Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Patrice Ann; Baumer, Andrew Ronald
Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
40 CFR 761.65 - Storage for disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... storage of non-liquid PCB/ radioactive wastes must be designed to prevent the buildup of liquids if such... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post... and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less
40 CFR 240.200-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...
40 CFR 240.200-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... the owners and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
Performance assessment for continuing and future operations at solid waste storage area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less
Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
SIMMONS, F.M.
2000-03-29
This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cellsmore » 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.« less
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
....254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...
Fires at storage sites of organic materials, waste fuels and recyclables.
Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William
2013-09-01
During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less
40 CFR 264.194 - General operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....194 Section 264.194 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.194 General operating requirements. (a) Hazardous wastes or treatment reagents must...
Hanford facility dangerous waste permit application, general information portion. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnichsen, J.C.
1997-08-21
For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).« less
Hanford Waste Physical and Rheological Properties: Data and Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.
2011-08-01
The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
Safety analysis report for the Waste Storage Facility. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bengston, S.J.
1994-05-01
This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
40 CFR 265.228 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.228 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... or operator must: (1) Remove or decontaminate all waste residues, contaminated containment system...
40 CFR 264.603 - Post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
....603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... treatment or storage unit has contaminated soils or ground water that cannot be completely removed or...
Storage for greater-than-Class C low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beitel, G.A.
1991-12-31
EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 50-acre South Andover site is composed of several privately owned parcels of land near Minneapolis in Anoka County, Minnesota. There are several source areas where former activities included drum storage, waste storage, and waste burning. Solid and liquid chemical waste dumping and open pit burning of solvents occurred during the 1960's and 1970's. Investigations showed that drum storage and chemical waste disposal sites were partially obscured by auto salvage operations and more than 3 million waste tires. The ROD amendment changes the 1988 ROD for ground water based on current data from a 1990 Design Investigation. The primary contaminantsmore » of concern affecting the ground water are VOCs, including acetone, ethyl benzene, methylchloride, PCE, TCE, toluene; and metals, including arsenic, chromium, and lead.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTeer, Jennifer; Morris, Jenny; Wickham, Stephen
Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. Duringmore » the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)« less
Hazardous Waste Cleanup: Triumvirate Environmental Incorporated in Astoria, New York
Triumvirate Environmental, Inc. (TEI) is located at 42-14 19th Avenue in Astoria, New York. This location has been in continuous operation as a waste storage and transfer facility since 1964. The site was formerly owned and operated by Chemical Waste
40 CFR 265.401 - General operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... equipment, the process or equipment must be equipped with a means to stop this inflow (e.g., a waste feed....401 Section 265.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
30 CFR 784.23 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage and discharge... structure, permanent water impoundment, refuse pile, and coal mine waste impoundment for which plans are...; (12) Location of each water and subsidence monitoring point; (13) Location of each facility that will...
40 CFR 264.230 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wastes. 264.230 Section 264.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.230 Special requirements for incompatible wastes...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
Emery, Robert J
2012-11-01
Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.1083 - Waste determination procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste determination procedures. 264... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1083 Waste...
Influences of operational practices on municipal solid waste landfill storage capacity.
Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng
2013-03-01
The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 265.72 - Manifest discrepancies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...
40 CFR 265.72 - Manifest discrepancies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...
40 CFR 265.72 - Manifest discrepancies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...
40 CFR 264.54 - Amendment of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...
40 CFR 265.54 - Amendment of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...
40 CFR 265.54 - Amendment of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...
40 CFR 264.54 - Amendment of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...
Hanford facility dangerous waste permit application, PUREX storage tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, C. R.
1997-09-08
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).
30 CFR 780.14 - Operation plan: Maps and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and non-coal waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage... water impoundment, refuse pile, and coal mine waste impoundment for which plans are required by § 780.25... architecture. [44 FR 15357, Mar. 13, 1979; 44 FR 49685, Aug. 24, 1979, as amended at 45 FR 51550, Aug. 4, 1980...
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 265.76 - Unmanifested waste report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.13 - General waste analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
40 CFR 264.199 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible...(b) is complied with. (b) Hazardous waste must not be placed in a tank system that has not been...
Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.229 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reactive waste. 264.229 Section 264.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.229 Special requirements for ignitable or reactive...
Tank 19F Folding Crawler Final Evaluation, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.
2000-10-25
The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-23
This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRAmore » regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...
40 CFR 264.96 - Compliance period.
Code of Federal Regulations, 2011 CFR
2011-07-01
....96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.96 Compliance period. (a) The Regional Administrator will...
Hazardous Waste Cleanup: Clean Harbors BTD, LLC in Clarence, New York
The Clean Harbors BDT, LLC site was a commercial treatment, storage, and disposal facility that treated reactive hazardous wastes, pressurized waste, pharmaceutical and packaged laboratory chemicals. The facility was initially owned and operated by Wilson-
Code of Federal Regulations, 2012 CFR
2012-01-01
... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...
40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).
Code of Federal Regulations, 2011 CFR
2011-07-01
... risks to humans or to the environment resulting from exposure to hazardous wastes or hazardous... human health and the environment, to include, for areas where wastes will remain in place, monitoring... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).
Code of Federal Regulations, 2013 CFR
2013-07-01
... risks to humans or to the environment resulting from exposure to hazardous wastes or hazardous... human health and the environment, to include, for areas where wastes will remain in place, monitoring... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
....113 Section 264.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... the final volume of hazardous wastes, or the final volume of non-hazardous wastes if the owner or...
40 CFR 240.206-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... spillages occur, emptying the solid waste storage area at least weekly, and routinely cleaning the remainder of the facility. (b) Solid waste and residue should not be allowed to accumulate at the facility for...
40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...
Waste Generation Overview Refresher, Course 21464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water. (b) The provisions of the plan must be carried out immediately whenever there...
40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... remediation wastes into or within a CAMU does not constitute creation of a unit subject to minimum technology... wastes for implementing corrective action or cleanup at the facility. A CAMU must be located within the...
40 CFR 264.120 - Certification of completion of post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification that the post-closure care period for the hazardous waste disposal unit was performed in...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... later than 60 days after completion of the established post-closure care period for each hazardous waste...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... establish minimum national standards that define the acceptable management of hazardous waste during the...
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases... the ground-water quality; (vii) The potential for health risks caused by human exposure to waste...
40 CFR 264.95 - Point of compliance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.95 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.95 Point of compliance. (a) The Regional Administrator will...
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases... the ground-water quality; (vii) The potential for health risks caused by human exposure to waste...
40 CFR 264.95 - Point of compliance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.95 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.95 Point of compliance. (a) The Regional Administrator will...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 265.340 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...
40 CFR 265.340 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...
40 CFR 264.220 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments... that use surface impoundments to treat, store, or dispose of hazardous waste except as § 264.1 provides...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 761.65 - Storage for disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents... 761.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...
40 CFR 761.65 - Storage for disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents... 761.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...
Performance assessment for continuing and future operations at Solid Waste Storage Area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuingmore » operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.« less
DWPF Safely Dispositioning Liquid Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-05
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] 264.255 Section 264.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.255...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... includes an amended waste analysis plan, ground-water monitoring and response program, human exposure....113 Section 265.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.77 - Additional reports.
Code of Federal Regulations, 2011 CFR
2011-07-01
....77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... submitting the biennial report and unmanifested waste reports described in §§ 265.75 and 265.76, the owner or...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264... waste incinerators (as defined in § 260.10 of this chapter), except as § 264.1 provides otherwise. (b...
Hazardous Waste Cleanup: Northeast Environmental Services in Canastota, New York
The Haz-O-Waste Corporation operated this treatment and storage facility for hazardous and industrial wastes from August 1976 until it was purchased by Northeast Environmental Services, Inc., in September, 1986. The facility is located on Canal Road in Can
40 CFR 265.1059 - Standards: Delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.1059 - Standards: Delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... infeasible without a hazardous waste management unit shutdown. In such a case, repair of this equipment shall...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.149 - Use of State-required mechanisms.
Code of Federal Regulations, 2010 CFR
2010-07-01
....149 Section 264.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... where EPA is administering the requirements of this subpart but where the State has hazardous waste...
40 CFR 264.197 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... as hazardous waste, unless § 261.3(d) of this chapter applies. The closure plan, closure activities...
40 CFR 264.190 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264... use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a... treat hazardous waste which contains no free liquids and are situated inside a building with an...
Development of Improved Oil Field Waste Injection Disposal Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terralog Technologies
2002-11-25
The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.
DWPF Safely Dispositioning Liquid Waste
None
2018-06-21
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called âvitrification,â as the preferred option for treating liquid radioactive waste.
Active Sites Environmental Monitoring Program: Mid-FY 1991 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.
1991-10-01
This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading ofmore » vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.« less
303-K Storage Facility closure plan. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-15
Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Codemore » (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less
The Yami`s opposition to the Lanyu LLW storage installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K.K.; Chang, S.Y.
1993-12-31
Since 1982, the solidified low-level radioactive wastes (LLW) in Taiwan, regardless of the origins, have been sent to Lanyu for interim storage. Lanyu is a small island located 80 kilometers southeast of Taiwan. Its unique Polynesian cultural characteristics make it an attractive tourist spot. Dissatisfaction of being the commonly neglected powerless minority, in addition to the political claims from the outside environmental activists made the majority of the Lanyu residents oppose the operation of the storage facility. Approximately 80,000 drums of these wastes have been sent to Lanyu. Although the radiological monitoring results demonstrated that the current operation causes negligiblemore » impact on the environment. Accounting for the fast changing social and political situations in Taiwan today, without a good public acceptance program for both sides, the continuous operation of the Lanyu LLW storage facility until the year 2002, at which time the LLW disposal facility will be commissioned, could be in limbo.« less
NASA Astrophysics Data System (ADS)
Huang, J. C.; Wright, W. V.
1982-04-01
The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
40 CFR 264.342 - Principal organic hazardous constituents (POHCs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... feed to be burned. This specification will be based on the degree of difficulty of incineration of the... results of waste analyses and trial burns or alternative data submitted with part B of the facility's...
