Sample records for waste sulfuric acid

  1. Sulfuric Acid Regeneration Waste Disposal Technology.

    DTIC Science & Technology

    1986-11-01

    or poorer correlations of acid load with SAR production. The National Pollutant Discharge Elimination System (NPDES) permit requires one daily 24 hour...systems; and * essentially eliminates [(NH4 )2So4 ] disposal problem. The chief concerns for this process are: " high chemical cost of BaCO 3... biofiltration and fluorination prior to being discharged to a stream which feeds into the Allegheny River. PLANT 6: Sulfuric acid plant in New Jersey

  2. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  3. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  4. Sulfuric acid on Europa and the radiolytic sulfur cycle.

    PubMed

    Carlson, R W; Johnson, R E; Anderson, M S

    1999-10-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  5. Sulfuric Acid on Europa

    NASA Image and Video Library

    1999-09-30

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer. Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. http://photojournal.jpl.nasa.gov/catalog/PIA02500

  6. Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast.

    PubMed

    Kim, Yong Seon; Jang, Ji Yeon; Park, Seong Jik; Um, Byung Hwan

    2018-04-01

    Fermentation of food waste biomass can be used to produce biochemicals such as lactic acid and ethanol in a cost-effective manner. Korean food waste (KFW) dewatered by a screw press contains 23.1% glucan on a dry basis and is a potential raw material for the production of ethanol and lactic acid through fermentation. This study was conducted to optimize the dilute acid fractionation conditions for KFW fermentation with respect to the H 2 SO 4 concentration (0-0.8% w/v), temperature (130-190 °C), and residence time (1-128 min) using response surface methodology. Dilute sulfuric acid fractionation was carried out using a 30-mL stainless steel reactor under conditions, and then the dilute acid fractionation was scaled-up in 1-L and 7-L stainless steel reactors under the optimal conditions. The hydrolysate was concentrated, liquid-liquid extracted and neutralized for lactic acid and ethanol production. The highest concentration of glucose obtained from the KFW was 26.4 g/L using fractionation with 0.37% w/v H 2 SO 4 at 156 °C for 123.6 min. Using recombinant Saccharomyces cerevisiae containing a codon-optimized lactate dehydrogenase, the yield of lactic acid and ethanol was 77% of the theoretical yield for 17.4 g/L of fermentable sugar at pH 5.5. Additionally, the yield of ethanol produced by Issatchenkia orientalis was 89% of the theoretical yield for 25 g/L of fermentable sugar at pH 3. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  8. POTENTIAL ABATEMENT PRODUCTION AND MARKETING OF BYPRODUCT SULFURIC ACID IN THE U.S

    EPA Science Inventory

    The report gives results of an evaluation of the market potential for sulfur and sulfuric acid byproducts of combustion in power plant boilers. (Air quality regulations require control of SOx emissions from power plant boilers. Recovery of sulfur in useful form would avoid waste ...

  9. A novel process for low-sulfur biodiesel production from scum waste.

    PubMed

    Ma, Huan; Addy, Min M; Anderson, Erik; Liu, Weiwei; Liu, Yuhuan; Nie, Yong; Chen, Paul; Cheng, Beijiu; Lei, Hanwu; Ruan, Roger

    2016-08-01

    Scum is an oil-rich waste from the wastewater treatment plants with a high-sulfur level. In this work, a novel process was developed to convert scum to high quality and low sulfur content biodiesel. A combination of solvent extraction and acid washing as pretreatment was developed to lower the sulfur content in the scum feedstock and hence improve biodiesel conversion yield and quality. Glycerin esterification was then employed to convert free fatty acids to glycerides. Moreover, a new distillation process integrating the traditional reflux distillation and adsorptive desulfurization was developed to further remove sulfur from the crude biodiesel. As a result, 70% of the filtered and dried scum was converted to biodiesel with sulfur content lower than 15ppm. The fatty acid methyl ester profiles showed that the refined biodiesel from the new process exhibited a higher quality and better properties than that from traditional process reported in previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    PubMed

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH<10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Case study, comparison of trial burn results from similar sulfuric acid regeneration plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milaszewski, M.; Johns, T.; Dickerson, W.F.

    The primary business of Rhodia Eco Services (Rhodia) is the regeneration of sulfuric acid. Sulfuric acid regeneration requires thermal decomposition of acid to sulfur dioxide, and remaking the acid through chemical reaction. The sulfuric acid regeneration furnace is the ideal place to process pumpable wastes for energy recovery and for thermal destruction. Rhodia is regulated by the Boiler and Industrial Furnace (BIF) regulations (40 CFR 266, Subpart H). The Hammond, Indiana plant is an interim status BIF facility and the Houston, Texas facility is renewing its RCRA incineration permit as a BIF facility. Both plants have conducted BIF Trial Burnsmore » with very similar results. The performance levels demonstrated were at levels better than RCRA/BIF standards for destruction and removal efficiency, metal, HCl/Cl, particulate, dioxin/furan, and organic emissions.« less

  12. Coupled heating/acidification pretreatment of chemical sludge for dewatering by using waste sulfuric acid at low temperature.

    PubMed

    Bian, Bo; Zhang, Limin; Zhang, Qin; Zhang, Shaopeng; Yang, Zhen; Yang, Weiben

    2018-08-01

    A cost-effective approach for pretreatment of chemical sludge for further dewatering, based on the idea of "using waste to treat waste", is provided. It is a coupled heating/acidification pretreatment method, where waste sulfuric acid is employed and relatively low temperatures (<100 °C) are applied. Effects of reaction time, temperature, and dosage of waste acid on dewatering performance (both dewatering speed and degree) are studied. Under the optimal conditions (reaction time: 30 min; temperature: 90 °C; waste acid dosage: 0.175 g/(g dried sludge)), the method of this work demonstrates three advantages compared to the conventional method using lime+polyacrylamide: lower moisture content of treated sludge; higher calorific value for incineration process; and lower cost. Detailed mechanism of the pretreatment for dewatering is investigated via characterizations and statistical analyses of various parameters, among which zeta potential, particle size, protein and polysaccharide contents, soluble chemical oxygen demand (SCOD), reduction of combined water and volatile suspended solid (VSS), are associated with dewatering performance. Both heating and acidification generate disintegration of cells in sludge, giving rise to two phenomena: more organic matters are released into solution and more bound water turns into free water. Meantime, the released organic polymers flocculate sludge particles, further accelerating the solid-liquid separation process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    PubMed

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  15. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  16. Method for removing sulfur oxide from waste gases and recovering elemental sulfur

    DOEpatents

    Moore, Raymond H.

    1977-01-01

    A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

  17. Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.; Carlson, R. W.

    2011-01-01

    We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4 H2O), and sulfuric acid tetrahydrate (H2SO4 4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, HSO4(exp -), and SO4(exp 2-). At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4 H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4 H2O, the loss of H2SO4 4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.

  18. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    PubMed

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of Sulfuric Acid on the Uptake of Sulfur Dioxide on Soot

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Koehler, B. G.

    2001-05-01

    The uptake of SO2 on soot may lead to the formation of sulfuric acid on the soot. The sulfuric acid then can affect the further uptake of SO2 on the soot. We are interested in the effect of submonolayer H2SO4 on the uptake of SO2. We measured the uptake of SO2 on n-hexane soot as a function SO2 pressure (10-7 to 10-4 Torr) and sulfuric acid coverage between -140\\deg and -120\\deg C. We generate sulfuric acid by adsorbing varying amounts of SO3 on soot, covering the SO3 with a thick layer of condensed H2O, and heating to 193 K to react the SO3 and H2O and to remove the excess H2O. The sulfuric acid coverage is in the range of monolayer or sub-monolayer. Adsorption of SO2 on soot with and without the sulfuric acid shows that the acid reduces the SO2 uptake by a factor of two or more. Varying the amount of acid has little effect on uptake. However, increasing the thickness of the soot substrate causes a significant increase in SO2 uptake.

  20. Sulfuric acid in the Venus clouds.

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1972-01-01

    The extremely dry nature of the Venus upper atmosphere appears to demand the presence of an efficient desiccating agent as the chief constituent of the clouds of Venus. On the basis of polarization measures it is to be expected that this substance is present as spherical droplets, 1 to 2 microns in diameter, with a refractive index n of 1.46 plus or minus 0.02 at 3500A in the observed region of the atmosphere, with T about equal to 235 K. This substance must have ultraviolet, visible, and infrared reflection properties not inconsistent with the observed spectrum of Venus. Sulfuric acid, of about 86% by weight composition, roughly fulfills the first of these properties. The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine produced by the photolytic decomposition of hydrogen bromide.

  1. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  2. Testing of Lithium-Sulfur Dioxide Cells for Waste Disposal Hazards.

    DTIC Science & Technology

    1980-10-01

    r AD-AO90 785 WAPORA INC CHEVY CHASE NO F/G 10/3 TESTING OF LITHIUM-SULFUR DIOXIDE CELLS FOR WASTE DISPOSAL HAZA-ETC(U) OCT 80 D B BOIES OAAK20-79-C... TESTING ION T HUM -SUFU DIXD-EL ORWSEDSOA Daved B. pBli else 69stributonsi nlmied.e OCTOBELE198 Fia PRepr for Peio OCT 23198008 STRYUIO AELETOISRSA...34 cell Toxic waste Sulfur dioxide vapor pressure Structural Integrity Test Ignitable waste Extraction procedure results Corrosive waste ftactive waste

  3. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  4. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa

    2017-12-01

    The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.

  5. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  6. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  7. Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste-to-Biofuel Conversion

    DOE PAGES

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao; ...

    2017-06-21

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  8. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  10. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  11. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.

    PubMed

    Peng, Chao; Hamuyuni, Joseph; Wilson, Benjamin P; Lundström, Mari

    2018-06-01

    Recycling of valuable metals from secondary resources such as waste Li-ion batteries (LIBs) has recently attracted significant attention due to the depletion of high-grade natural resources and increasing interest in the circular economy of metals. In this article, the sulfuric acid leaching of industrially produced waste LIBs scraps with 23.6% cobalt (Co), 3.6% lithium (Li) and 6.2% copper (Cu) was investigated. The industrially produced LIBs scraps were shown to provide higher Li and Co leaching extractions compared to dissolution of corresponding amount of pure LiCoO 2 . In addition, with the addition of ascorbic acid as reducing agent, copper extraction showed decrease, opposite to Co and Li. Based on this, we propose a new method for the selective leaching of battery metals Co and Li from the industrially crushed LIBs waste at high solid/liquid ratio (S/L) that leaves impurities like Cu in the solid residue. Using ascorbic acid (C 6 H 8 O 6 ) as reductant, the optimum conditions for LIBs leaching were found to be T = 80 °C, t = 90 min, [H 2 SO 4 ] = 2 M, [C 6 H 8 O 6 ] = 0.11 M and S/L = 200 g/L. This resulted in leaching efficiencies of 95.7% for Li and 93.8% for Co, whereas in contrast, Cu extraction was only 0.7%. Consequently, the proposed leaching method produces a pregnant leach solution (PLS) with high Li (7.0 g/L) and Co (44.4 g/L) concentration as well as a leach residue rich in Cu (up to 12 wt%) that is suitable as a feed fraction for primary or secondary copper production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  13. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste.

    PubMed

    He, Ruo; Yao, Xing-Zhi; Chen, Min; Ma, Ruo-Chan; Li, Hua-Jun; Wang, Chen; Ding, Shen-Hua

    2018-06-01

    Volatile sulfur compounds (VSCs) are not only the main source of malodor in anaerobic treatment of organic waste, but also pose a threat to human health. In this study, VSCs production and microbial community was investigated during the anaerobic degradation of fish and pork waste. The results showed that after the operation of 245 days, 94.5% and 76.2% of sulfur compounds in the fish and pork waste was converted into VSCs. Among the detected VSCs including H 2 S, carbon disulfide, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide, methanethiol was the major component with the maximum concentration of 4.54% and 3.28% in the fish and pork waste, respectively. The conversion of sulfur compounds including total sulfur, SO 4 2- -S, S 2- , methionine and cysteine followed the first-order kinetics. Miseq sequencing analysis showed that Acinetobacter, Clostridium, Proteus, Thiobacillus, Hyphomicrobium and Pseudomonas were the main known sulfur-metabolizing microorganisms in the fish and pork waste. The C/N value had most significant influence on the microbial community in the fish and pork waste. A main conversion of sulfur compounds with CH 3 SH as the key intermediate was firstly hypothesized during the anaerobic degradation of fish and pork waste. These findings are helpful to understand the conversion of sulfur compounds and to develop techniques to control ordor pollution in the anaerobic treatment of organic waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  15. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters.

    PubMed

    Huber, Bettina; Herzog, Bastian; Drewes, Jörg E; Koch, Konrad; Müller, Elisabeth

    2016-07-18

    Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones. The SOB Acidithiobacillus thiooxidans, Thiomonas intermedia, and Thiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10-87 mmol/L after 6-21 days of incubation (final pH 1.0-2.0) in mixed cultures, and up to 433 mmol/L after 42 days (final pH <1.0) in pure A. thiooxidans cultures showed huge sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation. The presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. Elevated sulfate concentrations on the corroded concrete wall in the digester headspace (compared to the sludge zone) further indicate biological sulfur/sulfide oxidation in-situ. For the first time, SOB presence and activity is directly relatable to BSA corrosion in sludge digesters.

  16. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  17. Sulfuric acid induces airway hyperresponsiveness to substance P in the guinea pig.

    PubMed

    Stengel, P W; Bendele, A M; Cockerham, S L; Silbaugh, S A

    1993-01-01

    We investigated whether sulfuric acid inhalation would cause hyperresponsiveness to substance P. Guinea pigs became dyspneic during a 1 h sulfuric acid exposure, but recovered by 24 h when they were challenged with substance P or histamine aerosols. Eight minutes after the start of challenge, animals were killed and excised lung gas volumes measured. Sulfuric acid slightly increased histamine responsiveness compared to controls. However, sulfuric acid caused a much more pronounced leftward shift in the dose response to substance P. Coadministration of the neutral endopeptidase (NEP) inhibitor, thiorphan, did not reduce sulfuric acid-related hyperresponsiveness to substance P. By 72 h, sensitization to substance P was absent. Histological evaluation of sulfuric acid-treated lungs revealed mild alveolitis at 24 h, but not at 72 h. We conclude that sulfuric acid produces a marked sensitization to substance P. Inactivation of NEP does not appear to account for this effect.

  18. Heterogeneous Interaction of Peroxyacetyl Nitrate on Liquid Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun

    1996-01-01

    The uptake of peroxyacetyl nitrate (PAN) on liquid sulfuric acid surfaces has been investigated using a fast-flow reactor coupled to a chemical ionization mass spectrometer. PAN was observed to be reversibly adsorbed on sulfuric acid.

  19. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  20. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  1. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  2. SULFURIC ACID RAIN EFFECTS ON CROP YIELD AND FOLIAR INJURY

    EPA Science Inventory

    A study was undertaken to determine the relative sensitivity of major U.S. crops to sulfuric acid rain. Plants were grown under controlled environmental conditions and exposed to simulated acid rain of three sulfuric acid concentrations (pH 3.0, 3.5, 4.0) or to a control rain (pH...

  3. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  4. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  5. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubilitymore » data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.« less

  6. Solubility of HCL in sulfuric acid at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Golden, David M.

    1993-01-01

    The solubility of HCl in sulfuric acid was measured using a Knudsen cell technique. Effective Henry's law constants are reported for sulfuric acid concentrations between 50 and 60 weight percent and for temperatures between 220 and 230 K. The measured values indicate that very little HCl will be dissolved in the stratospheric sulfate aerosol particles.

  7. Toxicity of sulfuric acid mist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treon, J.F.; Dutra, F.R.; Cappel, J.

    1950-01-01

    Various species were exposed to sulfuric acid mist, 95% less than 2 ..mu..m. Mortality data show susceptibility: guinea pigs > mice > rats > rabbits. Lesions included the following: degeneration of respiratory tract epithelium, hyperemia, edema, focal hemorrhage, patchy atelectasis, and emphysema.

  8. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production

  9. Effect of temperature on iron leaching from bauxite residue by sulfuric acid.

    PubMed

    Liu, Zhi-Rong; Zeng, Kai; Zhao, Wei; Li, Ying

    2009-01-01

    Bauxite residue, as solid waste from alumina production, contains mainly hematite [Fe2O3]. Kinetic study of iron leaching of bauxite residue by diluted sulfuric acid at atmospheric pressure has been investigated. The results have been obtained as following: (i) Temperature play an important role in iron leaching from bauxite residue. Higher temperature is favor of Fe(III) leaching from bauxite residue. (ii) The leaching process is applicable to the intra-particle diffusion model and the apparent activation energy of model of leaching is found to be 17.32 kJ/mol.

  10. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase,more » and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in

  11. Preparation of Grinding Aid Using Waste Acid Residue from Plasticizer Plant

    NASA Astrophysics Data System (ADS)

    Li, Lingxiao; Feng, Yanchao; Liu, Manchao; Zhao, Fengqing

    2017-09-01

    The grinding aid for granulated blast-furnace slag were prepared from waste acid residue from plasticizer plant through neutralization, de-methanol and granulation process. In this process, sulfuric acid was transformed into gypsum which has much contribution for grinding effect by combined use with the glycerol and poly glycerin in the waste. Fly ash was used for granulation for the composite grinding aid. Methanol can be recycled in the process. The result showed that the suitable addition of grinding aid is 0.03 % of granulated blast-furnace slag (mass). In this case, the specific surface area is 14% higher than that of the blank. Compared with the common grinding aids, it has excellent performance and low cost.

  12. Electron-induced chemistry in microhydrated sulfuric acid clusters

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  13. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Xinming; Li, Dejun; Yi, Zhigang

    2010-12-01

    Food wastes collected from typical urban residential communities were investigated for the emission of volatile organic sulfur compounds (VOSCs) during laboratory-controlled aerobic decomposition in an incubator for a period of 41 days. Emission of VOSCs from the food wastes totaled 409.9 mg kg -1 (dry weight), and dimethyl disulfide (DMDS), dimethyl sulfide (DMS), methyl 2-propenyl disulfide, carbonyl sulfide and methyl 1-propenyl sulfide were the five most abundant VOSCs, with shares of 75.5%, 13.5%, 4.8%, 2.2% and 1.3% in total 15 VOSCs released, respectively. The emission fluxes of major VOSCs were very low at the beginning (day 0). They peaked at days 2-4 and then decreased sharply until they leveled off after 10 days of incubation. For most VOSCs, over 95% of their emission occurred in the first 10 days. The time series of VOSC emission fluxes, as well as their significant correlation with internal food waste temperature ( p < 0.05) during incubation, suggested that production of VOSC species was induced mainly by microbial activities during the aerobic decomposition instead of as inherited. Released VOSCs accounted for 5.3% of sulfur content in the food wastes, implying that during aerobic decomposition considerable portion of sulfur in food wastes would be released into the atmosphere as VOSCs, primarily as DMDS, which is very short-lived in the atmosphere and thus usually less considered in the sources and sinks of reduced sulfur gases.

  14. Synthesis of the sulfur amino acids: cysteine and methionine.

    PubMed

    Wirtz, Markus; Droux, Michel

    2005-12-01

    This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.

  15. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  16. The Effects of Sulfuric Acid on Mechanical Properties of Polycrystalline Ice

    NASA Astrophysics Data System (ADS)

    DeAngelis, M. K.; Lee, M. S.; Huang, K.

    2017-12-01

    The rates of flow for ice streams and glaciers are an important contributor to models of future sea level rise. Soluble impurities, such as sulfuric acid from acid rain, have been identified in ice cores, making it of utmost importance to understand the complete effects of such impurities on the mechanical properties of ice. While previous studies have provided insight into how sulfuric acid affects the viscosity in glaciers, the effects of sulfuric acid on elastic stiffness and friction has received less attention. In this study, we measured and compared the Young's Modulus and steady-state friction of 10 ppm sulfuric acid doped water ice samples to that of pure water ice samples. Microstructure characterization of the sample indicated that, even at such low concentration, the acid was located in small melt pockets at grain triple junctions. With an ultrasonic velocity testing system at -22 °C, primary waves and secondary waves were sent through each sample and wave velocities were recorded. These values and the density of the samples were used to calculate Young's Modulus. The sulfuric acid doped ice has an elastic stiffness that is less than that of pure ice. Reduced modulus could influence calving rates and other ice shelf processes. Using a custom cryo-biaxial apparatus, the friction of doped ice on rock was directly measured at several programmed velocities. The double direct shear configuration was employed, with a normal stress of 100 kPa and a temperature of -5 °C. Compared to previous studies on pure ice, the sulfuric acid doped ice sample experienced similar steady state friction. However, preliminary results indicate that doped samples exhibited velocity weakening behavior (i.e. as velocity increased, friction decreased) and stick slip events, while pure ice maintained a relatively neutral velocity dependence at this temperature. Field observations have reported stick slip motion at Whillans Ice Stream in Antarctica, but an explanation is unclear

  17. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; McMurry, Peter H.; Hanson, David R.

    2014-06-01

    This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.

  18. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  19. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE PAGES

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; ...

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO 3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, whichmore » in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO 3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li 2O > V 2O 5> CaO ≈ P 2O 5 > Na 2O ≈ B 2O 3 > K 2O. The components that most decrease sulfur solubility are Cl > Cr 2O 3 > Al 2O 3 > ZrO 2 ≈ SnO 2 > Others ≈ SiO 2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  20. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  1. EFFECTS OF ENDOGENOUS AMMONIA ON NEUTRALIZATION OF INHALED SULFURIC ACID AEROSOLS

    EPA Science Inventory

    Nine male beagle dogs were exposed by inhalation to 0, 6 and 10.5 mg/cu.m sulfuric acid aerosols with normal ammonia, increased blood ammonia, and increased inhaled ammonia to determine whether the addition of ammonia affected the toxicity of sulfuric acid aerosols. Exhaled conce...

  2. Sulfur and Sulfuric Acid Microphysics in the Venus Atmosphere: Implications for the Unknown UV Absorber

    NASA Astrophysics Data System (ADS)

    Gao, P.; Carlson, R. W.; Robinson, T. D.; Crisp, D.; Lyons, J. R.; Yung, Y. L.

    2016-12-01

    A mystery that has continued to plague our sister planet, Venus, for nearly a century is the nature of the brightness contrasts observed crisscrossing its disk in near-ultraviolet wavelength images. These contrasts - specifically the dark regions - have been attributed to the actions of an unknown UV absorber, knowing the identity of which is integral to understanding the Venus atmosphere due to the high rates of mesospheric heating attributed to the absorption of solar UV. One possible candidate for the UV absorber is polysulfur, which form from polymerization of elemental sulfur arising from SO2 photolysis at the Venus cloud tops under low O2 conditions. In this work we investigate the microphysics of condensed polysulfur and its interaction with the sulfuric acid clouds. We consider the "gumdrop model", where sulfur is allowed to condense onto sulfuric acid cloud particles. We explore the possibility that S2 vapor may condense faster than its loss to gas phase reactions that produce higher allotropes, leading to solid state polymerization to S8. This process may explain the ephemeral and variable nature of the UV absorption.

  3. Geochemical features of the utilization of buried wastes of the Tyrnyauz Tungsten-Molybdenum Plant using acid leaching

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Gurbanov, A. G.; Bogatikov, O. A.; Sychkova, V. A.; Shevchenko, A. V.; Lexin, A. B.; Dudarov, Z. I.

    2016-10-01

    The decontamination of buried wastes of the Tyrnyauz Tungsten-Molybdenum Plant is complicated by the geochemical features of the waste composition: low sulfide and high carbonate content, polyelemental composition, and considerable amounts of technogenic admixtures (kerosene, oils, soda, and soluble glasses). These circumstances result in sufficient complication of the suggested technology of waste treatment, including the sulfuric-acid leaching and separate sorption recovery of hazardous and useful elements from the working solution.

  4. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2017-12-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  5. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  6. Lead sulfate nano- and microparticles in the acid plant blow-down generated at the sulfuric acid plant of the El Teniente mine, Chile.

