt wasting.

    PubMed

    Taplin, Craig E; Cowell, Christopher T; Silink, Martin; Ambler, Geoffrey R

    2006-12-01

    Cerebral salt wasting is an increasingly recognized condition in pediatrics and is characterized by inappropriate natriuresis and volume contraction in the presence of cerebral pathology. Diagnosis can be difficult and therapy challenging. A few single case reports of the successful use of fludrocortisone exist. We report 4 patients with cerebral salt wasting, all of whom presented with hyponatremia in the presence of known intracerebral pathology. All had clinically significant hyponatremia, and 3 had hyponatremic seizures. Two of the patients also satisfied clinical criteria for diabetes insipidus. They all were treated with regimens using increased sodium and fluid administration but experienced ongoing salt wasting. Fludrocortisone was instituted in all 4 patients and in 3 resulted in rapid improvement in net sodium balance, enabling the weaning of hypertonic fluids and stabilization of serum electrolytes. In 3 patients, fludrocortisone treatment was complicated by hypokalemia, and in 1 patient by hypertension, which necessitated a dose reduction or brief cessation of therapy. Duration of therapy was 4 to 125 days. Cerebral salt wasting presents considerable management challenges; however, fludrocortisone therapy can be an effective adjunct to treatment.

  13. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN CATALYST

    EPA Science Inventory

    This report was submitted by the U of Cincinnati in fulfillment of Contract # 68-C7-0057 under the sponsorship of the USEPA. It covers a period from 6/99 - 7/2000; laboratory work was completed as of 7/2000. This report evaluates the chemical stability of spent mercuric chloride ...

  14. Application of soil nails to the stability of mine waste slopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tant, C.R.; Drumm, E.C.; Mauldon, M.

    1996-12-31

    The traditional soil nailed structure incorporates grouted or driven nails, and a wire mesh reinforced shotcrete facing to increase the stability of a slope or wall. This paper describes the construction and monitoring of a full-scale demonstration of nailing to stabilize coal mine spoil. The purpose of the investigation is to evaluate the performance of nailed slopes in mine spoil using methods proven for the stabilization of soil walls and slopes. The site in eastern Tennessee is a 12 meter high slope of dumped fill, composed of weathered shale chips, sandstone, and coal. The slope was formed by {open_quotes}pre-regulatory{close_quotes} contourmore » surface mining operations and served as a work bench during mining. The material varies in size from silt to boulders, and has a small amount of cohesion. Portions of the mine spoil slope have experienced slope instability and erosion which have hampered subsequent reclamation activities. Three different nail spacings and three different nail lengths were used in the design. The 12 meter high structure is instrumented to permit measurement of nail strain, and vertical inclinometer readings and survey measurements will be used for the detection of ground movement. The results of this study will aid in the development of design recommendations and construction guidelines for the application of soil nailing to stabilize mine spoil.« less

  15. Mitigating Impacts Of Arsenic Contaminated Materials Via Two (2) Stabilization Methods Based On Polymeric And Cement Binders

    EPA Science Inventory

    The primary objective of this study was to evaluate the performance of two selected chemical stabilization and solidification (S/S) techniques to treat three types of arsenic-contaminated wastes 1) chromated copper arsenate (CCA) wood treater waste, 2) La Trinidad Mine tailings, ...

  16. SOLIDIFICATION/STABILIZATION OF SLUDGE AND ASH FROM WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Tests were performed to determine the physical properties and chemical leaching characteristics of the residuals and the stabilized/solidified products from two publicly-owned wastewater treatment works (POTW). The two POTW waste products included in this study were an anaerobic ...

  17. Performance of mechanical biological treatment of residual municipal waste in Poland

    NASA Astrophysics Data System (ADS)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  18. Effect of Reassuring Information About Musculoskeletal and Mental Health Complaints at the Workplace: A Cluster Randomized Trial of the atWork Intervention.

    PubMed

    Johnsen, Tone Langjordet; Eriksen, Hege Randi; Baste, Valborg; Indahl, Aage; Odeen, Magnus; Tveito, Torill Helene

    2018-05-21

    Purpose The purpose of this study was to investigate the possible difference between the Modified atWork intervention (MAW) and the Original atWork intervention (OAW) on sick leave and other health related outcomes. atWork is a group intervention using the workplace as an arena for distribution of evidence-based knowledge about musculoskeletal and mental health complaints. Methods A cluster randomized controlled trial with 93 kindergartens, comprising a total of 1011 employees, was conducted. Kindergartens were stratified by county and size and randomly allocated to MAW (45 clusters, 324 respondents) or OAW (48 clusters, 313 respondents). The randomization and intervention allocation processes were concealed. There was no blinding to group allocation. Primary outcome was register data on sick leave at cluster level. Secondary outcomes were health complaints, job satisfaction, social support, coping, and beliefs about musculoskeletal and mental health complaints, measured at the individual level. Results The MAW group reduced sick leave by 5.7% during the intervention year, while the OAW group had a 7.5% increase. Overall, the changes were not statistically significant, and no difference was detected between groups, based on 45 and 47 kindergartens. Compared to the OAW group, the MAW group had a smaller reduction for two of the statements concerning faulty beliefs about back pain, but believed less in the hereditary nature of depression. Conclusions The MAW did not have a different effect on sick leave at cluster level compared to the OAW. Trial registration https://Clinicaltrials.gov/ : NCT02396797. Registered March 23th, 2015.

  19. Performance evaluation of 388 full-scale waste stabilization pond systems with seven different configurations.

    PubMed

    Espinosa, Maria Fernanda; von Sperling, Marcos; Verbyla, Matthew E

    2017-02-01

    Waste stabilization ponds (WSPs) and their variants are one the most widely used wastewater treatment systems in the world. However, the scarcity of systematic performance data from full-scale plants has led to challenges associated with their design. The objective of this research was to assess the performance of 388 full-scale WSP systems located in Brazil, Ecuador, Bolivia and the United States through the statistical analysis of available monitoring data. Descriptive statistics were calculated of the influent and effluent concentrations and the removal efficiencies for 5-day biochemical oxygen demand (BOD 5 ), total suspended solids (TSS), ammonia nitrogen (N-Ammonia), and either thermotolerant coliforms (TTC) or Escherichia coli for each WSP system, leading to a broad characterization of actual treatment performance. Compliance with different water quality and system performance goals was also evaluated. The treatment plants were subdivided into seven different categories, according to their units and flowsheet. The median influent concentrations of BOD 5 and TSS were 431 mg/L and 397 mg/L and the effluent concentrations varied from technology to technology, but median values were 50 mg/L and 47 mg/L, respectively. The median removal efficiencies were 85% for BOD 5 and 75% for TSS. The overall removals of TTC and E. coli were 1.74 and 1.63 log 10 units, respectively. Future research is needed to better understand the influence of design, operational and environmental factors on WSP system performance.

  20. Evaluation of Hose in Hose Transfer Line Service Life for Hanfords Interim Stabilization Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TORRES, T.D.

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program (Torres, 2000a), defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of waste transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program (Torres, 2000b), has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications associated with Interim Stabilization. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will bemore » exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning, RPP-6028 Section 3.2.7. Performance Incentive Number ORP-05 requires that all the Single Shell Tanks be Interim Stabilized by September 30, 2003. The Tri-Party Agreement (TPA) milestone M-41-00, enforced by a federal consent decree, requires all the Single Shell Tanks to be Interim stabilized by September 30, 2004. By meeting the Performance Incentive the TPA milestone is met. Prudent engineering dictates that the equipment used to transfer waste have a life in excess of the forecasted operational time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer, published literature and calculations. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are the hose material's resistance to the harmful effects of process fluid characteristics, ambient environmental conditions, exposure to ionizing radiation

  1. [Potentiometric concentration determination of cyanide ions in waste water].

    PubMed

    Börner, J; Martin, G; Götz, C

    1990-06-01

    Electrodic systems, consist of gold or silver and metals of the IV, or V, subsidiary groups of the periodic system of elements are qualified for that, because they based strength of their electrodic steepness, selectivity, potentionel stability and sensibility by destination of cyanid ions in waste-water. We are going to introduce a fast-analysis-method for cyanid ions in waste-water of technical processes, which had been tested practically by the continuous control of limits, demanded by the legislator.

  2. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    PubMed

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  3. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  4. Unirradiated testing of the demonstration-scale ceramic waste form at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Simpson, M.F.; Bateman, K.J.

    1997-12-01

    The ceramic waste form is being developed by Argonne National Laboratory (ANL) as part of the demonstration of the electrometallurgical treatment of spent nuclear fuel for disposal. The alkali, alkaline earth, halide, and rare earth fission products are stabilized in zeolite, which is combined with glass and processed in a hot isostatic press (HIP) to form a ceramic composite. The transuranics, including plutonium, are also stabilized in this high-level waste. Most of the laboratory-scale development work is performed in the Chemical Technology Division of ANL in Illinois. At ANL-West in Idaho, this technology is being demonstrated on an engineering scalemore » before implementation with irradiated materials in a remote environment.« less

  5. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less

  6. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Application of stabilization/solidification technology on oil refinery sludge contaminated by heavy metals.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2004-01-01

    The oily sludge produced by petroleum refineries is classified as a solid hazardous waste, according to European regulations. The objective of this work was to investigate whether stabilization/solidification can be used as a management method for the oily sludge. The sludge samples used originated from a petroleum-storing tank and a centrifuge unit of two Greek refineries. The experiments were designed to study the leachability of the heavy metals Pb, Cr, Cd, Ni, and Cu, which are contained in the sludge, using the Toxicity Characteristic Leaching Procedure (TCLP). Despite the fact that the metals were immobilized in a cement-based environment in the presence of organic load, leaching tests have shown a low metal leachability, less than 5%. Acid Neutralizing Capacity (ANC) tests were employed in order to estimate the acid resistance of the stabilized/solidified waste. In addition to ANC, a sequential TCLP test was employed in order to understand how the pH affects the leachability of Ni from the stabilized/solidified specimen.

  8. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  9. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates.

    PubMed

    Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio

    2018-01-01

    Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2  h -1  kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Waste Processing Research and Technology Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John; Kliss, Mark

    2004-01-01

    The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.

  11. A conflict model for the international hazardous waste disposal dispute.

    PubMed

    Hu, Kaixian; Hipel, Keith W; Fang, Liping

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  12. Production of biogas from solid organic wastes through anaerobic digestion: a review.

    PubMed

    Muhammad Nasir, Ismail; Mohd Ghazi, Tinia I; Omar, Rozita

    2012-07-01

    Anaerobic digestion treatments have often been used for biological stabilization of solid wastes. These treatment processes generate biogas which can be used as a renewable energy sources. Recently, anaerobic digestion of solid wastes has attracted more interest because of current environmental problems, most especially those concerned with global warming. Thus, laboratory-scale research on this area has increased significantly. In this review paper, the summary of the most recent research activities covering production of biogas from solid wastes according to its origin via various anaerobic technologies was presented.

  13. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giudicianni, Paola, E-mail: giudicianni@irc.cnr.it; Bozza, Pio, E-mail: pi.bozza@studenti.unina.it; Sorrentino, Giancarlo, E-mail: g.sorrentino@unina.it

    2015-10-15

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment ormore » condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the

  14. Long-Term High-Level Defense-Waste technology

    NASA Astrophysics Data System (ADS)

    1982-07-01

    In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.

  15. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  16. Impact of vent pipe diameter on characteristics of waste degradation in semi-aerobic bioreactor landfill.

    PubMed

    Jiang, Guobin; Liu, Dan; Chen, Weiming; Ye, Zhicheng; Liu, Hong; Li, Qibin

    2017-10-01

    The evolution mechanism of a vent pipe diameter on a waste-stabilization process in semi-aerobic bioreactor landfills was analyzed from the organic-matter concentration, biodegradability, spectral characteristics of dissolved organic matter, correlations and principal-component analysis. Waste samples were collected at different distances from the vent pipe and from different landfill layers in semi-aerobic bioreactor landfills with different vent pipe diameters. An increase in vent pipe diameter favored waste degradation. Waste degradation in landfills can be promoted slightly when the vent pipe diameter increases from 25 to 50 mm. It could be promoted significantly when the vent pipe diameter was increased to 75 mm. The vent pipe diameter is important in waste degradation in the middle layer of landfills. The dissolved organic matter in the waste is composed mainly of long-wave humus (humin), short-wave humus (fulvic acid) and tryptophan. The humification levels of the waste that was located at the center of vent pipes with 25-, 50- and 75-mm diameters were 2.2682, 4.0520 and 7.6419 Raman units, respectively. The appropriate vent pipe diameter for semi-aerobic bioreactor landfills with an 800-mm diameter was 75 mm. The effect of different vent pipe diameters on the degree of waste stabilization is reflected by two main components. Component 1 is related mainly to the content of fulvic acid, biologically degradable material and organic matter. Component 2 is related mainly to the content of tryptophan and humin from the higher vascular plants.