40 CFR 264.97 - General ground-water monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General ground-water monitoring requirements. 264.97 Section 264.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste...
Integrated waste management system costs in a MPC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supko, E.M.
1995-12-01
The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.
Cleanup Verification Package for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
2006-11-02
This cleanup verification package documents completion of remedial action for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault. The site consisted of an inactive solid waste storage vault used for temporary storage of slightly contaminated reactor parts that could be recovered and reused for the 100-F Area reactor operations.
40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...
40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...
40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...
NASA Astrophysics Data System (ADS)
Smith, R. K.; Ungers, L. J.
1984-07-01
A walk through survey of the integrated circuit fabrication operation revealed that engineering controls consisted of general and local ventilation, and isolation enclosure of the epitaxy and gas cylinder storage areas. The gas storage room was maintained at a slight negative pressure and gas monitoring was conducted. Liquid wastes were segregated according to type. Acidic wastes were pumped to a drain that carried them to a waste treatment system where they were neutralized with sodium hydroxide. Organic wastes were placed in containers which were taken to an outdoor area behind the facility where they were emptied into drums for disposal. The facility had no routine industrial hygiene program. Smocks, gloves, and safety glasses were required in all fabrication areas. Respirators were available in case of emergency. Preplacement medical examinations were not administered. Quarterly urinalyses for arsenic (7440382) exposure were conducted on all employees performing sawing operations.
Secondary Waste Form Development and Optimization—Cast Stone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.
2011-07-14
Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.
40 CFR 264.231 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.231 Section 264.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.231 Special...
40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.317 Section 264.317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for...
40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.317 Section 264.317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for...
40 CFR 264.231 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.231 Section 264.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.231 Special...
40 CFR 264.231 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.231 Section 264.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.231 Special...
40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.317 Section 264.317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for...
40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...
40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...
40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...
40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...
1998 report on Hanford Site land disposal restrictions for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, D.G.
1998-04-10
This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of bothmore » the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.« less
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2013 CFR
2013-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2010 CFR
2010-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2014 CFR
2014-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2011 CFR
2011-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2012 CFR
2012-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
BAG PASSOUT SEALER FOR WATER-SHIELDED CAVE FACILITY (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
The water-shielded cave facility is used in processing irradiated slugs for recovery of americium, curium, berkelium, californium, einsteinium, and fermium. The remotely operated, plastic-bag passout sealer is used in removing isotopic fractions for storage in the rear or for removing radioactive waste for placement in the waste storage containers. The unit is accessible by both the primary inclosure master-slaves and the service area master-slaves. (F.L.S.)
Medical waste management plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Todd W.; VanderNoot, Victoria A.
2004-12-01
This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.
Robotics for mixed waste operations, demonstration description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.R.
The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less
Controlling changes - lessons learned from waste management facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.; Koplow, A.S.; Stoll, F.E.
This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less
System for handling and storing radioactive waste
Anderson, J.K.; Lindemann, P.E.
1982-07-19
A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.
System for handling and storing radioactive waste
Anderson, John K.; Lindemann, Paul E.
1984-01-01
A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.
40 CFR 265.111 - Closure performance standard.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...
40 CFR 264.111 - Closure performance standard.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... eliminates, to the extent necessary to protect human health and the environment, post-closure escape of...
40 CFR 265.111 - Closure performance standard.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...
40 CFR 264.111 - Closure performance standard.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... eliminates, to the extent necessary to protect human health and the environment, post-closure escape of...
40 CFR 265.223 - Containment system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 265.223 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL..., such as grass, shale, or rock, to minimize wind and water erosion and to preserve their structural...
Hazardous Waste Cleanup: Safety-Kleen Corporation in Southampton Township, New Jersey
The site has been reportedly in operation since 1976 and is currently an active transfer station for distribution of fresh solvent products and the collection and temporary storage of used solvent wastes (prior to subsequent transportation and recycling
40 CFR 264.50 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Applicability. 264.50 Section 264.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Contingency Plan and...
Public health response to striking solid waste management.
Murti, Michelle; Ayre, Reg; Shapiro, Howard; de Burger, Ron
2011-10-01
In 2009, the City of Toronto, Ontario, Canada, experienced a six-week labor disruption involving 24,000 city workers that included solid waste and public health employees. In an attempt to control illegal dumping and to manage garbage storage across the city during this period, 24 temporary garbage storage sites were established by the city (mostly in local parks) for residents to dispose of their household waste. No other municipality in North America has attempted to operate this many temporary sites for this long a period. Management and nonunion staff from Healthy Environments in Toronto Public Health performed daily inspections, responded to community questions, issued public health orders, and worked closely with Solid Waste Management and the Ministry of the Environment to actively manage the public health concerns associated with these sites. This intensive oversight mitigated public health risks to the community and facilitated an effective, safe solution to the temporary garbage storage problem.
Unitized regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2008-01-01
A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Astrophysics Data System (ADS)
Trebilcox, G. J.; Lundberg, W. L.
1981-03-01
The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.
Hazardous Waste Cleanup: Heritage Environmental Services PR, LLC in Mayaguez, Puerto Rico
From August 2009 until October 2014, Heritage Environmental Services PR (“Heritage-PR”) owned and operated an environmental services facility for the treatment, storage and disposal (“TSD”) of hazardous wastes at 3080 Hostos Avenue in Mayaguez, Puerto Rico
40 CFR 264.4 - Imminent hazard action.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imminent hazard action. 264.4 Section 264.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] 264.2 Section 264.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General § 264.2...
40 CFR 264.150 - State assumption of responsibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false State assumption of responsibility. 264.150 Section 264.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
The Integrated Waste Tracking System - A Flexible Waste Management Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert Stephen
2001-02-01
The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
Hazardous-waste analysis plan for LLNL operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R.S.
The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-06-17
The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less
40 CFR 761.211 - Manifest system-Transporter requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...
40 CFR 761.211 - Manifest system-Transporter requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...
40 CFR 264.224-264.225 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] 264.224-264.225 Section 264.224-264.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
NASA Technical Reports Server (NTRS)
Vickers, Brian D. (Inventor)
1994-01-01
Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.
Waste Isolation Pilot Plant (WIPP) fact sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all termsmore » and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.« less
NASA Technical Reports Server (NTRS)
Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.
1972-01-01
The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.
Thermal Analysis for Ion-Exchange Column System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Si Y.; King, William D.
2012-12-20
Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Electric utilities operating nuclear power plants have found themselves in a regulatory Catch-22; extremely limited treatment and disposal capacity is available for their mixed wastes, yet EPA has interpreted RCRA in such a way that long-term storage of the wastes is prohibited. A group of utilities received no relief from this predicament when a court recently rejected their petition for review of EPA`s interpretation of the RCRA mixed-waste storage prohibition. The decision was rendered by the U.S. Court of Appeals for the District of Columbia Circuit on June 18, 1993 (Edison Electric Institute et al. v. U.S. EPA, Docket Number:more » 91-1586).« less
Brown, Michael J; Button, Lisa M; Badjie, Karafa S; Guyer, Jean M; Dhanorker, Sarah R; Brach, Erin J; Johnson, Pamela M; Stubbs, James R
2014-03-01
The national waste rate for hospital-issued blood products ranges from 0% to 6%, with operating room-responsible waste representing up to 70% of total hospital waste. A common reason for blood product waste is inadequate intraoperative storage. Our transfusion service database was used to quantify and categorize red blood cell (RBC) and fresh-frozen plasma (FFP) units issued for intraoperative transfusion that were wasted over a 27-month period. Two cohorts were created: 1) before implementation of a blood transport and storage initiative (BTSI)-RBC and plasma waste January 1, 2011-May 31, 2012; 2) after implementation of BTSI-RBC and plasma waste June 1, 2012, to March 31, 2013. The BTSI replaced existing storage coolers (8-hr coolant life span with temperature range of 1-10°C) with a cooler that had a coolant life span of 18 hours and a temperature range of 1 to 6°C and included an improved educational cooler placard and an alert mechanism in the electronic health record. Monthly median RBC and plasma waste and its associated cost were the primary outcomes. An intraoperative BTSI significantly reduced median monthly RBC (1.3% vs. 0.07%) and FFP (0.4% vs. 0%) waste and its associated institutional cost. The majority of blood product waste was due to an unacceptable temperature of unused returned blood products. An intraoperative BTSI significantly reduced median monthly RBC and FFP waste. The cost to implement this initiative was small, resulting in a significant estimated return on investment that may be reproducible in institutions other than ours. © 2013 American Association of Blood Banks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlisle, Derek; Adamson, Kate
2012-07-01
The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.
1995-04-01
This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less
ICPP tank farm closure study. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.