    PubMed

    Barassi, Giancarlo M; Klimsa, Martin; Borrmann, Thomas; Cairns, Mathew J; Kinkel, Joachim; Valenzuela, Fernando

    2014-12-01

    The acid plant 'blow-down' (also called weak acid) produced at El Teniente mine in Chile was characterized. This liquid waste (tailing) is generated during the cooling and cleaning of the smelter gas prior to the production of sulfuric acid. The weak acid was composed of a liquid and a solid phase (suspended solids). The liquid phase of the sample analyzed in this study mainly contained Cu (562 mg L(-1)), SO4(2-) (32 800 mg L(-1)), Ca (1449 mg L(-1)), Fe (185 mg L(-1)), As (6 mg L(-1)), K (467 mg L(-1)) and Al (113 mg L(-1)). Additionally, the sample had a pH-value and total acidity of 0.45 and 2970 mg L(-1) as CaCO3, respectively. Hence, this waste was classified as extremely acidic and with a high metal content following the Ficklin diagram classification. Elemental analysis using atomic absorption, inductively coupled plasma, X-ray diffraction and electron microscopy showed that the suspended solids were anglesite (PbSO4) nano- and microparticles ranging from 50 nm to 500 nm in diameter.

  7. Friction and wear of iron in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Elemental iron sliding on aluminum oxide in aerated sulfuric acid concentrations ranging from very dilute (0.000007 N; i.e., 4 ppm) to very concentrated (96 percent acid) was studied. Load and reciprocating sliding speeds were kept constant. With the most dilute acid of 0.7 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent, the high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid, and decreased somewhat at 50 percent in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It is apparent that the normal passivating film was being worn away and a galvanic cell established which rapidly attached to the wear area.

  8. An evaluation of possible mechanisms for conversion of sulfur dioxide to sulfuric acid and sulfate aerosols in the troposphere

    Treesearch

    Jack G. Calvert

    1976-01-01

    The mechanisms and rates of conversion of sulfur dioxide to sulfur trioxide, sulfuric acid, and other "sulfate" aerosol precursors are considered in view of current knowledge related to atmospheric reactions and chemical kinetics. Several heterogeneous pathways exist for SO2 oxidation promoted on solid catalyst particles and in aqueous...

  9. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153...

  10. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153...

  11. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153...

  12. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  13. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  14. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOEpatents

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  15. Formation rates, stability and reactivity of sulfuric acid - amine clusters predicted by computational chemistry

    NASA Astrophysics Data System (ADS)

    Kurtén, Theo; Ortega, Ismael; Kupiainen, Oona; Olenius, Tinja; Loukonen, Ville; Reiman, Heidi; McGrath, Matthew; Vehkamäki, Hanna

    2013-04-01

    Despite the importance of atmospheric particle formation for both climate and air quality, both experiments and non-empirical models using e.g. sulfuric acid, ammonia and water as condensing vapors have so far been unable to reproduce atmospheric observations using realistic trace gas concentrations. Recent experimental and theoretical evidence has shown that this mystery is likely resolved by amines. Combining first-principles evaporation rates for sulfuric acid - dimethylamine clusters with cluster kinetic modeling, we show that even sub-ppt concentrations of amines, together with atmospherically realistic concentrations of sulfuric acid, result in formation rates close to those observed in the atmosphere. Our simulated cluster formation rates are also close to, though somewhat larger than, those measured at the CLOUD experiment in CERN for both sulfuric acid - ammonia and sulfuric acid - dimethylamine systems. A sensitivity analysis indicates that the remaining discrepancy for the sulfuric acid - amine particle formation rates is likely caused by steric hindrances to cluster formation (due to alkyl groups of the amine molecules) rather than by significant errors in the evaporation rates. First-principles molecular dynamic and reaction kinetic modeling shed further light on the microscopic physics and chemistry of sulfuric acid - amine clusters. For example, while the number and type of hydrogen bonds in the clusters typically reach their equilibrium values on a picosecond timescale, and the overall bonding patterns predicted by traditional "static" quantum chemical calculations seem to be stable, the individual atoms participating in the hydrogen bonds continuously change at atmospherically realistic temperatures. From a chemical reactivity perspective, we have also discovered a surprising phenomenon: clustering with sulfuric acid molecules slightly increases the activation energy required for the abstraction of alkyl hydrogens from amine molecules. This implies

  16. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    ERIC Educational Resources Information Center

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  17. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  19. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  20. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  1. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    PubMed Central

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.

    2016-01-01

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites. PMID:28773741

  2. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Nassir, Mohamed H; Al-Amiery, Ahmed A

    2016-07-26

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  3. Resolving the shape of a sonoluminescence pulse in sulfuric acid by the use of streak camera.

    PubMed

    Huang, Wei; Chen, Weizhong; Cui, Weicheng

    2009-06-01

    A streak camera is used to measure the shape of sonoluminescence pulses from a cavitation bubble levitated stably in a sulfuric acid solution. The shape and response to an acoustic pressure field of the sonoluminescence pulse in 85% by weight sulfuric acid are qualitatively similar to those in water. However, the pulse width in sulfuric acid is wider than that in water by over one order of magnitude. The width of the sonoluminescence pulse is strongly dependent on the concentration of the sulfuric acid solution, while the skewed distribution of the shape remains unchanged.

  4. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  5. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  6. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less

  7. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    DOE PAGES

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; ...

    2016-11-03

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less

  8. Lipoic Acid as a Possible Pharmacological Source of Hydrogen Sulfide/Sulfane Sulfur.

    PubMed

    Bilska-Wilkosz, Anna; Iciek, Małgorzata; Kowalczyk-Pachel, Danuta; Górny, Magdalena; Sokołowska-Jeżewicz, Maria; Włodek, Lidia

    2017-03-02

    The aim of the present study was to verify whether lipoic acid (LA) itself is a source of H₂S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate). The results indicate that both H₂S and sulfane sulfur are formed from LA non-enzymatically in the presence of environmental light. These results suggest that H₂S is the first product of non-enzymatic light-dependent decomposition of LA that is, probably, next oxidized to sulfane sulfur-containing compound(s). The study performed in the presence of rat liver and kidney homogenate revealed an increase of H₂S level in samples containing LA and its reduced form dihydrolipoic acid (DHLA). It was accompanied by a decrease in sulfane sulfur level. It seems that, in these conditions, DHLA acts as a reducing agent that releases H₂S from an endogenous pool of sulfane sulfur compounds present in tissues. Simultaneously, it means that exogenous LA cannot be a direct donor of H₂S/sulfane sulfur in animal tissues. The present study is an initial approach to the question whether LA itself is a donor of H₂S/sulfane sulfur.

  9. Immobilization of radioactive and hazardous wastes in a developed sulfur polymer cement (SPC) matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagdy, M.; Azim, Abdel; El-Gammal, Belal

    Available in abstract form only. Full text of publication follows: A process has been developed for the immobilization Cs, Sr, Ce, Pb, and Cr in forms that is non-dispersible and could be safely immobilized. The simulated radioactive wastes of Cs, Sr, and Ce, and the hazardous wastes of Cr, and Pb were immobilized in the stable form of sulfur polymer cement (SPC). In this process, the contaminants (in a single form) were added to the sulfur mixture of sulfur and aromatic /or aliphatic hydrocarbons that used as polymerizing agents for sulfur (95% S, and 5% organic polymer by weight). Durabilitymore » of the fabricated SPC matrices was assessed in terms of their water of immersion, porosity, and compressive strength. The water immersion, and open porosity were found to be less than 2.5% for all the prepared matrices, whereas the compressive strength was in the range between 62.4 and 142.3 Kg.cm{sup -2}, depending on the composition of the prepared matrix. The prepared SPC matrices that characterized by X-ray diffraction (XRD) showed that the different added contaminants were stabilized during the solidification process during their reaction with sulfur and the organic polymer to form the corresponding metal sulfides. Toxicity Characteristic Leaching Procedure (TCLP), and the IAEA standard method have assessed the leachability of the prepared waste matrices. The TCLP results showed that most the concentration of the contaminants released were under their detection limit. The leach index for the investigated metals from the prepared SPC matrices was in the range of 9-11. The order of release of the investigated metals was Sr>Cs>Pb>Cr>Ce for the aliphatic polymer, and Sr>Cr>Pb>Cs>Ce for the aromatic one. The results obtained revealed a high performance for the prepared SPC matrices, as they are of low cost effect, highly available materials, and possessed good mechanical and leaching properties. Key Words: SPC/ Matrices/ Immobilization/ Wastes/ Leachability. (authors)« less

  10. Formaldehyde instrument development and boundary layer sulfuric acid: Implications for photochemistry

    NASA Astrophysics Data System (ADS)

    Case Hanks, Anne Theresa

    This work presents the development of a laser-induced fluorescence technique to measure atmospheric formaldehyde. In conjunction with the technique, the design of a compact, narrow linewidth, etalon-tuned titanium: sapphire laser cavity which is pumped by the second harmonic of a kilohertz Nd:YAG laser is also presented. The fundamental tunable range is from 690-1100 nm depending on mirror reflectivities and optics kit used. The conversion efficiency is at least 25% for the fundamental, and 2-3% for intracavity frequency doubling from 3.5-4W 532 nm pump power. The linewidth is <0.1 cm-1, and the pulsewidth is 18 nsec. Applications of this cavity include the measurement of trace gas species by laser-induced fluorescence, cavity ringdown spectroscopy, and micropulse lidar in the UV-visible region. Also presented are observations of gas-phase sulfuric acid from the NEAQS-ITCT 2K4 (New England Air Quality Study--- Intercontinental Transport and Chemical Transformation) field campaign in July and August 2004. Sulfuric acid values are reported for a polluted environment and possible nucleation events as well as particle growth within the boundary layer are explored. Sulfate production rates via gas phase oxidation of sulfur dioxide are also reported. This analysis allows an important test of our ability to predict sulfuric acid concentration and probe its use as a fast time response photochemical tracer for the hydroxyl radical, OH. In comparison, the NASA time-dependent photochemical box model is used to calculate OH concentration. Nighttime H2SO4 values are examined to test our understanding of nocturnal OH levels and oxidation processes. In comparison, sulfuric acid from a large ground based mission in Tecamac, Mexico (near the northern boundary of Mexico City) during MIRAGE-Mex field campaign (March 2006) is presented. This and other measurements are used to characterize atmospheric oxidation and predict sulfuric acid and OH concentrations at the site. The

  11. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-01-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  12. Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.

    PubMed

    Sun, Wenjie; Sun, Mei; Barlaz, Morton A

    2016-07-01

    Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. New particle formation from sulfuric acid and amines: Comparison of monomethylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Olenius, Tinja; Halonen, Roope; Kurtén, Theo; Henschel, Henning; Kupiainen-Määttä, Oona; Ortega, Ismael K.; Jen, Coty N.; Vehkamäki, Hanna; Riipinen, Ilona

    2017-07-01

    Amines are bases that originate from both anthropogenic and natural sources, and they are recognized as candidates to participate in atmospheric aerosol particle formation together with sulfuric acid. Monomethylamine, dimethylamine, and trimethylamine (MMA, DMA, and TMA, respectively) have been shown to enhance sulfuric acid-driven particle formation more efficiently than ammonia, but both theory and laboratory experiments suggest that there are differences in their enhancing potentials. However, as quantitative concentrations and thermochemical properties of different amines remain relatively uncertain, and also for computational reasons, the compounds have been treated as a single surrogate amine species in large-scale modeling studies. In this work, the differences and similarities of MMA, DMA, and TMA are studied by simulations of molecular cluster formation from sulfuric acid, water, and each of the three amines. Quantum chemistry-based cluster evaporation rate constants are applied in a cluster population dynamics model to yield cluster concentrations and formation rates at boundary layer conditions. While there are differences, for instance, in the clustering mechanisms and cluster hygroscopicity for the three amines, DMA and TMA can be approximated as a lumped species. Formation of nanometer-sized particles and its dependence on ambient conditions is roughly similar for these two: both efficiently form clusters with sulfuric acid, and cluster formation is rather insensitive to changes in temperature and relative humidity. Particle formation from sulfuric acid and MMA is weaker and significantly more sensitive to ambient conditions. Therefore, merging MMA together with DMA and TMA introduces inaccuracies in sulfuric acid-amine particle formation schemes.

  14. Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.

    2006-01-01

    The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.

  15. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...° Baumé) or greater concentrations with or without an inhibitor, provided the corrosive effect on steel... corrosive effect on steel measured at 100 °F is not greater than that of 52° Baumé commercial sulfuric acid, may be transported in unlined pressure vessel type cargo tanks independent of the vessel's structure...

  16. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...° Baumé) or greater concentrations with or without an inhibitor, provided the corrosive effect on steel... corrosive effect on steel measured at 100 °F is not greater than that of 52° Baumé commercial sulfuric acid, may be transported in unlined pressure vessel type cargo tanks independent of the vessel's structure...

  17. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...° Baumé) or greater concentrations with or without an inhibitor, provided the corrosive effect on steel... corrosive effect on steel measured at 100 °F is not greater than that of 52° Baumé commercial sulfuric acid, may be transported in unlined pressure vessel type cargo tanks independent of the vessel's structure...

  18. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...° Baumé) or greater concentrations with or without an inhibitor, provided the corrosive effect on steel... corrosive effect on steel measured at 100 °F is not greater than that of 52° Baumé commercial sulfuric acid, may be transported in unlined pressure vessel type cargo tanks independent of the vessel's structure...

  19. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...° Baumé) or greater concentrations with or without an inhibitor, provided the corrosive effect on steel... corrosive effect on steel measured at 100 °F is not greater than that of 52° Baumé commercial sulfuric acid, may be transported in unlined pressure vessel type cargo tanks independent of the vessel's structure...

  20. Charles H. Winston and Confederate Sulfuric Acid.

    ERIC Educational Resources Information Center

    Riethmiller, Steven

    1995-01-01

    Describes the invention and use of a sulfuric acid chamber by Charles Henry Winston during the Civil War. This invention helped supply munitions for the South. Winston, who was President of the Richmond Female Institute in Virginia, constructed the chamber at his farm and was granted a patent by the Confederate Patent Office in 1863. (PVD)

  1. Study on mechanisms of different sulfuric acid leaching technologies of chromite

    NASA Astrophysics Data System (ADS)

    Shi, Pei-yang; Liu, Cheng-jun; Zhao, Qing; Shi, Hao-nan

    2017-09-01

    The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.

  2. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  3. Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility.

    PubMed

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    Dental erosion, and specifically its symptoms, has long been studied in Japan as an occupational dental disease. However, in recent years, few studies have investigated the development of this disease or labor hygiene management aimed at its prevention. As a result, interest in dental erosion is comparatively low, even among dental professionals. Our investigation at a lead storage battery factory in 1991 found that the work environmental sulfuric acid density was above the tolerable range (1.0mg/m(3)) and that longterm workers had dental erosion. Therefore, workers handling sulfuric acid were given an oral examination and rates of dental erosion by tooth type, rates of erosion by number of working years and rates of erosion by sulfuric acid density in the work environment investigated. Where dental erosion was diagnosed, degree of erosion was identified according to a diagnostic criterion. No development of dental erosion was detected in the maxillary teeth, and erosion was concentrated in the anterior mandibular teeth. Its prevalence was as high as 20%. Rates of dental erosion rose precipitously after 10 working years. The percentages of workers with dental erosion were 42.9% for 10-14 years, 57.1% for 15-19 years and 66.7% for over 20 years with 22.5% for total number of workers. The percentages of workers with dental erosion rose in proportion to work environmental sulfuric acid density: 17.9% at 0.5-1.0, 25.0% at 1.0-4.0 and 50.0% at 4.0-8.0mg/m(3). This suggests that it is necessary to evaluate not only years of exposure to sulfuric acid but also sulfuric acid density in the air in factory workers.

  4. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  5. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

    PubMed Central

    Balci, Nurgul; Brunner, Benjamin; Turchyn, Alexandra V.

    2017-01-01

    Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62−) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O) of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid

  6. On the transformation of sulfur-containing amino acids and peptides to volatile sulfur compounds (VSC) in the human mouth.

    PubMed

    Wåler, S M

    1997-10-01

    Halitosis is most often caused by oral conditions. Volatile sulfur compounds (VSC), constituting the major components of oral malodor, are produced by anaerobic, gram-negative bacteria retained mainly in periodontal pockets or on the tongue dorsum. Sulfur-containing amino acids serve as substrate for these bacteria. VSC have also been found to have unfavorable effect on the tissue. The aim of this study was to examine whether normal, healthy individuals with no history of halitosis were able to produce VSC from cysteine, when applied as a mouthrinse. A further aim of the study was to investigate and compare the potential of other sulfur-containing amino acids and peptides as substrates for oral VSC production and to localize the odor-production sites. A portable sulfide monitor was used for VSC registration. Results showed that all test subjects produced high oral concentrations of VSC upon rinses with cysteine, which thus seems to be a major substrate for VSC production. The other sulfur-containing substrates had much less effect. It was found that the tongue was the major site for VSC production, and that saliva per se caused low VSC production.

  7. Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom!

    NASA Astrophysics Data System (ADS)

    Silverstein, Todd P.; Zhang, Yi

    1998-06-01

    Sugar is a common reagent often used in colorful classroom demonstrations. It produces a growing column of black ash when dehydrated by concentrated sulfuric acid, and it produces a brilliant purple flame when combusted with potassium chlorate. Unfortunately, both of these reactions also produce copious quantities of noxious fumes which make them problematic as lecture demonstrations. We have modified and combined these two reactions. Our demonstration uses no sulfuric acid, yields relatively little smoke, and produces an exciting and unpredictable growing column of black carbon.

  8. New Parameterizations for Neutral and Ion-Induced Sulfuric Acid-Water Particle Formation in Nucleation and Kinetic Regimes

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Merikanto, Joonas; Henschel, Henning; Duplissy, Jonathan; Makkonen, Risto; Ortega, Ismael K.; Vehkamäki, Hanna

    2018-01-01

    We have developed new parameterizations of electrically neutral homogeneous and ion-induced sulfuric acid-water particle formation for large ranges of environmental conditions, based on an improved model that has been validated against a particle formation rate data set produced by Cosmics Leaving OUtdoor Droplets (CLOUD) experiments at European Organization for Nuclear Research (CERN). The model uses a thermodynamically consistent version of the Classical Nucleation Theory normalized using quantum chemical data. Unlike the earlier parameterizations for H2SO4-H2O nucleation, the model is applicable to extreme dry conditions where the one-component sulfuric acid limit is approached. Parameterizations are presented for the critical cluster sulfuric acid mole fraction, the critical cluster radius, the total number of molecules in the critical cluster, and the particle formation rate. If the critical cluster contains only one sulfuric acid molecule, a simple formula for kinetic particle formation can be used: this threshold has also been parameterized. The parameterization for electrically neutral particle formation is valid for the following ranges: temperatures 165-400 K, sulfuric acid concentrations 104-1013 cm-3, and relative humidities 0.001-100%. The ion-induced particle formation parameterization is valid for temperatures 195-400 K, sulfuric acid concentrations 104-1016 cm-3, and relative humidities 10-5-100%. The new parameterizations are thus applicable for the full range of conditions in the Earth's atmosphere relevant for binary sulfuric acid-water particle formation, including both tropospheric and stratospheric conditions. They are also suitable for describing particle formation in the atmosphere of Venus.

  9. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  10. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear experiments were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  11. Extraction of uranium from tailings by sulfuric acid leaching with oxidants

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Li, Mi; Zhang, Xiaowen; Huang, Chunmei; Wu, Xiaoyan

    2017-06-01

    Recovery of uranium have been performed by leaching uranium-containing tailings in sulfuric acid system with the assistance of HF, HClO4, H2O2 and MnO2. The effect of reagent dosage, sulfuric acid concentration, Liquid/solid ratio, reaction temperature and particle size on the leaching of uranium were investigated. The results show that addiction of HF, HClO4, H2O2 and MnO2 significantly increased the extraction of uranium under 1M sulphuric acid condition and under the optimum reaction conditions a dissolution fraction of 85% by HClO4, 90% by HF, 95% by H2O2 can be reached respectively. The variation of technological mineralogy properites of tailings during leaching process show that the assistants can break gangue effectively. These observations suggest that optimum oxidants could potentially influence the extraction of uranium from tailings even under dilute acid condition.

  12. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongyu; College of Resources and Environment Sciences, China Agricultural University, Beijing 100094; Schuchardt, Frank

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solidmore » waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.« less

  13. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  14. Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein.

    PubMed

    Tabe, Linda M; Droux, Michel

    2002-03-01

    The low sulfur amino acid content of legume seeds restricts their nutritive value for animals. We have investigated the limitations to the accumulation of sulfur amino acids in the storage proteins of narrow leaf lupin (Lupinus angustifolius) seeds. Variation in sulfur supply to lupin plants affected the sulfur amino acid accumulation in the mature seed. However, when sulfur was in abundant supply, it accumulated to a large extent in oxidized form, rather than reduced form, in the seeds. At all but severely limiting sulfur supply, addition of a transgenic (Tg) sink for organic sulfur resulted in an increase in seed sulfur amino acid content. We hypothesize that demand, or sink strength for organic sulfur, which is itself responsive to environmental sulfur supply, was the first limit to the methionine (Met) and cysteine (Cys) content of wild-type lupin seed protein under most growing conditions. In Tg, soil-grown seeds expressing a foreign Met- and Cys-rich protein, decreased pools of free Met, free Cys, and glutathione indicated that the rate of synthesis of sulfur amino acids in the cotyledon had become limiting. Homeostatic mechanisms similar to those mediating the responses of plants to environmental sulfur stress resulted in an adjustment of endogenous protein composition in Tg seeds, even when grown at adequate sulfur supply. Uptake of sulfur by lupin cotyledons, as indicated by total seed sulfur at maturity, responded positively to increased sulfur supply, but not to increased demand in the Tg seeds.

  15. Limits to Sulfur Accumulation in Transgenic Lupin Seeds Expressing a Foreign Sulfur-Rich Protein

    PubMed Central

    Tabe, Linda M.; Droux, Michel

    2002-01-01

    The low sulfur amino acid content of legume seeds restricts their nutritive value for animals. We have investigated the limitations to the accumulation of sulfur amino acids in the storage proteins of narrow leaf lupin (Lupinus angustifolius) seeds. Variation in sulfur supply to lupin plants affected the sulfur amino acid accumulation in the mature seed. However, when sulfur was in abundant supply, it accumulated to a large extent in oxidized form, rather than reduced form, in the seeds. At all but severely limiting sulfur supply, addition of a transgenic (Tg) sink for organic sulfur resulted in an increase in seed sulfur amino acid content. We hypothesize that demand, or sink strength for organic sulfur, which is itself responsive to environmental sulfur supply, was the first limit to the methionine (Met) and cysteine (Cys) content of wild-type lupin seed protein under most growing conditions. In Tg, soil-grown seeds expressing a foreign Met- and Cys-rich protein, decreased pools of free Met, free Cys, and glutathione indicated that the rate of synthesis of sulfur amino acids in the cotyledon had become limiting. Homeostatic mechanisms similar to those mediating the responses of plants to environmental sulfur stress resulted in an adjustment of endogenous protein composition in Tg seeds, even when grown at adequate sulfur supply. Uptake of sulfur by lupin cotyledons, as indicated by total seed sulfur at maturity, responded positively to increased sulfur supply, but not to increased demand in the Tg seeds. PMID:11891268

  16. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DOE PAGES

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N. M.; ...

    2016-07-05

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H 2 S, while fixing CO 2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO 2 . A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of P kan or one of two native T. denitrificans promoters. The relative strength of the two native promoters asmore » assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.« less

  17. Identification of sulfur-containing impurities in biodiesel produced from brown grease

    USDA-ARS?s Scientific Manuscript database

    Crude biodiesel (Fatty Acid Methyl Esters (FAME)) has been produced from brown grease lipids (BGLs) and subjected to purification by wiped film evaporation (WFE). FAME from waste grease usually contains higher concentrations of sulfur (S) than allowed to meet specified quality standards for biodies...