  17. Technology Demonstration Summary Site Program Demonstration Test Soliditech Inc Solidification-stabilization Process

    EPA Science Inventory

    The major objective of the Soliditech, Inc., SITE demonstration was to develop reliable performance and cost information about the Soliditech solidification, stabilization technology. The Soliditech process mixes hazardous waste materials with Portland cement or pozzolanic m...

  18. Slope failures in municipal solid waste dumps and landfills: a review.

    PubMed

    Blight, Geoffrey

    2008-10-01

    Between 1977 and 2005 six large-scale failures of municipal solid waste dumps and landfills have been recorded in the technical literature. The volumes of waste mobilized in the failures varied from 10-12 000 m(3) in a failure that killed nearly 300 people to 1.5 million m(3) in a failure that caused no deaths or injuries. Of the six failures, four occurred in dumps that, as far as is known, had not been subjected to any prior technical investigation of their shear stability. The remaining two failures occurred in engineer-designed landfills, one of which practised leachate recirculation, and the other co-disposed of liquid waste along with solid waste. The paper reviews, describes and analyses the failures and summarizes their causes.

  19. Zirconia ceramics for excess weapons plutonium waste

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  20. Changes of parameters during composting of bio-waste collected over four seasons.

    PubMed

    Hanc, Ales; Ochecova, Pavla; Vasak, Filip

    2017-07-01

    This study investigated the evolution of several main parameters during the composting of separately collected household bio-waste originating from urban settlements (U-bio-waste) and family houses (F-bio-waste) from four climate seasons. When comparing both types of composts, U-bio-waste compost contained a higher amount of nutrients, however F-bio-waste compost was characterized by greater yield, greater availability of phosphorus and magnesium, and faster stability. In terms of seasons, compost from bio-waste collected in spring contained the highest amount of nutrients, reflecting the high content of nutrients in plant feedstock. Dissolved organic carbon and pH in U- and F-bio-waste compost, respectively, frequently showed close relationships with other parameters. The seasonal variations of most of the parameters in the composts were found to be lower compared to the variations observed in the feedstocks. The greatest seasonal variation was found in nitrate nitrogen, which is the reason for the more frequent analysis of this parameter.

  1. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    PubMed

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  2. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    PubMed

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  4. Linking slope stability and climate change: the Nordfjord region, western Norway, case study

    NASA Astrophysics Data System (ADS)

    Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.

    2009-12-01

    Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.

  5. MANAGING ARSENIC CONTAMINATED SOIL, SEDIMENT, AND INDUSTRIAL WASTE WITH SOLIDIFICATION/STABILIZATION TREATMENT

    EPA Science Inventory

    Arsenic contamination of soil, sediment and groundwater is a widespread problem in certain areas and has caused great public concern due to increased awareness of the health risks. Often the contamination is naturally occurring, but it can also be a result of waste generated from...

  6. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    PubMed Central

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  7. Thermodynamic model of natural, medieval and nuclear waste glass durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt frommore » the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.« less

  8. Disposal of Liquid Wastes from Parlors and Milkhouses. Special Circular 154.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides information to assist in assessing the pollution potential of liquid wastes from parlors and milkhouses. Approaches to resolving problems through stabilization lagoons, irrigation, and tank collection as mandated in statutory authority are discussed. (CS)

  9. Results of the freeze resistance test, swelling index and coefficient of permeability of finegrained mining waste reinforced with cements

    NASA Astrophysics Data System (ADS)

    Morman, Justyna

    2018-04-01

    The article presents the result of laboratory tests for mining waste with grain size of 0 to 2 mm stabilized with cement. Used for stabilization of cement CEM I 42.5 R and blast furnace cement CEM III / A 42.5N - LH / HSR / NA and a plasticizer sealant. Cement was added to the mining waste test in the proportions of 5 - 8% in relation to the skeleton's weight. For the cemented samples, the freeze resistance test, swelling index, coefficient of permeability and pH of water leachate were tested. The addition of a cement binder resulted in diminishing the water permeability of mining waste and limiting the leaching of fine particles from the material.

  10. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target formore » cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests

  11. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  12. Pickering Particles Prepared from Food Waste

    PubMed Central

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-01-01

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings. PMID:28773909

  13. Recovery of essential nutrients from municipal solid waste--Impact of waste management infrastructure and governance aspects.

    PubMed

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-01

    Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  15. Changes on aggregation in mine waste amended with biochar and marble mud

    NASA Astrophysics Data System (ADS)

    Ángeles Muñoz, María; Guzmán, Jose; Zornoza, Raúl; Moreno-Barriga, Fabián; Faz, Ángel; Lal, Rattan

    2016-04-01

    Mining activities have produced large amounts of wastes over centuries accumulated in tailing ponds in Southeast Spain. Applications of biochar may have a high potential for reclamation of degraded soils. Distribution, size and stability of aggregates are important indices of soil physical quality. However, research data on aggregation processes at amended mining tailings with biochar are scanty. Therefore, the aim of this study was to determine the effects of seven different treatments involving biochar and marble mud (MM) on the aggregation in mine waste (MW). Seven different treatments were tested after 90 days of incubation in the laboratory. These treatments were the mix of MW and: biochar from solid pig manure (PM), biochar from cotton crop residues (CR), biochar from municipal solid waste (MSW), marble mud (MM), PM+MM, CR+MM, MSW+MM and control without amendment. High sand percentages were identified in the MW. The biochars made from wastes (PM, CR, MSW) were obtained through pyrolysis of feedstocks. The water stability of soil aggregates was studied. The data on total aggregation were corrected for the primary particles considering the sandy texture of the MW. Moreover, partial aggregation was determined for each fraction and the mean weight diameter (MWD) of aggregates was computed. Soil bulk density and total porosity were also determined. No significant differences were observed in total aggregation and MWD among treatments including the control. For the size range of >4.75 mm, there were significant differences in aggregates > 4.75 mm between CR+MM in comparison with that for CT. There were also significant differences between MSW and PM+MM for the 1-0.425 mm fraction, and between CT and MM and CR for 0.425-0.162 mm aggregate size fractions. Therefore, CR-derived biochar applied with MM enhanced stability of macro-aggregates. Furthermore, soil bulk density was also the lowest bulk density and total porosity the highest for the CR-derived biochar

  16. A Socio-Technical Analysis of Computer Application within the Fourth Marine Aircraft Wing.

    DTIC Science & Technology

    1987-03-01

    IDENTIFICATION NUMBER ORGANIZATION j I applicable) SC ADDRE SS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM IPROjECT ITASK WORK .jNIr... currently being- used is not sufficient to meet all the needs of 14tii MAW , Z0 11YR’UTiON /AVAILABILITY Of ABSTRACT 21 ABSTRACT SECURITY...implementation process currently being used is not sufficient to meet all the needs of 4th MAW units. This study identifies alternatives necessary to

  17. Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) technology of mercury removal and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xiangdong; Liu, Jun; Fryxell, G.E.

    1997-09-01

    This paper explains the technology developed to produce Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) for mercury removal from aqueous wastewater and from organic wastes. The characteristics of SAMMS materials, including physical characteristics and mercury loading, and its application for mercury removal and stabilization are discussed. Binding kinetics and binding speciations are reported. Preliminary cost estimates are provided for producing SAMMS materials and for mercury removal from wastewater. The characteristics of SAMMS in mercury separation were studied at PNNL using simulated aqueous tank wastes and actual tritiated pump oil wastes from Savannah River Site; preliminary results are outlined. 47 refs., 16more » figs., 16 tabs.« less

  18. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.

    PubMed

    Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu

    2017-02-01

    Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. EC85-33205-07

    NASA Image and Video Library

    1985-10-18

    This photograph shows a modified General Dynamics AFTI/F-111A Aardvark with supercritical mission adaptive wings (MAW) installed. The four dark bands on the right wing are the locations of pressure orifices used to measure surface pressures and shock locations on the MAW. The El Paso Mountains and Red Rock Canyon State Park Califonia, about 30 miles northwest of Edwards Air Force Base, are seen directly in the background. With the phasing out of the TACT program came a renewed effort by the Air Force Flight Dynamics Laboratory to extend supercritical wing technology to a higher level of performance. In the early 1980s the supercritical wing on the F-111A aircraft was replaced with a wing built by Boeing Aircraft Company System called a “mission adaptive wing” (MAW), and a joint NASA and Air Force program called Advanced Fighter Technology Integration (AFTI) was born.

  20. Effects of leachate accumulation on landfill stability in humid regions of China.

    PubMed

    Jianguo, Jiang; Yong, Yang; Shihui, Yang; Bin, Ye; Chang, Zhang

    2010-05-01

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19m, which was higher than the top of the dam crest (8-20m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH(3)-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units capital I, Ukrainian and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Effects of leachate accumulation on landfill stability in humid regions of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Jianguo, E-mail: jianguoj@mail.tsinghua.edu.c; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education; Yang Yong

    2010-05-15

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19 m, which was higher than themore » top of the dam crest (8-20 m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH{sub 3}-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691 mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units I and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered.« less

  2. Reuse of polyethylene waste in road construction.

    PubMed

    Raju, S S S V Gopala; Murali, M; Rengaraju, V R

    2007-01-01

    The cost of construction of flexible pavements depends on thickness of the pavement layers. The thickness of pavement mainly depends on the strength of the subgrade. By suitable improvement to the strength of the subgrade, considerable saving in the scarce resources and economy can be achieved. Because of their lightweight, easy handling, non-breakable and corrosion free nature, polyethylene have surpassed all other materials in utility. But polyethylene waste has been a matter of concern to environmentalists as it is non-biodegradable. In this investigation, an attempt has been made to study the improvement of California Bearing Ratio (CBR) value of soils stabilized with waste polyethylene bags. This alternative material is mixed in different proportions to the gravel and clay to determine the improvement ofCBR value. Use of the waste polyethylene bags observed to have a significant impact on the strength and economy in pavement construction, when these are available locally in large quantities.

  3. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    PubMed

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge.

  4. DEMONSTRATION BULLETIN: MOLECULAR BONDING SYSTEM FOR HEAVY METALS STABILIZATION - SOLUCORP INDUSTRIES LTD.

    EPA Science Inventory

    This document presents an evaluation of the Molecular Bonding System (MBS) and its ability to chemically stabilize three metals-contaminated wstes/soils during a SITe demo. The MBS process treated approximately 500 tons each of soil/Fill, Slag, and Miscellaneous Smelter Waste wit...

  5. Compact, closed-loop controlled waste incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schadow, K.C.; Seeker, W.R.

    1999-07-01

    Technologies for solid and liquid waste destruction in compact incinerators are being developed in collaboration between industry, universities, and a Government laboratory. This paper reviews progress on one technology, namely active combustion control to achieve efficient and controlled afterburning of air-starved reaction products. This technology which uses synchronized waste gas injection into acoustically stabilized air vortices was transitioned to a simplified afterburner design and practical operational conditions. The full-scale, simplified afterburner, which achieved CO and NO{sub x} emissions of about 30 ppm with a residence time of less than 50 msec, was integrated with a commercially available marine incinerator tomore » increase throughput and reduce emissions. Closed-loop active control with diode laser sensors and novel control strategies was demonstrated on a sub-scale afterburner.« less

  6. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch; Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system,more » both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.« less

  7. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examinesmore » the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.« less

  8. Recycling of waste spent catalyst in road construction and masonry blocks.

    PubMed

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    PubMed

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE Smith; GF Piepel; GW Veazey

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durablemore » (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).« less

  11. Performance Evaluation and Adaptability Research of Flowing Gel System Prepared with Re-injected Waste Water

    NASA Astrophysics Data System (ADS)

    Shi, Lei; You, Jing; Liu, Na; Liu, Xinmin; Wang, Zhiqiang; Zhang, Tiantian; Gu, Yi; Guo, Suzhen; Gao, Shanshan

    2017-12-01

    The crosslinking intensity and stability of flowing gel system prepared with re-injected waste water are seriously affected as the high salinity waste water contains a high concentration of Na+, Fe2+, S2-, Ca2+, etc. The influence of various ions on the flowing gel system can be reduced by increasing polymer concentration, adding new ferric ion stabilizing agent (MQ) and calcium ion eliminating agent (CW). The technique of profile controlling and oil-displacing is carried out in Chanan multi-purpose station, Chabei multi-purpose station and Chayi multi-purpose station of Huabei Oilfield. The flowing gel system is injected from 10 downflow wells and the 15 offsetting production wells have increased the yield by 1770 tons.