1998-02-01
The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less
The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voegele, Michael D.; Vieth, Donald
2013-07-01
The report of the Blue Ribbon Commission on America's Nuclear Future [1] makes a number of important recommendations to be considered if Congress elects to redirect U.S. high-level radioactive waste disposal policy. Setting aside for the purposes of this discussion any issues related to political forces leading to stopping progress on the Yucca Mountain project and driving the creation of the Commission, an important recommendation of the Commission was to institute prompt efforts to develop one or more consolidated storage facilities. The Blue Ribbon Commission noted that this recommended strategy for future storage and disposal facilities and operations should bemore » implemented regardless of what happens with Yucca Mountain. It is too easy, however, to focus on interim storage as an alternative to geologic disposal. The Blue Ribbon Commission report does not go far enough in addressing the magnitude of the contentious problems associated with reopening the issues of relative authorities of the states and federal government with which Congress wrestled in crafting the Nuclear Waste Policy Act [2]. The Blue Ribbon Commission recommendation for prompt adoption of an interim storage program does not appear to be fully informed about the actions that must be taken, the relative cost of the effort, or the realistic time line that would be involved. In essence, the recommendation leaves to others the details of the systems engineering analyses needed to understand the nature and details of all the operations required to reach an operational interim storage facility without derailing forever the true end goal of geologic disposal. The material presented identifies a number of impediments that must be overcome before the country could develop a centralized federal interim storage facility. In summary, and in the order presented, they are: 1. Change the law, HJR 87, PL 107-200, designating Yucca Mountain for the development of a repository. 2. Bring new nuclear waste legislation to the floor of the Senate, overcoming existing House support for Yucca Mountain; 3. Change the longstanding focus of Congress from disposal to storage; 4. Change the funding concepts embodied in the Nuclear Waste Policy Act to allow the Nuclear Waste fund to be used to pay for interim storage; 5. Reverse the Congressional policy not to give states or tribes veto or consent authority, and to reserve to Congress the authority to override a state or tribal disapproval; 6. Promulgate interim storage facility siting regulations to reflect the new policies after such changes to policy and law; 7. Complete already underway changes to storage and transportation regulations, possibly incorporating changes to reflect changes to waste disposal law; 8. Promulgate new repository siting regulations if the interim storage facility is to support repository development; 9. Identify volunteer sites, negotiate agreements, and get Congressional approval for negotiated benefits packages; 10. Design, License and develop the interim storage facility. The time required to accomplish these ten items depends on many factors. The estimate developed assumes that certain of the items must be completed before other items are started; given past criticisms of the current program, such an assumption appears appropriate. Estimated times for completion of individual items are based on historical precedent. (authors)« less
40 CFR 264.151 - Wording of the instruments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Wording of the instruments. 264.151 Section 264.151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.151 Wording o...
40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gas/vapor service. 264.1054 Section 264.1054 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in...
40 CFR 268.50 - Prohibitions on storage of restricted wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilitate proper recovery, treatment, or disposal and the generator complies with the requirements in § 262.34 and parts 264 and 265 of this chapter. (2) An owner/operator of a hazardous waste treatment... proper recovery, treatment, or disposal and: (i) Each container is clearly marked to identify its...
40 CFR 268.50 - Prohibitions on storage of restricted wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilitate proper recovery, treatment, or disposal and the generator complies with the requirements in § 262.34 and parts 264 and 265 of this chapter. (2) An owner/operator of a hazardous waste treatment... proper recovery, treatment, or disposal and: (i) Each container is clearly marked to identify its...
Progress and future direction for the interim safe storage and disposal of Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.
This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less
NASA Astrophysics Data System (ADS)
Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.
2011-04-01
The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.
Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less
Recycling agroindustrial waste by lactic fermentations: coffee pulp silage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrizales, V.; Ferrer, J.
1985-04-03
This UNIDO publication on lactic acid fermentation of coffee pulp for feed production covers (1) a process which can be adapted to existing coffee processing plants for drying the product once harvesting time has finished (2) unit operations involved: pressing (optional), silaging, liming and drying (3) experiments, results and discussion, bibliography, process statistics, and diagrams. Additional references: storage, biotechnology, lime, agricultural wastes, recycling, waste utilization.
40 CFR 265.148 - Incapacity of owners or operators, guarantors, or financial institutions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., guarantors, or financial institutions. 265.148 Section 265.148 Protection of Environment ENVIRONMENTAL... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.148 Incapacity of owners or operators, guarantors, or financial institutions. (a) An owner or operator must notify the...
NASA Astrophysics Data System (ADS)
Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.
2013-12-01
Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald
2012-10-02
LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less
3718-F Alkali Metal Treatment and Storage Facility Closure Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; wastemore » characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.« less
Tank waste remediation system configuration management implementation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, J.M.
1998-03-31
The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from themore » life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.« less
Waste Generation Overview, Course 23263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1987-01-01
At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
40 CFR 264.3 - Relationship to interim status standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Relationship to interim status standards. 264.3 Section 264.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General § 264.3 Relationship to...
40 CFR 265.442 - Design and installation of new drip pads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads §...
78 FR 57538 - Proposed Waste Confidence Rule and Draft Generic Environmental Impact Statement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
....nrc.gov/public-involve/public-meetings/index.cfm no later than 10 days prior to the meetings. Dated at... storage of spent nuclear fuel beyond a reactor's licensed life for operation and prior to ultimate... the proposed Waste Confidence rule and DGEIS in order to maximize public participation at these...
40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false EPA Interim Primary Drinking Water Standards III Appendix III to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Pt....
An improved waste collection system for space flight
NASA Technical Reports Server (NTRS)
Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry
1986-01-01
Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.
Whalley, C; Pak, L N; Heaven, S
2007-01-01
The research investigated some factors influencing the rate of stabilisation of wastewater in the spring period in continental climate waste stabilisation ponds, and in particular the potential for bringing forward the discharge date by optimising storage capacity and dilution. Experiments using pilot and modelscale ponds were set up in Almaty, Kazakhstan. These simulated operating regimes for a facultative and storage/maturation pond system subject to ice cover from late November until late March. Two pilot-scale facultative ponds were operated at hydraulic retention times (HRT) of 20 and 30 days, with surface loading rates of 100 and 67 kg BOD ha(-1) day(-1). Effluent from the 20-day HRT facultative pond was then fed to two pilot-scale storage/maturation ponds which had been partially emptied and allowed to refill over the winter period with no removal of effluent. The paper discusses the results of the experiments with respect to selection of an operating regime to make treated wastewater available early in the spring. Preliminary results indicate that there may be potential for alternative operating protocols designed to maximise their performance and economic potential.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
..., New York. A modernized facility is needed to streamline radioactive material handling and storage... waste shipments would be a small part of the shipments of radioactive materials made annually in the... preferred action to address the need for streamlining radioactive material handling and storage operations...
Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayancsik, B.A.
1994-10-13
During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.
In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less
W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leist, K.J.
1998-02-18
The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processingmore » (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less
Reuse of Concentrated Animal Feeding Operating Wastewater on Agricultural Lands
Concentrated animal feeding operations (CAFOs) generate large volumes of manure and manure-contaminated wash and runoff water. Transportation, storage, and treatment of manure and manure-contaminated water are costly. The large volume of waste generated, and the lack of disposal ...
Tabata, Tomohiro; Wakabayashi, Yohei; Tsai, Peii; Saeki, Takashi
2017-03-01
Although it is important that disaster waste be demolished and removed as soon as possible after a natural disaster, it is also important that its treatment is environmentally friendly and economic. Local municipalities do not conduct environmental and economic feasibility studies of pre-disaster waste management; nevertheless, pre-disaster waste management is extremely important to promote treatment of waste after natural disasters. One of the reasons that they cannot conduct such evaluations is that the methods and inventory data required for the environmental and economic evaluation does not exist. In this study, we created the inventory data needed for evaluation and constructed evaluation methods using life cycle assessment (LCA) and life cycle cost (LCC) methodologies for future natural disasters. We selected the Japanese town of Minami-Ise for the related case study. Firstly, we estimated that the potential disaster waste generation derived from dwellings would be approximately 554,000t. Based on this result, the land area required for all the temporary storage sites for storing the disaster waste was approximately 55ha. Although the public domain and private land area in this case study is sufficient, several sites would be necessary to transport waste to other sites with enough space because local space is scarce. Next, we created inventory data of each process such as waste transportation, operation of the temporary storage sites, and waste treatment. We evaluated the environmental burden and cost for scenarios in which the disaster waste derived from specified kinds of home appliances (refrigerators, washing machines, air-conditioners and TV sets) was transported, stored and recycled. In the scenario, CO 2 , SO x , NO X and PM emissions and total cost were 142t, 7kg, 257kg, 38kg and 1772 thousand USD, respectively. We also focused on SO x emission as a regional pollution source because transportation and operation of the temporary storage sites generates air pollution. If the treatment of all waste were finished in 3years, the environmental standard would be satisfied by setting work duration to 4.8h/d. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, M.S.
The Barnwell Waste Management Facility (BWMF) is scheduled to restrict access to waste generators outside of the Atlantic Compact (SC, CT, NJ) on July 1, 2008. South Carolina, authorized under the Low-Level Waste Policy Act of 1980 and Amendments Act of 1985, and in agreement with the other Atlantic Compact states, will only accept Class A, B, and C low-level radioactive waste (LLRW) generated within compact. For many years, the BWMF has been the only LLRW disposal facility to accept Class B and C waste from LLRW generators throughout the country, except those that have access to the Northwest Compactmore » Site. Many Class B/C waste generators consider this to be a national crisis situation requiring interim or possible permanent storage, changes in operation, significant cost impacts, and/or elimination of services, especially in the health care and non-power generation industries. With proper in-house waste management practices and utilization of commercial processor services, a national crisis can be avoided, although some generators with specific waste forms or radionuclides will remain without options. In summary: It is unknown what the future will bring for commercial LLRW disposal. Could the anticipated post Barnwell Class B/C crisis be avoided by any of the following? - Barnwell Site remains open for the nation's commercial Class B/C waste; - Richland Site opens back up to the nation for commercial Class B/C waste; - Texas Site opens up to the nation for commercial Class B/C waste; - Federal Government intervenes by keeping a commercial Class B/C site open for the nation's commercial Class B/C waste; - Federal Government makes a DOE site available for commercial Class B/C waste; - Federal Government revisits the LLRW Policy Act of 1980 and Amendments Act of 1985. Without a future LLRW site capable of accepting Class B/C currently on the horizon, commercial LLRW generators are faced with waste volume elimination, reduction, or storage. With proper in-house waste management practices, utilization of commercial processor services and regulatory relief, a national crisis can be avoided. Waste volumes for storage can be reduced to as little as 10% of the current Class B/C volume. Although a national LLRW crisis can be avoided, some generators with specific waste forms or radionuclides will have a significant financial and/or operational impact due to a lack of commercial LLRW management options. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
CORBETT JE; TEDESCH AR; WILSON RA
2011-02-14
A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less
Integrated Management of all Historical, Operational and Future Decomissioning Solid ILW at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, D.