  18. Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine.

    PubMed

    Taylor, Meghan; Chapman, Ralph; Beyaert, Ronald; Hernández-Sebastià, Cinta; Marsolais, Frédéric

    2008-07-23

    The contents of sulfur amino acids in seeds of common bean ( Phaseolus vulgaris L.) are suboptimal for nutrition. They accumulate large amounts of a gamma-glutamyl dipeptide of S-methyl-cysteine, a nonprotein amino acid that cannot substitute for methionine or cysteine in the diet. Protein accumulation and amino acid composition were characterized in three genetically related lines integrating a progressive deficiency in major seed storage proteins, phaseolin, phytohemagglutinin, and arcelin. Nitrogen, carbon, and sulfur contents were comparable among the three lines. The contents of S-methyl-cysteine and gamma-glutamyl-S-methyl-cysteine were progressively reduced in the mutants. Sulfur was shifted predominantly to the protein cysteine pool, while total methionine was only slightly elevated. Methionine and cystine contents (mg per g protein) were increased by up to ca. 40%, to levels slightly above FAO guidelines on amino acid requirements for human nutrition. These findings may be useful to improve the nutritional quality of common bean.

  19. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  20. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  1. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  2. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  3. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  4. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. Themore » fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.« less

  5. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    NASA Astrophysics Data System (ADS)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  6. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  7. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE PAGES

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; ...

    2017-08-30

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  8. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    PubMed Central

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; Gibson, Christopher T.; Sibley, Alexander; Slattery, Ashley D.; Campbell, Jonathan A.; Alboaiji, Salah F. K.; Muller, Katherine A.; Young, Jason; Adamson, Nick; Gascooke, Jason R.; Jampaiah, Deshetti; Sabri, Ylias M.; Bhargava, Suresh K.; Ippolito, Samuel J.; Lewis, David A.; Quinton, Jamie S.; Ellis, Amanda V.; Johs, Alexander; Bernardes, Gonçalo J. L.

    2017-01-01

    Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. PMID:28763123

  9. A Combined Proteomic and Transcriptomic Analysis on Sulfur Metabolism Pathways of Arabidopsis thaliana under Simulated Acid Rain

    PubMed Central

    Wang, Wenhua; Simon, Martin; Wu, Feihua; Hu, Wenjun; Chen, Juan B.; Zheng, Hailei

    2014-01-01

    With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress. PMID:24595051

  10. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon.

    PubMed

    Morris, Eric A; Kirk, Donald W; Jia, Charles Q; Morita, Kazuki

    2012-07-17

    This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).

  11. Sulfur

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    In 2011, elemental sulfur and the byproduct sulfuric acid were produced at 109 operations in 29 states and the U.S. Virgin Islands. Total shipments were valued at about $1.6 billion. Elemental sulfur production was 8.2 Mt (9 million st); Louisiana and Texas accounted for about 53 percent of domestic production.

  12. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  14. On the prolonged lifetime of the El Chichon sulfuric acid aerosol cloud

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1987-01-01

    The observed decay of the aerosol mixing ratio following the eruption of El Chichon appears to have been 20-30 percent slower than that following the eruption of Fuego in 1974, even though the sulfuric acid droplets were observed to grow to considerably larger sizes after El Chichon. This suggests the possible presence of a condensation nuclei and sulfuric acid vapor source and continued growth phenomena occurring well after the El Chichon eruption. It is proposed that the source of these nuclei and the associated vapor may be derived from annual evaporation and condensation of aerosol in the high polar regions during stratospheric warming events, with subsequent spreading to lower latitudes.

  15. Comparison of sulfuric and oxalic acid anodizing for preparation of thermal control coatings for spacecraft

    NASA Technical Reports Server (NTRS)

    Le, Huong G.; Watcher, John M.; Smith, Charles A.

    1988-01-01

    The development of thermal control surfaces, which maintain stable solar absorptivity and infrared emissivity over long periods, is challenging due to severe conditions in low-Earth orbit (LEO). Some candidate coatings are second-surface silver-coated Teflon; second-surface, silvered optical solar reflectors made of glass or quartz; and anodized aluminum. Sulfuric acid anodized and oxalic acid anodized aluminum was evaluated under simulated LEO conditions. Oxalic acid anodizing shows promise of greater stability in LEO over long missions, such as the 30 years planned for the Space Station. However, sulfuric acid anodizing shows lower solar absorptivity.

  16. New insights into sulfur amino acids function in gut health and disease

    USDA-ARS?s Scientific Manuscript database

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAAs) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable amino acid and is...

  17. Using heat pipe to make isotherm condition in catalytic converters of sulfuric acid plants

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Pahlavanzadeh, H.; Sadrameli, S. M.

    2017-08-01

    In this study, for the first time, it is tried to construct a pilot reactor, for surveying the possibility of creating isothermal condition in the catalytic convertors where SO2 is converted to SO3 in the sulfuric acid plants by heat pipe. The thermodynamic and thermo-kinetic conditions were considered the same as the sulfuric acid plants converters. Also, influence of SO2 gas flow rate on isothermal condition, has been studied. A thermo-siphon type heat pipe contains the sulfur + 5% iodine as working fluid, was used for disposing the heat of reaction from catalytic bed. Our results show that due to very high energy-efficiency, isothermal and passive heat transfer mechanism of heat pipe, it is possible to reach more than 95% conversion in one isothermal catalytic bed. As the results, heat pipe can be used as a certain piece of equipment to create isothermal condition in catalytic convertors of sulphuric acid plants. With this work a major evaluation in design of sulphuric acid plants can be taken place.

  18. Acidophilic sulfur disproportionation

    NASA Astrophysics Data System (ADS)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  19. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  20. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  1. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as sulfuric...

  2. Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P.

    2013-12-01

    Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at <0.3‰ precision in simulated cave atmospheres. Bioreactors containing Madison Limestone were inoculated with either a monoculture of the mixotrophic sulfur-oxidizing Thiothrix unzii or a mixed environmental (LKC) sulfur-metabolizing community. Ca2+ and pH were also continuously logged in order to quantify the impact of microbial metabolism on limestone dissolution rate. We found an order of magnitude of variability in limestone dissolution rates that were closely tied to microbial metabolism. In monocultures, limestone dissolution was inhibited by excessive reduced sulfur as T. unzii prefers to store sulfur internally as So under these conditions, generating no acidity. The headspace was depleted in 13C when sulfur was being stored as So and enriched in 13C when sulfur was being converted to SO42-. This suggests a preference for a heterotrophy during periods of high sulfur input and autotrophy when sulfur input is low. This was corroborated by an increase in SO42- during low sulfide input and microscope images showed loss of internal sulfur within the filaments

  3. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils.

    PubMed

    Worthington, Max J H; Kucera, Renata L; Albuquerque, Inês S; Gibson, Christopher T; Sibley, Alexander; Slattery, Ashley D; Campbell, Jonathan A; Alboaiji, Salah F K; Muller, Katherine A; Young, Jason; Adamson, Nick; Gascooke, Jason R; Jampaiah, Deshetti; Sabri, Ylias M; Bhargava, Suresh K; Ippolito, Samuel J; Lewis, David A; Quinton, Jamie S; Ellis, Amanda V; Johs, Alexander; Bernardes, Gonçalo J L; Chalker, Justin M

    2017-11-16

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. SULFUR COMPOUNDS IN MORPHOGENESIS.

    DTIC Science & Technology

    CHICKENS, GROWTH(PHYSIOLOGY), MITOSIS, BACTERIA, ALGAE, LIPOIC ACID , THIOLS, BELGIUM...ORGANIC SULFUR COMPOUNDS, METABOLISM), (*MORPHOLOGY(BIOLOGY), ORGANIC SULFUR COMPOUNDS), (*NUCLEIC ACIDS , BIOSYNTHESIS), EGGS, EMBRYOS, AMPHIBIANS

  5. Accelerated Biodegradation of Cement by Sulfur-Oxidizing Bacteria as a Bioassay for Evaluating Immobilization of Low-Level Radioactive Waste

    PubMed Central

    Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex

    2004-01-01

    Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547

  6. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  7. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  8. Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation.

    PubMed

    Levy, Amalie T; Lee, Kelvin H; Hanson, Thomas E

    2016-11-01

    Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S 0 ), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S 0 > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the "energy landscape." C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides

  9. Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation

    PubMed Central

    2016-01-01

    ABSTRACT Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S0), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S0 > thiosulfate. To understand this preference in the context of light energy availability, an “energy landscape” of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. IMPORTANCE How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the “energy landscape.” C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This

  10. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  11. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    PubMed

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-04

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  12. Large discharge capacity from carbon electrodes in sulfuric acid with oxidant

    NASA Astrophysics Data System (ADS)

    Inagaki, M.; Iwashita, N.

    The discharge performance of the graphite intercalation compounds in sulfuric acid containing nitric acid (H 2SO 4-GICs) was studied by focusing on the effects of oxidant and carbon nanotexture. A large discharge capacity from H 2SO 4-GICs synthesized by using an excess amount of HNO 3, more than 150 times of the theoretical value (93 mAh/g carbon), was obtained depending on the amount of oxidant added, the discharge current, and the nanotexture of carbon electrode. The experimental results are explained in terms of competition between the de-intercalation of sulfuric acid due to galvanostatic reduction and the re-intercalation due to chemical oxidation by HN03 during discharging. However, a subsidiary reaction decreases the effective amount of HNO 3 on the discharge by a small current and also on the cycle of chemical charging and electrochemical discharging. The oxidant KMnO 4 gave only a little larger capacity for discharge than the theoretical one, because it was reduced to the manganese oxide precipitates during the oxidation of the carbon electrode.

  13. Delayed production of sulfuric acid condensation nuclei in the polar stratosphere from El Chichon volcanic vapors

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Gringel, W.

    1985-01-01

    It is pointed out that measurements of the vertical profiles of atmospheric condensation nuclei (CN) have been conducted since 1973. Studies with a new instrument revealed that the CN concentration undergoes a remarkable annual variation in the 30-km region characterized by a large increase in the late winter/early spring period with a subsequent decay during the remainder of the year. The event particles are observed to be volatile at 150 C, suggesting a sulfuric acid-water composition similar to that found in the normal 20 km aerosol layer. The development of about 10 to the 7th metric tons of sulfuric acid aerosol following the injection of sulfurous gases by El Chichon in April 1982, prompted Hofmann and Rosen (1983) to predict a very large CN event for 1983. The present investigation is concerned with the actual observation of the predicted event. Attention is given to the observation of a very large increase of what appear to be small sulfuric acid droplets at 30-km altitude in January 1983 over Laramie, WY, in January 1983.

  14. Sulfur Assimilation in Developing Lupin Cotyledons Could Contribute Significantly to the Accumulation of Organic Sulfur Reserves in the Seed

    PubMed Central

    Tabe, Linda Marie; Droux, Michel

    2001-01-01

    It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to transfer the sulfur atom from 35S-labeled sulfate into seed proteins in vitro, demonstrating the ability of the developing cotyledons to perform all the steps of sulfur reduction and sulfur amino acid biosynthesis. Oxidized sulfur constituted approximately 30% of the sulfur in mature seeds of lupins grown in the field and almost all of the sulfur detected in phloem exuded from developing pods. The activities of three enzymes of the sulfur amino acid biosynthetic pathway were found in developing cotyledons in quantities theoretically sufficient to account for all of the sulfur amino acids that accumulate in the protein of mature lupin seeds. We conclude that sulfur assimilation by developing cotyledons is likely to be an important source of sulfur amino acids for the synthesis of storage proteins during lupin seed maturation. PMID:11351081

  15. Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed.

    PubMed

    Tabe, L M; Droux, M

    2001-05-01

    It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to transfer the sulfur atom from 35S-labeled sulfate into seed proteins in vitro, demonstrating the ability of the developing cotyledons to perform all the steps of sulfur reduction and sulfur amino acid biosynthesis. Oxidized sulfur constituted approximately 30% of the sulfur in mature seeds of lupins grown in the field and almost all of the sulfur detected in phloem exuded from developing pods. The activities of three enzymes of the sulfur amino acid biosynthetic pathway were found in developing cotyledons in quantities theoretically sufficient to account for all of the sulfur amino acids that accumulate in the protein of mature lupin seeds. We conclude that sulfur assimilation by developing cotyledons is likely to be an important source of sulfur amino acids for the synthesis of storage proteins during lupin seed maturation.

  16. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    PubMed

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  17. COULOMETRIC DETERMINATION OF TOTAL SULFUR AND REDUCED INORGANIC SULFUR FRACTIONS IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Evaluation of the solid-phase partitioning of sulfur is frequently an important analytical component of risk assessments at hazardous waste sites because minerals containing reduced-sulfur can significantly affect the transport and fate of organic and inorganic contaminants in na...

  18. Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance

    PubMed Central

    Ghosh, Arnab; Shukla, Swapnil; Khosla, Gaganpreet Singh; Lochab, Bimlesh; Mitra, Sagar

    2016-01-01

    A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical confinement of sulfur units. The presence of organosulfur moieties in copolymer suppress the irreversible deposition of end-discharge products on electrode surfaces and thus improve the electrochemical performances of Li-S batteries. This sulfur copolymer offered a reversible capacity of 892 mA h g−1 at 2nd cycle and maintained the capacity of 528 mA h g−1 after 50 cycles at 200 mA g−1. Reduced graphene oxide (rGO) prepared via a sustainable route was used as a conductive filler to extract the better electrochemical performances from this sulfur copolymer. Such sustainable origin batteries prepared via economically viable showed an improved specific capacity of ~975 mA h g−1 after 100 cycles at 200 mA g−1 current rate with capacity fading of 0.15% per cycle and maintained a stable performance over 500 cycles at 2000 mA g−1. PMID:27121089

  19. STABILIZATION OF MERCURY IN WASTE MATERIAL FROM THE SULFUR BANK MERCURY MINE, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Three innovative technologies for stabilization of mercury were demonstrated in a treatability study performed on two waste rock materials from the Sulfur Bank Mercury Mine, a Superfund site in northern California. The treatability study was jointly sponsored by two EPA programs:...

  20. Prehydrolysis of aspen wood with water and with dilute aqueous sulfuric acid

    Treesearch

    Edward L. Springer; John F. Harris

    1982-01-01

    Water prehydrolysis of aspen wood was compared with 0.40% sulfuric acid prehydrolysis at a reaction temperature of 170°C. Acid prehydrolysis gave much higher yields of total anhydroxylose units in the prehydrolyzate and removed significantly less anhydroglucose from the wood than did the water treatment. At maximum yields of total anhydroxylose units in the...

  1. Friction and wear of nickel in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Experiments were conducted with elemental nickel sliding on aluminum oxide in aerated sulfuric acid in concentrations ranging from very dilute (10 -4 N, i.e., 5 ppm) to very concentrated (96 percent) acid. Load and reciprocating sliding speeds were kept constant. With the most dilute concentration (10 -4 N) no observable corrosion occurred in or outside the wear area. This was used as the base condition to determine the high contribution of corrosion to total wear loss at acid concentrations between 0.5 percent (0.1 N) and 75 percent. Corrosion reached a maximum rate of 100 millimeters per year at 30 percent acid. At the same time, general corrosion outside the wear area was very low, in agreement with published information. It is clear that friction and wear greatly accelerated corrosion in the wear area. At dilute concentrations of 0.001 and 0.01 N, corrosion in the wear area was low, and general corrosion outside was also low, but local outside regions in the direction of the wear motion experienced some enhanced corrosion, apparently due to fluid motion of the acid.

  2. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  3. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    PubMed

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  4. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  5. Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulfates.

    PubMed

    Wang, Lin; Lal, Vinita; Khalizov, Alexei F; Zhang, Renyi

    2010-04-01

    The heterogeneous interaction of alkylamines with sulfuric acid has been investigated to assess the role of amines in aerosol growth through the formation of alkylaminium sulfates. The kinetic experiments were conducted in a low-pressure fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS). The measurements of heterogeneous uptake of methylamine, dimethylamine, and trimethylamine were performed in the acidity range of 59-82 wt % H(2)SO(4) and between 243 and 283 K. Irreversible reactive uptakes were observed for all three alkylamines, with comparable uptake coefficients (gamma) in the range of 2.0 x 10(-2) to 4.4 x 10(-2). The measured gamma value was slightly higher in more concentrated sulfuric acid and at lower temperatures. The results imply that the heterogeneous reactions of alkylamines contribute effectively to the growth of atmospheric acidic particles and, hence, secondary organic aerosol formation.

  6. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimensmore » without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.« less

  7. Heterogeneous interactions of chlorine nitrate, hydrogen chloride, and nitric acid with sulfuric acid surfaces at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.

  8. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  10. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid ismore » believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.« less

  11. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  12. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  13. Dynamics of a Sonoluminescing Bubble in Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Hopkins, Stephen D.; Putterman, Seth J.; Kappus, Brian A.; Suslick, Kenneth S.; Camara, Carlos G.

    2005-12-01

    The spectral shape and observed sonoluminescence emission from Xe bubbles in concentrated sulfuric acid is consistent only with blackbody emission from a spherical surface that fills the bubble. The interior of the observed 7000 K blackbody must be at least 4 times hotter than the emitting surface in order that the equilibrium light-matter interaction length be smaller than the radius. Bright emission is correlated with long emission times (˜10ns), sharp thresholds, unstable translational motion, and implosions that are sufficiently weak that contributions from the van der Waals hard core are small.

  14. Dynamics of a sonoluminescing bubble in sulfuric acid.

    PubMed

    Hopkins, Stephen D; Putterman, Seth J; Kappus, Brian A; Suslick, Kenneth S; Camara, Carlos G

    2005-12-16

    The spectral shape and observed sonoluminescence emission from Xe bubbles in concentrated sulfuric acid is consistent only with blackbody emission from a spherical surface that fills the bubble. The interior of the observed 7000 K blackbody must be at least 4 times hotter than the emitting surface in order that the equilibrium light-matter interaction length be smaller than the radius. Bright emission is correlated with long emission times (approximately 10 ns), sharp thresholds, unstable translational motion, and implosions that are sufficiently weak that contributions from the van der Waals hard core are small.

  15. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    PubMed

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Compact regenerable sulfur scrubber for phosphoric acid fuel cells. Final report, 30 September 1986-30 September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giner, J.; Cropley, C.C.

    Technology for the direct desulfurization of unprocessed diesel fuel using regenerable copper-based mixed metal oxide sorbents was developed for incorporation in modular phosphoric acid fuel cell (PAFC) generators. Removal of greater 60% of the sulfur in diesel fuel was demonstrated, and sorbent sulfur loadings of approximately 1 wt% were attained. Preliminary studies indicated that the sorbents are regenerable, with up to 70% of the sorbed sulfur removed during regeneration. Incorporation of this technology into a PAFC power plant should reduce the weight of the sulfur removal unit by a minimum of 25%.

  17. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  18. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  19. New insights into sulfur amino acid function in gut health and disease

    USDA-ARS?s Scientific Manuscript database

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAA) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable AA and is transmet...

  20. Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere.

    PubMed

    Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T

    2011-05-05

    The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.

  1. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt andmore » lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.« less

  2. An Aerosol Condensation Model for Sulfur Trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, K E

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992,more » world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur

  3. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  4. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    NASA Astrophysics Data System (ADS)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  5. Biologically removing sulfur from dilute gas flows

    NASA Astrophysics Data System (ADS)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  6. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  7. Wastes and by-products - alternatives for agricultural use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfatemore » fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.« less

  8. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals

    Treesearch

    John F. Harris; Andrew J. Baker; Anthony H. Conner; Thomas W. Jeffries; James L. Minor; Roger C. Pettersen; Ralph W. Scott; Edward L Springer; Theodore H. Wegner; John I. Zerbe

    1985-01-01

    This paper presents a fundamental analysis of the processing steps in the production of methanol from southern red oak (Quercus falcata Michx.) by two-stage dilute sulfuric acid hydrolysis. Data for hemicellulose and cellulose hydrolysis are correlated using models. This information is used to develop and evaluate a process design.

  9. The Corrosion Behavior of Ni3(Si,Nb) Alloys in Boiling 70 wt.% Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Larson, Christopher M.; Newkirk, Joseph W.; Brow, Richard K.; Zhang, San-Hong

    2016-02-01

    Corrosion-resistant Ni3(Si,Nb) alloys are promising materials of construction for hydrogen-production systems based on the sulfur-iodine thermochemical cycle. In this work, the corrosion rates of three different Ni3(Si,Nb) alloys were measured in boiling 70 wt.% sulfuric acid and a three-stage corrosion mechanism was identified, based on the composition and morphology of surface scale that developed. The α(Ni) + β(Ni3Si) eutectic constituent of the alloy microstructure was selectively attacked by acid and, when present, is detrimental to corrosion resistance. The G-phase (Ni16Si17Nb6) is more passive than the β-matrix and seems to contribute to a lower steady-state corrosion rate.

  10. Sulfur amino acids are necessary for normal intestinal mucosal growth in neonatal piglets

    USDA-ARS?s Scientific Manuscript database

    Sulfur amino acids (SAAs) methionine and cysteine play important metabolic and functional role in human health and disease. Gastrointestinal tract is an important site of transmethylation and transsulfuration of methionine and metabolizes approx. 20% of the dietary methionine intake (Riedijk et al. ...

  11. Comparative studies on acid leaching of zinc waste materials

    NASA Astrophysics Data System (ADS)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  12. Sulfuric Acid Monohydrate: Formation and Heterogeneous Chemistry in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1995-01-01

    We have investigated some thermodynamic properties (i.e., freezing/melting points) and heterogeneous chemistry of sulfuric acid monohydrate (SAM, H2SO4.H2O), using a fast flow reactor coupled to a quadrupole mass spectrometer. The freezing point observations of thin liquid sulfuric acid films show that for acid contents between 75 and 85 wt % the monohydrate crystallizes readily at temperatures between 220 and 240 K on a glass substrate. Once formed, SAM can be thermodynamically stable in the H2O partial pressure range of (1-4) x 10(exp -4) torr and in the temperature range of 220-240 K. For a constant H2O partial pressure, lowering the temperature causes SAM to melt when the temperature and water partial pressure conditions are out of its stability regime. The reaction probability measurements indicate that the hydrolysis of N2O5 is significantly suppressed owing to the formation of crystalline SAM: The reaction probability on water-rich SAM (with higher relative humidity, or RH) is of the order of 10(exp -3) at 210 K and decreases by more than an order of magnitude for the acid-rich form (with lower RH). The hydrolysis rate of ClONO2 on water-rich SAM is even smaller, of the order of 10(exp -4) at 195 K. These reported values on crystalline SAM are much smaller than those on liquid solutions. No enhancement of these reactions is observed in the presence of HCl vapor at the stratospheric concentrations. In addition, Brunauer, Emmett, and Teller analysis of gas adsorption isotherms and photomicrography have been performed to characterize the surface roughness and porosities of the SAM substrate. The results suggest the possible formation of SAM in some regions of the middle- or low-latitude stratosphere and, consequently, much slower heterogeneous reactions on the frozen aerosols.

  13. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  14. Sulfur removal from model fuel by Zn impregnated retorted shale and with assistance of design of experiments.

    PubMed

    de Lima, Flávia Melo; de Andrade Borges, Talitha; Braga, Renata Martins; de Araújo Melo, Dulce Maria; Martinelli, Antônio Eduardo

    2018-05-01

    There is global concern about acid rain and other pollution which is caused by the consumption of oil. By decreasing sulfur content in the oil, we can reduce unwanted emissions and acid rain. Shale was used which is a solid waste generated in the pyrolysis of shale, impregnated with Zn as an adsorbent which removes sulfur present in fuels from the hexane/toluene model solution. An influence of the agitation time (60-180 min), temperature (25-35 °C), adsorbent mass (0.1-0.25 g), and initial sulfur concentration (100-250 ppm) factorial 24 with three central points totaling 19 experiments was applied to investigate the effect of the variables on the efficiency of sulfur removal in fuels. The values of the parameters tested for maximum sulfur removal were obtained as follows: contact time = 180 min, temperature = 35 °C, adsorbent mass = 0.25 g, and initial sulfur concentration = 100 ppm. The mathematical model proposed with R 2 99.97% satisfied the experimental data. This may provide a theoretical basis for new research and alternative uses for tailings of schist industrialization in order to evaluate its potential.