  12. SUMMARY OF SOLIDIFICATION/STABILIZATION SITE DEMONSTRATIONS AT UNCONTROLLED HAZARDOUS WASTE SITES

    EPA Science Inventory

    Four large-scale solidification/stabilization demonstrations have occurred under EPA's SITE program. In general, physical testing results have been acceptable. Reduction in metal leachability, as determined by the TCLP test, has been observed. Reduction in organic leachability ha...

  13. An alternative method for the treatment of waste produced at a dye and a metal-plating industry using natural and/or waste materials.

    PubMed

    Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos

    2004-08-01

    The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.

  14. High rate composting of herbal pharmaceutical industry solid waste.

    PubMed

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  15. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    NASA Technical Reports Server (NTRS)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  16. Calcium phosphate stabilization of fly ash with chloride extraction.

    PubMed

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  17. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  18. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.

    PubMed

    Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.

  19. Radiation and Thermal Ageing of Nuclear Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less

  20. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    PubMed

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have

  2. Constructed wetlands and waste stabilization ponds for small rural communities in the United Kingdom: a comparison of land area requirements, performance and costs.

    PubMed

    Mara, D D

    2006-07-01

    Land area requirements for secondary subsurface horizontal-flow constructed wetlands (CW) and primary and secondary facultative ponds with either unaerated or aerated rock filters were determined for three levels of effluent quality: that specified in the Urban Waste Water Treatment Directive (UWWTD) (< or = 25 mg filtered BOD l(-1) and < or = 150 mg SS l(-1) for waste stabilization ponds (WSP) effluents, and < or = 25 mg unfiltered BOD l(-1) for CW effluents (mean values); and two common requirements of the Environment Agency: < or = 40 mg BOD l(-1) and < or = 60 mg SS l(-1), and < or = 10 mg BOD l(-1), < or = 15 mg SS l(-1) and < or = 5 mg ammonia-N l(-1) (95-percentile values). A secondary CW requires 60 percent more land than a secondary facultative pond to produce an UWWTD-quality effluent, 38 percent more land than a secondary facultative pond and an unaerated rock filter to produce a 40/60 effluent and, were it to be used to produce a 10/15/5 effluent, it would require approximately 480 percent more land than a secondary facultative pond and an aerated rock filter. Its estimated 2005 cost is pound 1100-2600 p.e.(-1), whereas that of a primary facultative pond and rock filter is approximately pound 400 p.e.(-1). On the basis of land area requirements, performance and cost, facultative ponds and unaerated or aerated rock filters are to be preferred to secondary subsurface horizontal-flow constructed wetlands.

  3. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.

    PubMed

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim

    2014-08-30

    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1975-01-01

    A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.

  5. Reducing barriers associated with delivering health care services to migratory agricultural workers.

    PubMed

    Schmalzried, Hans D; Fallon, L Fleming

    2012-01-01

    Between one and two million migratory agricultural workers (MAWs), primarily from Mexico and Central America, leave their homes each year to plant, cultivate, harvest and pack fruits, vegetables, and nuts in the USA. While in the USA, most lack health insurance, a permanent residence, and a regular healthcare provider. Publications over the past two decades in the USA have reported that a majority of MAWs encounter barriers to receiving medical services. Migratory agricultural workers experience high rates of occupational illness and injury. Poor access to medical care continues to exacerbate health problems among members of this population related to their working environments. In most studies concerning healthcare access issues for this population, researchers collected their information from healthcare service providers; rarely have they included input from migratory agricultural workers. This study was different in that opinions about healthcare access issues were collected directly from MAWs. The primary purpose of this study was to describe issues related to barriers associated with the delivery of healthcare services to migratory agricultural workers. A secondary purpose was to suggest strategies for reducing these barriers. In this study, data from focus group sessions were used to develop a survey questionnaire. Four certified bilingual interpreters were trained to administer the questionnaire. A total of 157 usable questionnaires were returned from MAWs living in employer-provided camps in Northwest Ohio. The statistical analyses were primarily descriptive. The most significant barriers hampering access to medical services among the 157 respondents were cost (n=113; 72.0%), crop demands (n=102; 65.0%), the lack of an interpreter (n=98; 62.4%), travel distance (n=88; 56.1%) and transportation (n=82; 52.2%). Approximately half (n=82; 52.2%) said that they had access to transportation for traveling to a medical clinic. As a group, respondents were willing to

  6. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel; Ok, Yong Sik; Al-Wabel, Mohammad I

    2017-03-23

    Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R 50 ) of the materials, which speculated high degradability of biomass (R 50  < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R 50  < 0.7) and high recalcitrant nature of silica composited biochars (R 50  > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.

  7. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  8. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, Catherine L.; Funk, David John; Vigil-Holterman, Luciana R.

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide themore » basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.« less

  9. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    PubMed

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale.

  10. Decommissioning of the TRIGA mark II and III and radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doo Seong Hwang; Yoon Ji Lee; Gyeong Hwan Chung

    2013-07-01

    KAERI has carried out decommissioning projects for two research reactors (KRR-1 and 2). The decommissioning project of KRR-1 (TRIGA Mark II) and 2 (TRIGA Mark III) was launched in 1997 with a total budget of 23.25 million US dollars. KRR-2 and all auxiliary facilities were already decommissioned, and KRR-1 is being decommissioned now. Much more dismantled waste is generated than in any other operations of nuclear facilities. Thus, the waste needs to be reduced and stabilized through decontamination or treatment before disposal. This paper introduces the current status of the decommissioning projects and describes the volume reduction and conditioning ofmore » decommissioning waste for final disposal. (authors)« less

  11. Monitoring technologies for ocean disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  12. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  13. Porosity structure of green polybag of medium density fiberboard from seaweed waste

    NASA Astrophysics Data System (ADS)

    Alamsjah, M. A.; Subekti, S.; Lamid, M.; Pujiastuti, D. Y.; Kurnia, H.; Rifadi, R. R.

    2018-04-01

    The last decade shown that the needs Medium Density Fibreboard (MDF) rapidly growing in Asia Pacific and Europe up to more 15 % per year. MDF made up of fibers lignoselulosa which combined with synthetic resin or tied other suitable but high temperatures and pressure. Technology engineering for green polybag of MDF from seaweed waste of Kappaphycus alvarezii and Gracilaria verrucosa is an alternative effort for ecosystem stability and technological innovations that is environmentally friendly. Structure porosity from the shape of green polybag shows that performance seaweed waste of K. alvarezii is better than seaweed waste of G. verrucosa. The circulation of water happened more optimal in green polybag formed from MDF of seaweed waste of K. alvarezii with size porosity 3.976 µm, while size porosity of seaweed waste of G. verrucosa measurable 4.794 µm. Structure of green polybag of MDF from seaweed waste showed that C components greater 50 % to K. alvarezii while C components less than 50 % to G. verrucosa. This resulted in the ties to structure of MDF stronger found in green polybag derived from seaweed waste of K. alvarezii than G. verrucosa.

  14. Localized chemistry of 99Tc in simulated low activity waste glass

    NASA Astrophysics Data System (ADS)

    Weaver, Jamie L.

    A priority of the United States Department of Energy (DOE) is to dispose of the nuclear waste accumulated in the underground tanks at the Hanford Nuclear Reservation in Richland, WA. Incorporation and stabilization of technetium (99Tc) from these tanks into vitrified waste forms is a concern to the waste glass community and DOE due to 99Tc's long half-life ( 2.13˙105 y), and its high mobility in the subsurface environment under oxidizing conditions. Working in collaboration with researchers at Pacific Northwest National Laboratory (PNNL) and other national laboratories, plans were formulated to obtain first-of-a-kind chemical structure determination of poorly understood and environmentally relevant technetium compounds that relate to the chemistry of the Tc in nuclear waste glasses. Knowledge of the structure and spectral signature of these compounds aid in refining the understanding of 99Tc incorporation into and release from oxide based waste glass. In this research a first-of-its kind mechanism for the behavior of 99Tc during vitrification is presented, and the structural role of Tc(VII) and (IV) in borosilicate waste glasses is readdressed.

  15. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  16. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  17. Flow Distribution Control Characteristics in Marine Gas Turbine Waste- Heat Recovery Systems. Phase 2. Flow Distribution Control in Waste-Heat Steam Generators

    DTIC Science & Technology

    1982-07-01

    waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed

  18. Coupling model of aerobic waste degradation considering temperature, initial moisture content and air injection volume.

    PubMed

    Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan

    2018-03-01

    A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.

  19. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  20. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    PubMed

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Resource recovery of food waste through continuous thermophilic in-vessel composting.

    PubMed

    Waqas, Mohammad; Almeelbi, Talal; Nizami, Abdul-Sattar

    2018-02-01

    In the Kingdom of Saudi Arabia (KSA) and Gulf region, a very small amount of municipal solid waste (MSW) is treated for compost production. The produced compost through traditional methods of compost piles and trenches does not coincide with the international standards of compost quality. Therefore, in this study, a continuous thermophilic composting (CTC) method is introduced as a novel and efficient technique for treating food waste into a quality compost in a short period of time. The quality of the compost was examined by degradation rates of organic matter (OM), changes in total carbon (TC), ash contents, pH, dynamics in ammonium nitrogen (NH 4 -N) and nitrate nitrogen (NO 3 -N), and nitrification index (NI). The results showed that thermophilic treatment at 60 °C increased the pH of the substrate and promoted degradation and mineralization process. After 30 days of composting, the degree of OM degradation was increased by 43.26 and 19.66%, NH 4 -N by 65.22 and 25.23%, and NO 3 -N by 44.76 and 40.05% as compared to runs treated at 25 and 40 °C, respectively. The stability of the compost was attained after 30 to 45 days with quality better than the compost that was stabilized after 60 days of the experiment under mesophilic treatment (25 °C). The final compost also showed stability at room temperature, confirming the rapid degradation and maturation of food waste after thermophilic treatment. Moreover, the quality of produced compost is in line with the compost quality standard of United States (US), California, Germany, and Austria. Hence, CTC can be implemented as a novel method for rapid decomposition of food waste into a stable organic fertilizer in the given hot climatic conditions of KSA and other Gulf countries with a total net saving of around US $70.72 million per year.

  2. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.

    PubMed

    Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K

    2017-01-15

    The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (E a ) and pre-exponential factor (k 0 ) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, E a and k 0 of pure PLA are 57.54kJ/mol and 9.74×10 7 day -1 , respectively, but 65.5kJ/mol and 9.81×10 8 day -1 for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature. We systematically evaluate the effects of compression stress and temperature on the degradation properties of two materials: (pure-PLA) and MAO-MAWs/PLA (or Mg/PLA). The initial in vitro degradation kinetics of the unstressed or stressed pure-PLA and MAO-MAWs/PLA composite is confirmed to be Arrhenius-like. MAO-MAWs and external compression stress would influence the degradation activation energy (E a ) and pre-exponential factor (k 0 ) of PLA, and we noticed there is a linear relationship between E a and ln k 0 . Thereafter, we noticed that Mg 2+ , not H + , plays a significant role on the

  3. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  4. Case study comparison of functional vs. organic stability approaches for assessing threat potential at closed landfills in the USA.

    PubMed

    O'Donnell, Sean T; Caldwell, Michael D; Barlaz, Morton A; Morris, Jeremy W F

    2018-05-01

    Municipal solid waste (MSW) landfills in the USA are regulated under Subtitle D of the Resource Conservation and Recovery Act (RCRA), which includes the requirement to protect human health and the environment (HHE) during the post-closure care (PCC) period. Several approaches have been published for assessment of potential threats to HHE. These approaches can be broadly divided into organic stabilization, which establishes an inert waste mass as the ultimate objective, and functional stability, which considers long-term emissions in the context of minimizing threats to HHE in the absence of active controls. The objective of this research was to conduct a case study evaluation of a closed MSW landfill using long-term data on landfill gas (LFG) production, leachate quality, site geology, and solids decomposition. Evaluations based on both functional and organic stability criteria were compared. The results showed that longer periods of LFG and leachate management would be required using organic stability criteria relative to an approach based on functional stability. These findings highlight the somewhat arbitrary and overly stringent nature of assigning universal stability criteria without due consideration of the landfill's hydrogeologic setting and potential environmental receptors. This supports previous studies that advocated for transition to a passive or inactive control stage based on a performance-based functional stability framework as a defensible mechanism for optimizing and ending regulatory PCC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J.; Dandeneau, C.