This paper describes major components of the Dounreay Site Restoration Plan, DSRP to deal with the site's solid intermediate level waste, ILW legacy. Historic solid ILW exists in the Shaft (disposals between 1959 and 1977), the Wet Silo (operated between 1973 and 1998), and in operating engineered drummed storage. Significant further arisings are expected from future operations, post-operations clean out and decommissioning through to the completion of site restoration, expected to be complete by about 2060. The raw waste is in many solid forms and also incorporates sludge, some fissile material and hazardous chemical components. The aim of the Solidmore » ILW Project is to treat and condition all this waste to make it passively safe and in a form which can be stored for a substantial period, and then transported to the planned U.K. national deep repository for ILW disposal. The Solid ILW Project involves the construction of head works for waste retrieval operations at the Shaft and Wet Silo, a Waste Treatment Plant and a Conditioned Waste Store to hold the conditioned waste until the disposal facilities become available. In addition, there are infrastructure activities to enable the new construction: contaminated ground remediation, existing building demolition, underground and overground services diversion, sea cliff stabilization, and groundwater isolation at the Shaft.« less
ICD Complex Operations and Maintenance Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, P. L.
2007-06-25
This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gaseous HAP emitted from each solvent storage tank, piece of mix preparation equipment, coating operation..., piece of mix preparation equipment, coating operation, waste handling device, and condenser vent in... of this method is sufficient to meet the requirements of paragraph (c)(1) or (2) of this section. (4...
40 CFR 264.572 - Design and installation of new drip pads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 264.572 Section 264.572 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads § 264.572 Design...
78 FR 54789 - Proposed Waste Confidence Rule and Draft Generic Environmental Impact Statement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
.../index.cfm no later than 10 days prior to the meetings. Dated at Rockville, Maryland, this 30th day of... storage of spent nuclear fuel beyond a reactor's licensed life for operation and prior to ultimate... the proposed Waste Confidence rule and DGEIS in order to maximize public participation at these...
Code of Federal Regulations, 2012 CFR
2012-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2013 CFR
2013-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2011 CFR
2011-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2014 CFR
2014-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hladek, K.L.
1997-10-07
The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOPKINS, A.M.
2007-02-20
The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building.more » The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.« less
Hazardous Waste Cleanup: AGC Chemicals Americas Incorporated in Bayonne, New Jersey
The facility is located at 229 East 22nd Street, Bayonne, New Jersey. Exxon, formerly Standard Oil, began operations at this facility in the late 1890's. Exxon's use of the site included storage, transfer and distribution of petroleum, and operation of a
40 CFR 264.170 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 261.7. In that event, management of the container is exempt from the requirements of this subpart.] ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of...
40 CFR 264.170 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 261.7. In that event, management of the container is exempt from the requirements of this subpart.] ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, M.S.
1982-07-01
A visit was made to the San Juan Cement Company, Dorado, Puerto Rico to evaluate control methods for a storage and delivery system for hazardous wastes used in a demonstration project as a supplemental fuel for cofiring a cement kiln. Analysis of the material during the visit revealed the presence of methylene chloride, carbon-tetrachloride, chloroform, acetone, hexane, ethanol, and ethyl acetate. Steel storage tanks were placed on an impermeable concrete slab surrounded by a sealed retaining wall. Steel piping with all welded joints carried the waste fuels from storage tanks to the kiln, where fuels were injected through a speciallymore » fabricated burner. Vapor emissions were suppressed by venting the displaced vapor through a recycle line. Exhaust gases from the kiln passed through a bag house type dust collector, and were vented to the atmosphere through a single stack. Half-mask air-purifying respirators were used when in the hazardous-waste storage/delivery area. Neoprene gloves were used when performing tasks with potential skin contact. Hard hats, safety glasses, and safety boots were all worn. The author concludes that the control methods used seemed effective in suppressing vapor emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattlin, E.; Charboneau, S.; Johnston, G.
2007-07-01
The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4,more » D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z locations. Clean closed 241-Z treatment and storage tanks, equipment and/or structures will remain after RCRA clean closure for future disposition in conjunction with PFP decommissioning activities which are integrated with CERCLA. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.
The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less
Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less
Lih thermal energy storage device
Olszewski, Mitchell; Morris, David G.
1994-01-01
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.
Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
COVEY, L.I.
2000-11-28
The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will havemore » been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.« less
40 CFR 265.221 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...
40 CFR 265.304 - Monitoring and inspection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.304 - Monitoring and inspection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.304 - Monitoring and inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.226 - Monitoring and inspection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...
40 CFR 265.226 - Monitoring and inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...
40 CFR 265.221 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...
40 CFR 265.221 - Design and operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...
40 CFR 265.226 - Monitoring and inspection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...
40 CFR 265.304 - Monitoring and inspection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.221 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...
40 CFR 265.304 - Monitoring and inspection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
40 CFR 265.226 - Monitoring and inspection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...
40 CFR 265.221 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...
40 CFR 265.226 - Monitoring and inspection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J.D.; Kleinschmidt, R.; Veevers, P.
1995-12-31
Radiation regulatory authorities have a responsibility for the management of radioactive waste. This, more often than not, includes the collection and safe storage of radioactive sources in disused radiation devices and devices seized by the regulatory authority following an accident, abandonment or unauthorised use. The public aversion to all things radioactive, regardless of the safety controls, together with the Not In My Back Yard (NIMBY) syndrome combine to make the establishment of a radioactive materials store a near impossible task, despite the fact that such a facility is a fundamental tool for regulatory authorities to provide for the radiation safetymore » of the public. In Queensland the successful completion and operational use of such a storage facility has taken a total of 8 years of concerted effort by the staff of the regulatory authority, the expenditure of over $2 million (AUS) not including regulatory staff costs and the cost of construction of an earlier separate facility. This paper is a summary of the major developments in the planning, construction and eventual operation of the facility including technical and administrative details, together with the lessons learned from the perspective of the overall project.« less
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gomberg, Steve
2015-11-01
The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less
[Waste management in hospitals. Current situation in the state of North Rhine-Westphalia].
Popp, W; Hansen, D; Hilgenhöner, M; Grandek, M; Heinemann, A; Blättler, T
2009-07-01
In 20 hospitals in North Rhine-Westphalia in-plant handling wastes and the delivery of the waste to the disposer were examined. Deficits were seen regarding risk assessment and operating instructions, support by company doctors, personal protection equipment, and break areas for the waste collecting personnel. Also the qualification of the waste management officer and his/her time contingent, correct declaration of the wastes, the training of the waste collecting personnel, the cleaning of multi-use containers and transportation vehicles, storage of the wastes at the collecting points, and the use of sharp collecting boxes were to be partly criticized. Consequences and recommendations are given, concerning the company's obligations (e.g., provide risk assessment, operating instructions), waste management officer (e.g., qualification, enough time contingent, regular inspections), waste collecting personnel (e.g., training courses), industrial safety (e.g., protection equipment, break area wash places), company doctors, transportation vehicles in the house (e.g., regular cleaning), one-way collectors (e.g., labelling at the site of the collection), multi-use collectors (e.g., cleaning), and compressing containers (e.g., larger maintenance openings).
Geohydrologic and drill-hole data for test well USW H-3, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thordarson, W.; Rush, F.E.; Spengler, R.W.
This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-3. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, pumping, swabbing, and injection tests for the well are contained in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastas, M.
1984-01-01
A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at du Pont de Nemours and Company (SIC-2800), Deepwater, New Jersey in November 1981. Hazardous wastes generated at the facility were disposed of by incineration, wastewater and thermal treatment, and landfilling. Engineering controls for the incineration process and at the landfill were noted. At the landfill, water from a tank trailer was sprayed periodically to suppress dust generation. Vapor control devices, such as spot scrubbers, were used during transfer of organic wastes from trailers and drums to storage prior to incineration. Wastes were also recirculatedmore » to prevent build up of grit in the strainers. The company conducted area monitoring for nitrobenzene (98953) and amines at the landfill and personal monitoring for chloramines at the incinerator. Half mask dust respirators were worn by landfill operators. Operators who unloaded and emptied drums at the incinerator were required to wear face masks, rubber gloves, and boots. The author concludes that disposal of hazardous wastes at the facility is state of the art. An in depth survey is recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating themore » need for an environmental impact statement.« less
LiH thermal energy storage device
Olszewski, M.; Morris, D.G.
1994-06-28
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.
Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less
Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sueiae, S.; Fabjan, M.; Hrastar, U.
2008-07-01
The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment ofmore » institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a software development life-cycle methodology the Waterfall methodology was used. The reason for choosing this methodology lied in its simple approach: analyze the problem, design the solution, implement the code, test the code, integrate and deploy. ARAO's institutional radioactive waste management process was improved in the way that it is more efficient, better organized, allowing traceability and availability of all documents and operational procedures within the field of institutional radioactive waste. The tailored made IBS system links all activities of the institutional radioactive waste management process: collection, transportation, takeover, acceptance, storing, treatment, radiation protection, etc. into one management system. All existing and newly designed evidences, operational procedures and other documents can be searched and viewed via secured Internet access from different locations. (authors)« less
Developing a concept for a national used fuel interim storage facility in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Donald Wayne
2013-07-01
In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of PCB...
Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology
NASA Astrophysics Data System (ADS)
Hay, Ryan
With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasser, K.
1994-06-01
In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less
Preliminary Concept of Operations for the Spent Fuel Management System--WM2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L
The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less
Review and Implementation of Technology for Solid Radioactive Waste Volume Reduction
1999-10-15
were shifted to Project 1.1 for spent nuclear fuel cask development to accelerate that project. Those funds should be repaid to Project 1.3 in the... transported between the shipyards such as Nerpa, and other intermediate storage sites such as Gremikha and Andreeva Bay. At these sites the largest...waste source and allow pretreatment unit operations using commercially available technologies of contaminant assaying, cutting/shearing, sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueth, Joachim
The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials,more » and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)« less
Direct cementitious waste option study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dafoe, R.E.; Losinski, S.J.