  15. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  16. Upgrading pyrolytic residue from waste tires to commercial carbon black.

    PubMed

    Zhang, Xue; Li, Hengxiang; Cao, Qing; Jin, Li'e; Wang, Fumeng

    2018-05-01

    The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.

  17. Chemical and spectral behavior of nitric acid in aqueous sulfuric acid solutions: Absorption spectrum and molar absorption coefficient of nitronium ion

    NASA Astrophysics Data System (ADS)

    Ershov, Boris G.; Panich, Nadezhda M.

    2018-01-01

    The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).

  18. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  19. Heterogeneous Chemistry of HONO on Liquid Sulfuric Acid: A New Mechanism of Chlorine Activation on Stratospheric Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1996-01-01

    Heterogeneous chemistry of nitrous acid (HONO) on liquid sulfuric acid (H2SO4) Was investigated at conditions that prevail in the stratosphere. The measured uptake coefficient (gamma) of HONO on H2SO4 increased with increasing acid content, ranging from 0.03 for 65 wt % to about 0.1 for 74 wt %. In the aqueous phase, HONO underwent irreversible reaction with H2SO4 to form nitrosylsulfuric acid (NO(+)HSO4(-). At temperatures below 230 K, NO(+)HSO4(-) was observed to be stable and accumulated in concentrated solutions (less than 70 wt % H2SO4) but was unstable and quickly regenerated HONO in dilute solutions (less than 70 wt %). HCl reacted with HONO dissolved in sulfuric acid, releasing gaseous nitrosyl chloride (ClNO). The reaction probability between HCl and HONO varied from 0.01 to 0.02 for 60-72 wt % H2SO4. In the stratosphere, ClNO photodissociates rapidly to yield atomic chlorine, which catalytically destroys ozone. Analysis of the laboratory data reveals that the reaction of HCl with HONO on sulfate aerosols can affect stratospheric ozone balance during elevated sulfuric acid loadings after volcanic eruptions or due to emissions from the projected high-speed civil transport (HSCT). The present results may have important implications on the assessment of environmental acceptability of HSCT.

  20. Recycling and management of waste lead-acid batteries: A mini-review.

    PubMed

    Li, Malan; Liu, Junsheng; Han, Wei

    2016-04-01

    As a result of the wide application of lead-acid batteries to be the power supplies for vehicles, their demand has rapidly increased owing to their low cost and high availability. Accordingly, the amount of waste lead-acid batteries has increased to new levels; therefore, the pollution caused by the waste lead-acid batteries has also significantly increased. Because lead is toxic to the environment and to humans, recycling and management of waste lead-acid batteries has become a significant challenge and is capturing much public attention. Various innovations have been recently proposed to recycle lead and lead-containing compounds from waste lead-acid batteries. In this mini-review article, different recycling techniques for waste lead-acid batteries are highlighted. The present state of such recycling and its future perspectives are also discussed. We hope that this mini-review can provide useful information on recovery and recycling of lead from waste lead-acid batteries in the field of solid waste treatment. © The Author(s) 2016.

  1. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    PubMed

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  2. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Using imaging spectroscopy to map acidic mine waste

    USGS Publications Warehouse

    Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; Roth, S.

    2000-01-01

    The process of pyrite oxidation at the surface of mine waste may produce acidic water that is gradually neutralized as it drains away from the waste, depositing different Fe-bearing secondary minerals in roughly concentric zones that emanate from mine-waste piles. These Fe-bearing minerals are indicators of the geochemical conditions under which they form. Airborne and orbital imaging spectrometers can be used to map these mineral zones because each of these Fe-bearing secondary minerals is spectrally unique. In this way, imaging spectroscopy can be used to rapidly screen entire mining districts for potential sources of surface acid drainage and to detect acid producing minerals in mine waste or unmined rock outcrops. Spectral data from the AVIRIS instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, CO. Laboratory leach tests of surface samples show that leachate pH is most acidic and metals most mobile in samples from the inner jarosite zone and that leachate pH is near-neutral and metals least mobile in samples from the outer goethite zone.

  4. Hydrometallurgical Treatment for Mixed Waste Battery Material

    NASA Astrophysics Data System (ADS)

    Ma, L. W.; Xi, X. L.; Zhang, Z. Z.; Huang, Z. Q.; Chen, J. P.

    2017-02-01

    Hydrometallurgical experiments are generally required to assess the appropriate treatment process before the establishment of the industrial recovery process for waste battery materials. The effects of acid systems and oxidants in metal leaching were studied. The comprehensive leaching effects of the citric acid were superior to the sulfuric acid. The potassium permanganate inhibits the dissolution of metals. Thermodynamic calculations showed that metals precipitate more easily in sulfuric acid system than in citric acid system. The Fe precipitation efficiency in sulfuric acid system was 90% at pH 3.5, but with considerable losses of Co (30%) and Ni (40%). The proper pH and organic/aqueous (O/A) ratio for Fe and Zn removal with Di-(2-ethylhexyl) phosphoric acid extraction were 2 and 0.5, respectively; while for the removal of Cu and Mn, the best pH and O/A ratio were 3 and 0.75, respectively. Crude manganese carbonate and a cobalt-nickel enriched liquid were obtained by selective precipitation in raffinate using an ammonium bicarbonate solution. In citric acid systems, the precipitation efficiency of Co, Ni, Mn, Fe, Cu and Zn were less than 20% at pH 7. The proper pH and O/A ratio for the separation of the metals in two groups (Ni/Co/Cu and Mn/Fe/Zn) were 1.5 and 2. The cobalt-nickel-copper enriched liquid was finally obtained.

  5. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... good agricultural practice when used as a herbicide in the production of garlic and onions, and as a... from the use of sulfuric acid as an inert ingredient in a pesticide product used in irrigation...

  6. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  7. [Application of the vanillin sulfuric acid colorimetry-ultraviolet spectrometry on quality evaluation of Panax notoginseng].

    PubMed

    Ding, Yong-Li; Wang, Yuan-Zhong; Zhang, Ji; Zhang, Qing-Zhi; Zhang, Jin-Yu; Jin, Hang

    2013-02-01

    In this study, Panax notoginseng samples were extracted by chloroform, ethanol and water, or by those extracted solution with 5% vanillin sulfuric acid to establish two kinds of UV fingerprint of P. notoginseng which were compared by applying the common and variation peak ratio dual index sequence analysis method and SIMCA software qualitative analysis. The results indicated that the optimization extraction time of P. notoginseng samples was 20 min with chloroform, ethanol and water extraction, but the fingerprint differed significantly after add vanillin sulfuric acid. The common peak ratios of UV fingerprint of P. notoginseng were scattered. The minimum was 25% (Y5-Y8), while the maximum was 84.38% (Y11-Y13, Y20-Y21). The maximum variation peak ratio was 177.78% (Y8-Y5), meanwhile, the variation peak ratios of several samples were more than 100%. However, the common peak ratios of UV fingerprint of P. notoginseng with vanillin sulfuric acid were concentrated (distributed in the range of 50%-70%): the minimum was 42.86%(Y1-Y19), whereas the maximum was 79.55% (Y22-Y23); the range of the variation peak ratios was also smaller with the ranges of 20%-50% in general. The result of the dual index sequence analysis was agreement with the fingerprint implied. The similarity of the UV fingerprint of the extracts of P. notoginseng after adding vanillin sulfuric acid was greater than before. Both the ages and origin was related with the difference of UV fingerprint. The similarity of the two samples with same age was more significant than those with different ages. The similarity and difference between samples was no correlation with the distance of geographic space, the near origin samples maybe have a significant similarity or difference. This method appears as good alternative for evaluate quality of the P. notoginseng and can distinguish at least two samples quantitatively, duo to it reaches the limitation of the multiple methods which only could be used to indistinctly

  8. Quantitative comparison of caffeoylquinic acids and flavonoids in Chrysanthemum morifolium flowers and their sulfur-fumigated products by three-channel liquid chromatography with electrochemical detection.

    PubMed

    Chen, Liangmian; Kotani, Akira; Kusu, Fumiyo; Wang, Zhimin; Zhu, Jingjing; Hakamata, Hideki

    2015-01-01

    For the determination of seven caffeoylquinic acids [neochlorogenic acid (NcA), cryptochlorogenic acid (CcA), chlorogenic acid (CA), caffeic acid (CfA), isochlorogenic acid A (Ic A), isochlorogenic acid B (Ic B), isochlorogenic acid C (Ic C)] and two flavonoids [luteolin 7-O-glucoside (LtG) and luteolin (Lt)], a three-channel liquid chromatography with electrochemical detection (LC-3ECD) method was established. Chromatographic peak heights were proportional to each concentration, ranging from 2.5 to 100 ng/mL for NcA, CA, CcA, and CfA, and ranging from 2.5 to 250 ng/mL for LtG, Ic B, Ic A, Ic C, and Lt, respectively. The present LC-3ECD method was applied to the quantitative analysis of caffeoylquinic acids and flavonoids in four cultivars of Chrysanthemum morifolium flowers and their sulfur-fumigated products. It was found that 60% of LtG and more than 47% of caffeoylquinic acids were lost during the sulfur fumigation processing. Sulfur fumigation showed a destructive effect on the C. morifolium flowers. In addition, principle component analyses (PCA) were performed using the results of the quantitative analysis of caffeoylquinic acids and flavonoids to compare the "sameness" and "differences" of these analytes in C. morifolium flowers and the sulfur-fumigated products. PCA score plots showed that the four cultivars of C. morifolium flowers were clearly classified into four groups, and that significant differences were also found between the non-fumigated C. morifolium flowers and the sulfur-fumigated products. Therefore, it was demonstrated that the present LC-3ECD method coupled with PCA is applicable to the variation analysis of different C. morifolium flower samples.

  9. Fabrication of Self-Ordered Nanoporous Alumina with 69-115 nm Interpore Distances in Sulfuric/Oxalic Acid Mixtures by Hard Anodization

    NASA Astrophysics Data System (ADS)

    Almasi Kashi, Mohammad; Ramazani, Abdolali; Mayamai, Yashar; Noormohammadi, Mohammad

    2010-01-01

    Well-ordered nanoporous arrays have been obtained using hard anodization of aluminium in oxalic/sulfuric mixture. Various ordered nanoporous alumina films with pore intervals from 69 to 115 nm were fabricated on aluminum by high current anodization approach with various sulfuric concentrations in the oxalic/sulfuric mixture electrolyte under 36-60 V. The sulfuric acid concentration was changed from 0.06 to 0.2 M. Different configurations of the current-time curve are seen to influence the self-ordering of the nanohole arrays. A current density-time curve with exponential oscillating decay configuration is seen to damage the self-ordered array of the nanopores while those with exponential decay under certain conditions cause ordered nanopore arrays. For each electrolyte mixture, the interpore distance was dependent upon the anodization voltages with proportionality constants of almost 2 nm V-1. The porosity of the samples (about 3.5%) follows the porosity rule of HA. Final anodization and increasing voltage rate (rin) as a function of sulfuric acid concentration are the main sources to influence the self-ordering of the samples.

  10. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  11. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a substituted...

  12. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a substituted...

  13. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  14. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  15. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    PubMed Central

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield. PMID:22606004

  16. Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite

    NASA Astrophysics Data System (ADS)

    Niu, Yan-Ning; Yuan, Yuan; Gao, Wei-Xin; Qian, Sheng; Sun, Wen

    2018-03-01

    The absorption behavior of Cu2+ from aqueous solution on sulfuric acid treated palygorskite were investigated, the results showed that palygorskite had high absorption ability for Cu2+ from aqueous solution. Effects of the shaking time, pH and the copper ion concentration on the removal rate were discussed. The absorption behavior of Cu2+ could be well imitated by the Langmuir isothermal equation.

  17. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.

    PubMed

    Herrmann, E; Brus, D; Hyvärinen, A-P; Stratmann, F; Wilck, M; Lihavainen, H; Kulmala, M

    2010-08-12

    This study presents a computational fluid dynamics modeling approach to investigate the nucleation in the water-sulfuric acid system in a flow tube. On the basis of an existing experimental setup (Brus, D.; Hyvärinen, A.-P.; Viisanen, Y.; Kulmala, M.; Lihavainen, H. Atmos. Chem. Phys. 2010, 10, 2631-2641), we first establish the effect of convection on the flow profile. We then proceed to simulate nucleation for relative humidities of 10, 30, and 50% and for sulfuric acid concentration between 10(9) to 3 x 10(10) cm(-3). We describe the nucleation zone in detail and determine how flow rate and relative humidity affect its characteristics. Experimental nucleation rates are compared to rates gained from classical binary and kinetic nucleation theory as well as cluster activation theory. For low RH values, kinetic theory yields the best agreement with experimental results while binary nucleation best reproduces the experimental nucleation behavior at 50% relative humidity. Particle growth is modeled for an example case at 50% relative humidity. The final simulated diameter is very close to the experimental result.

  18. Toxicity of nickel and silver to Nostoc muscorum: interaction with ascorbic acid, glutathione, and sulfur-containing amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, L.C.; Raizada, M.

    1987-08-01

    Exposure of Nostoc muscorum to different concentrations of Ni and Ag brought about reduction in growth, carbon fixation, heterocyst production, and nitrogenase activity and increase in the loss of ions (K+, Na+). In an attempt to ameliorate the toxicity of test metals by ascorbic acid, glutathione, and sulfur-containing amino acids (L-cysteine and L-methionine), it was found that the level of protection by ascorbic acid and glutathione was more for Ag than Ni. However, metal-induced inhibition of growth and carbon fixation was equally ameliorated by methionine. But the level of protection by cysteine was quite different, i.e., 27% for Ni andmore » 22% for Ag. Protection of metal toxicity in N. muscorum by amino acids lends further support to self-detoxifying ability of cyanobacteria because they are known to synthesize all essential amino acids.« less

  19. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  20. AN EFFICIENT AND CHEMOSELECTIVE CBZ-PROTECTION OF AMINES USING SILICA-SULFURIC ACID AT ROOM TEMPERATURE

    EPA Science Inventory

    A simple, facile, and chemoselective N-benzyloxycarbonylation of amines using silica-sulfuric acid that proceeds under solvent-free conditions at room temperature has been achieved. These reactions are applicable to a wide variety of primary (aliphatic, cyclic) secondary amines, ...

  1. A global three-dimensional model of the stratospheric sulfuric acid layer

    NASA Technical Reports Server (NTRS)

    Golombek, Amram; Prinn, Ronald G.

    1993-01-01

    A 3D model which encompasses SO2 production from OCS, followed by its oxidation to gaseous H2SO4, the condensation-evaporation equilibrium of gaseous and particulate H2SO4, and finally particle condensation and rainout, is presently used to study processes maintaining the nonvolcanically-perturbed stratosphere's sulfuric acid layer. A comparison of the results thus obtained with remotely sensed stratospheric aerosol extinction data shows the model to simulate the general behavior of stratospheric aerosol extinction.

  2. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  3. Thoracic Duct Chylous Fistula Following Severe Electric Injury Combined with Sulfuric Acid Burns: A Case Report.

    PubMed

    Chang, Fei; Cheng, Dasheng; Qian, Mingyuan; Lu, Wei; Li, Huatao; Tang, Hongtai; Xia, Zhaofan

    2016-10-11

    BACKGROUND As patients with thoracic duct injuries often suffer from severe local soft tissue defects, integrated surgical treatment is needed to achieve damage repair and wound closure. However, thoracic duct chylous fistula is rare in burn patients, although it typically involves severe soft tissue damage in the neck or chest. CASE REPORT A 32-year-old male patient fell after accidentally contacting an electric current (380 V) and knocked over a barrel of sulfuric acid. The sulfuric acid continuously poured onto his left neck and chest, causing combined electrical and sulfuric acid burn injuries to his anterior and posterior torso, and various parts of his limbs (25% of his total body surface area). During treatment, chylous fistula developed in the left clavicular region, which we diagnosed as thoracic duct chylous fistula. We used diet control, intravenous nutritional support, and continuous somatostatin to reduce the chylous fistula output, and hydrophilic silver ion-containing dressings for wound coverage. A boneless muscle flap was used to seal the left clavicular cavity, and, integrated, these led to resolution of the chylous fistula. CONCLUSIONS Patients with severe electric or chemical burns in the neck or chest may be complicated with thoracic duct injuries. Although conservative treatment can control chylous fistula, wound cavity filling using a muscle flap is an effective approach for wound healing.

  4. CHARACTERIZATION AND EH/PH-BASED LEACHING TESTS OF MERCURY-CONTAINING MINING WASTES FROM THE SULFUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    Mine waste rock and roaster tailings were collected from the Sulfur Bank Mercury Mine (SBMM) located in Clearlake Oaks, California. The site has been under investigation as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. Leaching profiles o...

  5. Sulfur compound concentrations at swine and poultry facilities

    USDA-ARS?s Scientific Manuscript database

    Reduced sulfur compounds are emitted from waste handling at animal agriculture operations. These sulfur compounds are responsible for odor production as well as participating in atmospheric chemistry. We have adapted a chromatographic method for providing 10 minute online monitoring capability of re...

  6. Prediction of AMD generation potential in mining waste piles, in the Sarcheshmeh porphyry copper deposit, Iran.

    PubMed

    Modabberi, Soroush; Alizadegan, Ali; Mirnejad, Hassan; Esmaeilzadeh, Esmat

    2013-11-01

    This study investigates the possibility of acid mine drainage (AMD) generation in active and derelict mine waste piles in Sarcheshmeh Copper Mine produced in several decades, using static tests including acid-base accounting (ABA) and net acid-generating pH (NAGpH). In this study, 51 composite samples were taken from 11 waste heaps, and static ABA and NAGpH tests were carried out on samples. While some piles are acid producing at present and AMD is discharging from the piles, most of them do not show any indication on their AMD potential, and they were investigated to define their acid-producing potential. The analysis of data indicates that eight waste piles are potentially acid generating with net neutralization potentials (NNPs) of -56.18 to -199.3, net acid generating of 2.19-3.31, and NPRs from 0.18 to 0.44. Other waste piles exhibited either a very low sulfur, high carbonate content or excess carbonate over sulfur; hence, they are not capable of acid production or they can be considered as weak acid producers. Consistency between results of ABA and NAGpH tests using a variety of classification criteria validates these tests as powerful means for preliminary evaluation of AMD/ARD possibilities in any mining district. It is also concluded that some of the piles with very negative NNPs are capable to produce AMD naturally, and they can be used in heap leaching process for economic recovery of trace amounts of metals without applying any biostimulation methods.

  7. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results

  8. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    DOE PAGES

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; ...

    2015-10-19

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less

  9. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  10. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  11. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less

  12. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.

    PubMed

    Baral, Nawa Raj; Shah, Ajay

    2017-05-01

    Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. New particle formation from sulfuric acid and amines: Similarities and differences between mono-, di-, and trimethylamines

    NASA Astrophysics Data System (ADS)

    Olenius, Tinja; Halonen, Roope; Kurtén, Theo; Henschel, Henning; Kupiainen-Määttä, Oona; Ortega, Ismael K.; Vehkamäki, Hanna; Riipinen, Ilona

    2017-04-01

    Amines are organic base species that are emitted to the atmosphere from both anthropogenic and natural sources. Both theoretical and laboratory studies suggest that mono-, di-, and trimethylamines (MMA, DMA, and TMA, respectively) are capable of enhancing the initial steps of sulfuric acid-driven aerosol particle formation much more strongly than ammonia (Kurtén et al., 2008; Jen et al., 2014). Despite the potential importance for atmospheric new particle formation, quantitative estimates on the emissions and thermochemical properties of amines remain relatively uncertain. Because of this and also due to computational reasons, recent large-scale modeling studies have treated sulfuric acid-amine nucleation by introducing a single surrogate amine species, the total emissions of which combine together MMA, DMA and TMA but which resembles DMA or TMA in its various properties (e.g. Bergman et al., 2015). On the other hand, there are likely to be differences in the potentials of the three amines to enhance particle formation, causing uncertainties to the lumping approach. Systematic comparisons are needed to evaluate how to treat these species in atmospheric models and to assess what level of simplification is justifiable. In this work, we study the differences and similarities of MMA, DMA and TMA by modeling nanoparticle formation from sulfuric acid, water, and each of the three amines. We simulate molecular cluster concentrations and formation rates at boundary layer conditions with a dynamic cluster population model using quantum chemistry-based cluster evaporation rates, and study the dependence of particle formation rate on precursor vapor concentrations, temperature and relative humidity. The results suggest that for the three amines, there are differences in the nucleation mechanism and hygroscopicity of molecular clusters. However, for DMA and TMA, formation of nanometer-sized particles and its dependence on ambient conditions is roughly similar: both

  14. Exploring Jupiter's icy moons with old techniques and big facilities - new insights on sulfuric acid hydrates

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Avdeev, M.; Brand, H.; Wallwork, K.

    2013-12-01

    Sulfuric acid hydrates have been proposed to be abundant on the surface of Europa [1], and hence would be important planetary forming materials for this moon and its companions Ganymede and Callisto. Understanding of the surface features and subsurface of these moons could be advanced by firmer knowledge of the icy materials that comprise them [2], insight into which can be drawn from firmer knowledge of physical properties and phase behaviour of the candidate materials. We wish to present results from a study that started with the question ';What form of sulfuric acid hydrate would form on the surface of Europa'. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction and utilization of the large scattering cross section with neutron diffraction. We have used the Powder Diffraction beamline at Australian synchrotron [4] and the Echidna (High-resolution neutron powder diffraction) instrument of the Australian Nuclear Science and Technology Organization, [5] to obtain an number of new insights into the crystalline phases formed from sulfruic acid and water mixtures. These instruments have enabled the discovery a new water-rich sulfuric acid hydrate form [6], improved structural characterisation of existing forms [7] and a charting the phase diagram of this fundamental binary system [8]. This has revealed exciting potential for understanding more about the surface of Europa from space, perhaps even providing a window into its past. [1] Carlson, R.W., R.E. Johnson, and M.S. Anderson, Science, 1999. 286(5437): p. 97-99. [2] Fortes, A.D. and M. Choukroun. Space Sci Rev, 2010. 153(1-4): p. 185-218. [3] Blake, D., et al., Space Sci Rev,, 2012. 170(1-4): p. 341-399. [4] Wallwork, K.S., Kennedy B. J. and Wang, D

  15. Sulfur deficiency changes mycosporine-like amino acid (MAA) composition of Anabaena variabilis PCC 7937: a possible role of sulfur in MAA bioconversion.

    PubMed

    Singh, Shailendra P; Klisch, Manfred; Sinha, Rajeshwar P; Häder, Donat-Peter

    2010-01-01

    In the present investigation we show for the first time that bioconversion of a primary mycosporine-like amino acid (MAA) into a secondary MAA is regulated by sulfur deficiency in the cyanobacterium Anabaena variabilis PCC 7937. This cyanobacterium synthesizes the primary MAA shinorine (RT = 2.2 min, lambda(max) = 334 nm) under normal conditions (PAR + UV-A + UV-B); however, under sulfur deficiency, a secondary MAA palythine-serine (RT = 3.9 min, lambda(max) = 320 nm) appears. Addition of methionine to sulfur-deficient cultures resulted in the disappearance of palythine-serine, suggesting the role of primary MAAs under sulfur deficiency in recycling of methionine by donating the methyl group from the glycine subunit of shinorine to tetrahydrofolate to regenerate the methionine from homocysteine. This is also the first report for the synthesis of palythine-serine by cyanobacteria which has so far been reported only from corals. Addition of methionine also affected the conversion of mycosporine-glycine into shinorine, consequently, resulted in the appearance of mycosporine-glycine (RT = 3.6 min, lambda(max) = 310 nm). Our results also suggest that palythine-serine is synthesized from shinorine. Based on these results we propose that glycine decarboxylase is the potential enzyme that catalyzes the bioconversion of shinorine to palythine-serine by decarboxylation and demethylation of the glycine unit of shinorine.