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less

  6. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    PubMed

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  7. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  8. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    NASA Technical Reports Server (NTRS)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space

  9. Spectroscopic Properties of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Andersen, Amity; Chatterjee, Sayandev

    2015-12-04

    Technetium-99 (Tc) exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, attempts to remove Tc from the Hanford tank waste using ion-exchange processes specific to TcO 4 - only met with limited success, particularly processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as non-pertechnetate low-valent Tc (oxidation statemore » < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [Tc(CO) 3] + complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last two years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [Tc(CO) 3] + species (Rapko et al. 2013; Levitskaia et al. 2014). It also was observed that high-ionic-strength alkaline matrices stabilize Tc(VI) and potentially Tc(IV) oxidation states, particularly in presence organic chelators, suggesting that the relevant Tc compounds can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc processing, including separation and immobilization, necessitates understanding the molecular structure of these non-pertechnetate species and their identification in the actual tank waste samples. To-date, only limited information exists regarding the nature and characterization of the Tc(I), Tc(IV), and Tc(VI) species. One objective of this project is to identify the form of non-pertechnetate in the

  10. Effect of leachate recirculation on mesophilic anaerobic digestion of food waste.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-03-01

    The effects of using untreated leachate for supplemental water addition and liquid recirculation on anaerobic digestion of food waste was evaluated by combining cyclic water recycle operations with batch mesophilic biochemical methane potential (BMP) assays. Cyclic BMP assays indicated that using an appropriate fraction of recycled leachate and fresh make up water can stimulate methanogenic activity and enhance biogas production. Conversely increasing the percentage of recycled leachate in the make up water eventually causes methanogenic inhibition and decrease in the rate of food waste stabilization. The decrease in activity is exacerbated as the number cycles increases. Inhibition is possibly attributed to accumulation and elevated concentrations of ammonia as well as other waste by products in the recycled leachate that inhibit methanogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  13. Development of an integrated transuranic waste management system for a large research facility: NUCEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao

    1997-03-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less

  14. Characterization of Non-pertechnetate Species Relevant to the Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Andersen, Amity; Du, Yingge

    Among radioactive constituents present in the tank waste stored at the U.S. DOE Hanford Site, technetium-99 (Tc), which is generated from the fission of 235U and 239Pu in high yields, presents a unique challenge in that it has a long half-life ( = 292 keV; T1/2 = 2.11105 y) and exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the waste. In the strongly alkaline environments prevalent in most of the tank waste, its dominant chemical form is pertechnetate (TcO 4 -, oxidation state +7). However, attempts to remove Tc from the Hanford tank wastemore » using ion-exchange processes specific to TcO 4 - only met with limited success, particularly when processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as low-valent Tc (oxidation state < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [fac-Tc(CO) 3] + complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last three years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [fac-Tc(CO) 3] + species (Rapko et al. 2013a; 2013b; Levitskaia et al. 2014; Chatterjee et al. 2015). Obtained results also suggest possible stabilization of Tc(VI) and potentially Tc(IV) oxidation states in the high-ionic-strength alkaline matrices particularly in the presence of organic chelators, so that Tc(IV, VI) can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc management, including separation and immobilization, necessitates understanding the molecular structure of the non-pertechnetate species and their

  15. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hazardous Waste Minimization Assessment: Fort Sam Houston, Texas

    DTIC Science & Technology

    1991-01-01

    filtration, and waste stabilization. Biological treatment processes rely on microorganisms ( bacteria , fungi, etc.) to decompose and/or bioaccumulate the...North Lemon Street Recycler, spent batteries X Anaheim, CA 92801 Lubrication Co. of America (213) 264-1091 4212 East Pacific Way Hauler, processor X...Hauler, seller, processor X Santa Ana, CA 92707 Pacific Treatment Corp. (619) 233-0863 2190 Main Street Processor X X San Diego, CA 92113 Pepper Oil

  17. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste

    PubMed Central

    Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964

  18. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.

    PubMed

    Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.

  19. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  20. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    NASA Astrophysics Data System (ADS)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  1. Aqueous solubility diagrams for cementitious waste stabilization systems. 3. Mechanism of zinc immobilizaton by calcium silicate hydrate.

    PubMed

    Tommaseo, C E; Kersten, M

    2002-07-01

    Zinc oxide was added during hydration of alite (C3S) as an analogue for solidification/stabilization by cement of metal-bearing hazardous waste. Curing of samples was stopped at various intervals between 8 h and 100 d, and the reaction products were analyzed by both X-ray diffraction (XRD) and X-ray absorption spectroscopy (EXAFS at Zn, Ca, and Si K-edges). Calcium zincate hydrate (CaZn2(OH)6 x 2H2O) initially formed together with calcium silicate hydrate (CSH) vanishes from X-ray diffractograms after 14 d, and no other crystalline Zn-bearing phase could be detected thereafter. EXAFS Zn K-edge data analysis reveals that Zn(O,OH)4 tetrahedra continue to determine the first shell coordination. However, a new Zn-Si bond appears in the second coordination shell as indicated by both Zn K-edge and Si K-edge EXAFS. Together with the Ca-Zn and Ca-Ca shells derived from the Ca K-edge EXAFS spectra, a structural model for the site occupation of Zn in CSH is proposed, whereby the Zn(O,OH)4 tetrahedra are bound in layer rather than interlayer positions substituting for the silicate bridging tetrahedra and/or at terminal silicate chain sites. This structural model enables ultimately the formulation of a thermodyamic Lippmann model to predict the aqueous solubility of Zn in solid solution with a CSH phase of a Ca/Si ratio fixed to unity.

  2. Incident Waste Decision Support Tool - Waste Materials ...

    EPA Pesticide Factsheets

    Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.

  3. Properties of lightweight cement-based composites containing waste polypropylene

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  4. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needsmore » to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.« less

  5. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  6. Radiation Stability of Benzyl Tributyl Ammonium Chloride towards Technetium-99 Extraction - 13016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, Patricia; Horkley, Jared; Campbell, Keri

    2013-07-01

    been launched to investigate the suitability of new macro-compounds such as crown-ethers, aza-crown ethers, quaternary ammonium salts, and resorcin-arenes for the selective extraction of Tc-99 from nitric acid solutions. The selectivity of the ligand is important in evaluating potential separation processes and also the radiation stability of the molecule is essential for minimization of waste and radiolysis products. In this paper, we are reporting the extraction of TcO{sub 4}{sup -} by benzyl tributyl ammonium chloride (BTBA). Experimental efforts were focused on determining the best extraction conditions by varying the ligand's matrix conditions and concentration, as well as varying the organic phase composition (i.e. diluent variation). Furthermore, the ligand has been investigated for radiation stability. The ?-irradiation was performed on the neat organic phases containing the ligand at different absorbed doses to a maximum of 200 kGy using an external Co-60 source. Post-irradiation solvent extraction measurements will be discussed. (authors)« less

  7. Rapid Sand Filtration for Best Practical Treatment of Domestic Wastewater Stabilization Pond Effluent

    ERIC Educational Resources Information Center

    Boatright, D. T.; Lawrence, C. H.

    1977-01-01

    The technical and economic feasibility of constructing and operating a rapid sand filtration sewage treatment system as an adjunct to a waste water stabilization pond is investigated. The study concludes that such units are within the technical and economic constraints of a small community and comply with the EPA criteria. (BT)

  8. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  9. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel

    2012-08-30

    As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Coal tar-containing asphalt - resource or hazardous waste?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Skold, Y.; Andersson, K.; Lind, B.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. Themore » transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.« less

  11. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  12. Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms.

    PubMed

    Domene, Xavier; Alcañiz, Josep M; Andrés, Pilar

    2008-02-01

    Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids.

  13. Optimization of food waste compost with the use of biochar.

    PubMed

    Waqas, M; Nizami, A S; Aburiazaiza, A S; Barakat, M A; Ismail, I M I; Rashid, M I

    2018-06-15

    This paper aims to examine the influence of biochar produced from lawn waste in accelerating the degradation and mineralization rates of food waste compost. Biochar produced at two different temperatures (350 and 450 °C) was applied at the rates 10 and 15% (w/w) of the total waste to an in-vessel compost bioreactor for evaluating its effects on food waste compost. The quality of compost was assessed against stabilization indices such as moisture contents (MC), electrical conductivity (EC), organic matters (OM) degradation, change in total carbon (TC) and mineral nitrogen contents such as ammonium (NH 4 + ) and nitrate (NO 3 - ). The use of biochar significantly improved the composting process and physiochemical properties of the final compost. Results showed that in comparison to control trial, biochar amended compost mixtures rapidly achieved the thermophilic temperature, increased the OM degradation by 14.4-15.3%, concentration of NH 4 + by 37.8-45.6% and NO 3 - by 50-62%. The most prominent effects in term of achieving rapid thermophilic temperature and a higher concentration of NH 4 + and NO 3 - were observed at 15% (w/w) biochar. According to compost quality standard of United States (US), California, Germany, and Austria, the compost stability as a result of biochar addition was achieved in 50-60 days. Nonetheless, the biochar produced at 450 °C had similar effects as to biochar produced at 350 °C for most of the compost parameters. Therefore, it is recommended to produce biochar at 350 °C to reduce the energy requirements for resource recovery of biomass and should be added at a concentration of 15% (w/w) to the compost bioreactor for achieving a stable compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characteristics of solidified products containing radioactive molten salt waste.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  15. Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe3O4 Nanocomposite Based Supercapacitors: Turning Wastes into Value-Added Materials.

    PubMed

    Vadiyar, Madagonda M; Liu, Xudong; Ye, Zhibin

    2018-05-14

    In the present work, we demonstrate the synthesis of porous activated carbon (specific surface area, 1,883 m2 g-1), Fe3O4 nanoparticles, and carbon-Fe3O4 nanocomposites using local waste thermocol sheets and rusted iron wires. The resulting carbon, Fe3O4 nanoparticles, and carbon-Fe3O4 composites are used as electrode materials for supercapacitor application. In particular, C-Fe3O4 composite electrodes exhibit a high specific capacitance of 1,375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % of capacitance retention over 10,000 cycles. Subsequently, asymmetric supercapacitor, i. e., C-Fe3O4//Ni(OH)2/CNT device exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, showing 98% of capacitance retention over 10,000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors but also for the recycling of waste thermocol sheets and rust iron wires for value-added reuse. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Where next on e-waste in Australia?

    PubMed

    Golev, Artem; Schmeda-Lopez, Diego R; Smart, Simon K; Corder, Glen D; McFarland, Eric W

    2016-12-01

    For almost two decades waste electrical and electronic equipment, WEEE or e-waste, has been considered a growing problem that has global consequences. The value of recovered materials, primarily in precious and base metals, has prompted some parts of the world to informally and inappropriately process e-waste causing serious environmental and human health issues. Efforts in tackling this issue have been limited and in many ways unsuccessful. The global rates for formal e-waste treatment are estimated to be below the 20% mark, with the majority of end-of-life (EoL) electronic devices still ending up in the landfills or processed through rudimentary means. Industrial confidentiality regarding device composition combined with insufficient reporting requirements has made the task of simply characterizing the problem difficult at a global scale. To address some of these key issues, this paper presents a critical overview of existing statistics and estimations for e-waste in an Australia context, including potential value and environmental risks associated with metals recovery. From our findings, in 2014, on average per person, Australians purchased 35kg of electrical and electronic equipment (EEE) while disposed of 25kg of WEEE, and possessed approximately 320kg of EEE. The total amount of WEEE was estimated at 587kt worth about US$ 370million if all major metals are fully recovered. These results are presented over the period 2010-2014, detailed for major EEE product categories and metals, and followed by 2015-2024 forecast. Our future projection, with the base scenario fixing EEE sales at 35kg per capita, predicts stabilization of e-waste generation in Australia at 28-29kg per capita, with the total amount continuing to grow along with the population growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.

    PubMed

    El-Sebaie, O; Ahmed, M; Ramadan, M

    2000-01-01

    The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.

  18. Norfolk Southern boxcar blocking/bracing plan for the mixed waste disposal initiative project. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seigler, R.S.