A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste andmore » casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldaini, Michel
The first heading of your manuscript must be 'Introduction'. Phenix is the only remaining French fast breeder reactor after the shutdown of Superphenix (1999) and Rapsodie (1983). Phenix is located inside the Marcoule nuclear site along the Rhone river near Bagnols-sur-Ceze in southeastern France. Phenix is one of the facilities belonging the French Atomic Energy Commission (CEA) on the Marcoule site. It is a fast breeder reactor (FBR) developed at the end of the 1960's. that has been in operation since 1973 and was connected to the power grid in 1974. It is a second generation prototype developed while themore » first generation FBR, Rapsodie, was still in operation. Phenix is a 250 electrical MW power plant. During the first 20 years of operation, its main aim was to demonstrate the viability of sodium-cooled FBRs. Since the 1991 radioactive waste management act, Phenix has become an irradiation tool for the actinide transmutation program. To extend its operating life for 6 additional cycles, it was necessary to refurbish the plant; this involved major work performed from 1999 to 2003 at a total cost of about 250 M??. Today, with a realistic expectation, the final shutdown is planned for the beginning of 2009. The main objective of the Phenix dismantling project is to eliminate all the process equipment and clean all the building to remove all the radioactive zones. To reach this objective, three main hazards must be eliminated: Fuel (criticality hazard), Sodium, Radioactive equipment. The complexity of decommissioning a facility such as Phenix is increased by: - the lack of storage facility for high radioactive material, - the decision to treat all the radioactive sodium and sodium waste inside the plant, - the very high irradiation of the core structures due to the presence of cobalt alloys. On the other hand, Phenix plant is still under operating with a qualified staff and the radioactivity coming from structural activation is well known. After the final shutdown, the first operations will be conducted by the same staff under the same safety report. Another interesting fact is that the decommissioning funds project exist and are available. The CEA decided to begin the dismantling phase without waiting because after a period of decay it is not really cheaper or easier to work. This approach needs interim storage facilities not long after the final shutdown. For the low- and intermediate-level radioactive waste there are national storage centers but for the high-level wastes, each operator must manage its waste until a suitable disposal site is available. At Marcoule a new storage facility is now being designed and scheduled to begin operating after 2013-2014. After removal of the fuel and core elements, the primary sodium will be drained and eliminated by a carbonation process. To ensure biological shielding, the reference scenario calls for filling the primary vessel with water. The most radioactive structures (dia-grid and core support) will be cut up with remote tools, after which the rest of the structure will be cut up manually. Phenix contains about 1450 metric tons of sodium. The CEA initially planned to build ATENA, a new facility for all radioactive sodium waste from R and D and FBR facilities. For various reasons, but mainly to save money, the CEA decided to treat all radioactive sodium and sodium waste in the framework of the Phenix dismantling project. There are no real difficulties in the dismantling schedule because of the advanced state of development of the processes selected for the ATENA project. Because of the knowledge already obtained, the issues concern project management, waste management and human resources reduction more than technical 0014challe.« less
Consolidated Storage Facilities: Camel's Nose or Shared Burden? - 13112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, James M.
2013-07-01
The Blue Ribbon Commission (BRC) made a strong argument why the reformulated nuclear waste program should make prompt efforts to develop one or more consolidated storage facilities (CSFs), and recommended the amendment of NWPA Section 145(b) 2 (linking 'monitored retrievable storage' to repository development) as an essential means to that end. However, other than recommending that the siting of CSFs should be 'consent-based' and that spent nuclear fuel (SNF) at stranded sites should be first-in-line for removal, the Commission made few recommendations regarding how CSF development should proceed. Working with three other key Senators, Jeff Bingaman attempted in the 112.more » Congress to craft legislation (S. 3469) to put the BRC recommendations into legislative language. The key reason why the Nuclear Waste Administration Act of 2012 did not proceed was the inability of the four senators to agree on whether and how to amend NWPA Section 145(b). A brief review of efforts to site consolidated storage since the Nuclear Waste Policy Amendments Act of 1987 suggests a strong and consistent motivation to shift the burden to someone (anyone) else. This paper argues that modification of NWPA Section 145(b) should be accompanied by guidelines for regional development and operation of CSFs. After review of the BRC recommendations regarding CSFs, and the 'camel's nose' prospects if implementation is not accompanied by further guidelines, the paper outlines a proposal for implementation of CSFs on a regional basis, including priorities for removal from reactor sites and subsequently from CSFs to repositories. Rather than allowing repository siting to be prejudiced by the location of a single remote CSF, the regional approach limits transport for off-site acceptance and storage, increases the efficiency of removal operations, provides a useful basis for compensation to states and communities that accept CSFs, and gives states with shared circumstances a shared stake in storage and disposal in an integrated national program. (authors)« less
Rush, F. Eugene; Thordarson, William; Bruckheimer, Laura
1983-01-01
This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the U.S. Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are contained in this report.
CONTAMINATION OF PUBLIC GROUND WATER SUPPLIES BY SUPERFUND SITES
Multiple sources of contamination can affect ground water supplies, including municipal landfills, industrial operations, leaking underground storage tanks, septic tank systems, and prioritized uncontrolled hazardous waste sites known as “Superfund” sites. A review of Superfund R...
Evaluating the operational risks of biomedical waste using failure mode and effects analysis.
Chen, Ying-Chu; Tsai, Pei-Yi
2017-06-01
The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.
3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant tomore » the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.« less
300 Area dangerous waste tank management system: Compliance plan approach. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixedmore » waste.« less
ESP`s Tank 42 washwater transfer to the 241-F/H tank farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aponte, C.I.; Lee, E.D.
1997-12-01
As a result of the separation of the High-Level Liquid Waste Department into three separate organizations (formerly there were two) (Concentration, Storage, and Transfer (CST), Waste Pre-Treatment (WPT) and Waste Disposition (WD)) process interface controls were required. One of these controls is implementing the Waste the waste between CST and WPT. At present, CST`s Waste Acceptance Criteria is undergoing revision and WPT has not prepared the required Waste Compliance Plan (WCP). The Waste Pre-Treatment organization is making preparations for transferring spent washwater in Tank 42 to Tank 43 and/or Tank 22. The washwater transfer is expected to complete the washingmore » steps for preparing ESP batch 1B sludge. This report is intended to perform the function of a Waste Compliance Plan for the proposed transfer. Previously, transfers between the Tank Farm and ITP/ESP were controlled by requirements outlined in the Tank Farm`s Technical Standards and ITP/ESP`s Process Requirements. Additionally, these controls are implemented primarily in operating procedure 241-FH-7TSQ and ITP Operations Manual SW16.1-SOP-WTS-1 which will be completed prior to performing the waste transfers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2000-06-30
The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less
Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo
2015-04-01
The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Importance of storage time in mesophilic anaerobic digestion of food waste.
Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing
2016-07-01
Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyacke, M.
1993-08-01
This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less
Basic features of waste material storage in underground space in relation to geomechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konecny, P.
1994-12-31
It is logical to consider utilizing underground cavities for waste material disposal because, during mining, great volumes of rock materials are extracted, and underground hollow areas and communicating workings are created that can, in general, be utilized for waste disposal. Additionally, in many cases, underground waste disposal favorably supports mining process technology (for instance, application of power plant fly ash and preparation plant tailings as hardened backfill). However, it is necessary to give particular attention to the preparation, operation, and isolation of underground tip areas; errors and, in extreme cases, emergencies in underground tips are generally more difficult to dealmore » with than those in surface tips. A tip place constructed underground becomes part of the rock massif; therefore, all natural laws that rule the rock massif must be respected. Of course, such an approach requires knowledge of processes and natural regularities that will occur in rock strata where tip places have been constructed. Such knowledge is gained through familiarity with contemporary geomechanical science. The paper discusses basic geomechanical principles of underground waste disposal; geomechanical aspects of rock massif evaluation in view of waste material storage in mine workings; and plans for an experimental project for waste disposal in the Dul Ostrava underground mine.« less
Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less
Marshall Space Flight Center solid waste characterization and recycling improvement study
NASA Technical Reports Server (NTRS)
Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James
1995-01-01
The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.
Conditioning of the 4 Curies Radium-226 Sealed Radiation Source in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punnachaiya, M.; Sawangsri, T.; Wanabongse, P.
This paper describes the conditioning of the 4 curies Radium-226 (Ra-226) sealed radiation source using as a teletherapy unit for cancer treatment in Thailand. The conditioning was under the International Atomic Energy Agency (IAEA) supervision and budgetary supports, comprised of 6 operational steps: the surface dose rate and actual dimension of radium unit measurements, the appropriate lead shielding design with IAEA approval, confirmation of radioactive contamination before conditioning (smear test and radon gas leakage test), transfer of radium source unit into the designed shielding, confirmation of radioactive contamination and dose rate measurement after conditioning, and transportation of Ra-226 conditioning wastemore » package to OAP interim waste storage. The Ra-226 unit was taken out of OAP temporary waste storage for the surface dose rate and the actual dimension measurements behind the 12 inches thick heavy concrete shielding. The maximum measured surface dose rate was 70 R/hr. The special lead container was designed according to its surface dose rate along the source unit which the maximum permissible dose limit for surface dose rate of waste package after conditioning at 2 mSv/hr was applied. The IAEA approved container had total weight of 2.4 ton. After the confirmation of radioactive contamination, Ra-226 source unit was transferred and loaded in the designed lead shielding within 2 minutes. The results of smear test before and after conditioning including radon gas leakage test revealed that there was no radioactive contamination. After conditioning, the surface dose rate measured on the top, bottom were 15,10 mR/hr and varied from 6 - 50 mR/hr around lead container. The Ra-226 conditioning waste package was safely transported to store in OAP interim waste storage. Total working time including the time consumed for radon gas leakage test was 3.5 hours. The total radiation dose received by 16 operators, were ranged from 1 - 69.84 {mu}Sv and the operational team completed the conditioning safely within the effective dose limit for occupational exposure of 50 mSv/year (200 {mu}Sv/day). (authors)« less
2006-09-01
training speeds into one or several of hundreds of nuclear fuel rod storage casks could release immensely toxic radioactive wastes that have a 10,000...distinctions between the risks related to open storage of spent nuclear fuel rods in Skull Valley and the risks to civilian facilities within the...operations, stores, markets, coffee shops and other strictly civilian commercial enterprises. No family or residential housing use is proposed
Alteration of municipal and industrial slags under atmospheric conditions
NASA Astrophysics Data System (ADS)
Rafał Kowalski, Piotr; Michalik, Marek
2014-05-01
The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in content of soluble minerals, like halite, in comparison to the output samples was noted. These phases where probably dissolved and washed out from the samples. After 12 months of atmospheric exposure in municipal slags only slight changes in weight (1 wt%) were observed, whereas in industrial slags slightly above 10 wt% of the material was removed. After 12 months of atmospheric exposure more significant changes are expected such as changes in chemical and mineral compositions and changes in heavy metals and toxic elements concentrations due to leaching.