  16. Effects of simulated rain acidified with sulfuric acid on host-parasite interactions

    Treesearch

    D. S. Shriner

    1976-01-01

    Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The effects of simulated rain acidified with sulfuric acid were studied on several host-parasite systems. Plants were exposed, in greenhouse or field, to simulated rain of pH 3.2 ? 0.1 or pH 6.0 ? 0.2. Simulated "rain" of pH 3.2 resulted...

  17. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  18. Valorization of phosphogypsum waste as asphaltic bitumen modifier.

    PubMed

    Cuadri, A A; Navarro, F J; García-Morales, M; Bolívar, J P

    2014-08-30

    The accumulation of phosphogypsum waste from the fertilizer industries, which remain in regulated stacks occupying considerable land resources, is causing significant environment problems worldwide. In that sense, the scientific community is being pressured to find alternative ways for their disposal. In this research, we propose a novel application for phosphogypsum waste, as a modifier of bitumen for flexible road pavements. Viscous flow tests carried out on bitumen modified with a phosphogypsum waste and doped with sulfuric acid demonstrated an extraordinary increase in viscosity, at 60°C, when compared to a counterpart sample which had been modified with gypsum, the main component of phosphogypsum. Similarly, a significant improvement in the viscoelastic response of the resulting material at high temperatures was also found. FTIR (Fourier transform infrared spectroscopy) scans provided evidences of the existence of chemical reactions involving phosphorus, as revealed by a new absorption band from 1060 to 1180cm(-1), related to COP vibrations. This result points at phosphorus contained in the phosphogypsum impurities to be the actual "modifying" substance. Furthermore, no COP band was observed in the absence of sulfuric acid, which seems to be the "promoting" agent of this type of bond. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    PubMed

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. INFLUENCE OF PH AND OXIDATION-REDUCTION (EH) POTENTIAL ON THE DISSOLUTION OF MERCURY-CONTAINING MINE WASTES FROM THE SULFUR BANK MERCURY MINE

    EPA Science Inventory

    Mine waste rock and roaster tailings were collected from the Sulfur Bank Mercury Mine (SBMM) located in Clearlake Oaks, California. The site has been under investigation as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. Characterization an...

  1. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  2. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  3. [Quality assessment of sulfur-fumigated paeoniae alba radix].

    PubMed

    Wang, Zhao; Chen, Yu-Wu; Wang, Qiong; Sun, Lei; Xu, Wei-Yi; Jin, Hong-Yu; Ma, Shuang-Cheng

    2014-08-01

    The samples of sulfur-fumigated Paeoniae Alba Radix acquired both by random spot check from domestic market and self-production by the research group in the laboratory were used to evaluate the effects of sulphur fumigation on the quality of Paeoniae Alba Radix by comparing sulfur-fumigated degree and character, the content of paeoniflorin and paeoniflorin sulfurous acid ester, and changes of the fingerprint. We used methods in Chinese Pharmacopeia to evaluate the character of sulfur-fumigated Paeoniae Alba Radix and determinate the content of aulfur-fumigated paeoniflorin. LC-MS method was used to analyze paeoniflorin-converted products. HPLC fingerprint methods were established to evaluate the differences on quality by similarity. Results showed that fumigated Paeoniae Alba Radix became white and its unique fragrance disappeared, along with the production of pungent sour gas. It also had a significant effect on paeoniflorin content. As sulfur smoked degree aggravated, paeoniflorin content decreased subsequently, some of which turned into paeoniflorin sulfurous acid ester, and this change was not reversible. Fingerprint also showed obvious changes. Obviously, sulfur fumigation had severe influence on the quality of Paeoniae Alba Radix, but we can control the quality of the Paeoniae Alba Radix by testing the paeoniflorin sulfurous acid ester content.

  4. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  5. Determination of sulfuric acid concentration for anti-cavitation characteristics of Al alloy by two step anodizing process to forming nano porous.

    PubMed

    Lee, Seung-Jun; Kim, Seong-Kweon; Jeong, Jae-Yong; Kim, Seong-Jong

    2014-12-01

    Al alloy is a highly active metal but forms a protective oxide film having high corrosion resistance in atmosphere environment. However, the oxide film is not suitable for practical use, since the thickness of the film is not uniform and it is severly altered with formation conditions. This study focused on developing an aluminum anodizing layer having hardness, corrosion resistance and abrasion resistance equivalent to a commercial grade protective layer. Aluminum anodizing layer was produced by two-step aluminum anodizing oxide (AAO) process with different sulfuric acid concentrations, and the cavitation characteristics of the anodized coating layer was investigated. In hardness measurement, the anodized coating layer produced with 15 vol.% of sulfuric acid condition had the highest value of hardness but exhibited poor cavitation resistance due to being more brittle than those with other conditions. The 10 vol.% of sulfuric acid condition was thus considered to be the optimum condition as it had the lowest weight loss and damage depth.

  6. Comparative study on liquefaction of creosote and chromated copper arsenate (CCA)-treated wood and untreated southern pine wood: effects of acid catalyst content, liquefaction time, temperature, and phenol to wood ratio

    Treesearch

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...

  7. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    NASA Astrophysics Data System (ADS)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  8. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    PubMed Central

    2012-01-01

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487

  9. Involvement of Intermediate Sulfur Species in Biological Reduction of Elemental Sulfur under Acidic, Hydrothermal Conditions

    PubMed Central

    Druschel, Gregory K.

    2013-01-01

    The thermoacidophile and obligate elemental sulfur (S80)-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S80-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H2S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S80 and the biologically produced H2S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S80 was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S80 can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S80 provided as a solid phase in the medium or with S80 sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S80 sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S80 provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S80 particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S80 particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens. PMID:23335768

  10. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  11. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGES

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  12. Sulfur assimilation and the role of sulfur in plant metabolism: a survey.

    PubMed

    Droux, Michel

    2004-01-01

    Sulfur occurs in two major amino-acids, cysteine (Cys) and methionine (Met), essential for the primary and secondary metabolism of the plant. Cys, as the first carbon/nitrogen-reduced sulfur product resulting from the sulfate assimilation pathway, serves as a sulfur donor for Met, glutathione, vitamins, co-factors, and sulfur compounds that play a major role in the growth and development of plant cells. This sulfur imprinting occurs in a myriad of fundamental processes, from photosynthesis to carbon and nitrogen metabolism. Cys and Met occur in proteins, with the former playing a wide range of functions in proteins catalysis. In addition, the sulfur atom in proteins forms part of a redox buffer, as for glutathione, through specific detoxification/protection mechanisms. In this review, a survey of sulfur assimilation from sulfate to Cys, Met and glutathione is presented with highlights on open questions on their respective biosynthetic pathways and regulations that derived from recent findings. These are addressed at the biochemical and molecular levels with respect to the fate of Cys and Met throughout the plant-cell metabolism.

  13. ACID-BASE ACCOUNT EFFECTIVENESS FOR DETERMINATION OF MINE WASTE POTENTIAL ACIDITY. (R825549C048)

    EPA Science Inventory

    The oxidation of sulfide minerals in mine waste is a widespread source of resource degradation, often resulting in the generation of acidic water and mobilization of heavy metals. The quantity of acid forming minerals present in mine waste, dominantly as pyrite (FeS2

  14. Theoretical studies of the marine sulfur cycle

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Kasting, James B.; Liu, May S.

    1985-01-01

    Several reduced sulfur compounds are produced by marine organisms and then enter the atmosphere, where they are oxidized and ultimately returned to the ocean or the land. The oceanic dimethyl sulfide (DMS) flux, in particular, represents a significant fraction of the annual global sulfur input to the atmosphere. In the atmosphere, this gas is converted to sulfur dioxide (SO2), methane sulfonic acid, and other organic acids which are relatively stable and about which little is known. SO2 is a short lived gas which, in turn, is converted to sulfuric acid and other sulfate compounds which contribute significantly to acid rain. Because of the complexity of the sulfur system, it is not well understood even in the unperturbed atmosphere. However, a number of new observations and experiments have led to a significant increase in the understanding of this system. A number of one dimensional model experiments were conducted on the gas phase part of the marine sulfur cycle. The results indicate the measured concentration of DMS and the amplitude of its diurnal cycle are in agreement with estimates of its global flux. It was also found that DMS can make a large contribution to the background SO2 concentration in the free troposphere. Estimates of CS2 concentrations in the atmosphere are inconsistent with estimated fluxes; however, measured reaction rates are consistent with the observed steep tropospheric gradient in CS2. Observations of CS2 are extremely sparse. Further study is planned.

  15. Life-Cycle Assessment of Biodiesel Produced from Grease Trap Waste.

    PubMed

    Hums, Megan E; Cairncross, Richard A; Spatari, Sabrina

    2016-03-01

    Grease trap waste (GTW) is a low-quality waste material with variable lipid content that is an untapped resource for producing biodiesel. Compared to conventional biodiesel feedstocks, GTW requires different and additional processing steps for biodiesel production due to its heterogeneous composition, high acidity, and high sulfur content. Life-cycle assessment (LCA) is used to quantify greenhouse gas emissions, fossil energy demand, and criteria air pollutant emissions for the GTW-biodiesel process, in which the sensitivity to lipid concentration in GTW is analyzed using Monte Carlo simulation. The life-cycle environmental performance of GTW-biodiesel is compared to that of current GTW disposal, the soybean-biodiesel process, and low-sulfur diesel (LSD). The disposal of the water and solid wastes produced from separating lipids from GTW has a high contribution to the environmental impacts; however, the impacts of these processed wastes are part of the current disposal practice for GTW and could be excluded with consequential LCA system boundaries. At lipid concentrations greater than 10%, most of the environmental metrics studied are lower than those of LSD and comparable to soybean biodiesel.

  16. Inhomogeneous models of the Venus clouds containing sulfur

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Pollack, J. B.; Giver, L. P.; Cuzzi, J. N.; Podolak, M.

    1979-01-01

    Based on the suggestion that elemental sulfur is responsible for the yellow color of Venus, calculations are compared at 3.4 microns of the reflectivity phase function of two sulfur containing inhomogeneous cloud models with that of a homogeneous model. Assuming reflectivity observations with 25% or less total error, comparison of the model calculations leads to a minimum detectable mass of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop model. For the inhomogeneous cloud model the comparison leads to a minimum detectable mass of sulfur between 17% and 38% of the mass of the acid drops, depending upon the actual size of the large particles. It is concluded that moderately accurate 3.4 microns reflectivity observations are capable of detecting quite small amounts of elemental sulfur at the top of the Venus clouds.

  17. Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum

    NASA Astrophysics Data System (ADS)

    Hu, Z.; Antonick, P.; Fujita, Y.; Reed, D. W.; Riman, R.; Eslamimanesh, A.; Das, G.; Anderko, A.; Wu, L.; Shivaramaiah, R.; Navrotsky, A.

    2017-12-01

    Rare earth elements (REE) are critical to many clean energy technologies. However, the lack of U.S. domestic production and the reliance on imported REE put U.S. energy security at risk. Consequently development of new sources is of strategic interest. Global phosphate deposits contain 27 million tons of REE and 38% of these REE end up in phosphogypsum (PG) waste during phosphate fertilizer production. Recovering REE from PG is a first step toward a trash-to-treasure transformation. We studied the leaching of REE from synthetic PG samples containing Y, Nd, or Eu using a suite of lixiviants including spent medium from the growth of the bacterium Gluconobacter oxydans ("biolixiviant"), gluconic acid, common mineral acids (phosphoric and sulfuric), and water. Synthetic PG was used to facilitate the comparison of the different lixiviants; real PG waste is extremely heterogeneous. Gluconic acid was the predominant identified organic acid in the biolixiviant. The leaching efficiency of the acidic lixiviants at the same pH (2.1) or molar concentration as gluconic acid in the biolixiviant (220 mM) were compared and rationalized by thermodynamic simulation using the mixed-solvent electrolyte model. Initial results indicate that the biolixiviant was more effective at leaching the REE than the mineral acids at pH 2.1. At 220 mM acid concentrations, sulfuric acid was the most effective, followed by the biolixiviant. Interestingly, for a given lixiviant, the leaching behavior of the REE differed. This study provides insight into the definition of an efficient lixiviant for leaching REE from phosphate fertilizer production waste.

  18. A new process for converting SO2 to sulfur without generating secondary pollutants through reactions involving CaS and CaSO4.

    PubMed

    Sohn, H Y; Kim, Byung-Su

    2002-07-01

    Nonferrous smelters and coal gasification processes generate environmentally harmful sulfur dioxide streams, most of which are treated to produce sulfuric acid with the accompanying problems of market shortage and transportation difficulties. Some sulfur dioxide streams are scrubbed with an alkali solution or a solid substance such as limestone or dolomite, which in turn generates wastes that pose other pollution problems. While the conversion of sulfur dioxide to elemental sulfur has many environmental advantages, no processes exist that are environmentally acceptable and economically viable. A new method for converting sulfur dioxide to elemental sulfur by a cyclic process involving calcium sulfide and calcium sulfate without generating solid wastes has been developed. In this process, calcium sulfate pellets as the starting raw material are reduced by a suitable reducing agent such as hydrogen to produce calcium sulfide pellets, which are used to reduce sulfur dioxide producing elemental sulfur vapor and calcium sulfate. The latter is then reduced to regenerate calcium sulfide. Thermodynamic analysis and experimental results indicated that the CaS-SO2 reaction produces mainly sulfur vapor and solid calcium sulfate and that the gaseous product from the CaSO4-H2 reaction is mainly water vapor. The rates of the two reactions are reasonably rapid in the temperature range 1000-1100 K, and, importantly, the physical strengths and reactivities of the pellets are maintained largely unchanged up to the tenth cycle, the last cycle tested in this work. Sulfur dioxide-containing streams from certain sources, such as the regenerator off-gas from an integrated gasification combined cycle desulfurization unit and new sulfide smelting plants, contain much higher partial pressures of SO2. In these cases, the rate of the first reaction is expected to be proportionally higher than in the test conditions reported in this paper.

  19. An alternative method to remove PEO-PPO-PEO template in organic-inorganic mesoporous nanocomposites by sulfuric acid extraction

    NASA Astrophysics Data System (ADS)

    Zhuang, Xin; Qian, Xufang; Lv, Jiahui; Wan, Ying

    2010-06-01

    Sulfuric acid is used as an extraction agent to remove PEO-PPO-PEO templates in the organic-inorganic mesoporous nanocomposites from the triconstituent co-assembly which includes the low-polymerized phenolic resins, TEOS and triblock copolymer F127. The XRD and TEM results show well ordered mesostructure after extraction with sulfuric acid. As followed from the N 2 sorption isotherms the extracted composites possess high surface areas (332-367 m 2/g), large pore volumes (0.66-0.78 cm 3/g), and large pore sizes (about 10.7 nm). The FT-IR analysis reveals almost complete elimination of triblock copolymer F127, and the maintenance of organic groups. This method shows potentials in removing templates from nanocomposites containing functional moieties.

  20. SYNTHESIS AND CHARACTERIZATION OF A NOVEL SOLID ACID CATALYST FOR IMPROVED USE OF WASTE OIL FEEDSTOCK FOR BIODIESEL PRODUCTION

    EPA Science Inventory

    Carbon Catalyst Synthesis - Sucrose was treated directly with excess sulfuric acid sulfuric acid (9:1 mol/mol, 25°C). A carbon foam (nearly 20 fold increase in bulk volume) was immediately formed. The foam was then washed until no sulfate was dete...

  1. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  2. Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine.

    PubMed

    Raposo, R; Ruiz-Moreno, M J; Garde-Cerdán, T; Puertas, B; Moreno-Rojas, J M; Gonzalo-Diago, A; Guerrero, R F; Ortiz, V; Cantos-Villar, E

    2016-02-01

    In this work, the feasibility of two commercial products enriched in hydroxytyrosol (HT) as alternative to sulfur dioxide in Syrah red wines was evaluated. The HT enriched products came from synthesis and from olive waste. Wines treated with HT were compared with wines treated with sulfur dioxide at two winemaking stages: bottling and after 6 months of storage in bottle. Minor differences were found in enological parameters and volatile composition (esters, alcohols and acids). Significant differences were observed in color related parameters and sensory analysis. HT wines improved color parameters as well as scents and tasting at bottling. However, after 6 months of storage in bottle HT wines were more oxidized than SO2 wines. The olfactometry profile of HT wines supported sensory analysis. HT wines showed new odorant zones from both the added product and oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synthesis and characterization of an anomeric sulfur analogue of CMP-sialic acid.

    PubMed

    Cohen, S B; Halcomb, R L

    2000-09-22

    alpha-2,3-Sialyltransferase catalyzes the transfer of sialic acid from CMP-sialic acid (1) to a lactose acceptor. An analogue of 1 was synthesized in which the anomeric oxygen atom was replaced with a sulfur atom (1S). The key step in the synthesis of 1S was a tetrazole-promoted coupling of a cytidine-5'-phosphoramidite with a glycosyl thiol of a protected sialic acid. Compounds 1 and 1S were characterized for their activity in a sialyl transfer assay. The rate of solvolysis in aqueous buffer of analogue 1S was 50-fold slower than that of 1. Analogue 1S was found to be substrate for alpha-2,3-sialyltransferase. The K(m) of 1S was just 3-fold higher than that of 1, while the k(cat) of 1S was 2 orders of magnitude lower compared to 1.

  4. Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Lorenzo-Martin, Cinta

    Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.

  5. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure.

    PubMed

    Agatzini-Leonardou, S; Oustadakis, P; Tsakiridis, P E; Markopoulos, Ch

    2008-09-15

    Laboratory-scale research has focused on the recovery of titanium from red mud, which is obtained from bauxite during the Bayer process for alumina production. The leaching process is based on the extraction of this element with diluted sulfuric acid from red mud under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The titanium recovery efficiency on the basis of red mud weight reached 64.5%. The characterization of the initial red mud, as well as this of the leached residues was carried out by X-ray diffraction, TG-DTA and scanning electron microscopy.

  6. Efficacy of reducing sugar and phenol-sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs

    USDA-ARS?s Scientific Manuscript database

    Reducing sugar (RSA) and phenol–sulfuric acid (PSA) assays are commonly used to analyze water-soluble carbohydrates. However, questions have arisen as to their accuracy for measurement of feedstuffs with diverse carbohydrate profiles. This study evaluated the efficacy of RSA and PSA as they would co...

  7. Determination of sulfur trioxide in engine exhaust.

    PubMed Central

    Arnold, D R

    1975-01-01

    Sulfur trioxide in the exhaust gas of an internal combustion engine is removed and concentrated by absorption in a solution of 80% isopropyl alcohol, which quantitatively absorbs it and inhibits the oxidation of any sulfur dioxide which may be absorbed. The absorbed sulfur trioxide (sulfuric acid) is determined by an absorption titration by using barium chloride as the titrant and thorin as the indicator. The sulfur dioxide content of the exhaust is measured continuously by means of a DuPont Model 411 ultraviolet photoanalyzer. PMID:50930

  8. The analysis of thermoplastic characteristics of special polymer sulfur composite

    NASA Astrophysics Data System (ADS)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  9. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific... (SO2) with oxygen and mixing the resultant sulfur trioxide (SO3) with water, or by reacting nitric...

  10. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific... (SO2) with oxygen and mixing the resultant sulfur trioxide (SO3) with water, or by reacting nitric...

  11. Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography-flame photometric detection.

    PubMed

    Inomata, Y; Matsunaga, K; Murai, Y; Osada, K; Iwasaka, Y

    1999-12-09

    A method for the simultaneous measurement of volatile sulfur compounds (COS, H2S, CS2, CH3SH, DMS) is established with preconcentration and GC-flame photometric detection (FPD). Prior to preconcentration of ambient air, it was necessary to remove SO2, water vapor and atmospheric oxidant. SO2 and water vapor were removed using a glass fiber filter and a cooled PTFE water trap loop, respectively. In order to remove atmospheric oxidant, the efficiency of an ascorbic acid scrubber was examined. It was found that an ascorbic acid scrubber enabled measurement of volatile sulfur compounds without adsorption and reaction loss. The detection limits for COS, H2S, CS2, CH3SH and DMS were 20, 34, 35, 263 and 44 pg of S, respectively.

  12. Thermodynamic Analysis of the Cu-As-S-(O) System Relevant to Sulfuric Acid Baking of Enargite at 473 K (200 °C)

    NASA Astrophysics Data System (ADS)

    Safarzadeh, M. Sadegh; Miller, Jan D.; Huang, Hsin H.

    2014-04-01

    While the growing demand for copper has compelled the industry to adapt new technologies for the treatment of copper-arsenic (enargite) concentrates, the refractory nature of such concentrates combined with the troublesome presence of arsenic has created a major metallurgical and environmental challenge. Preliminary results of the acid bake-leach process at the University of Utah have shown some potential advantages for the treatment of enargite concentrates. While the transformation of enargite to copper sulfate, arsenolite, and elemental sulfur has already been established experimentally, thermodynamic evaluation of the sulfuric acid baking process provides further understanding which should be useful. In this article, the available thermodynamic data for the species involved in the Cu-As-S-O system are compiled. These data were used to calculate the phase stability (Kellogg) diagrams as well as equilibrium compositions at 473 K (200 °C) using the STABCAL and HSC Chemistry® 5.1 software packages. The equilibrium composition calculations indicate that enargite can transform to copper sulfate either directly or through chalcocite and/or covellite. The major gaseous species during baking were found to be SO2 and H2O. The results of the thermodynamic calculations were further compared with two confirmatory baking experiments involving a high-quality enargite sample. The condensed reaction products from sulfuric acid baking based on XRD results include CuSO4, As2O3, CuO·CuSO4, and S8 under both neutral and oxidative conditions. While all these compounds were predicted through equilibrium calculations, some of the predicted compounds were not detected in the sulfuric acid-baked enargite. None of the calculations indicated any appreciable amounts of arsenic-bearing gases at the baking temperature of 473 K (200 °C). Consistent with thermodynamic predictions, no H2S gas was detected during the sulfuric acid baking experiment. Approximately, 80 pct of the baked

  13. Ambient Air Monitoring for Sulfur Compounds

    ERIC Educational Resources Information Center

    Forrest, Joseph; Newman, Leonard

    1973-01-01

    A literature review of analytical techniques available for the study of compounds at low concentrations points up some of the areas where further research is needed. Compounds reviewed are sulfur dioxide, sulfuric acid, ammonium sulfate and bisulfate, metal sulfates, hydrogen sulfide, and organic sulfides. (BL)

  14. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    PubMed

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Waste minimization charges up recycling of spent lead-acid batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queneau, P.B.; Troutman, A.L.

    Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less

  16. SURFACE REACTIONS OF OXIDES OF SULFUR

    EPA Science Inventory

    Surface reactions of several sulfur-containing molecules have been studied in order to understand the mechanism by which sulfate ions are formed on atmospheric aerosols. At 25C the heterogeneous oxidation of SO2 by NO2 to sulfuric acid and sulfate ions occurred on hydrated silica...

  17. EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...

  18. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  19. Economic, Environmental, and Coal Market Impacts of Sulfur Dioxide Emissions Trading under Alternative Acid Rain Control Proposals (1989)

    EPA Pesticide Factsheets

    This report examines the ramifications of diferent levels of emissions trading in the context of tro representative electric utility sulfur dioxide emisson reduction proposals designed to control acid rain, and in the absence of any new control program.

  20. Studies on the protein and sulfur amino acid requirements of young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1977-01-01

    Four experiments were conducted with purified diets to examine the influence of protein level and to estimate the sulfur amino acid (S.A.A.) requirement of young Bobwhite quail (Colinus virginianus). These studies demonstrated (I) that 26% protein was sufficient for rapid growth when the diet was supplemented with methionine; (2) that diets containing higher levels of protein (29.3% and 31.3%) failed to support satisfactory growth unless they contained supplemental methionine; and (3) that young Bobwhite quail require no more than 1.0% sulfur-containing amino acids for optimal growth and efficiency of feed utilization. A fifth experiment was conducted to examine the protein and S.A.A. requirements of young Bobwhite quail using practical rations and to compare results with those obtained with purified diets. Diets containing 24%, 26% and 28% protein were supplied with and without supplemental methionine in a five week study. Results showed significant growth responses to protein and supplemental methionine. Responses showed that Bobwhite quail require no more than 26% protein for maximum growth and efficiency of feed utilization when the S.A.A. level of the diet was approximately 1.0%. The results were in close agreement with those obtained with purified diets. These findings define more precisely than had been known the quantitative requirements of young Bobwhite quail for protein and for the S.A.A. necessary for optimal growth.