    The US Department of Energy`s (DOE) Environmental Restoration and Waste Management programs will dispose of mixed waste no longer deemed useful. This project is one of the initial activities used to help meet this goal. The project will transport the {approximately}46,000 drums of existing stabilized mixed waste located at the Oak Ridge K-25 Site and presently stored in the K-31 and K-33 buildings to an off-site commercially licensed and permitted mixed waste disposal facility. Shipping and disposal of all {approximately}46,000 pond waste drums ({approximately}1,000,000 ft{sup 3} or 55,000 tons) is scheduled to occur over a period of {approximately}5--10 years. Themore » first shipment of stabilized pond waste should transpire some time during the second quarter of FY 1994. Martin Marietta Energy Systems, Inc., proposes to line each of the Norfolk Southem boxcars with a prefabricated, white, 15-mm low-density polyethylene (LDPE) liner material. To avoid damaging the bottom of the polyethylene floor liner, a minimum .5 in. plywood will be nailed to the boxcars` nailable metal floor. At the end of the Mixed Waste Disposal Initiative (MWDI) Project workers at the Envirocare facility will dismantle and dispose of all the polyethylene liner and plywood materials. Envirocare of Utah, Inc., located in Clive, Utah, will perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Energy Systems. Energy Systems will also perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Norfolk Southem Railroad.« less

  19. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Adams, Ryan A.; Arora, Anjela

    The recycling of waste-tire rubber is of critical importance since the discarded tires pose serious environmental and health hazards to our society. Here, we report a new application for hard-carbon materials derived from waste-tires as anodes in potassium-ion batteries. The sustainable tire-derived carbons show good reversible potassium insertion at relatively high rates. Long-term stability tests exhibit capacities of 155 and 141 mAh g –1 for carbon pyrolyzed at 1100°C and 1600°C, respectively, after 200 cycles at current rate of C/2. As a result, this study provides an alternative solution for inexpensive and environmental benign potassium-ion battery anode materials.

  1. Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber

    DOE PAGES

    Li, Yunchao; Adams, Ryan A.; Arora, Anjela; ...

    2017-04-13

    The recycling of waste-tire rubber is of critical importance since the discarded tires pose serious environmental and health hazards to our society. Here, we report a new application for hard-carbon materials derived from waste-tires as anodes in potassium-ion batteries. The sustainable tire-derived carbons show good reversible potassium insertion at relatively high rates. Long-term stability tests exhibit capacities of 155 and 141 mAh g –1 for carbon pyrolyzed at 1100°C and 1600°C, respectively, after 200 cycles at current rate of C/2. As a result, this study provides an alternative solution for inexpensive and environmental benign potassium-ion battery anode materials.

  2. EC86-33385-002

    NASA Image and Video Library

    1986-02-27

    This photograph shows a modified General Dynamics AFTI/F-111A Aardvark in flight with supercritical mission adaptive wings (MAW) installed. With the phasing out of the TACT program came a renewed effort by the Air Force Flight Dynamics Laboratory to extend supercritical wing technology to a higher level of performance. In the early 1980s the supercritical wing on the F-111A aircraft was replaced with a wing built by Boeing Aircraft Company System called a “mission adaptive wing” (MAW), and a joint NASA and Air Force program called Advanced Fighter Technology Integration (AFTI) was born.

  3. Post-treatment of UASB reactor effluent in waste stabilization ponds and in horizontal flow constructed wetlands: a comparative study in pilot scale in Southeast Brazil.

    PubMed

    Bastos, R K X; Calijuri, M L; Bevilacqua, P D; Rios, E N; Dias, E H O; Capelete, B C; Magalhães, T B

    2010-01-01

    The results of a 20-month period study in Brazil were analyzed to compare horizontal-flow constructed wetlands (CW) and waste stabilization pond (WSP) systems in terms of land area requirements and performance to produce effluent qualities for surface water discharge, and for wastewater use in agriculture and/or aquaculture. Nitrogen, E. coli and helminth eggs were more effectively removed in WSP than in CW. It is indicated that CW and WSP require similar land areas to achieve a bacteriological effluent quality suitable for unrestricted irrigation (10(3) E. coli per 100 mL), but CW would require 2.6 times more land area than ponds to achieve quite relaxed ammonia effluent discharge standards (20 mg NH(3) L(-1)), and, by far, more land than WSP to produce an effluent complying with the WHO helminth guideline for agricultural use (< or =1 egg per litre).

  4. MUNICIPAL WASTE COMBUSTION ASSESSMENT: WASTE CO-FIRING

    EPA Science Inventory

    The report is an overview of waste co-firing and auxiliary fuel fired technology and identifies the extent to which co-firing and auxiliary fuel firing are practised. Waste co-firing is defined as the combustion of wastes (e. g., sewage sludge, medical waste, wood waste, and agri...

  5. MUNICIPAL WASTE COMBUSTION ASSESSMENT: WASTE CO- FIRING

    EPA Science Inventory

    The report is an overview of waste co-firing and auxiliary fuel fired technology and identifies the extent to which co-firing and auxiliary fuel firing are practised. Waste co-firing is defined as the combustion of wastes (e. g., sewage sludge, medical waste, wood waste, and agri...

  6. U.S. Department of Energy's initiatives for proliferation prevention program: solidification technologies for radioactive waste treatment in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhitonov, Y.; Kelley, D.

    Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950's as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopinmore » Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer's effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE's 'Initiatives for Proliferation Prevention'(IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present details of U.S. DOE's IPP program, the project structure and its objectives both short and long-term, training programs for scientists, polymer tests and applications for LLW, ILW and HLW, and new product development initiatives. (authors)« less

  7. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways.

    PubMed

    Algapani, Dalal E; Qiao, Wei; di Pumpo, Francesca; Bianchi, David; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2018-01-01

    Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H 2 and CH 4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H 2 and 15d for CH 4 . Overall, around 59% of the total COD in FW was converted into H 2 (4%) and into CH 4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H 2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway. Copyright © 2017. Published by Elsevier Ltd.

  8. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  9. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline.more » These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.« less

  10. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N. Thompson; Erik R. Coats; William A. Smith

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activatedmore » sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.« less

  11. Transesterification reaction of the fat originated from solid waste of the leather industry.

    PubMed

    Işler, Asli; Sundu, Serap; Tüter, Melek; Karaosmanoğlu, Filiz

    2010-12-01

    The leather industry is an industry which generates a large amount of solid and liquid wastes. Most of the solid wastes originate from the pre-tanning processes while half of it comes from the fleshing step. Raw fleshing wastes which mainly consist of protein and fat have almost no recovery option and the disposal is costly. This study outlines the possibility of using the fleshing waste as an oil source for transesterification reaction. The effect of oil/alcohol molar ratio, the amount of catalyst and temperature on ester production was individually investigated and optimum reaction conditions were determined. The fuel properties of the ester product were also studied according to the EN 14214 standard. Cold filter plugging point and oxidation stability have to be improved in order to use the ester product as an alternative fuel candidate. Besides, this product can be used as a feedstock in lubricant production or cosmetic industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  13. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been

  14. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  15. Marshall properties of asphalt concrete using crumb rubber modified of motorcycle tire waste

    NASA Astrophysics Data System (ADS)

    Siswanto, Henri; Supriyanto, Bambang; Pranoto, Chandra, Pria Rizky; Hakim, Arief Rahman

    2017-09-01

    The aim of this study is to explain the effect of Crumb Rubber Modified (CRM) of motorcycle tire waste on Marshall properties of asphalt mix. Two types of aggregate gradation, asphalt concrete wearing course (ACWC) and asphalt concrete base (ACB), and CRM passing #50 sieve size were used. Seven levels of CRM content were investigated in this study, namely 0%, 0.5%, 1%, 1.5%, 3%, 4.5%, and 6% by weight of aggregate. Marshall test is conducted on Marshall specimens. The specimens are tested in their optimum binder content (OBC). The results indicate that CRM addition of motorcycle tire waste increases the Marshall stability of the both mix, ACWC and ACB. In addition, 1% CRM addition of motorcycle tire waste of the total mix weight is the best mix.

  16. EVALUATION OF CONTAMINANT LEACHABILITY FACTORS BY COMPARISON OF TREATABILITY STUDY DATA FOR MULTIPLE SOLIDIFIED/STABILIZED MATERIALS

    EPA Science Inventory

    Solidification/stabilization (S/S) technology is widely used in the treatment of hazardous waste and contaminated soil in the US. In a project sponsored by the US Navy and the USEPA, treatability test data were compiled into a data base listing contaminant concentration and matri...

  17. Performance and completion assessment of an in-situ aerated municipal solid waste landfill - Final scientific documentation of an Austrian case study.

    PubMed

    Hrad, Marlies; Huber-Humer, Marion

    2017-05-01

    By converting anaerobic landfills into a biologically stabilized state through accelerating aerobic organic matter degradation, the effort and duration necessary for post-closure procedures can be shortened. In Austria, the first full-scale application of in-situ landfill aeration by means of low pressure air injection with simultaneous off-gas collection and treatment was implemented on an old MSW-landfill and operated between 2007 and 2013. Besides complementary laboratory investigations, which included waste sampling from the landfill site prior to aeration start, a comprehensive field monitoring program was conducted to assess the influence of the aeration measure on the emission behavior of the landfilled waste during the aeration period as well as after aeration completion. Although the initial waste material was described as rather stable, the lab-scale aeration tests indicated a significant improvement of the leachate quality and even the biological solid waste stability. However, the aeration success was less pronounced for the application at the landfill site, mainly due to technical limitations in the full-scale operation. In this paper main performance data of the field investigation are compared to four other scientifically documented case studies along with stability indicators for solid waste and leachate characteristics in order to evaluate the success of aeration as well as the progress of a landfill towards completion and end of post-closure care. A number of quantitative benchmarks and relevant context information for the performance assessment of the five hitherto conducted international aeration projects are proposed aiming to support the systematization and harmonization of available results from diverse field studies and full-scale applications in future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64%more » of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.« less

  19. Effects of leachate recirculation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment.

    PubMed

    Chan, G Y S; Chu, L M; Wong, M H

    2002-01-01

    Leachate recirculation is an emerging technology associated with the management of landfill. The impact of leachate recirculation on the co-disposal of three major wastes (municipal solid waste, sewage sludge and sediment dredgings) was investigated using a laboratory column study. Chemical parameters (pH, COD, ammoniacal-N, total-P) and gas production (total gas volume, production rates and concentrations of CH4 and CO2) were monitored for 11 weeks. Leachate recirculation reduced waste-stabilization time and was effective in enhancing gas production and improving leachate quality, especially in terms of COD. The results also indicated that leachate recirculation could maximize the efficiency and waste volume reduction rate of landfill sites.

  20. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn; Wang Wei; Shi Yunchun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practicalmore » approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.« less

  1. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  2. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  3. Airborne microorganisms associated with waste management and recovery: biomonitoring methodologies.

    PubMed

    Coccia, Anna Maria; Gucci, Paola Margherita Bianca; Lacchetti, Ines; Paradiso, Rosa; Scaini, Federica

    2010-01-01

    This paper presents preliminary results from a year-long indoor bioaerosol monitoring performed in three working environments of a municipal composting facility treating green and organic waste. Composting, whereby organic matter is stabilized through aerobic decomposition, requires aeration, causing the dispersion of microbial particles (microorganisms and associated toxins). Waste can, therefore, become a potential source of biological hazard. Bioaerosol samples were collected on a monthly basis. Through a comparison of results obtained using two samplers - the Surface Air System DUO SAS 360 and the BioSampler - the study aimed at assessing the presence of biological pollutants, and at contributing to the definition of standard sampling methods for bioaerosols leading, eventually, to the establishment of exposure limits for these occupational pollutants.