Regulatory control of low level radioactive waste in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.D.S.; Chiou, Syh-Tsong
1996-12-31
The commercial operation of Chinshan Nuclear Power Plant (NPP) Unit One marked the beginning of Taiwan`s nuclear power program. There are now three NPPs, each consisting of two units, in operation. This represents a generating capacity of 5,144 MWe. Nuclear power plants are sharing some 30 percent of electricity supplies in Taiwan. As far as low level radwaste (LLRW) is concerned, Taiwan Power Company (TPC) is the principal producer, contributing more than 90 percent of total volume of waste arising in Taiwan. Small producers, other than nuclear industries, medicine, research institutes, and universities, are responsible for the remaining 10 percent.more » In the paper, the LLRW management policy, organizational scheme, regulatory control over waste treatment, storage, transportation and disposal are addressed. Added to the paper in the last is how this country is managing its Naturally Occurring Radioactive Materials (NORM) waste.« less
Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, E.W.; Wu, C.F.; Goff, T.E.
1993-12-31
The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less
Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less
40 CFR 265.146 - Use of a mechanism for financial assurance of both closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Use of a mechanism for financial... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.146 Use of a mechanism for financial assurance of both closure and post-closure care. An owner or operator...
Appraisal of Scientific Resources for Emergency Management.
1983-09-01
water, communications, computers, and oil refineries or storage facilities. In addition, the growth of the number of operative nuclear power plants ...one from a nuclear power plant accident); one involved hazardous waste disposal problems; and finally two involved wartime scenarios, one focusing on...pro- tection research, radiological protection from nuclear power plant accidents, concepts and operation of public shelters, and post attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, C.
This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (ARNG) property in Austin, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing, preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining, site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment.more » This PA satisfies, for the Bee Caves Armory property, the requirements of the Department of Defense Installation Restoration Program. Of concern is the potential for hazardous waste to be present on the property as a result of the former Nike Missile Base operations or in the form of original construction materials. Environmentally sensitive operations associated with the property from that period include (1) underground fuel storage, (2) hazardous materials storage/use, (3) disposal of hazardous waste and (4) release of hazardous waste water.« less
40 CFR 243.204-2 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... collection system. These records should be used for scheduling maintenance and replacement, for budgeting, and for system evaluation and comparison. (b) The collection system should be reviewed on a regular...) SOLID WASTES GUIDELINES FOR THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL...
Graphite Waste Tank Cleanup and Decontamination under the Marcoule UP1 D and D Program - 13166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomasset, Philippe; Chabeuf, Jean-Michel; Thiebaut, Valerie
2013-07-01
The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pits had to be retrieved and transferred into a newer and safer pit. After an extensive R and D program, the equipment and process necessary for retrieval operations were designed, built and tested. Themore » innovative process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. The retrieval of the most irradiating fragments was a challenge. Today, the first pit is totally empty and its stainless steel walls have been decontaminated using gels. In the second pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. After more than 6 years of operations in sludge retrieval, a lot of experience was acquired from which important 'lessons learned' could be shared. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rush, F.E.; Thordarson, W.; Bruckheimer, L.
This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the US Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are inmore » this report.« less
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
Accumulation and subsequent utilization of waste heat
NASA Astrophysics Data System (ADS)
Koloničný, Jan; Richter, Aleš; Pavloková, Petra
2016-06-01
This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.
Megalla, Dina; Van Geel, Paul J; Doyle, James T
2016-09-01
A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Site maps and facilities listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used formore » production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.« less
THE BEHAVIOR OF MICROORGANISMS RESISTANT TO MERCURY FROM PAVLODAR, KAZAKHSTAN
There is extensive mercury contamination surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, in Balkyldak Lake w...
40 CFR 265.140 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this subpart applying to a regulated unit with alternative requirements for financial assurance set out... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial... Administrator: (1) Prescribes alternative requirements for the regulated unit under § 265.90(f) and/or 265.110(d...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmerkus, Felix; Rittmeyer, Cornelia
2012-07-01
The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less
Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRIGGS, S.R.
2000-02-25
The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.
Bible, J; Emery, R J; Williams, T; Wang, S
2006-11-01
Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to assess, and perhaps enhance in a reasonable fashion, the security of their interim storage operations. Aspects of the assessment tool can also be applied to other activities involving the protection of sources of radiation as well.
Method for waste collection and storage
NASA Technical Reports Server (NTRS)
Thornton, William E., Jr. (Inventor); Whitmore, Henry B. (Inventor)
1990-01-01
A method for collection of fecal matter designed to operate efficiently in a zero gravity environment was invented. The system consists of a waste collection area within a body having a seat opening. Low pressure within the waste collection area directs fecal matter away from the user's buttocks and prevents the escape of waste gases. The user actuates a piston covered with an absorbent pad that sweeps through the waste collection area to collect fecal matter, scrub the waste collector area, press the waste against an end of the waste collection area and retracts, leaving the used pad. Multiple pads are provided on the piston to accommodate multiple usages. Also a valve allows air to be drawn through the body, which keeps the valve from becomming plugged with the feces. A sheet feeder feeds fresh sheets of absorbent pads to a face of the piston with each actuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NNSA /NV
This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located withinmore » Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-20
The 22,000-acre Otis National Guard/Camp Edwards site is a former military vehicle maintenance facility on Cape Cod, Massachusetts, within the Massachusetts Military Reservation (MMR). The Area of Contamination Chemical Spill Area Number 4 (AOC CS-4) plume extends 11,000 feet and is located 1.1 miles from the southern boundary of MMR. Wastes and equipment handled at AOC CS-4 included oils, solvents, antifreeze, battery electrolytes, paint, and waste fuels. Additionally, the northern portion of AOC CS-4 was used as a storage yard for wastes generated by shops and laboratories operating at MMR. Liquid wastes were stored in containers or underground storage tanksmore » (USTs) in an unbermed area or deposited in USTs designated for motor gasoline. The ROD addresses OU2, the interim action for MMR AOC CS-4 ground water to prevent further down gradient migration of the contaminants. The primary contaminants of concern affecting the ground water are VOCs, including PCE and TCE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, T.A., Fluor Daniel Hanford
1997-02-06
The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1986-12-01
At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations.« less
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
40 CFR 266.220 - What does a storage and treatment conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...
On-site low level radwaste storage facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knauss, C.H.; Gardner, D.A.
1993-12-31
This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less
Groundwork for Universal Canister System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.
2015-09-01
The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used formore » handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.« less
40 CFR 273.53 - Storage time limits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...
40 CFR 273.53 - Storage time limits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...
40 CFR 273.53 - Storage time limits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Multimedia environmental management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soesilo, J.A.; Wiley, W.D.
1999-09-01
This book explores and supports the argument that effective environmental management must be based on a multimedia approach, which focuses simultaneously on air, water, and waste and enables managers to assess the resulting financial, operation, and management benefits. The multimedia approach, which can be used to design an effective compliance program, includes proper waste and material handling management, systematic monitoring, and record keeping requirements. This approach integrates a wide array of environmental requirements and decision processes, which the authors examine in sixteen chapters, organized into four parts: the role of environmental management; environmental aspects of business operation, environmental processes; andmore » environmental management trends. Within these parts, the authors highlight the development of modern environmental management and provide an overview of federal laws pertinent to multimedia environmental management. They examine such issues as chemical storage and transportation, tank system operations and requirements, waste determination, spill response procedures, and employee training. Environmental processes addressed in the book include the management of solid and hazardous waste, wastewater treatment systems, stormwater management, air emission control, and site remediation. The authors also briefly discuss significant initiatives in US environmental management and look toward corporate sustainable development.« less
Hazardous Waste Cleanup: Kinder Morgan Liquid Terminals, LLC in Staten Island, New York
Exxon Mobil Port Mobil Terminal is a petroleum bulk storage and distribution facility which began operations in 1934 and continues today. The facility is located on the eastern shoreline of the Arthur Kill, Staten Island, City of New York, and is bounded
40 CFR 264.140 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applying to a regulated unit with alternative requirements for financial assurance set out in the permit or... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial...) Prescribes alternative requirements for the regulated unit under § 264.90(f) and/or § 264.110(c); and (2...
Hazardous Waste Cleanup: Clean Earth of North Jersey Incorporated in Kearny, New Jersey
The Clean Earth of North Jersey, Inc. (CENJ) site is located on approximately six acres of land in Kearny, Hudson County, New Jersey. The site has been used for a variety of purposes throughout its operational history, including storage of construction
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 etmore » seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321more » et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When themore » proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.« less
High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.
ERIC Educational Resources Information Center
Dukert, Joseph M.
Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
Anchorage strength and slope stability of a landfill liner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villard, P.; Gourc, J.P.; Feki, N.
1997-11-01
In order to determine reliable dimensions of an anchorage system and satisfactory operation of the watertight liner in a waste landfill, it is essential to make an accurate assessment of the tensions acting on the geosynthetics on the top of the slope. Experimental and theoretical studies have been carried out in parallel. The former concern a full-scale experiment undertaken in Montreuil sur Barse on a waste storage site with instrumented slope. The latter concern anchorage tests performed on a scale model for different anchorage geometries.