  1. In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation

    PubMed Central

    Pecora, Fabio; Gualeni, Benedetta; Forlino, Antonella; Superti-Furga, Andrea; Tenni, Ruggero; Cetta, Giuseppe; Rossi, Antonio

    2006-01-01

    Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859–871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration. PMID:16719839

  2. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid.

    PubMed

    Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal

    2016-08-05

    This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. UNDERSTANDING THE IMPACT OF ENVIRONMENTAL VARIABLES ON THE LEACHING OF MERCURY-CONTAMINATED MINE WASTES FROM THE SULFUR BANK MERCURY MINE, CLEAR LAKE, CA

    EPA Science Inventory

    For nearly a century, Clear Lake in northern California has received inputs of mercury (Hg) mining wastes trom the Sulfur Bank Mercury Mine (SBMM). About 1.2 million tons of Hg-contaminated overburden and mine tailings were distributed over a 50-ha surface area due to mining oper...

  4. Engine Tests Using High-Sulfur Diesel Fuel

    DTIC Science & Technology

    1980-09-01

    0.5 wt% sulfur because "too high a sulfur content results in excessive cylinder wear due to acid build-up in the lubricating oil" (Ref 1). Previous...that the addition of 0.3 vol% of an organo-zinc complex fuel additive (zinc naphthenate ) to high-sulfur diesel fuel was an effective means of...disulfide. Addition of 0.3 vol% zinc naphthenate to high- sulfur fuel increased the fuel ash to 0.035 wt% while the cetane number re- mained unchanged

  5. Using S and Pb isotope ratios to trace leaching of toxic substances from an acid-impacted industrial-waste landfill (Pozdatky, Czech Republic).

    PubMed

    Novak, Martin; Pacherova, Petra; Erbanova, Lucie; Veron, Alain J; Buzek, Frantisek; Jackova, Ivana; Paces, Tomas; Rukavickova, Lenka; Blaha, Vladimir; Holecek, Jan

    2012-10-15

    Slightly elevated concentrations of toxic species in waters sampled in the surroundings of a leaky landfill may be both a sign of an approaching contaminant plume, or a result of water-rock interaction. Isotopes can be instrumental in distinguishing between anthropogenic and geogenic species in groundwater. We studied sulfur and lead isotope ratios at an abandoned industrial-waste landfill, located in a densely populated part of Central Europe. Stable isotope variability in space and time was used to follow the movement of a groundwater plume, contaminated with toxic metals (Cd, Cr, Be), in fractured granitoids. Toxic metals had been mobilized from industrial waste by a strong pulse of sulfuric acid, also deposited in the landfill. Both tracers exhibited a wide range of values (δ(34)S between +2.6 and +18.9‰; (206)Pb/(207)Pb between 1.16 and 1.39), which facilitated identification of mixing end-members, and made it possible to assess the sources of the studied species. In situ fractionations did not hinder source apportionment. Influx of contaminated groundwater was observed neither in irrigation wells in a nearby village, nor at distances greater than 300 m from the landfill. Combination of stable isotope tracers can be used as part of an early-warning system in landscapes affected by landfills. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Remotely sensed and laboratory spectral signatures of an ocean-dumped acid waste

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Collins, V. G.

    1977-01-01

    An ocean-dumped acid waste plume was studied by using a rapid scanning spectrometer to remotely measure ocean radiance from a helicopter. The results of these studies are presented and compared with results from sea truth samples and laboratory experiments. An ocean spectral reflectance signature and a laboratory spectral transmission signature were established for the iron-acid waste pollutant. The spectrally and chemically significant component of the acid waste pollutant was determined to be ferric iron.

  7. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  8. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  9. Assessing Potential Acidification of Marine Archaeological Wood Based on Concentration of Sulfur Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The presence of sulfur in marine archaeological wood presents a challenge to conservation. Upon exposure to oxygen, sulfur compounds in waterlogged wooden artifacts are being oxidized, producing sulfuric acid. This speeds the degradation of the wood, potentially damaging specimens beyond repair. Sulfur K-edge x-ray absorption spectroscopy was used to identify the species of sulfur present in samples from the timbers of the Mary Rose, a preserved 16th century warship known to undergo degradation through acidification. The results presented here show that sulfur content varied significantly on a local scale. Only certain species of sulfur have the potential to produce sulfuricmore » acid by contact with oxygen and seawater in situ, such as iron sulfides and elemental sulfur. Organic sulfurs, such as the amino acids cysteine and methionine, may produce acid but are integral parts of the wood's structure and may not be released from the organic matrix. The sulfur species contained in the sample reflect the exposure to oxygen while submerged, and this exposure can differ greatly over time and position. A better understanding of the species pathway to acidifications required, along with its location, in order to suggest a more customized and effective preservation strategy. Waterlogged archaeological wood, frequently in the form of shipwrecks, is being excavated for historical purposes in many countries around the world. Even after extensive efforts towards preservation, scientists are discovering that accumulation of sulfate salts results in acidic conditions on the surfaces of the artifacts. Sulfuric acid degrades structural fibers in the wood by acid hydrolysis of cellulose, accelerating the decomposition of the ship timbers. Determining the sulfur content of waterlogged wood is now of great importance in maritime archaeology. Artifact preservation is often more time consuming and expensive than the original excavation; but it is key to the availability of objects

  10. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  11. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    PubMed

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  12. Sulfur and Its Role In Modern Materials Science.

    PubMed

    Boyd, Darryl A

    2016-12-12

    Although well-known and studied for centuries, sulfur continues to be at the center of an extensive array of scientific research topics. As one of the most abundant elements in the Universe, a major by-product of oil refinery processes, and as a common reaction site within biological systems, research involving sulfur is both broad in scope and incredibly important to our daily lives. Indeed, there has been renewed interest in sulfur-based reactions in just the past ten years. Sulfur research spans the spectrum of topics within the physical sciences including research on improving energy efficiency, environmentally friendly uses for oil refinery waste products, development of polymers with unique optical and mechanical properties, and materials produced for biological applications. This Review focuses on some of the latest exciting ways in which sulfur and sulfur-based reactions are being utilized to produce materials for application in energy, environmental, and other practical areas. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kridelbaugh, Donna M; Nelson, Josh C; Engle, Nancy L

    2013-01-01

    Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed formore » the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.« less

  14. Refining and Mutual Separation of Rare Earths Using Biomass Wastes

    NASA Astrophysics Data System (ADS)

    Inoue, Katsutoshi; Alam, Shafiq

    2013-10-01

    Two different types of adsorption gels were prepared from biomass wastes. The first gel was produced from astringent persimmon peel rich in persimmon tannin, a polyphenol compound, which was prepared by means of simple dehydration condensation reaction using concentrated sulfuric acid for crosslinking. This adsorption gel was intended to be employed for the removal of radioactive elements, uranium (U(VI)) and thorium (Th(IV)), from rare earths. The second gel was prepared from chitosan, a basic polysaccharide, produced from shells of crustaceans such as crabs, shrimps, prawns, and other biomass wastes generated in marine product industry, by immobilizing functional groups of complexanes such as ethylendiaminetetraacetic acid and diethylentriaminepentaacetic acid (DTPA). This gel was developed for the mutual separation of rare earths. Of the two adsorption gels evaluated, the DTPA immobilized chitosan exhibited the most effective mutual separation among light rare earths.

  15. Effect of Dietary Processed Sulfur Supplementation on Water-holding Capacity, Color, and Lipid Profiles of Pork

    PubMed Central

    Yang, FengQi; Kim, Ji-Han; Yeon, Su Jung; Hong, Go-Eun; Park, Woojoon; Lee, Chi-Ho

    2015-01-01

    This study was performed to investigate the effect of dietary processed sulfur supplementation on water-holding capacity, color, and lipid profiles of pork according to the level of dietary processed sulfur (0%, CON; 0.3%, S). The pigs were slaughtered at an average final weight of 120 kg, and the longissimus dorsi muscles were collected from the carcasses. As results, pork processed with sulfur had significantly higher moisture and ash contents compared to those of CON but lower crude fat, pH, expressible drip, lower redness and yellowness, and greater lightness. Pork processed with sulfur showed significantly lower total lipid content, triglycerides, and atherosclerosis index but significantly higher high-density lipoprotein cholesterol. Feeding processed sulfur significantly lowered myristic acid, heptadecanoic acid, and stearic acid contents, whereas monounsaturated fatty acids and oleic acids were significantly higher compared to those in the CON. Higher amounts of polyunsaturated fatty acids and n-6 fatty acids were observed in the pork processed with sulfur than that of the CON. Therefore, supplementing pigs with dietary sulfur improved nutrient and meat quality. PMID:26877643

  16. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  17. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  18. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  19. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  20. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.82... Plants § 60.82 Standard for sulfur dioxide. (a) On and after the date on which the performance test... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the production...

  1. Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses

    PubMed Central

    Wang, Shanqian; Zhang, Xiuying; Ma, Yuandan; Li, Xinhui; Zhang, Xiaomin; Liu, Lei

    2018-01-01

    Acid rain, which has become one of the most severe global environmental issues, is detrimental to plant growth. However, effective methods for monitoring plant responses to acid rain stress are currently lacking. The hyperspectral technique provides a cost-effective and nondestructive way to diagnose acid rain stresses. Taking a widely distributed species (Quercus glauca) in Southern China as an example, this study aims to monitor the hyperspectral responses of Q. glauca to simulated sulfuric acid rain (SAR) and nitric acid rain (NAR). A total of 15 periods of leaf hyperspectral data under four pH levels of SAR and NAR were obtained during the experiment. The results showed that hyperspectral information could be used to distinguish plant responses under acid rain stress. An index (green peak area index, GPAI) was proposed to indicate acid rain stresses, based on the significantly variations in the region of 500–660 nm. Light acid rain (pH 4.5 SAR and NAR) promoted Q. glauca growth relative to the control groups (pH 5.6 SAR and NAR); moderate acid rain (pH 3.0 SAR) firstly promoted and then inhibited plant growth, while pH 3.0 NAR showed mild inhibitory effects during the experiment; and heavy acid rain (pH 2.0) significantly inhibited plant growth. Compared with NAR, SAR induced more serious damages to Q. glauca. These results could help monitor acid rain stress on plants on a regional scale using remote sensing techniques. PMID:29522488

  2. Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses.

    PubMed

    Wang, Shanqian; Zhang, Xiuying; Ma, Yuandan; Li, Xinhui; Cheng, Min; Zhang, Xiaomin; Liu, Lei

    2018-03-09

    Acid rain, which has become one of the most severe global environmental issues, is detrimental to plant growth. However, effective methods for monitoring plant responses to acid rain stress are currently lacking. The hyperspectral technique provides a cost-effective and nondestructive way to diagnose acid rain stresses. Taking a widely distributed species ( Quercus glauca ) in Southern China as an example, this study aims to monitor the hyperspectral responses of Q. glauca to simulated sulfuric acid rain (SAR) and nitric acid rain (NAR). A total of 15 periods of leaf hyperspectral data under four pH levels of SAR and NAR were obtained during the experiment. The results showed that hyperspectral information could be used to distinguish plant responses under acid rain stress. An index (green peak area index, GPAI) was proposed to indicate acid rain stresses, based on the significantly variations in the region of 500-660 nm. Light acid rain (pH 4.5 SAR and NAR) promoted Q. glauca growth relative to the control groups (pH 5.6 SAR and NAR); moderate acid rain (pH 3.0 SAR) firstly promoted and then inhibited plant growth, while pH 3.0 NAR showed mild inhibitory effects during the experiment; and heavy acid rain (pH 2.0) significantly inhibited plant growth. Compared with NAR, SAR induced more serious damages to Q. glauca . These results could help monitor acid rain stress on plants on a regional scale using remote sensing techniques.

  3. Effects of simulated acid rain, ozone and sulfur dioxide on suitability of elms for elm leaf beetle

    Treesearch

    Richard W. Hall; Jack H. Barger; Alden M. Townsend

    1988-01-01

    Cuttings from two clonally propagated elm hybrids ('Pioneer' and 'Homestead') were treated with ozone (03), sulfur dioxide (S02), simulated acid rain or left untreated. Fumigants were applied 7 hours per day, 5 days per week for 9 weeks in open-top chambers. Fumigation treatments were: 0.1 ppm 0

  4. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur

    PubMed Central

    Ueki, Iori

    2010-01-01

    Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H2S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions. PMID:20162368

  5. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries

    PubMed Central

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-01-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g−1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles. PMID:26842015

  6. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries.

    PubMed

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-02-04

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g(-1) at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.

  7. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-02-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g-1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.

  8. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Shao-Zhong; Yao, Yuechao; Zeng, Xierong; He, Qianjun; Zheng, Xianfeng; Chen, Shuangshuang; Tu, Wenxuan; Zou, Jizhao

    2017-07-01

    Lithium-sulfur batteries are the most promising candidates for future high-energy applications because of the unparalleled capacity of sulfur (1675 mAh g-1). However, lithium-sulfur batteries have limited cycle life and rate capability due to the dissolution of polysulfides and the extremely low electronic conductivity of sulfur. To solve these issues, various porous carbons including hollow carbon nanospheres (HCNs) have been used for improving the conductivity. However, these methods still suffer from polysulfides dissolution/loss owing to their weak physical adsorption to polysulfides. Herein, we introduced a covalent grafting route to composite the HCNs and the vulcanized trithiocyanuric acid (TTCA). The composite exhibits a high loading of the vulcanized TTCA by the HCNs with high surface area and large pore volume, and covalent bonds to sulfur, effectively depressing the dissolution of polysulfides. The first discharge capacity of the composite reaches 1430 mAh g-1 at 0.1 C and 1227 mAh g-1 at 0.2 C.

  9. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    PubMed

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  10. Electrochemical incineration of wastes

    NASA Technical Reports Server (NTRS)

    Bhardwaj, R. C.; Sharma, D. K.; Bockris, J. OM.

    1990-01-01

    The novel technology of waste removal in space vehicles by electrochemical methods is presented to convert wastes into chemicals that can be eventually recycled. The important consideration for waste oxidation is to select a right kind of electrode (anode) material that should be stable under anodic conditions and also a poor electrocatalyst for oxygen and chlorine evolution. On the basis of long term electrolysis experiments on seven different electrodes and on the basis of total organic carbon reduced, two best electrodes were identified. The effect of redox ions on the electrolyte was studied. Though most of the experiments were done in mixtures of urine and waste, the experiments with redox couples involved 2.5 M sulfuric acid in order to avoid the precipitation of redox ions by urea. Two methods for long term electrolysis of waste were investigated: (1) the oxidation on Pt and lead dioxide electrodes using the galvanostatic methods; and (2) potentiostatic method on other electrodes. The advantage of the first method is the faster rate of oxidation. The chlorine evolution in the second method is ten times less then in the first. The accomplished research has shown that urine/feces mixtures can be oxidized to carbon dioxide and water, but current densities are low and must be improved. The perovskite and Ti4O7 coated with RuO2 are the best electrode materials found. Recent experiment with the redox agent improves the current density, however, sulphuric acid is required to keep the redox agent in solution to enhance oxidation effectively. It is desirable to reduce the use of acid and/or find substitutes.

  11. Relocation of net-acid-generating waste to improve post-mining water chemistry.

    PubMed

    Morin, K A; Hutt, N M

    2001-01-01

    Acidic drainage and metal leaching are long-term environmental liabilities that can persist for many decades to millennia. One technique to improve the water chemistry and ecology of post-mining landscapes is to relocate and submerge net-acid-generating mine materials in a lake or water-retaining impoundment. One example of a carefully executed relocation of waste rock took place at the Eskay Creek Mine in Canada. Pre-relocation studies included an empirical relationship that related (1) the amount of acidity retained by the waste rock during past oxidation to (2) the amount of lime needed in each truckload for neutralization of the acidity and for suppression of metal release. During relocation, thousands of rinse pH measurements indicated net acidity varied significantly over short distances within the waste rock and that acidic rock could not be reliably segregated from near-netural rock. After relocation, water from the watershed continued to be acidic for a few years, then returned to near-neutral pH and near-background concentrations of metals. The chemistry of the lake where the waste rock was submerged remains near background conditions. Therefore, with careful planning and implementation, the relocation and submergence of net-acid-generating materials can greatly improve post-mining water chemistry.

  12. Pretreatment of Human Epidermal Keratinocytes In Vitro With Ethacrynic Acid Reduces Sulfur Mustard Cytotoxicity

    DTIC Science & Technology

    2004-01-01

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES...Ethacrynic Acid Reduces 5b. GRANT NUMBER Sulfur Mustard Toxicity 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Gross, CL, Nipwoda, MT, Nealley

  13. Restraint stress in lactating mice alters the levels of sulfur-containing amino acids in milk.

    PubMed

    Nishigawa, Takuma; Nagamachi, Satsuki; Ikeda, Hiromi; Chowdhury, Vishwajit S; Furuse, Mitsuhiro

    2018-03-30

    It is well known that maternal stress during the gestation and lactation periods induces abnormal behavior in the offspring and causes a lowering of the offspring's body weight. Various causes of maternal stress during the lactation period, relating to, for example, maternal nutritional status and reduced maternal care, have been considered. However, little is known about the effects on milk of maternal stress during the lactation period. The current study aimed to determine whether free amino acids, with special reference to sulfur-containing amino acids in milk, are altered by restraint stress in lactating mice. The dams in the stress group were restrained for 30 min at postnatal days 2, 4, 6, 8, 10 and 12. Restraint stress caused a reduction in the body weight of lactating mice. The concentration of taurine and cystathionine in milk was significantly higher in the stress group, though stress did not alter their concentration in maternal plasma. The ratio of taurine concentration in milk to its concentration in maternal plasma was significantly higher in the stress group, suggesting that stress promoted taurine transportation into milk. Furthermore, taurine concentration in milk was positively correlated with corticosterone levels in plasma. In conclusion, restraint stress in lactating mice caused the changes in the metabolism and in the transportation of sulfur-containing amino acids and resulted in higher taurine concentration in milk. Taurine concentration in milk could also be a good parameter for determining stress status in dams.

  14. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  15. Effect of tritium on corrosion behavior of chromium in 0.01 N sulfuric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyaidzu, M.; Isobe, K.; Hayashi, T.

    The effects of tritium on the corrosion behavior of chromium in 0.01 N sulfuric solution have been investigated in the present study. Electrochemical experiments have been carried our for pure chromium. At first, the concentration dependence of sulfuric acid solution on anodic polarization behavior of chromium was experimented, resulting in that 0.01 N one was found appropriate. The dependence of both dissolved oxygen and tritium concentration on anodic behavior of chromium were performed. It was found from that the self-passivation of chromium induced by dissolved oxygen was inhibited in tritiated solution resulting in the enhancement of the corrosion. As amore » consequence it is highly likely that the elution of chromium by highly oxidative radiolysis products would explain the passivation inhibitory effect of SUS304 stainless steel observed in tritiated solutions.« less

  16. Organic Sulfur Associated with Aquatic Humic Substances

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Vairavamurthy, M. A.; Ravichandran, M.

    2003-12-01

    This study examines the speciation and reactivity of organic sulfur associated with dissolved organic matter isolated from a variety of freshwater environments and the Pacific Ocean. The isolates, which included aquatic humic substances, were obtained using XAD resins and exhibited a wide range of elemental compositions, aromatic carbon contents, and molecular weights. Organic sulfur contents for the samples ranged from 0.4% to 1.9% of the atomic composition and were strongly dependent on the redox chemistry of the environments whence the samples originated, especially with regard to potential interactions with sulfide in sulfate reducing environments. The speciation of the sulfur associated with these samples was investigated using X-ray adsorption near edge spectroscopy (XANES). The samples, all obtained from oxic environments, contained reduced sulfur moieties. Reduced sulfur content (thiophene, organic sulfides and thiols) ranged from 22-70%. In general, humic acid fractions were found to have the largest percentage of reduced sulfur, followed by the fulvic acid and hydrophobic acid fractions. Hydrophilic fractions of the DOC contained a large percentage of oxidized organic sulfur (sulfonate and sulfate moieties). To assess the significance of reduced S content on interactions with soft metals, an environmentally significant process, the binding strength and binding capacity of Hg with organic matter isolated from the Florida Everglades were determined using equilibrium dialysis ligand exchange. Based on elemental analyses and XANES, the DOM sample from the Everglades used in our binding experiments had a reduced-S content of approximately 1.0%. Very strong interactions (KDOM' = 1023.2+/-0.5 L kg-1) were observed at Hg/DOM ratios below approximately 1 μ g Hg per mg DOM. Only a small fraction (approximately 2%) of the reduced-S groups were involved with the strongest interactions between Hg and DOM, suggesting that the binding of Hg to DOM under natural

  17. SULFATE-SULFUR METABOLISM IN THE RAT FETUS AS INDICATED BY SULFUR-35

    PubMed Central

    Dziewiatkowski, Dominic D.

    1953-01-01

    Twenty-four hours after the intraperitoneal injection of sodium sulfate-S35 into pregnant rats, sulfur-35 was found in the embryos. The amount of the sulfur-35 retained by the embryos was directly related to their degree of development in utero. A large fraction of the sulfur-35 found in the embryos was insoluble in 5 per cent trichloroacetic acid. At the 9th to 10th day of development, about 40 per cent of the sulfur-35 was present in this fraction. In 20-day-old embryos this fraction accounted for nearly 90 per cent of the total. Radioautographs of sections of embryos fixed in a solution of formaldehyde revealed that the sulfur-35 was most highly concentrated in the cartilaginous portion of the skeleton. All other tissues gave much weaker autographic reactions, comparable with the over-all reaction obtained when sections from embryos fixed in a solution of formaldehyde saturated with barium hydroxide were used. By analysis for the sulfur-35 content of individual tissues the concentration of the sulfur-35 in humeri from 20-day-old embryos was found to be about 30 times that in the maternal sternum. The concentration of the isotope in the skeletal muscle, brain, heart, and skin of the same embryos was also higher than in the corresponding maternal tissues. On the other hand, the concentration of the sulfur-35 in the maternal gastrointestinal tract plus contents was higher than in the gastrointestinal tract and contents of the embryos. PMID:13069655

  18. Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45-75 km on Venus

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2015-05-01

    A method developed by Krasnopolsky and Pollack (Krasnopolsky, V.A., Pollack, J.B. [1994]. Icarus 109, 58-78) to model vertical profiles of H2O and H2SO4 vapors and sulfuric acid concentration in the Venus cloud layer has been updated with improved thermodynamic parameters for H2O and H2SO4 and reduced photochemical production of sulfuric acid. The model is applied to the global-mean conditions and those at the low latitudes and at 60°. Variations in eddy diffusion near the lower cloud boundary are used to simulate variability in the cloud properties and abundances of H2O and H2SO4. The best version of the model for the global-mean condition results in a lower cloud boundary (LCB) at 47.5 km, H2SO4 peak abundance of 7.5 ppm at the LCB, and H2O mixing ratios of 7 ppm at 62 km and 3.5 ppm above 67 km. The model for low latitudes gives LCB at 48.5 km, the H2SO4 peak of 5 ppm, H2O of 8.5 ppm at 62 km and 3 ppm above 67 km. The model for 60° shows LCB at 46 km, the H2SO4 peak of 8.5 ppm, H2O of 9 ppm at 62 km and 4.5 ppm above 67 km. The calculated variability is induced by the proper changes in the production of sulfuric acid (by factors of 1.2 and 0.7 for the low latitudes and 60°, respectively) and reduction of eddy diffusion near 45 km relative to the value at 54 km by factors of 1.1, 3, and 4.5 for the low and middle (global-mean) latitudes and 60°, respectively. Concentration of sulfuric acid at the low and middle latitudes varies from ∼98% near 50 km to ∼80% at 60 km and then is almost constant at 79% at 70 km. Concentration at 60° is 98% at 50 km, 73% at 63 km, and 81% at 70 km. There is a reasonable agreement between the model results and observations except for the sulfuric acid concentration in the lower clouds. Variations of eddy diffusion in the lower cloud layer simulate variations in atmospheric dynamics and may induce strong variations in water vapor near the cloud tops. Variations in temperature may affect abundances of the H2O and H2SO4 vapors

  19. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...