  4. Preventable drug waste among anesthesia providers: opportunities for efficiency.

    PubMed

    Atcheson, Carrie Leigh Hamby; Spivack, John; Williams, Robert; Bryson, Ethan O

    2016-05-01

    Health care service bundling experiments at the state and regional levels have showed reduced costs by providing a single lump-sum reimbursement for anesthesia services, surgery, and postoperative care. Potential for cost savings related to the provision of anesthesia care has the potential to significantly impact sustainability. This study defines and quantifies routine and preventable anesthetic drug waste and the patient, procedure, and anesthesia provider characteristics associated with increased waste. Over a 12-month period, the type and quantity of clean drugs prepared by the anesthesia team for the first case of the day were recorded. The amount of each drug administered was obtained from the computerized anesthesia record, and data were analyzed to determine the incidence and cost of routine and preventable drug waste. The monthly and yearly cost of preventable waste, including the cost of pharmacy tech labor and materials where applicable, was estimated based on surgical case volume at the study institution. All analyses were performed using SAS software v9.2. Anesthetic drugs prepared for 543 separate surgical cases were observed. Less than 20% of cases generated routine waste. Preventable waste was generated most frequently for ephedrine (59.5% of cases), succinylcholine (33.7%), and lidocaine (25.1%), and least frequently for ondansetron (1.3%), phenylephrine (2.6%), and dexamethasone (2.8%). The estimated yearly cost of preventable anesthetic drug waste was $185,250. Significant potential savings with little impact on clinically significant availability may be achieved through the use of prefilled syringes for some commonly used anesthetic drugs. An intelligently implemented switch to prefilled syringes for select drugs is a potential cost saving measure, but savings might be diminished by disposal of prefilled syringes when they expire, hidden costs in the hospital pharmacy, and inability to supply some medications in prefilled syringes due to

  5. An oxidant- and solvent-stable protease produced by Bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive.

    PubMed

    Manni, Laila; Jellouli, Kemel; Ghorbel-Bellaaj, Olfa; Agrebi, Rym; Haddar, Anissa; Sellami-Kamoun, Alya; Nasri, Moncef

    2010-04-01

    The current increase in amount of shrimp wastes produced by the shrimp industry has led to the need in finding new methods for shrimp wastes disposal. In this study, an extracellular organic solvent- and oxidant-stable metalloprotease was produced by Bacillus cereus SV1. Maximum protease activity (5,900 U/mL) was obtained when the strain was grown in medium containing 40 g/L shrimp wastes powder as a sole carbon source. The optimum pH, optimum temperature, pH stability, and thermal stability of the crude enzyme preparation were pH 8.0, 60 degrees C, pH 6-9.5, and <55 degrees C, respectively. The crude protease was extremely stable toward several organic solvents. No loss of activity was observed even after 60 days of incubation at 30 degrees C in the presence of 50% (v/v) dimethyl sulfoxide and ethyl ether; the enzyme retained more than 70% of its original activity in the presence of ethanol and N,N-dimethylformamide. The protease showed high stability toward anionic (SDS) and non-ionic (Tween 80, Tween 20, and Triton X-100) surfactants. Interestingly, the activity of the enzyme was significantly enhanced by oxidizing agents. In addition, the enzyme showed excellent compatibility with some commercial liquid detergents. The protease of B. cereus SV1, produced under the optimal culture conditions, was tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio E/S of 20 was about 88%. The novelties of the SV1 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.

  6. Performance of waste-paper/PETG wood–plastic composites

    NASA Astrophysics Data System (ADS)

    Huang, Lijie; An, Shuxiang; Li, Chunying; Huang, Chongxing; Wang, Shuangfei; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Zhou, Lei

    2018-05-01

    Wood-plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG) and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD), and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60-80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%), while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%). This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.

  7. Bioremediation of industrial waste by using bat guano.

    PubMed

    Gadhikar, Y A; Zade, V S; Khadse, T

    2007-04-01

    The present investigation is an attempt to study the effect of bat guano with its rich microbial flora on bioremediation of industrial waste effluents. The results revealed that within a period of 15 days, there was a remarkable reduction in the Chemical Oxygen Demand (COD) values up to 50%-70%, thus stabilizing the industrial effluents. In addition to this,values of various physico-chemical parameters were notably found to reduce suggesting that industrial effluents can be effectively treated by bat guano.

  8. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.

    PubMed

    Li, Xiyao; Peng, Yongzhen; He, Yuelan; Wang, Shuying; Guo, Siyu; Li, Lukai

    2017-03-01

    Anaerobic treatment is the most widely used method of waste activated sludge (WAS) stabilization. Using a semi-continuous stirring tank with condensed WAS, we investigated effects of decreasing the solid retention time (SRT) from 32days to 6.4days on sludge reduction, soluble chemical oxygen demand (SCOD) release and dehydration capability, along with anaerobic digestion operated at medium temperature (MT-AD) or anaerobic digestion operated at room temperature (RT-AD). Results showed that effects of temperature on SCOD release were greater at SRT of 32d and 6.4d. When SRT was less than 8d, total solids (TS), volatile solids (VS) and capillary suction time (CST) did not change significantly. CST was lowest at SRT of 10.7days, indicating best condition for sludge dehydration. Principal component analysis (PCA) showed that the most optimum SRT was higher than 10.7d both in MT-AD or RT-AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  10. Emerging investigators series: prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams

    DOE PAGES

    Schantz, A. Benjamin; Xiong, Boya; Dees, Elizabeth; ...

    2018-01-01

    If challenges such as mechanical stability, scaling, biofouling and concentration polarization at high pressures are addressed, high-pressure RO could be used to efficiently remove water from high-salinity waste brines as part of a zero-liquid-discharge disposal process.

  11. Emerging investigators series: prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schantz, A. Benjamin; Xiong, Boya; Dees, Elizabeth

    If challenges such as mechanical stability, scaling, biofouling and concentration polarization at high pressures are addressed, high-pressure RO could be used to efficiently remove water from high-salinity waste brines as part of a zero-liquid-discharge disposal process.

  12. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  13. M3FT-17OR0301070211 - Preparation of Hot Isostatically Pressed AgZ Waste Form Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The production of radioactive iodine-bearing waste forms that exhibit long-term stability and are suitable for permanent geologic disposal has been the subject of substantial research interest. One potential method of iodine waste form production is hot isostatic pressing (HIP). Recent studies at Oak Ridge National Laboratory (ORNL) have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by HIP. ORNL has performed HIP with a variety of sample compositions and pressing conditions. The base mineral has varied among AgZ (in pure and engineered forms), silver-exchanged faujasite, and silverexchanged zeolite A. Two iodine loading methods, occlusion andmore » chemisorption, have been explored. Additionally, the effects of variations in temperature and pressure of the process have been examined, with temperature ranges of 525°C–1,100°C and pressure ranges of 100–300 MPa. All of these samples remain available to collaborators upon request. The sample preparation detailed in this document is an extension of that work. In addition to previously prepared samples, this report documents the preparation of additional samples to support stability testing. These samples include chemisorbed I-AgZ and pure AgI. Following sample preparation, each sample was processed by HIP by American Isostatic Presses Inc. and returned to ORNL for storage. ORNL will store the samples until they are requested by collaborators for durability testing. The sample set reported here will support waste form durability testing across the national laboratories and will provide insight into the effects of varied iodine content on iodine retention by the produced waste form and on potential improvements in waste form durability provided by the zeolite matrix.« less

  14. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste.

    PubMed

    Mokhtar, Sayed M; Swailam, Hesham M; Embaby, Hassan El-Sayed

    2018-05-15

    Goldenberry waste powder, contained 5.87% moisture, 15.89% protein, 13.72% fat, 3.52% ash, 16.74% dietary fiber and 61% carbohydrates. Potassium (560 mg/100 g) was the predominant element followed by sodium (170 mg/100 g) and phosphorus (130 mg/100 g). Amino acid analysis gave high levels of cystine/methionine, histidine and tyrosine/phenylalanine. Goldenberry waste powder had good levels of the techno-functional properties including water absorption index, swelling index, foaming capacity and stability (3.38 g/g, 5.24 ml/g, 4.09 and 72.0%, respectively). Fatty acids profile showed that linoleic acid was the predominant fatty acid followed by oleic, palmitic and stearic acids. Iodine value (109.5 g/100 g of oil), acid value (2.36 mg KOH/g of oil), saponification value (183.8 mg KOH/g of oil), peroxide value (8.2 meq/kg of oil) and refractive index (1.4735) were comparable to those of soybean and sunflower oils. Goldenberry waste oil exhibited absorbance in the UV range at 100-400 nm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.

    PubMed

    Franke, Matthias; Jandl, Gerald; Leinweber, Peter

    2006-10-01

    Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.

  16. Developing a model for moisture in saltcake waste tanks: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less

  17. Anaerobic digestion of food waste: A review focusing on process stability.

    PubMed

    Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di

    2018-01-01

    Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. New Strategy for a Suitable Fast Stabilization of the Biomethanization Performance

    PubMed Central

    Fernández-Güelfo, L. A.; Álvarez-Gallego, C. J.; Sales Márquez, D.; Romero García, L. I.

    2012-01-01

    The start-up strategies for thermophilic anaerobic reactors usually consist of an initial mesophilic stage (35°C), with an approximate duration of 185 days, and a subsequent thermophilic stage (55°C), which normally requires around 60 days to achieve the system stabilizatio. During the first 8–10 days of the mesophilic stage, the reactor is not fed so that the inoculum, which is generally a mesophilic anaerobic sludge, may be adapted to the organic solid waste. Between mesophilic and thermophilic conditions the reactor is still not fed in an effort to prevent possible imbalances in the proces. As a consequence, the start-up and stabilization of the biomethanization performance described in the literature require, at least, around 245 days. In this sense, a new strategy for the start-up and stabilization phases is presented in this study. This approach allows an important reduction in the overall time necessary for these stages in an anaerobic continuous stirred tank reactor (CSTR) operated at thermophilic-dry conditions for treating the organic fraction of the municipal solid waste (OFMSW): 60 days versus 245 days of conventional strategies. The new strategy uses modified SEBAC technology to adapt an inoculum to the OFMSW and the operational conditions prior to seeding the CSTR. PMID:23193374

  19. Final waste forms project: Performance criteria for phase I treatability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence themore » development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).« less

  20. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives.

    PubMed

    Cerbo, Atlas Adonis V; Ballesteros, Florencio; Chen, Teng Chien; Lu, Ming-Chun

    2017-01-01

    Solidification and stabilization are well-known technologies used for treating hazardous waste. These technologies that use cementitious binder have been applied for decades as a final treatment procedure prior to the hazardous waste disposal. In the present work, hazardous waste like fly ash containing high concentrations of heavy metals such Zn (4715.56 mg/kg), Pb (1300.56 mg/kg), and Cu (534.72 mg/kg) and amounts of Ag, Cd, Co, Cr, Mn, and Ni was sampled from a city refuse incinerator facility. This fly ash was utilized in the solidification/stabilization of heavy metal sludge since fly ash has cement-like characteristics. Cement additives such as sodium sulfate, sodium carbonate, and ethylenediaminetetraacetic acid (EDTA) was incorporated to the solidified matrix in order to determine its effect on the solidification/stabilization performance. The solidified matrix was cured for 7, 14, 21, and 28 days prior for its physical and chemical characterizations. The results show that the solidified matrix containing 40% fly ash and 60% cement with heavy metal sludge was the formulation that has the highest fly ash content with a satisfactory strength. The solidified matrix was also able to immobilize the heavy metals both found in the fly ash and sludge based on the toxicity characteristic leaching procedure (TCLP) test. It also shows that the incorporation of sodium carbonate into the solidified matrix not only further improved the compressive strength from 0.36 MPa (without Na 2 CO 3 ) to 0.54 MPa (with Na 2 CO 3 ) but also increased its leaching resistance.

  1. Value-added use of mushroom ergothioneine as a colour stabilizer in processed fish meats.

    PubMed

    Bao, Huynh N D; Osako, Kazufumi; Ohshima, Toshiaki

    2010-08-15

    Ergothioneine (ESH), a potent antioxidant, has been found in certain edible mushrooms. Our previous research showed that ESH extracted from the edible mushroom Flammulina velutipes has a positive effect on the colour stability of beef and tuna meat. The purpose of the present study was to compare the efficacy and applicability of ESH extracts prepared from different mushroom species as a colour stabilizer in fish meats. Levels of ESH higher than 2.8 mg mL(-1) were found in extracts prepared from the fruiting bodies of F. velutipes, Lentinula edodes, Pleurotus cornucopiae and Pleurotus eryngii and the processing waste of F. velutipes. When 1 mL of each of the extracts was added to 100 g of minced bigeye tuna and yellowtail meats, the bright-red colour remained after 5 and 2 days, respectively, of ice storage. The anti-discoloration efficacy of 1 mL of the extracts prepared from 10 g of the fresh waste portion of F. velutipes was similar to that of its fruiting body or 0.5 g kg(-1) of sodium ascorbate when added to 100 g of minced bigeye tuna meat under ice storage. The results of this study clearly showed that ESH prepared from different mushroom species stabilized the colour of fish meats, and the extract from the F. velutipes was the most effective. Copyright (c) 2010 Society of Chemical Industry.

  2. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less

  3. Anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. © The Author(s) 2016.

  4. Using carrier-depletion silicon modulators for optical power monitoring.

    PubMed

    Yu, Hui; Korn, Dietmar; Pantouvaki, Marianna; Van Campenhout, Joris; Komorowska, Katarzyna; Verheyen, Peter; Lepage, Guy; Absil, Philippe; Hillerkuss, David; Alloatti, Luca; Leuthold, Juerg; Baets, Roel; Bogaerts, Wim

    2012-11-15

    Defect-mediated subbandgap absorption is observed in ion-implanted silicon-on-oxide waveguides that experience a rapid thermal annealing at 1075°C. With this effect, general carrier-depletion silicon modulators exhibit the capability of optical power monitoring. Responsivity is measured to be 22 mA/W for a 3 mm long Mach-Zehnder modulator of 2×10(18) cm(-3) doping concentration at -7.1 V bias voltage and 5.9 mA/W for a ring modulator of 1×10(18) cm(-3) doping concentration at -10 V bias voltage. The former is used to demonstrate data detection of up to 35 Gbits/s.