Finite-Length Line Source Superposition Model (FLLSSM)
NASA Astrophysics Data System (ADS)
1980-03-01
A linearized thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high level waste or spent fuel assemblies were represented as finite length line sources in a continuous media. The combined effects of multiple canisters in a representative storage pattern were established at selected points of interest by superposition of the temperature rises calculated for each canister. The methodology is outlined and the computer code FLLSSM which performs required numerical integrations and superposition operations is described.
WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Habashi
2000-06-22
The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less
Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980
Hull, R.W.; Martin, J.B.
1982-01-01
Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)
Method and apparatus for waste collection and storage
NASA Technical Reports Server (NTRS)
Thornton, William E., Jr. (Inventor); Whitemore, Henry B. (Inventor)
1991-01-01
A method and apparatus are disclosed for collection of fecal matter designed to operate efficiently in zero gravity environment. The system comprises a waste collection area within a body having a seat opening. Low pressure within a waste collection area directs fecal matter away from the user's buttocks and prevents the escape of undesirable gases. The user actuates a piston covered with an absorbent pad that sweeps through the waste collection area, press the waste against an end of the waste collection area and retracts, leaving the used pad. Multiple pads are provided on the piston to accommodate multiple uses of the system. Also a valve allows air to be drawn through the body, which valve will not be plugged with fecal matter. A sheet feeder feeds fresh sheets of absorbent pad to a face of the piston with each actuation.
Valve for waste collection and storage
NASA Technical Reports Server (NTRS)
Thornton, William E., Jr. (Inventor); Whitmore, Henry B. (Inventor)
1990-01-01
A method and valve apparatus for collection of fecal matter designed to operate efficiently in a zero gravity environment is presented. The system comprises a waste collection area within a body having a seat opening. Low pressure within the waste collection area directs fecal matter away from the user's buttocks and prevents the escape of undersirable gases. The user actuates a piston covered with an absorbent pad that sweeps through the waste collection area to collect the fecal matter, scrub the waste collection area, press the waste against an end of the waste collection area and retracts, leaving the used pad. Multiple pads are provided on the piston to accommodate multiple uses of the system. Also a valve allows air to be drawn through the body, so the valve will not be plugged with fecal matter. A sheet feeder feeds fresh sheets of absorbent pads to a face of the piston with each actuation.
Apparatus for waste collection and storage
NASA Technical Reports Server (NTRS)
Thornton, Jr., William E. (Inventor); Whitmore, Henry B. (Inventor)
1989-01-01
An apparatus for collection of fecal matter designed to operate efficiently in a zero gravity environment. The system comprises a waste collection area within a body having a seat opening. Low pressure within the waste collection area directs fecal matter away from the user's buttocks and prevents the escape of undesirable gases. The user actuates a piston covered with an absorbent pad that sweeps through the waste collection area to collect fecal matter, scrub the waste collector area, press the waste against an end of the waste collection area and retracts, leaving the used pad. Multiple pads are provided on the piston to accommodate multiple uses of the system. Also a valve allows air to be drawn through the body, which valve will not be plugged with fecal matter. A sheet feeder feeds fresh sheets of absorbent pad to a face of the piston with each actuation.
GIVE THE PUBLIC SOMETHING, SOMETHING MORE INTERESTING THAN RADIOACTIVE WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Codee, Hans D.K.
2003-02-27
In the Netherlands the policy to manage radioactive waste is somewhat different from that in other countries, although the practical outcome is not much different. Long-term, i.e. at least 100 years, storage in above ground engineered structures of all waste types is the first element in the Dutch policy. Second element, but equally important, is that deep geologic disposal is foreseen after the storage period. This policy was brought out in the early eighties and was communicated to the public as a practical, logical and feasible management system for the Dutch situation. Strong opposition existed at that time to deepmore » disposal in salt domes in the Netherlands. Above ground storage at principle was not rejected because the need to do something was obvious. Volunteers for a long term storage site did not automatically emerge. A site selection procedure was followed and resulted in the present site at Vlissingen-Oost. The waste management organization, COVRA, was not really welcomed here , but was tolerated. In the nineties facilities for low and medium level waste were erected and commissioned. In the design of the facilities much attention was given to emotional factors. The first ten operational years were needed to gain trust from the local population. Impeccable conduct and behavior was necessary as well as honesty and full openness to the public Now, after some ten years, the COVRA facilities are accepted. And a new phase is entered with the commissioning of the storage facility for high level waste, the HABOG facility. A visit to that facility will not be very spectacular, activities take place only during loading and unloading. Furthermore it is a facility for waste, so unwanted material will be brought into the community. In order to give the public something more interesting the building itself is transformed into a piece of art and in the inside a special work of art will be displayed. Together with that the attitude of the company will change. We are proud on our work and we like to show that. Our work is necessary and useful for society. We will not hide our activities but show them and make it worth looking at them.« less
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...
40 CFR 280.99 - Letter of credit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Letter of credit. 280.99 Section 280.99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) TECHNICAL STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Financial Responsibility § 280.99...
There is extensive mercury contamination of soil surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, and in Balky...
40 CFR 63.1420 - Applicability and designation of affected sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Solvent reclamation, recovery, or recycling operations at hazardous waste treatment, storage, and disposal... on a mass basis for two or more products and if one of those products is a polyether polyol, then the... allow the determination of the primary product for the specified period, applicability shall be...
40 CFR 265.112 - Closure plan; amendment of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND.... By May 19, 1981, or by six months after the effective date of the rule that first subjects a facility... description of other activities necessary during the partial and final closure periods to ensure that all...
40 CFR 63.1420 - Applicability and designation of affected sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Solvent reclamation, recovery, or recycling operations at hazardous waste treatment, storage, and disposal... on a mass basis for two or more products and if one of those products is a polyether polyol, then the... allow the determination of the primary product for the specified period, applicability shall be...
Hazardous Waste Cleanup: Central Hudson Gas & Electric Corporation in Highland, New York
This site is located about five miles west of the Hudson River in Town of Lloyd, New York, Ulster County. It has operated as a vehicle and equipment storage and repair facility for an electric power transmission company since the 1950's. Both current
There is extensive mercury contamination of soil surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, and in Balky...
40 CFR 264.1202 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... closure of a magazine or unit which stored hazardous waste under this subpart, the owner or operator must..., and financial responsibility for magazines or units must meet all of the requirements specified in... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
Report #16-P-0104, March 11, 2016. Although the EPA’s overall inspection completion rate is high, the agency did not fully meet the legal requirement for inspecting 100 percent of operating TSDFs for fiscal year 2014.
Subseabed storage of radioactive waste
NASA Astrophysics Data System (ADS)
Bell, Peter M.
The subject of the storage of nuclear wastes products incites emotional responses from the public, and thus the U.S. Subseabed Disposal Program will have to make a good case for waste storage beneath the ocean floor. The facts attendant, however, describe circumstances necessitating cool-headed analysis to achieve a solution to the growing nuclear waste problem. Emotion aside, a good case indeed is being made for safe disposal beneath the ocean floor.The problems of nuclear waste storage are acute. A year ago, U.S. military weapons production had accumulated over seventy-five million gallons of high-level radioactive liquid waste; solid wastes, such as spent nuclear fuel rods from reactors, amounted to more than 12,000 tons. These wastes are corrosive and will release heat for 1000 years or more. The wastes will remain dangerously radioactive for a period of 10,000 years. There are advantages in storing the wastes on land, in special underground repositories, or on the surface. These include the accessibility to monitor the waste and the possibility of taking action should a container rupture occur, and thus the major efforts to determine suitable disposal at this time are focused on land-based storage. New efforts, not to be confused with ocean dumping practices of the past, are demonstrating that waste containers isolated in the clays and sediments of the ocean floor may be superior (Environ. Sci. Tech., 16, 28A-37A 1982).
Radioactive waste storage issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Daniel E.
1994-08-15
In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal)more » of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.« less
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
Development of consistent hazard controls for DOE transuranic waste operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, W.J.
2007-07-01
This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less
Thermal energy storage for industrial waste heat recovery
NASA Technical Reports Server (NTRS)
Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.
1978-01-01
Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RIECK, C.A.
1999-02-25
The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be usedmore » during qualification testing and acceptance testing to verify operability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-01
In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed of throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants due to leakage or seepage from landfills and storage tanks.« less
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.
1975-01-01
This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.
Thermal energy storage for CSP (Concentrating Solar Power)
NASA Astrophysics Data System (ADS)
Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin
2017-07-01
The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
Westinghouse Cementation Facility of Solid Waste Treatment System - 13503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Torsten; Aign, Joerg
2013-07-01
During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less
Developing a structural health monitoring system for nuclear dry cask storage canister
NASA Astrophysics Data System (ADS)
Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu
2015-03-01
Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Astrophysics Data System (ADS)
Wojnar, F.; Lunberg, W. L.
1980-03-01
A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Technical Reports Server (NTRS)
Wojnar, F.; Lunberg, W. L.
1980-01-01
A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.
River Protection Project (RPP) Dangerous Waste Training Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
POHTO, R.E.
2000-03-09
This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Titlemore » 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, W.T.
The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Some of the major technical questions associated with the burial of radioactive high-level wastes in geologic formations are related to the thermal environments generated by the waste and the impact of this dissipated heat on the surrounding environment. The design of a high level waste storage facility must be such that the temperature variations that occur do not adversely affect operating personnel and equipment. The objective of this investigation was to assist OWI by determining the thermal environment that would be experienced by personnel and equipment in a waste storage facility in salt. Particular emphasis was placed on determining themore » maximum floor and air temperatures with and without ventilation in the first 30 years after waste emplacement. The assumed facility design differs somewhat from those previously analyzed and reported, but many of the previous parametric surveys are useful for comparison. In this investigation a number of 2-dimensional and 3-dimensional simulations of the heat flow in a repository have been performed on the HEATING5 and TRUMP heat transfer codes. The representative repository constructs used in the simulations are described, as well as the computational models and computer codes. Results of the simulations are presented and discussed. Comparisons are made between the recent results and those from previous analyses. Finally, a summary of study limitations, comparisons, and conclusions is given.« less
DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...
Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.
Improved method and apparatus for waste collection and storage
NASA Technical Reports Server (NTRS)
Thornton, W. E. (Inventor); Whitmore, Henry (Inventor)
1987-01-01
A method and apparatus for the collection of fecal matter are designed to operate efficiently in a zero gravity environment. The system comprises a waste collection area within a body having a seat opening. Low pressure within the waste collection area directs fecal matter away from the user's buttocks and prevents the escape of undesirable gases. The user actuates a piston covered with an absorbent pad that sweeps through the waste collection area to collect fecal matter, scrub the waste collection area, press the matter against an end of the waste collection area and retracts, leaving the used pad. Multiple pads are provided on the piston to accommodate multiple uses of the system. Also a valve allows air to be drawn through the body, which valve will not be plugged with fecal matter. A sheet feeder feeds fresh sheets of absorbent pad to a face of the piston with each actuation.
Geochemical signature of NORM waste in Brazilian oil and gas industry.
De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C
2018-09-01
The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chang, N B; Lin, K S; Sun, Y P; Wang, H P
2001-12-01
This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.
2007 SB14 Source Reduction Plan/Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L
2007-07-24
Aqueous solutions (mixed waste) generated from various LLNL operations, such as debris washing, sample preparation and analysis, and equipment maintenance and cleanout, were combined for storage in the B695 tank farm. Prior to combination the individual waste streams had different codes depending on the particular generating process and waste characteristics. The largest streams were CWC 132, 791, 134, 792. Several smaller waste streams were also included. This combined waste stream was treated at LLNL's waste treatment facility using a vacuum filtration and cool vapor evaporation process in preparation for discharge to sanitary sewer. Prior to discharge, the treated waste streammore » was sampled and the results were reviewed by LLNL's water monitoring specialists. The treated solution was discharged following confirmation that it met the discharge criteria. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. Quarterly waste generation data prepared by the Environmental Protection Department's P2 Team are regularly provided to engineering shops as well as other facilities so that generators can track the effectiveness of their waste minimization efforts.« less
Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Michael Marquand; Little, Bonnie Colleen
The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid wastemore » was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.« less
Waste canister for storage of nuclear wastes
Duffy, James B.
1977-01-01
A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.
Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra
2014-10-01
In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within ±8% deviation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
NASA Astrophysics Data System (ADS)
Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir
2016-06-01
Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
Depleted uranium startup of spent-fuel treatment operations at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Bonomo, N.L.
1995-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.
40 CFR 63.2450 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... values are available for at least two of the 15-minute periods during an hour when calibration, quality... during periods of startup, shutdown, and malfunction (SSM), and you must meet the requirements specified...., continuous process vents, batch process vents, storage tanks, transfer operations, and waste management units...
40 CFR 63.2450 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... values are available for at least two of the 15-minute periods during an hour when calibration, quality..., except during periods of startup, shutdown, and malfunction (SSM), and you must meet the requirements...., continuous process vents, batch process vents, storage tanks, transfer operations, and waste management units...
Code of Federal Regulations, 2010 CFR
2010-10-01
... fields of technology are exceptional circumstance subject inventions: (A) Uranium enrichment technology; (B) Storage and disposal of civilian high-level nuclear waste and spent fuel technology; and (C... Counsel assisting the contracting activity. (7) Practical application means to manufacture, in the case of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... fields of technology are exceptional circumstance subject inventions: (A) Uranium enrichment technology; (B) Storage and disposal of civilian high-level nuclear waste and spent fuel technology; and (C... Counsel assisting the contracting activity. (7) Practical application means to manufacture, in the case of...
10 CFR Appendix D to Subpart D of... - Classes of Actions that Normally Require EISs
Code of Federal Regulations, 2014 CFR
2014-01-01
... [Reserved] D7 Contracts, policies, and marketing and allocation plans for electric power D8 Import or export... operational change D10 Treatment, storage, and disposal facilities for high-level waste and spent nuclear fuel... Contracts, Policies, and Marketing and Allocation Plans for Electric Power Establishment and implementation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
...-38, ``Storage of Low-Level Radioactive Wastes at Power Reactor Sites'' and to meet the radiation protection standards in 10 CFR Part 20, ``Standards for Protection Against Radiation,'' and 40 CFR Part 190, ``Environmental Radiation Protection Standards for Nuclear Power Operations.'' Environmental Impacts of the...
NASA Astrophysics Data System (ADS)
Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.
2015-12-01
The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.
Operational Plan for Underground Storage Tank 322 R2U2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, D.
2017-06-07
This Operational Plan provides the operator of the tank system with guidelines relating to the safe and compliant operation and maintenance of the tank system. The tank system schematic and list of emergency contacts shall be posted near the tank so they are visible to tank personnel. This Operational Plan shall be kept on file by the Facility Supervisor. It should be understood when managing this tank system that it is used to store hazardous waste temporarily for 90 calendar days or less. The rinsewater handled in the tank system is considered hazardous and may exhibit the characteristic of toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-05-01
Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)
78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
...-2012-0246] RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear... its generic determination on the environmental impacts of the continued storage of spent nuclear fuel... revising the generic determination of the environmental impacts of the continued storage of spent nuclear...
Spacecraft active thermal control subsystem design and operation considerations
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.
1986-01-01
Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.
EPA issues interim final waste minimization guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergeson, L.L.
1993-08-01
The U.S. Environmental Protection Agency (EPA) has released a new and detailed interim final guidance to assist hazardous waste generators in certifying they have a waste minimization program in place under the Resource Conservation and Recovery Act (RCRA). EPA's guidance identifies the basic elements of a waste minimization program in place that, if present, will allow people to certify they have implemented a program to reduce the volume and toxicity of hazardous waste to the extent economically practical. The guidance is directly applicable to generators of 1000 or more kilograms per month of hazardous waste, or large-quantity generators, and tomore » owners and operators of hazardous waste treatment, storage or disposal facilities who manage their own hazardous waste on site. Small-quantity generators that generate more than 100 kilograms, but less than 1,000 kilograms, per month of hazardous waste are not subject to the same program in place certification requirement. Rather, they must certify on their manifests that they have made a good faith effort to minimize their waste generation.« less
Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.
Dodemaide, David T; Matthews, Ty G; Iervasi, Dion; Lester, Rebecca E
2018-03-01
Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in macrophyte assemblages between raw-water storages and natural water bodies. These similarities illustrate that anthropogenic water storages support representative populations of some aquatic biota across the landscape, and thus, may provide important refuge following disturbance where dispersal capabilities allow. Copyright © 2017 Elsevier B.V. All rights reserved.
Functions of an engineered barrier system for a nuclear waste repository in basalt
NASA Astrophysics Data System (ADS)
Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.
1980-01-01
The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A
2008-10-09
The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.
Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities
The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
Regional Renewable Energy Cooperatives
NASA Astrophysics Data System (ADS)
Hazendonk, P.; Brown, M. B.; Byrne, J. M.; Harrison, T.; Mueller, R.; Peacock, K.; Usher, J.; Yalamova, R.; Kroebel, R.; Larsen, J.; McNaughton, R.
2014-12-01
We are building a multidisciplinary research program linking researchers in agriculture, business, earth science, engineering, humanities and social science. Our goal is to match renewable energy supply and reformed energy demands. The program will be focused on (i) understanding and modifying energy demand, (ii) design and implementation of diverse renewable energy networks. Geomatics technology will be used to map existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation (ridges, rooftops, valley walls) will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids and transportation. Design of networks for utilization of waste streams of heat, water, animal and human waste for energy production will be investigated. Agriculture, cities and industry produce many waste streams that are not well utilized. Therefore, establishing a renewable energy resource mapping and planning program for electrical generation, waste heat and energy recovery, biomass collection, and biochar, biodiesel and syngas production is critical to regional energy optimization. Electrical storage and demand management are two priorities that will be investigated. Regional scale cooperatives may use electric vehicle batteries and innovations such as pump storage and concentrated solar molten salt heat storage for steam turbine electrical generation. Energy demand management is poorly explored in Canada and elsewhere - our homes and businesses operate on an unrestricted demand. Simple monitoring and energy demand-ranking software can easily reduce peaks demands and move lower ranked uses to non-peak periods, thereby reducing the grid size needed to meet peak demands. Peak demand strains the current energy grid capacity and often requires demand balancing projects and infrastructure that is highly inefficient due to overall low utilization.
Temperature-package power correlations for open-mode geologic disposal concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest.
2013-02-01
Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in amore » repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Tammy Ann
2014-07-17
In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is usedmore » to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.« less
Fuel conditioning facility electrorefiner start-up results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Vaden, D.
1996-05-01
At ANL-West, there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will make use of an electrometallurgical process employing molten salts and liquid metals. The treatment equipment is presently undergoing testing with depleted uranium. Operations with irradiated fuel will commence when the environmental evaluation for FCF is complete.
VIEW OF THE INTERIOR OF BUILDING 774, THE ORIGINAL LIQUID ...
VIEW OF THE INTERIOR OF BUILDING 774, THE ORIGINAL LIQUID PROCESS WASTEWATER TREATMENT FACILITY. THE PHOTOGRAPH SHOWS STORAGE TANKS AND ASSOCIATED PLUTONIUM-CONTAMINATED SOLUTIONS. THE GLOVE BOX IS USED BY OPERATORS TO MANUALLY OPERATE PUMPS AND VALVES THAT REQUIRE PERIODIC ADJUSTMENT. OTHER VALVES IN THE ROOM WERE INFREQUENTLY ADJUSTED, AND ARE SEALED IN PLASTIC WRAP - Rocky Flats Plant, Waste Treatment Facility, Adjacent to bldg 771C, in northern portion of protected area, Golden, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yueying; Kruger, Albert A.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamicmore » (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, F.H.
1990-02-01
Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.
Method for utilizing decay heat from radioactive nuclear wastes
Busey, H.M.
1974-10-14
Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.