  20. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...

  1. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...

  2. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste.

    PubMed

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang

    2016-12-01

    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH 3 ) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin) -1 , respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH 3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin) -1 may be applied to control VSCs and NH 3 emissions during kitchen waste composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin

    PubMed Central

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen

    2015-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  4. Emissions of sulfur trioxide from coal-fired power plants.

    PubMed

    Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R

    2004-06-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.

  5. Sulfur in Distillers Grains for Dairy Cattle

    USDA-ARS?s Scientific Manuscript database

    Sulfur is an essential element needed by animals for many functions. About 0.15% of the body weight is sulfur. It is found in the amino acids methionine, cysteine, cystine, homocysteine, and taurine; in chondroitin sulfate of cartilage; and in the B-vitamins, thiamin and biotin. Methionine, thiam...

  6. Loss of sulfur dioxide and changes in some chemical properties of Malatya apricots (Prunus armeniaca L.) during sulfuring and drying.

    PubMed

    Türkyılmaz, Meltem; Özkan, Mehmet; Güzel, Nihal

    2014-09-01

    This study was conducted to determine the differences in some analytical properties of four apricot cultivars and to determine the changes in these analytical properties during sulfuring and sun-drying. There were significant differences in the contents of polyphenols, carotenoids and organic acids (OA) as well as antioxidant activities (AOAs) of the cultivars (P < 0.05). After sulfuring and drying, considerable reductions were detected in the contents of total polyphenols (TPCs, 11-26%), OAs (4-32%) and β-carotene (6-21%), and AOAs (2-21%) of the samples. Sun-drying resulted in 71-83% decreases in sulfur dioxide (SO2 ) contents of sulfured-dried apricots (SDAs) in comparison with apricots immediately after sulfuring. As the TPCs increased, the SO2 absorption by the samples also increased. In contrast, the OA contents had no effect on SO2 absorption, but an increase in OA content resulted in an increase in the browning values of the SDAs. As expected, increases in contents of ferulic acid (r = 0.932), chlorogenic acid (r = 0.850), epicatechin (r = 0.804) and quercetin (r = 0.750) led to an increase in browning values of the SDAs. There were significant effects of cultivar and processing on the physico-chemical properties investigated in the study, and with the absorption of SO2 and the formation of a brown colour in the samples. © 2014 Society of Chemical Industry.

  7. Effective Dual Polysulfide Rejection by a Tannic Acid/FeIII Complex-Coated Separator in Lithium-Sulfur Batteries.

    PubMed

    Zhang, Hong; Lin, Chuner; Hu, Xuanhe; Zhu, Baoku; Yu, Dingshan

    2018-04-18

    The solubility behaviour of polysulfides in electrolyte solutions is a major bottleneck prior to the practical application of the lithium-sulfur battery. To address this issue, we fabricate a tannic acid/Fe III complex-coated polypropylene (PP) separator (TA/Fe III -PP separator) via a simple, fast, and green method. Benefiting from dual-confinement effects based on Lewis acid-base interactions between Fe III and polysulfides as well as the dipole-dipole interactions between rich phenol groups and polysulfides, the migration of polysulfides is effectively suppressed. Meanwhile, the porous structure of the PP separator is not destroyed by an additional coating layer. Thus, the TA/Fe III -PP separator can retain rapid lithium ion transport, eventually leading to a significant improvement in both the discharge capacity and rate performance of the corresponding lithium-sulfur cells. The cell with the TA/Fe III -PP separator presents a low capacity fade of 0.06% per cycle over 1000 cycles at 2.0 C, along with a high Coulombic efficiency of >97% over 300 cycles at 0.5 C. With respect to the one with the bare PP separator, the cell with the TA/Fe III -PP separator exhibits a 1.7-fold increase in the discharge capacity at 3.0 C. The proposed simple and economical approach shows great potential in constructing advanced separators to retard the shuttle effect of polysulfides for lithium-sulfur batteries.

  8. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.

    PubMed

    Moran, Ernesto E; Timerghazin, Qadir K; Kwong, Elizabeth; English, Ann M

    2011-03-31

    The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This reversible reaction was forced to proceed in the denitrosation direction by trapping the nitrosating agent with HN(3). The primary RSNOs exhibited hydrolysis k(obs) values of ∼2 × 10(-4) s(-1), and the tertiary RSNO k(obs) values were an order of magnitude higher. Product analysis by HPLC revealed that the parent thiols (RSHs) were formed in 90-100% yield on 79-99% RSNO denitrosation. Possible hydrolysis mechanisms were studied computationally at the CBS-QB3 level using S-nitrosomethanethiol (MeSNO) as a model RSNO. Consideration of RSNOs as a combination of conventional R-S-N═O, zwitterionic R-S(+)═N-O(-), and RS(-)/NO(+) ion-pair resonance structures was key in understanding the mechanistic details of acid-catalyzed hydrolysis. Protonation of the S-nitroso oxygen or nitrogen activates the sulfur and nucleophilic attack by H(2)O at this atom leads to the formation of the sulfoxide-protonated N-hydroxysulfinamide, MeS(+)(OH)NHOH, with barriers of 19 and 29 kcal/mol, respectively. Proton loss and reprotonation at the nitrogen lead to secondary hydrolysis that produces the sulfinic acid MeS(═O)OH and NH(2)OH. Notably, no low-energy RSNO hydrolysis pathway for HNO release was found in the computational analysis. Protonation of the S-nitroso sulfur gives rise to NO(+) release with a low activation barrier (ΔH(double dagger)(calc) ≈ 6 kcal/mol) and the formation of MeSH in agreement with experiment. The experimental k(obs) can be expressed as K(a)k(1), where K(a) is the acid dissociation constant for protonation of the S-nitroso sulfur and k(1) the pseudo-first-order hydrolysis rate constant. Given the low

  9. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    NASA Astrophysics Data System (ADS)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  10. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  11. Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling.

    PubMed

    Teramoto, Yoshikuni; Tanaka, Noriko; Lee, Seung-Hwan; Endo, Takashi

    2008-01-01

    A combined sulfuric acid-free ethanol cooking and pulverization process was developed in order to achieve the complete saccharification of the cellulosic component of woody biomass, thereby avoiding the problems associated with the use of strong acid catalysts. Eucalyptus wood chips were used as a raw material and exposed to an ethanol/water/acetic acid mixed solvent in an autoclave. This process can cause the fibrillation of wood chips. During the process, the production of furfural due to an excessive degradation of polysaccharide components was extremely low and delignification was insignificant. Therefore, the cooking process is regarded not as a delignification but as an activation of the original wood. Subsequently, the activated solid products were pulverized by ball-milling in order to improve their enzymatic digestibility. Enzymatic hydrolysis experiments demonstrated that the conversion of the cellulosic components into glucose attained 100% under optimal conditions. Wide-angle X-ray diffractometry and particle size distribution analysis revealed that the scale affecting the improvement of enzymatic digestibility ranged from 10 nm to 1 microm. Field emission scanning electron microscopy depicted that the sulfuric acid-free ethanol cooking induced a pore formation by the removal of part of the lignin and hemicellulose fractions in the size range from a few of tens nanometers to several hundred nanometers. (c) 2007 Wiley Periodicals, Inc.

  12. Supercritical Fluid Extraction of Toxic Heavy Metals and Uranium from Acidic Solutions with Sulfur-Containing Organophosphorus Reagents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Liu, Chongxuan; Wu, Hong

    2003-03-02

    The feasibility of using sulfur-containing organophosphorus reagents for the chelation-supercritical fluid extraction (SFE) of toxic heavy metals and uranium from acidic media was investigated. The SFE experiments were conducted in a specially-designed flow-through liquid extractor. Effective extraction of the metal ions from various acidic media was demonstrated. The effect of ligand concentration in supercritical CO{sub 2} on the kinetics of metal extraction was studied. A simplified model is used to describe the extraction kinetics and the good agreement of experimental data with the equilibrium-based model is achieved.

  13. Quantitative trait locus analysis of seed sulfur containing amino acids in two recombinant inbred line populations of soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merr.) is a major source of plant protein for humans and livestock. Low levels of sulfur containing amino acids (cysteine and methionine) in soybean protein is the main limitation of soybean meal as animal food. The objectives of this study were to identify and validate Q...

  14. Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans.

    PubMed

    Rücker, Christoph; Mahmoud, Waleed M M; Schwartz, Dirk; Kümmerer, Klaus

    2018-04-17

    Mercaptocarboxylic acids and their esters, a class of difunctional compounds bearing both a mercapto and a carboxylic acid or ester functional group, are industrial chemicals of potential environmental concern. Biodegradation of such compounds was systematically investigated here, both by literature search and by experiments (Closed Bottle Test OECD 301D and Manometric Respirometry Test OECD 301F). These compounds were found either readily biodegradable or at least biodegradable to a significant extent. Some related compounds of divalent sulfur were tested for comparison (mercaptans, sulfides, disulfides). For the two relevant monofunctional compound classes, carboxylic acids/esters and mercaptans, literature data were compiled, and by comparison with structurally similar compounds without these functional groups, the influence of COOH/COOR' and SH groups on biodegradability was evaluated. Thereby, an existing rule of thumb for biodegradation of carboxylic acids/esters was supported by experimental data, and a rule of thumb could be formulated for mercaptans. Concurrent to biodegradation, abiotic processes were observed in the experiments, rapid oxidative formation of disulfides (dimerisation of monomercaptans and cyclisation of dimercaptans) and hydrolysis of esters. Some problems that compromise the reproducibility of biodegradation test results were discussed.

  15. Environmental Compliance Assessment Army Reserve (ECAAR)

    DTIC Science & Technology

    1993-09-01

    and water Spent mixed acid Spent caustic Spent sulfuric acid Potential Consequences: Heat generation, violent reaction. Group 2-A Group 2-B Aluminum Any...methane reforming furnaces, pulping liquor recovery furnaces, combustion devices used in the recovery of sulfur values from spent sulfuric acid...Industry and USEPA Hazardous Waste Hazard No. Hazardous Waste Code* Generic FOO1 The spent halogenated solvents used in degreasing: Trichloroethylene, (t

  16. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    NASA Astrophysics Data System (ADS)

    Avraamides, J.; Senanayake, G.; Clegg, R.

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2 M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25 °C. Alkaline leaching with 6 M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30 min at 30 °C using 0.1-1.0 M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1 M to 2 M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide.

  17. Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Ettner-Mahl, Matthias; Hannemann, Anke; Mitra, Subir K.

    2009-10-01

    The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to - 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.

  18. Visualization of Imbalances in Sulfur Assimilation and Synthesis of Sulfur-Containing Amino Acids at the Single-Cell Level

    PubMed Central

    Hoffmann, Kristina; Grünberger, Alexander; Lausberg, Frank; Bott, Michael

    2013-01-01

    We describe genetically encoded sensors which transmit elevated cytosolic concentrations of O-acetyl serine (OAS) and O-acetyl homoserine (OAH)—intermediates of l-cysteine and l-methionine synthesis—into an optical output. The sensor pSenOAS3 elicits 7.5-fold-increased fluorescence in cultures of a Corynebacterium glutamicum strain that excrete l-cysteine. Determination of the cytosolic OAS concentration revealed an increase to 0.13 mM, whereas the concentration in the reference strain was below the detection limit, indicating that incorporation of assimilatory sulfur is limited in the strain studied. In another strain, overexpression of metX encoding homoserine acetyltransferase resulted in an 8-fold increase in culture fluorescence at a cytosolic OAH concentration of 0.76 mM. We also assayed for consequences of extracellular sulfur supply and observed a graded fluorescence increase at decreasing sulfur concentrations below 400 μM. Overall, this demonstrates the usefulness of the sensors for monitoring intracellular sulfur availability. The sensors also enable monitoring at the single-cell level, and since related and close homologs of the transcription factor used in the constructed sensors are widespread among bacteria, this technology offers a new possibility of assaying in vivo for sulfur limitation and of doing this at the single-cell level. PMID:23995919

  19. Visualization of imbalances in sulfur assimilation and synthesis of sulfur-containing amino acids at the single-cell level.

    PubMed

    Hoffmann, Kristina; Grünberger, Alexander; Lausberg, Frank; Bott, Michael; Eggeling, Lothar

    2013-11-01

    We describe genetically encoded sensors which transmit elevated cytosolic concentrations of O-acetyl serine (OAS) and O-acetyl homoserine (OAH)-intermediates of l-cysteine and l-methionine synthesis-into an optical output. The sensor pSenOAS3 elicits 7.5-fold-increased fluorescence in cultures of a Corynebacterium glutamicum strain that excrete l-cysteine. Determination of the cytosolic OAS concentration revealed an increase to 0.13 mM, whereas the concentration in the reference strain was below the detection limit, indicating that incorporation of assimilatory sulfur is limited in the strain studied. In another strain, overexpression of metX encoding homoserine acetyltransferase resulted in an 8-fold increase in culture fluorescence at a cytosolic OAH concentration of 0.76 mM. We also assayed for consequences of extracellular sulfur supply and observed a graded fluorescence increase at decreasing sulfur concentrations below 400 μM. Overall, this demonstrates the usefulness of the sensors for monitoring intracellular sulfur availability. The sensors also enable monitoring at the single-cell level, and since related and close homologs of the transcription factor used in the constructed sensors are widespread among bacteria, this technology offers a new possibility of assaying in vivo for sulfur limitation and of doing this at the single-cell level.

  20. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  1. Formic acid catalyzed hydrolysis of SO3 in the gas phase: a barrierless mechanism for sulfuric acid production of potential atmospheric importance.

    PubMed

    Hazra, Montu K; Sinha, Amitabha

    2011-11-02

    Computational studies at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels are performed to explore the changes in reaction barrier height for the gas phase hydrolysis of SO(3) to form H(2)SO(4) in the presence of a single formic acid (FA) molecule. For comparison, we have also performed calculations for the reference reaction involving water assisted hydrolysis of SO(3) at the same level. Our results show that the FA assisted hydrolysis of SO(3) to form H(2)SO(4) is effectively a barrierless process. The barrier heights for the isomerization of the SO(3)···H(2)O···FA prereactive collision complex, which is the rate limiting step in the FA assisted hydrolysis, are found to be respectively 0.59 and 0.08 kcal/mol at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels. This is substantially lower than the ~7 kcal/mol barrier for the corresponding step in the hydrolysis of SO(3) by two water molecules--which is currently the accepted mechanism for atmospheric sulfuric acid production. Simple kinetic analysis of the relative rates suggests that the reduction in barrier height facilitated by FA, combined with the greater stability of the prereactive SO(3)···H(2)O···FA collision complex compared to SO(3)···H(2)O···H(2)O and the rather plentiful atmospheric abundance of FA, makes the formic acid mediated hydrolysis reaction a potentially important pathway for atmospheric sulfuric acid production.

  2. Fossilization of melanosomes via sulfurization.

    PubMed

    McNamara, Maria E; van Dongen, Bart E; Lockyer, Nick P; Bull, Ian D; Orr, Patrick J

    2016-05-01

    Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur-bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur-rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py-GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF-SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non-sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur-rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.

  3. Positional stability as the light emission limit in sonoluminescence with sulfuric acid.

    PubMed

    Urteaga, Raúl; Dellavale, Damián H; Puente, Gabriela F; Bonetto, Fabián J

    2007-11-01

    We studied a single bubble sonoluminescence system consisting of an argon bubble in a sulfuric acid aq. solution. We experimentally determined the relevant variables of the system. We also measured the bubble position, extent of the bubble orbits, and light intensity as a function of acoustic pressure for different argon concentrations. We find that the Bjerknes force is responsible for the bubble mean position and this imposes a limitation in the maximum acoustic pressure that can be applied to the bubble. The Rayleigh-Taylor instability does not play a role in this system and, at a given gas concentration, the SL intensity depends more on the bubble time of collapse than any other investigated parameter.

  4. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements.

    PubMed

    Sproesser, Oliver; Schmidlin, Patrick R; Uhrenbacher, Julia; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2014-10-01

    To examine the influence of etching duration on the bond strength of PEEK substrate in combination with different resin composite cements. In total, 448 PEEK specimens were fabricated, etched with sulfuric acid for 5, 15, 30, 60, 90, 120, and 300 s and then luted with two conventional resin cements (RelyX ARC and Variolink II) and one self-adhesive resin cement (Clearfil SA Cement) (n = 18/subgroup). Non-etched specimens served as the control group. Specimens were stored in distilled water for 28 days at 37°C and shear bond strengths were measured. Data were analyzed nonparametrically using Kruskal-Wallis-H (p < 0.05). Non-etched PEEK demonstrated no bond strength to resin composite cements. The optimal etching duration varied with the type of resin composite: 60 s for RelyX ARC (15.3 ± 7.2 MPa), 90 s for Variolink II (15.2 ± 7.2 MPa), and 120 s for Clearfil SA Cement (6.4 ± 5.9 MPa). Regardless of etching duration, however, the self-etching resin composite cement showed significantly lower shear bond strength values when compared to groups luted with the conventional resin composites. Although sulfuric acid seems to be suitable and effective for PEEK surface pre-treatment, further investigations are required to examine the effect of other adhesive systems and cements.

  5. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    USGS Publications Warehouse

    Landa, E.R.

    2003-01-01

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.

  6. Ferric iron-bearing sediments as a mineral trap for CO2 sequestration: Iron reduction using sulfur-bearing waste gas

    USGS Publications Warehouse

    Palandri, J.L.; Kharaka, Y.K.

    2005-01-01

    We present a novel method for geologic sequestration of anthropogenic CO2 in ferrous carbonate, using ferric iron present in widespread redbeds and other sediments. Iron can be reduced by SO2 that is commonly a component of flue gas produced by combustion of fossil fuel, or by adding SO2 or H2S derived from other industrial processes to the injected waste gas stream. Equilibrium and kinetically controlled geochemical simulations at 120 bar and 50 and 100 ??C with SO2 or H2S show that iron can be transformed almost entirely to siderite thereby trapping CO2, and simultaneously, that sulfur can be converted predominantly to dissolved sulfate. If there is an insufficient amount of sulfur-bearing gas relative to CO2 as for typical flue gas, then some of the iron is not reduced, and some of the CO2 is not sequestered. If there is an excess of sulfur-bearing gas, then complete iron reduction is ensured, and some of the iron precipitates as pyrite or other solid iron sulfide, depending on their relative precipitation kinetics. Gas mixtures with insufficient sulfur relative to CO2 can be used in sediments containing Ca, Mg, or other divalent metals capable of precipitating carbonate minerals. For quartz arenite with an initial porosity of 21% and containing 0.25 wt.% Fe2O3, approximately 0.7 g of CO2 is sequestered per kg of rock, and the porosity decrease is less than 0.03%. Sequestration of CO2 using ferric iron has the advantage of disposing of SO2 that may already be present in the combustion gas. ?? 2005 Published by Elsevier B.V.

  7. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective

    PubMed Central

    2017-01-01

    Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150

  8. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  9. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    PubMed Central

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  10. Relation of laboratory and remotely sensed spectral signatures of ocean-dumped acid waste

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.

    1978-01-01

    Results of laboratory transmission and remotely sensed ocean upwelled spectral signatures of acid waste ocean water solutions are presented. The studies were performed to establish ocean-dumped acid waste spectral signatures and to relate them to chemical and physical interactions occurring in the dump plume. The remotely sensed field measurements and the laboratory measurements were made using the same rapid-scanning spectrometer viewing a dump plume and with actual acid waste and ocean water samples, respectively. Laboratory studies showed that the signatures were produced by soluble ferric iron being precipitated in situ as ferric hydroxide upon dilution with ocean water. Sea-truth water samples were taken and analyzed for pertinent major components of the acid waste. Relationships were developed between the field and laboratory data both for spectral signatures and color changes with concentration. The relationships allow for the estimation of concentration of the indicator iron from remotely sensed spectral data and the laboratory transmission concentration data without sea-truth samples.

  11. Destruction of a high sulfur pitch in an industrial scale fluidized bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, B.; Eleftheriades, C.; Engelbrecht, A.

    Sasol approached the CSIR's division of Materials Science and Technology (CSIR Mattek) for an environmentally acceptable solution to their steadily increasing stockpiles of a high sulfur pitch. Conventional incineration of the pitch would result in unacceptably high levels of sulfur dioxide emission to the atmosphere. In addition to the pitch, Sasol indicated a need to dispose of a waste water stream contaminated with organic compounds. After some initial development work CSIR Mattek, in conjunction with its licensee IMS Process Plant, presented a design for a multipurpose bubbling fluidized bed incineration plant that completely destroys the pitch and effluent water whilemore » capturing a minimum of 85% of the incoming sulfur in the pitch by limestone injection. The plant design caters for the variable consistency of both the pitch and the organic waste water, which can contain from 0 to 10% organics. The design also allows for potential future treatment of contaminated soils. In addition to the environment benefit of the reduction of sulfur dioxide emissions, the plant also makes use of the hot combustion gases to raise 20 t/hr of saturated steam at 20 bar via an external waste heat boiler. This represents a valuable commodity for the business unit responsible for the waste incineration and makes the Sasol plant a more energy efficient entity. It also represents a net reduction in CO{sub 2} emissions from Sasol. The high sulfur pitch incineration plant was commissioned in Sasolburg by a team of engineers from CSIR Mattek, IMS Process Plant and Sasol during December 1996 and January/February 1997. The plant has performed extremely well and it has complied with the environmental emission requirements as set out by the Department of Environmental Affairs and Tourism.« less

  12. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    PubMed

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  13. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  14. Biohydrogen Production from Pineapple Waste: Effect of Substrate Concentration and Acid Pretreatment

    NASA Astrophysics Data System (ADS)

    Cahyari, K.; Putri, A. M.; Oktaviani, E. D.; Hidayat, M. A.; Norajsha, J. D.

    2018-05-01

    Biohydrogen is the ultimate choice of energy carrier in future due to its superior qualities such as fewer greenhouse gases emission, high energy density (142 kJ/gram), and high energy conversion using a fuel cell. Production of biohydrogen from organic waste e.g. pineapple waste offers a simultaneous solution for renewable energy production and waste management. It is estimated that pineapple cultivation in Indonesia generated more than 1 million ton/year comprising of rotten pineapple fruit, leaves, and stems. Majority of this waste is dumped into landfill area without any treatments which lead to many environmental problems. This research was meant to investigate the utilization of pineapple waste i.e. peel and the core of pineapple fruit and leaves to produce biohydrogen through mesophilic dark fermentation (30°C, 1 atm, pH 5.0). Effect of dilute acid treatment and substrate concentration was particularly investigated in these experiments. Peel and core of pineapple waste were subjected to fermentation at 3 various substrate concentration i.e. 8.8, 17.6 and 26.4-gram VS/liter. Meanwhile, pineapple leaves were pretreated using dilute acid (H2SO4) at 0.2, 0.3 and 0.4 N and followed by dark fermentation. Results show that the highest yield of biohydrogen was obtained at a substrate concentration of 26.4-gram VS/liter both for peel and core of the waste. Pretreatment using dilute acid (H2SO4) 0.3 N might improve fermentation process with a higher yield at 0.8 ml/gram VS. Hydrogen percentage in biogas produced during fermentation process was in the range between 5 – 32% of volume ratio. In summary, it is possible to utilize pineapple waste for production of biohydrogen at an optimum substrate concentration of 26.4-gram VS/liter and acid pretreatment (H2SO4) of 0.3 N.