  5. Ecotoxicological assessment of the potential impact on soil porewater, surface and groundwater from the use of organic wastes as soil amendments.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2016-04-01

    This study aimed to assess the potential impact on soil porewater, surface and groundwater from the beneficial application of organic wastes to soil, using their eluates and acute bioassays with aquatic organisms and plants: luminescence inhibition of Vibrio fischeri (15 and 30 min), Daphnia magna immobilization (48 h), Thamnocephalus platyurus survival (24 h), and seed germination of Lolium perenne (7 d) and Lactuca sativa (5 d). Some organic wastes' eluates promoted high toxic responses, but that toxicity could not be predicted by their chemical characterization, which is compulsory by regulatory documents. In fact, when organisms were exposed to the water-extractable chemical compounds of the organic wastes, the toxic responses were more connected to the degree of stabilization of the organic wastes, or to the treatment used to achieve that stabilization, than to their contaminant load. That is why the environmental risk assessment of the use of organic wastes as soil amendments should integrate bioassays with eluates, in order to correctly evaluate the effects of the most bioavailable fraction of all the chemical compounds, which can be difficult to predict from the characterization required in regulatory documents. According to our results, some rapid and standardized acute bioassays can be suggested to integrate a Tier 1 ecotoxicological evaluation of organic wastes with potential to be land applied, namely luminescence inhibition of V. fischeri, D. magna immobilization, and the germination of L. perenne and L. sativa. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.

    2017-04-01

    In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.

  7. Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories

    NASA Astrophysics Data System (ADS)

    Apps, J. A.

    1982-09-01

    Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 3500 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials.

  8. Removal of Fecal Indicators, Pathogenic Bacteria, Adenovirus, Cryptosporidium and Giardia (oo)cysts in Waste Stabilization Ponds in Northern and Eastern Australia

    PubMed Central

    Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen

    2016-01-01

    Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation. PMID:26729150

  9. Removal of Fecal Indicators, Pathogenic Bacteria, Adenovirus, Cryptosporidium and Giardia (oo)cysts in Waste Stabilization Ponds in Northern and Eastern Australia.

    PubMed

    Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen

    2016-01-02

    Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation.

  10. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  11. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes.

    PubMed

    Ebrahimzadeh, Reza; Ghazanfari Moghaddam, Ahmad; Sarcheshmehpour, Mehdi; Mortezapour, Hamid

    2017-12-01

    Biomass degradation kinetics of the composting process for kitchen waste, pruned elm tree branches and sheep manure were studied to model changes in volatile solids (VS) over time. Three experimental reactors containing raw mixtures with a carbon to nitrogen (C/N) ratio of 27:1 and a moisture content of 65% were prepared. During the composting process two of the reactors used forced air and the third used natural aeration. The composting stabilization phases in all reactors were completed in 30 days. During this period, composting indexes such as temperature, moisture content and VS changes were recorded. Elementary reactions were used for kinetics modeling of the degradation process. Results showed that the numerical values of rate constant ( k) for zero-order ranged from 0.86 to 1.03 VS×day -1 , for first-order models it ranged from 0.01 to 0.02 day -1 , for second-order the range was from 1.36×10 -5 to 1.78×10 -5 VS -1 ×day -1 and for n-order the rate constant ranged from 0.031 to 0.095 VS (1-n) ×day -1 . The resulting models were validated by comparing statistical parameters. Evaluation of the models showed that, in the aerated reactors, the n-order models (less than 1) successfully estimated the VS changes. In the non-aeration reactor, for the second-order model good agreement was achieved between the simulated and actual quantities of VS. Also, half-life time provided a useful criterion for the estimation of expected time for completion of different phases of composting.

  12. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    PubMed

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  13. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  14. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA)more » led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)« less

  15. Leaching and geochemical behavior of fired bricks containing coal wastes.

    PubMed

    Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid

    2018-03-01

    High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Instability risk assessment of construction waste pile slope based on fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting

    2018-05-01

    Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.

  17. Liquid secondary waste. Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less

  18. Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Fischer, D.D.; Crawford, R.C.

    1982-06-01

    Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less

  19. Amelioration and degradation of pressmud and bagasse wastes using vermitechnology.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2017-11-01

    This study evaluated the amelioration of pressmud (PM) and bagasse (BG) wastes by the vermiremediation process. The wastes were spiked with cattle dung (CD) in different concentrations to find out the best proportion supporting maximum earthworm growth and nutrients availability. The highest growth rate was observed in PMBG 50 (282.2mg/d/worm) feed mixture. Response surface design of earthworm growth parameters enumerated best concentration of wastes in CD with maximum value of 21.81% for earthworm number, 30.86% for earthworm weight, 27.09% for cocoons, 29.71% for hatchlings and 34.0% for hatchlings weight. Vermicomposting enhanced nutrient parameters like pH (6-8%), total kjeldahl nitrogen (19-48%), total phosphorus (9-67%), total calcium (13-111%), while decrease in total organic carbon (14-32%), electrical conductivity (21-30%), C:N ratio (36-51%), total potassium (9-19%) and total sodium (3-21%). Heavy metals in the final products were found to be under safe limits. SEM micrographs were more fragmented which indicated maturity and stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  1. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    NASA Astrophysics Data System (ADS)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  2. Getters for improved technetium containment in cementitious waste forms

    DOE PAGES

    Asmussen, R. Matthew; Pearce, Carolyn I.; Miller, Brian W.; ...

    2017-07-26

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This paper focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon enteringmore » the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ~0.08 wt% of the total waste form mass. The observed diffusion (D obs) of Tc decreased from 4.6 ± 0.2 × 10 -12 cm 2/s for Cast Stone that did not contain a getter to 5.4 ± 0.4 × 10 -13 cm 2/s for KMS-2 containing Cast Stone. Finally, it was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2.« less

  3. Getters for improved technetium containment in cementitious waste forms.

    PubMed

    Asmussen, R Matthew; Pearce, Carolyn I; Miller, Brian W; Lawter, Amanda R; Neeway, James J; Lukens, Wayne W; Bowden, Mark E; Miller, Micah A; Buck, Edgar C; Serne, R Jeffery; Qafoku, Nikolla P

    2018-01-05

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (D obs ) of Tc decreased from 4.6±0.2×10 -12 cm 2 /s for Cast Stone that did not contain a getter to 5.4±0.4×10 -13 cm 2 /s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiliang; He, Wenxiu; Zheng, Jianzhong; Wang, Guangquan; Ji, Jianbing

    2016-11-01

    Nanofluids, colloidal suspensions consisting of base fluids and nanoparticles, are a new generation of engineering working fluids. Nanofluids have shown great potential in heat/mass transfer applications. However, their practical applications are limited by the high production cost and low stability. In this study, a low-cost agricultural waste, rice husk ash (RHA), was used as a silicon source to the synthesis of silica nanofluids. First, silica nanoparticles with an average size of 47 nm were synthesized. Next, by dispersing the silica nanoparticles in water with ultrasonic vibration, silica nanofluids were formed. The results indicated that the dispersibility and stability of nanofluids were highly dependent on sonication time and power, dispersant types and concentrations, as well as pH; an optimal experiment condition could result in the highest stability of silica nanofluid. After 7 days storage, the nanofluid showed no sedimentation, unchanged particle size, and zeta potential. The results of this study demonstrated that there is a great potential for the use of RHA as a low-cost renewable resource for the production of stable silica nanofluids.

  5. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.

    PubMed

    Xu, Yinhui; Zhao, Dongye

    2007-05-01

    Laboratory batch and column experiments were conducted to investigate the feasibility of using a new class of stabilized zero-valent iron (ZVI) nanoparticles for in situ reductive immobilization of Cr(VI) in water and in a sandy loam soil. Batch kinetic tests indicated that 0.08g/L of the ZVI nanoparticles were able to rapidly reduce 34mg/L of Cr(VI) in water at an initial pseudo first-order rate constant of 0.08h(-1). The extent of Cr(VI) reduction was increased from 24% to 90% as the ZVI dosage was increased from 0.04 to 0.12g/L. The leachability of Cr preloaded in a Cr-loaded sandy soil was reduced by nearly 50% when the soil was amended with 0.08g/L of the ZVI nanoparticles in batch tests at a soil-to-solution ratio of 1g: 10mL. Column experiments indicated that the stabilized ZVI nanoparticles are highly deliverable in the soil column. When the soil column was treated with 5.7 bed volumes of 0.06g/L of the nanoparticles at pH 5.60, only 4.9% of the total Cr was eluted compared to 12% for untreated soil under otherwise identical conditions. The ZVI treatment reduced the TCLP leachability of Cr in the soil by 90%, and the California WET (Waste Extraction Test) leachability by 76%. The stabilized ZVI nanoparticles may serve as a highly soil-dispersible and effective agent for in situ reductive immobilization of chromium in soils, groundwater, or industrial wastes.

  6. Hazardous Waste: Learn the Basics of Hazardous Waste

    MedlinePlus

    ... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...

  7. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  8. Microbial transformations of uranium in wastes and implication on its mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki,Y.; Nankawa, T.; Ozaki, T.

    2008-09-14

    Uranium exists in several chemical forms in mining and mill tailings and in nuclear and weapons production wastes. Under appropriate conditions, microorganisms can affect the stability and mobility of U in wastes by altering the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of U in solution and the bioavailability. Dissolution or immobilization of U is brought about by direct enzymatic action or indirect nonenzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of U have been extensively investigated, we have only limited information on the mechanismsmore » of microbial transformations of various chemical forms of U in the presence of electron donors and acceptors.« less

  9. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less

  10. FY 2000 Saltcake Dissolution and Feed Stability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R.D.; McGinnis, C.P.; Weber, C.F.

    2000-07-31

    The Tanks Focus Area (TFA) continues to work closely with the Office of River Protection (ORP) to better understand the chemistry involved with the retrieval, transport, and pretreatment of nuclear wastes at Hanford. Since a private contractor is currently responsible for the pretreatment and immobilization activities in this remediation effort, the TFA has concentrated on saltcake dissolution and waste transport at the request of the ORP. Researchers at Hanford have performed a series of dissolution experiments on actual saltcake samples. Staff members at Mississippi State University (MSU) continue to model the dissolution results with the Environmental Simulation Program (ESP), whichmore » is used extensively by ORP personnel. Several ways to improve the predictive capabilities of the ESP were identified. Since several transfer lines at Hanford have become plugged, TFA tasks at AEA Technologies, Florida International University (FIU), MSU, and Oak Ridge National Laboratory (ORNL) are investigating the behavior of the supernatants and slurries during transport. A combination of experimental and theoretical techniques is used to study the transport chemistry. This effort is expected to develop process control tools for waste transfer. The results from these TFA tasks were presented to ORP personnel during the FY 2000 Saltcake Dissolution and Feed Stability Workshop, which was held on May 16-17 in Richland, Washington. The minutes from this workshop are provided in this report.« less

  11. An eco friendly solution to the food waste disposal

    NASA Astrophysics Data System (ADS)

    Babu, G. Reddy; Kumar, G. Madhav

    2017-07-01

    In recent years, waste disposal at workmen camp is one of the major problems being faced by many nations across the world. In the workmen colony at Chittapur, a series of kitchens were built for cooking purpose and a number of small canteens are also functioning. Considerable quantity of food waste is collected daily from these eateries and disposed at a faraway place. Food waste is highly degradable in nature, if not disposed properly it causes problems related to environmental pollution. Hence, it is very important to identify an environment friendly process rather than opt for land filling or any disposal method. We worked together to find a suitable eco-friendly solution for the food waste disposal at Chittapur site and suggested that biogas production through anaerobic digestion is a solution for the disposal and utilization of food waste for better purpose. This resulted in setting up a 500 kg per day food waste treatment biogas plant at Chittapur. This establishment is the first time in the construction industry at workmen camp in India. Anaerobic Digestion has been recognized as one of the best options that is available for treating food waste, as it generates two valuable end products, biogas and compost. Biogas is a mixture of CH4 and CO2 about (55:45). Biogas generated can be used for thermal applications such as cooking or for generating electricity. The digested slurry is a well stabilized organic manure and can be used as soil fertilizer. Plant design is to handle 500 kg of food waste /day. 27 kg LPG is obtained from 500kg of kitchen waste. The Value of 27 kg of LPG is Rs.2700/day. Daily 1000 litres of digested effluent was obtained. It is good organic manure with plant micro nutrients and macro nutrients. This can be used for growing plants and in agriculture. The value of manure per day is Rs.250/-. The annual revenue is Rs.10.62 lakhs and the annual expenditure is 1.8 lakhs. The net benefit is 8.82 lakhs. Payback period is 2.1 years. This process

  12. Effect of COSMOS technologies in detoxifying municipal solid waste incineration fly ash, preliminary results

    NASA Astrophysics Data System (ADS)

    Piccinelli, Elsa; Lasagni, Marina; Collina, Elena; Bonaiti, Stefania; Bontempi, Elza

    2017-05-01

    This study investigates the effect of technologies for heavy metal stabilization on the concentration of PolyChlorinatedDibenzo-p-Dioxins (PCDD) and PolyChlorinatedDibenzoFurans (PCDF), abbreviated PCDD/F, in Municipal Solid Waste Incineration (MSWI) fly ash. We determined the variation of the Total Organic Carbon (TOC) and PCDD/F concentration between raw and stabilized material. The technologies, that already proved to be very promising for heavy metal entrapment, showed encouraging results also for PCDD/F detoxification. This result could be very impacting on the management of MSWI fly ash: at the best of our knowledge, there are no methods, in literature, that can provide good results in stabilization of heavy metals, and abatement of chlorinated organic pollutants contained in the same matrix.

  13. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  14. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  15. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    NASA Astrophysics Data System (ADS)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  16. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  17. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  18. Effect of biochars produced from solid organic municipal waste on soil quality parameters.

    PubMed

    Randolph, P; Bansode, R R; Hassan, O A; Rehrah, Dj; Ravella, R; Reddy, M R; Watts, D W; Novak, J M; Ahmedna, M

    2017-05-01

    New value-added uses for solid municipal waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that soil deficiencies can be remedied by the application of municipal waste-based biochars. Select municipal organic wastes (newspaper, cardboard, woodchips and landscaping residues) individually or in a 25% blend of all four waste streams were used as feedstocks of biochars. Three sets of pyrolysis temperatures (350, 500, and 750 °C) and 3 sets of pyrolysis residence time (2, 4 and 6 h) were used for biochar preparation. The biochar yield was in the range of 21-62% across all feedstocks and pyrolysis conditions. We observed variations in key biochar properties such as pH, electrical conductivity, bulk density and surface area depending on the feedstocks and production conditions. Biochar increased soil pH and improved its electrical conductivity, aggregate stability, water retention and micronutrient contents. Similarly, leachate from the soil amended with biochar showed increased pH and electrical conductivity. Some elements such as Ca and Mg decreased while NO 3 -N increased in the leachates of soils incubated with biochars. Overall, solid waste-based biochar produced significant improvements to soil fertility parameters indicating that solid municipal wastes hold promising potential as feedstocks for manufacturing value-added biochars with varied physicochemical characteristics, allowing them to not only serve the needs for solid waste management and greenhouse gas mitigation, but also as a resource for improving the quality of depleted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Application of continuous normal-lognormal bivariate density functions in a sensitivity analysis of municipal solid waste landfill.

    PubMed

    Petrovic, Igor; Hip, Ivan; Fredlund, Murray D

    2016-09-01

    The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The

  20. Glass composition development for stabilization of lead based paints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.

    1996-10-01

    Exposure to lead can lead to adverse health affects including permanent damage to the central nervous system. Common means of exposure to lead are from ingestion of lead paint chips or breathing of dust from deteriorating painted surfaces. The U.S. Army has over 101 million square feet of buildings dating to World War II or earlier. Many of these structures were built before the 1978 ban on lead based paints. The U.S. Army Corps of Engineers CERL is developing technologies to remove and stabilize lead containing organic coatings. Promising results have been achieved using a patented flame spray process thatmore » utilizes a glass frit to stabilize the hazardous constituents. When the glass frit is sprayed onto the paint containing substrate, differences in thermal expansion coefficients between the frit and the paint results in spalling of the paint from the substrate surface. The removed fragments are then collected and remelted to stabilize the hazardous constituents and allow for disposal as non-hazardous waste. Similar successful results using a patented process involving microwave technology for paint removal have also been achieved. In this process, the painted surface is coated with a microwave coupling compound that when exposed to microwave energy results in the spalling of the hazardous paint from the surface. The fragments can again be accumulated and remelted for stabilization and disposal.« less

  1. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  2. Anaerobic digestion potential of urban organic waste: a case study in Malmö.

    PubMed

    Davidsson, Asa; Jansen, Jes la Cour; Appelqvist, Björn; Gruvberger, Christopher; Hallmer, Martin

    2007-04-01

    A study of existing organic waste types in Malmö, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge

  3. Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes

    NASA Astrophysics Data System (ADS)

    Bel Hassen, M.; Drira, Z.; Hamza, A.; Ayadi, H.; Akrout, F.; Issaoui, H.

    2008-05-01

    Variations in phytoplankton pigments and community composition were examined in the Gulf of Gabes in relationship to water mass properties, characterised by the influence of the Modified Atlantic Water and by the thermal stratification. Data were collected on board the R/V Hannibal during July 2005. Distinct water masses were identified using cluster analysis of temperature-salinity ( T- S) characteristics. Three major clusters appeared based on the combined effects of temperature and salinity. The first cluster was identified as the cool and less salty bottom Modified Atlantic Water (MAW). The warmer and saltier Mediterranean Mixed Water (MMW) represented the second cluster. The third cluster was the Transition Water (TW) separating the two previous clusters. The pigment and taxonomic composition of these water masses were examined. Chlorophyll a was rather low (<200 ng l -1). Chlorophyll b was generally the most abundant accessory pigment and fucoxanthin dominated the accessory pigments in the MAW. Proportions of chlorophyll a associated with different phytoplankton classes were estimated using CHEMTAX software, and did not present significant variations among water groups. The results pointed out variations in the relative contribution of each phytoplankton taxa in each station group. Chlorophytes and prasinophytes accounted for 65% of chlorophyll a in the MMW. Diatoms and chlorophytes were relatively abundant in the MAW contributing to almost 63% of chlorophyll a. An unstructured community, slightly dominated by prasinophytes, chlorophytes and cryptophytes, characterised the TW. Different trophic statuses were observed in these water masses, the MMW and the MAW being characterised by mesotrophy, while an oligotrophy was observed in the TW. Nutrient availability, particularly the P-limitation supported by the summer stratification, as revealed by the high N:P ratio (greater than 20), seems to enhance the development of small-sized phytoplankton, thereby

  4. A road pavement full-scale test track containing stabilized bottom ashes.

    PubMed

    Toraldo, E; Saponaro, S

    2015-01-01

    This paper reports the results of a road pavement full-scale test track built by using stabilized bottom ash (SBA) from an Italian municipal solid waste incinerator as the aggregate in granular foundation, cement-bound mixes and asphalt concretes. The investigation focused on both the performance and the environmental compatibility of such mixes, especially with regard to the effects of mixing, laying and compaction. From the road construction point of view, the performance related to the effects of mixing, laying and compaction on constructability was assessed, as well as the volumetric and the mechanical properties. Environmental aspects were investigated by leaching tests. The results suggested that SBA meets the environmental Italian law for the reuse of non-hazardous waste and could be used as road material with the procedures, plants and equipment currently used for road construction.

  5. EC86-33385-04

    NASA Image and Video Library

    1986-03-27

    This photograph shows a modified General Dynamics AFTI/F-111A Aardvark with supercritical mission adaptive wings (MAW) installed. The AFTI/F111A is seen banking towards Rodgers Dry Lake and Edwards Air Force Base. With the phasing out of the TACT program came a renewed effort by the Air Force Flight Dynamics Laboratory to extend supercritical wing technology to a higher level of performance. In the early 1980s the supercritical wing on the F-111A aircraft was replaced with a wing built by Boeing Aircraft Company System called a “mission adaptive wing” (MAW), and a joint NASA and Air Force program called Advanced Fighter Technology Integration (AFTI) was born.

  6. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  7. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials.

    PubMed

    Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin

    2014-06-01

    A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  9. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  10. Behavior of cesium in municipal solid waste incineration.

    PubMed

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Survival time and stability properties of disease-associated prion protein in chronic wasting disease of elk

    USDA-ARS?s Scientific Manuscript database

    Background: The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene exhibits amino acid polymorphism at codon 132, with 132L (leucine) and 132M (methionine) allelic variants present in the population. We have previously shown that following experimental oral challenge with chronic wasting...

  12. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste.

    PubMed

    Villar, Iria; Alves, David; Garrido, Josefina; Mato, Salustiano

    2016-08-01

    During composting, facilities usually exert greater control over the bio-oxidative phase of the process, which uses a specific technology and generally has a fixed duration. After this phase, the material is deposited to mature, with less monitoring during the maturation phase. While there has been considerable study of biological parameters during the thermophilic phase, there is less research on the stabilization and maturation phase. This study evaluates the effects of the type of starting material on the evolution of microbial dynamics during the maturation phase of composting. Three waste types were used: sludge from the fish processing industry, municipal sewage sludge and pig manure, each independently mixed with shredded pine wood as bulking agent. The composting system for each waste type comprised a static reactor with capacity of 600L for the bio-oxidative phase followed by stabilization and maturation phase in triplicate 200L boxes for 112days. Phospholipid fatty acids, enzyme activities and physico-chemical parameters were measured throughout the maturation phase. The evolution of the total microbial biomass, Gram + bacteria, Gram - bacteria, fungi and enzymatic activities (β-glucosidase, cellulase, protease, acid and alkaline phosphatase) depended significantly on the waste type (p<0.001). The predominant microbial community for each waste type remained present throughout the maturation process, indicating that the waste type determines the microorganisms that are able to develop at this stage. While fungi predominated during fish sludge maturation, manure and municipal sludge were characterized by a greater proportion of bacteria. Both the structure of the microbial community and enzymatic activities provided important information for monitoring the composting process. More attention should be paid to the maturation phase in order to optimize composting. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Use of Bacteria To Stabilize Archaeological Iron

    PubMed Central

    Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Sandoz, Frederic

    2017-01-01

    ABSTRACT Iron artifacts are common among the findings of archaeological excavations. The corrosion layer formed on these objects requires stabilization after their recovery, without which the destruction of the item due to physicochemical damage is likely. Current technologies for stabilizing the corrosion layer are lengthy and generate hazardous waste products. Therefore, there is a pressing need for an alternative method for stabilizing the corrosion layer on iron objects. The aim of this study was to evaluate an alternative conservation-restoration method using bacteria. For this, anaerobic iron reduction leading to the formation of stable iron minerals in the presence of chlorine was investigated for two strains of Desulfitobacterium hafniense (strains TCE1 and LBE). Iron reduction was observed for soluble Fe(III) phases as well as for akaganeite, the most troublesome iron compound in the corrosion layer of archaeological iron objects. In terms of biogenic mineral production, differential efficiencies were observed in assays performed on corroded iron coupons. Strain TCE1 produced a homogeneous layer of vivianite covering 80% of the corroded surface, while on the coupons treated with strain LBE, only 10% of the surface was covered by the same mineral. Finally, an attempt to reduce iron on archaeological objects was performed with strain TCE1, which led to the formation of both biogenic vivianite and magnetite on the surface of the artifacts. These results demonstrate the potential of this biological treatment for stabilizing archaeological iron as a promising alternative to traditional conservation-restoration methods. IMPORTANCE Since the Iron Age, iron has been a fundamental material for the building of objects used in everyday life. However, due to its reactivity, iron can be easily corroded, and the physical stability of the object built is at risk. This is particularly true for archaeological objects on which a potentially unstable corrosion layer is

  14. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  15. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun

    This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiationmore » fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.« less

  16. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  17. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection § 148.10 Waste...

  18. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection § 148.10 Waste...

  19. Valorisation of Sugarcane Bagasse Ash in the Manufacture of Lime-Stabilized Blocks

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, Pitchai Kasinatha

    2016-06-01

    The study investigated the potential of lime in the manufacture of stabilized soil blocks and the valorisation of a solid waste, Bagasse Ash (BA), in its manufacture. A locally available soil was collected from a field and characterized in the soil laboratory as a clay of intermediate plasticity. This soil was stabilized using lime, the quantity of which was determined from the Eades and Grim pH test. The soil was stabilized using this lime content, amended with various BA contents during mixing, and moulded into blocks of 19 cm x 9 cm x 9 cm. The blocks were then moist cured for a period of 28 days, following which they were subjected to compressive strength, water absorption and efflorescence tests. The results of the tests revealed that the addition of BA resulted in enhanced compressive strength of the blocks, increased the water absorption marginally, and resulted in no efflorescence in any of the combinations, although the limited combinations in the study could not produce enough strength to meet the specifications of the Bureau of Indian Standards. The study revealed that BA can be effectively valorised in the manufacture of stabilized soil blocks.

  20. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...