  15. Modern applications for a total sulfur reduction distillation method - what’s old is new again

    PubMed Central

    2014-01-01

    Background The use of a boiling mixture of hydriodic acid, hypophosphorous acid, and hydrochloric acid to reduce any variety of sulfur compounds has been in use in various applications since the first appearance of this method in the literature in the 1920’s. In the realm of sulfur geochemistry, this method remains a useful, but under-utilized technique. Presented here is a detailed description of the distillation set-up and procedure, as well as an overview of potential applications of this method for marine sulfur biogeochemistry/isotope studies. The presented applications include the sulfur isotope analysis of extremely low amounts of sulfate from saline water, the conversion of radiolabeled sulfate into sulfide, the extraction of refractory sulfur from marine sediments, and the use of this method to assess sulfur cycling in Aarhus Bay sediments. Results The STrongly Reducing hydrIodic/hypoPhosphorous/hydrochloric acid (STRIP) reagent is capable of rapidly reducing a wide range of sulfur compounds, including the most oxidized form, sulfate, to hydrogen sulfide. Conversion of as little as approximately 5 micromole sulfate is possible, with a sulfur isotope composition reproducibility of 0.3 permil. Conclusions Although developed many decades ago, this distillation method remains relevant for many modern applications. The STRIP distillation quickly and quantitatively converts sulfur compounds to hydrogen sulfide which can be readily collected in a silver nitrate trap for further use. An application of this method to a study of sulfur cycling in Aarhus Bay demonstrates that we account for all of the sulfur compounds in pore-water, effectively closing the mass balance of sulfur cycling. PMID:24808759

  16. Mathematical modeling of microbially induced crown corrosion in wastewater collection systems and laboratory investigation and modeling of sulfuric acid corrosion of concrete

    NASA Astrophysics Data System (ADS)

    Jahani, Fereidoun

    In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.

  17. Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins

    PubMed Central

    2011-01-01

    Background A deficiency in phaseolin and phytohemagglutinin is associated with a near doubling of sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris), particularly cysteine, elevated by 70%, and methionine, elevated by 10%. This mostly takes place at the expense of an abundant non-protein amino acid, S-methyl-cysteine. The deficiency in phaseolin and phytohemagglutinin is mainly compensated by increased levels of the 11S globulin legumin and residual lectins. Legumin, albumin-2, defensin and albumin-1 were previously identified as contributing to the increased sulfur amino acid content in the mutant line, on the basis of similarity to proteins from other legumes. Results Profiling of free amino acid in developing seeds of the BAT93 reference genotype revealed a biphasic accumulation of gamma-glutamyl-S-methyl-cysteine, the main soluble form of S-methyl-cysteine, with a lag phase occurring during storage protein accumulation. A collection of 30,147 expressed sequence tags (ESTs) was generated from four developmental stages, corresponding to distinct phases of gamma-glutamyl-S-methyl-cysteine accumulation, and covering the transitions to reserve accumulation and dessication. Analysis of gene ontology categories indicated the occurrence of multiple sulfur metabolic pathways, including all enzymatic activities responsible for sulfate assimilation, de novo cysteine and methionine biosynthesis. Integration of genomic and proteomic data enabled the identification and isolation of cDNAs coding for legumin, albumin-2, defensin D1 and albumin-1A and -B induced in the absence of phaseolin and phytohemagglutinin. Their deduced amino acid sequences have a higher content of cysteine than methionine, providing an explanation for the preferential increase of cysteine in the mutant line. Conclusion The EST collection provides a foundation to further investigate sulfur metabolism and the differential accumulation of sulfur amino acids in seed

  18. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  19. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  20. The effects of inhaled sulfuric acid on pulmonary function in adolescent asthmatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, J.Q.; Pierson, W.E.; Horike, M.

    Ten adolescent subjects with extrinsic asthma and exercise-induced bronchospasm were studied. The subjects were exposed for 30 min at rest followed by 10 min during moderate exercise on a treadmill to either 100 micrograms/m3 sodium chloride (NaCl) or 100 micrograms/m3 sulfuric acid (H/sub 2/SO/sub 4/) droplet aerosols. All exposures were at approximately 75% relative humidity and 22 degrees C. Pulmonary functional measurements were recorded before, during, and after exposure while the subject was seated in a body plethysmograph. Exposure to the NaCl aerosol during exercise produced a small (12%) but significant drop in maximal expiratory flow (V/sub max/75) (p lessmore » than 0.05). However, exposure to the H/sub 2/SO/sub 4/ aerosol produced larger reductions in V/sub max/75 (29%; p less than 0.01) and also significant changes in 3 other parameters of pulmonary function: V/sub max/50, FEV1, and total respiratory resistance (RT). The changes were similar to those reported for exposure to 0.5 ppm of sulfur dioxide in a similar group of adolescents with extrinsic asthma. Our results are the first report of reversible pulmonary functional changes after H/sub 2/SO/sub 4/ exposure in a group of adolescent asthmatic subjects.« less

  1. Recovery of Precious and Base Metals from Waste Printed Circuit Boards Using a Sequential Leaching Procedure

    NASA Astrophysics Data System (ADS)

    Batnasan, Altansukh; Haga, Kazutoshi; Shibayama, Atsushi

    2018-02-01

    This paper considers the issue of recycling of waste printed circuit boards (WPCBs) containing precious and base metals in appreciable amounts. High-pressure oxidative leaching (HPOL) with dilute sulfuric acid resulted in removal of a significant amount of base metals from a WPCB ash sample obtained by incineration at 800°C. The parameters investigated in the precious metal leaching from WPCB residue after HPOL included the sulfuric acid concentration, thiourea concentration, oxidant concentration, leaching temperature, and leaching time. Recovery of gold, silver, and palladium of 100%, 81%, and 13% from the WPCB residue sample was achieved by thiourea leaching under optimized conditions. The results show that the efficiency of precious metal dissolution from the WPCB sample using thiourea solution depended strongly on the concentration of both thiourea and oxidant.

  2. Recovery of Precious and Base Metals from Waste Printed Circuit Boards Using a Sequential Leaching Procedure

    NASA Astrophysics Data System (ADS)

    Batnasan, Altansukh; Haga, Kazutoshi; Shibayama, Atsushi

    2017-12-01

    This paper considers the issue of recycling of waste printed circuit boards (WPCBs) containing precious and base metals in appreciable amounts. High-pressure oxidative leaching (HPOL) with dilute sulfuric acid resulted in removal of a significant amount of base metals from a WPCB ash sample obtained by incineration at 800°C. The parameters investigated in the precious metal leaching from WPCB residue after HPOL included the sulfuric acid concentration, thiourea concentration, oxidant concentration, leaching temperature, and leaching time. Recovery of gold, silver, and palladium of 100%, 81%, and 13% from the WPCB residue sample was achieved by thiourea leaching under optimized conditions. The results show that the efficiency of precious metal dissolution from the WPCB sample using thiourea solution depended strongly on the concentration of both thiourea and oxidant.

  3. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2 uptake in the upper-middle reaches of the Wujiang River, China

    NASA Astrophysics Data System (ADS)

    Huang, Qi-bo; Qin, Xiao-qun; Liu, Peng-yu; Zhang, Lian-kai; Su, Chun-tian

    2017-08-01

    Carbonate weathering and the CO2 consumption in karstic area are extensive affected by anthropogenic activities, especially sulfuric and nitric acids usage in the upper-middle reaches of Wujiang River, China. The carbonic acid would be substituted by protons from sulfuric and nitric acids which can be reduce CO2 absorption. Therefore, The goal of this study was to highlight the impacts of sulfuric and nitric acids on carbonate dissolution and the associated deficit of CO2 uptaking during carbonate weathering. The hydrochemistries and carbon isotopic signatures of dissolved inorganic carbon from groundwater were measured during the rainy season (July; 41 samples) and post-rainy season (October; 26 samples). Our results show that Ca2 + and Mg2 + were the dominant cations (55.87-98.52%), and HCO3- was the dominant anion (63.63-92.87%). The combined concentrations of Ca2 + and Mg2 + commonly exceeded the equivalent concentration of HCO3-, with calculated [Ca2 + + Mg2 +]/[HCO3-] equivalent ratios of 1.09-2.12. The mean measured groundwater δ13CDIC value (- 11.38‰) was higher than that expected for carbonate dissolution mediated solely by carbonic acid (- 11.5‰), and the strong positive correlation of these values with [SO42 - + NO3-]/HCO3- showed that additional SO42 - and NO3- were required to compensate for this cation excess. Nitric and sulfuric acids are, therefore, suggested to have acted as the additional proton-promoted weathering agents of carbonate in the region, alongside carbonic acid. The mean contribution of atmospheric/pedospheric CO2 to the total aquatic HCO3- decreased by 15.67% (rainy season) and 14.17% (post-rainy season) due to the contributions made by these acids. The annual mean deficit of soil CO2 uptake by carbonate weathering across the study area was 14.92%, which suggests that previous workers may have overestimated the absorption of CO2 by carbonate weathering in other karstic areas worldwide.

  4. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2 uptake in the upper-middle reaches of the Wujiang River, China.

    PubMed

    Huang, Qi-Bo; Qin, Xiao-Qun; Liu, Peng-Yu; Zhang, Lian-Kai; Su, Chun-Tian

    2017-08-01

    Carbonate weathering and the CO 2 consumption in karstic area are extensive affected by anthropogenic activities, especially sulfuric and nitric acids usage in the upper-middle reaches of Wujiang River, China. The carbonic acid would be substituted by protons from sulfuric and nitric acids which can be reduce CO 2 absorption. Therefore, The goal of this study was to highlight the impacts of sulfuric and nitric acids on carbonate dissolution and the associated deficit of CO 2 uptaking during carbonate weathering. The hydrochemistries and carbon isotopic signatures of dissolved inorganic carbon from groundwater were measured during the rainy season (July; 41 samples) and post-rainy season (October; 26 samples). Our results show that Ca 2+ and Mg 2+ were the dominant cations (55.87-98.52%), and HCO 3 - was the dominant anion (63.63-92.87%). The combined concentrations of Ca 2+ and Mg 2+ commonly exceeded the equivalent concentration of HCO 3 - , with calculated [Ca 2+ +Mg 2+ ]/[HCO 3 - ] equivalent ratios of 1.09-2.12. The mean measured groundwater δ 13 C DIC value (-11.38‰) was higher than that expected for carbonate dissolution mediated solely by carbonic acid (-11.5‰), and the strong positive correlation of these values with [SO 4 2- +NO 3 - ]/HCO 3 - showed that additional SO 4 2- and NO 3 - were required to compensate for this cation excess. Nitric and sulfuric acids are, therefore, suggested to have acted as the additional proton-promoted weathering agents of carbonate in the region, alongside carbonic acid. The mean contribution of atmospheric/pedospheric CO 2 to the total aquatic HCO 3 - decreased by 15.67% (rainy season) and 14.17% (post-rainy season) due to the contributions made by these acids. The annual mean deficit of soil CO 2 uptake by carbonate weathering across the study area was 14.92%, which suggests that previous workers may have overestimated the absorption of CO 2 by carbonate weathering in other karstic areas worldwide. Copyright © 2017

  5. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.

    PubMed

    Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M

    2009-08-01

    A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.

  6. ROLE OF SULFUR IN REDUCING PCDD AND PCDF FORMATION

    EPA Science Inventory

    Past research has suggested that the presence of sulfur (S) in municipal waste combustors (MWCs) can decrease downstream formation of chlorinated organic compounds, particularly polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Thus, co-firing a...

  7. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  8. Co-Expression of Bacterial Aspartate Kinase and Adenylylsulfate Reductase Genes Substantially Increases Sulfur Amino Acid Levels in Transgenic Alfalfa (Medicago sativa L.)

    PubMed Central

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value. PMID:24520364

  9. Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking.

    PubMed

    Teramoto, Yoshikuni; Lee, Seung-Hwan; Endo, Takashi

    2008-12-01

    A sulfuric acid-free ethanol cooking (SFEC) treatment was developed to achieve complete saccharification of the cellulosic component of eucalyptus and baggase flour, thereby avoiding the problems associated with the use of strong acid catalysts. Cutter-milled flours were exposed to an ethanol (EtOH)/water/acetic acid mixture in an autoclave. Enzymatic hydrolysis experiments of the pretreated samples demonstrated that almost complete conversion of the cellulosic components to glucose was achieved under optimal conditions. A large-scale trial revealed that there was little consumption of in-feed EtOH during SFEC; therefore, it is considered that most part EtOH used can be essentially recovered and reused. Field emission scanning electron microscopy showed that SFEC induced the formation of pores ranging in size from approximately 10 to several 100nm. It can be assumed that the porous surface was due to the partial removals of lignin and hemicellulose, which improved the accessibility of the enzyme onto the substrate.

  10. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...

  11. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...

  12. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...

  13. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...

  14. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...

  15. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) [Reserved... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor...

  16. Process for immobilizing radioactive boric acid liquid wastes

    DOEpatents

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  17. Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms

    PubMed Central

    Jones, Daniel S; Schaperdoth, Irene; Macalady, Jennifer L

    2016-01-01

    Extremely acidic (pH 0–1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S–23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ. PMID:27187796

  18. Exploring Nested Reaction Fronts to Understand How Oxygen Cracks Rocks, Carbonic and Sulfuric Acids Dissolve Rocks, and Water Transports Rocks during Weathering

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Gu, X.; Sullivan, P. L.; Kim, H.; Stinchcomb, G. E.; Lebedeva, M.; Balashov, V. N.

    2016-12-01

    To first order, weathering is the reaction of rocks with oxidants (oxygen, nitrate, etc.), acids (carbonic, sulfuric, and organic acids), and water. To explore weathering we have been studying the depth intervals in soils, saprolite, and weathering rock where mineral reactions are localized - "reaction fronts". We limit the study to ridges or catchments in climates where precipitation is greater than potential evapotranspiration. For example, in the Susquehanna Shale Hills Critical Zone Observatory, we observe reaction fronts that generally define very rough surfaces in 3D that mimic the land surface topography, although with lower relief. Overall, the fronts form nested curved surfaces. In Shale Hills, the deepest reaction fronts are oxidation of pyrite, and dissolution of carbonate. The carbonate is inferred to dissolve at least partly due to the sulfuric acid produced by the pyrite. In addition to pyrite, chlorite also starts to oxidize at the water table. We hypothesize that these dissolution and oxidation reactions open pores and cause microfracturing that open the rock to infiltration of advecting meteoric waters. At much shallower depths, illite is observed to dissolve. In Shale Hills, these reaction fronts - pyrite, carbonate, illite - separate over meters beneath the ridges. Such separated reaction fronts have also been observed in other fractured lithologies where oxidation is the deepest reaction and is associated with weathering-induced fractures. In contrast, in some massive mafic rocks, reaction fronts are almost co-located. By studying the geometry of reaction fronts, it may be possible to elucidate the relative importance of how oxygen cracks rocks; carbonic, organic, and sulfuric acids dissolve rocks; and water mobilizes rock materials during weathering.

  19. Process for immobilizing radioactive boric acid liquid wastes

    DOEpatents

    Greenhalgh, W.O.

    1984-05-10

    Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  20. 40 CFR 265.341 - Waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis. 265.341 Section 265... FACILITIES Incinerators § 265.341 Waste analysis. In addition to the waste analyses required by § 265.13, the... minimum, the analysis must determine: (a) Heating value of the waste; (b) Halogen content and sulfur...

  1. 40 CFR 265.341 - Waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis. 265.341 Section 265... FACILITIES Incinerators § 265.341 Waste analysis. In addition to the waste analyses required by § 265.13, the... minimum, the analysis must determine: (a) Heating value of the waste; (b) Halogen content and sulfur...

  2. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    NASA Astrophysics Data System (ADS)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  3. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  4. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  5. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.

    PubMed

    Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong

    2002-04-01

    South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.

  6. High copper level comulled and impregnated sulfur sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, K.C.

    A porous sulfur sorbent is disclosed which has principal use in desulfurizing reformer feedstreams. The sorbent is prepared by peptizing alumina with acid and mulling the peptized alumina with a copper compound to form an extrudable dough. The dough is extruded, dried and impregnated with additional copper. The resulting sorbent has a higher capacity for adsorbing sulfur compounds than conventional prior art materials.

  7. Development of spent fuel reprocessing process based on selective sulfurization: Study on the Pu, Np and Am sulfurization

    NASA Astrophysics Data System (ADS)

    Kirishima, Akira; Amano, Yuuki; Nihei, Toshifumi; Mitsugashira, Toshiaki; Sato, Nobuaki

    2010-03-01

    For the recovery of fissile materials from spent nuclear fuel, we have proposed a novel reprocessing process based on selective sulfurization of fission products (FPs). The key concept of this process is utilization of unique chemical property of carbon disulfide (CS2), i.e., it works as a reductant for U3O8 but works as a sulfurizing agent for minor actinides and lanthanides. Sulfurized FPs and minor actinides (MA) are highly soluble to dilute nitric acid while UO2 and PuO2 are hardly soluble, therefore, FPs and MA can be removed from Uranium and Plutonium matrix by selective dissolution. As a feasibility study of this new concept, the sulfurization behaviours of U, Pu, Np, Am and Eu are investigated in this paper by the thermodynamical calculation, phase analysis of chemical analogue elements and tracer experiments.

  8. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction

    NASA Technical Reports Server (NTRS)

    Moser, D. P.; Nealson, K. H.

    1996-01-01

    The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.

  9. Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.

    PubMed

    Makhotkina, Olga; Kilmartin, Paul A

    2013-06-12

    Electrochemical oxidation of three representative wine polyphenols (catechin, caffeic acid, and quercetin) in the presence of sulfur dioxide in a model wine solution (pH = 3.3) was investigated. The oxidation was undertaken using chronoamperometry at a rotating glassy carbon rod electrode, and the reaction products were characterized by HPLC-MS. The mechanism of electrochemical oxidation of polyphenols in the presence of sulfur dioxide was proposed to be an ECEC mechanism. The polyphenols first underwent a one-electron oxidation to a semiquinone radical, which can be reduced back to the original polyphenol by sulfur dioxide, or further oxidized to the quinone form. In the cases of caffeic acid and catechin, the quinone combined with sulfur dioxide and produced new derivatives. The quercetin quinone underwent further chemical transformations, producing several new compounds. The proposed mechanisms were confirmed by digital simulation of cyclic voltammograms.

  10. Soot and Sulfuric Acid from Aircraft: Is There Enough to Cause Detrimental Environmental E-kCTSs?

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Strawa, A. W.; Ferry, G. V.; Howard, S. D.; Verma, S.

    1998-01-01

    Aerosol from aircraft can affect the environment in three ways: First, soot aerosol has been implicated to cause Icing-tern ozone depletion at mid-latitudes in the lower stratosphere at a rate of approx. 5% per decade. This effect is in addition and unrelated to the polar ozone holes which are strongly influenced by heterogeneous chemistry on polar stratospheric clouds. Second, the most obvious effect of jet aircraft is the formation of visible contrails in the upper troposphere. The Salt Lake City region experienced an 8% increase in cirrus cloud cover over a 15-year period which covariates with an increase in regional commercial air traffic. If soot particles act as freezing nuclei to cause contrail formation heterogeneously, they would be linked to a secondary effect to cloud modification that very likely is climatologically important. Third, a buildup of soot aerosol could reduce the single scatter albedo of stratospheric aerosol from 0.993+0.004 to 0.98, a critical value that has been postulated to separate stratospheric cooling from warming. Thus arises an important question: Do aircraft emit sufficient amounts of soot to have detrimental effects and warrant emission controls? During the 1996 SUCCESS field campaign, we sampled aerosols in the exhaust wake of a Boeing 757 aircraft and determined emission indices for sulfuric acid (EI(sub H2SO4) = 9.0E-2 and 5.0E-1 g/kg (sub FUEL) for 75 and 675 ppm fuel-sulfur, respectively) and soot aerosol (2.2E-3 less than EI(sub SOOT) = l.lE-2 g/kg (sub FUEL)). The soot particle analysis accounted for their fractal nature, determined electron-microscopically, which enhanced the surface area by a factor of 26 and the volume 11-fold over equivalent-volume spheres. The corresponding fuel-sulfur to H2SO4 conversion efficiency was 10% (for 675 ppmm fuel-S) and 37% (for 75 ppmm fuel-S). Applying the H2SO4 emission index to the 1990 fuel use by the worlds commercial fleets of 1.3E11 kg, a conversion efficiency of 30% of 500 ppmm

  11. Solidification Technologies for Restoration of Sites Contaminated with Hazardous Wastes

    DTIC Science & Technology

    1998-01-01

    OR1 -5- 10-0 1 to DOE, Office of Technology Development. Kalb, P., J. Heiser, and P. Colombo, 1991. “ Modified Sulfur Cement Encapsulation of Mixed...Incinerator Ash Waste Encapsulated in Modified Sulfur Cement,” Brookhaven National Laboratory for US DOE Contract No DE-AC02-76CD000 16. Lin, S...wastes, 2 modified sulfur cement, 22,72 47,49,5 I , 53,55,57,59,61,63,65 obsidian, 35,36,38,39,40,32,43 organic binders, 7,25 organic polymer binders

  12. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Treesearch

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  13. Sulfur Solubility Testing and Characterization of LAW Phase 1 Matrix Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analysis results for a series of simulated low-activity waste (LAW) glass compositions. These data will be used in the development of improved sulfur solubility models for LAW glass. A procedure developed at Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of thismore » study.« less

  14. Elemental sulfur identified in urine of cheetah, Acinonyx jubatus.

    PubMed

    Burger, Ben V; Visser, Runine; Moses, Alvira; Le Roux, Maritha

    2006-06-01

    The urine of the cheetah, Acinonyx jubatus, is almost odorless, and probably for this reason, it has not attracted much attention from scientists. Using gas chromatography-mass spectrometry, we identified 27 and 37 constituents in the headspace vapor of the urine of male and female cheetah, respectively. These constituents, composed of hydrocarbons, short-chain ethers, aldehydes, saturated and unsaturated cyclic and acyclic ketones, 2-acetylfuran, dimethyl disulfide, dimethyl sulfone, phenol, myristic acid (tetradecanoic acid), urea, and elemental sulfur, are all present in the headspace vapor in very small quantities; dimethyl disulfide is present in such a low concentration that it cannot be detected by the human nose. This is only the second example of elemental sulfur being secreted or excreted by an animal. It is hypothesized that the conversion of sulfur-containing compounds in the cheetah's diet to elemental sulfur and to practically odorless dimethyl sulfone enables this carnivore to operate as if "invisible" to the olfactory world of its predators as well as its prey, which would increase its chances of survival.

  15. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STALLINGS, MARY

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the

  16. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin.

    PubMed

    Zabel, Robert; Weber, Günther

    2016-02-01

    Small sulfur-containing compounds are involved in several important biochemical processes, including-but not limited to-redox regulation and drug conjugation/detoxification. While methods for stable redox pairs of such compounds (thiols/disulfides) are available, analytical data on more labile and short-lived redox intermediates are scarce, due to highly challenging analytical requirements. In this study, we employ the direct combination of reagentless electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring oxidation reactions of cysteine, N-acetylcysteine, methionine, and glutathione under simulated physiological conditions (pH 7.4, 37 °C). For the first time, all theoretically expected redox intermediates-with only one exception-are detected simultaneously and in situ, including sulfenic, sulfinic, and sulfonic acids, disulfides, thiosulfinates, thiosulfonates, and sulfoxides. By monitoring the time/potential-dependent interconversion of sulfur species, mechanistic oxidation routes are confirmed and new reactions detected, e.g., sulfenamide formation due to reaction with ammonia from the buffer. Furthermore, our results demonstrate a highly significant impact of cisplatin on the redox reactivity of sulfur species. Namely, the amount of thiol oxidation to sulfonic acid via sulfenic and sulfinic acid intermediates is diminished for glutathione in the presence of cisplatin in favor of the disulfide formation, while for N-acetylcysteine the contrary applies. N-acetylcysteine is the only ligand which displays enhanced oxidation currents upon cisplatin addition, accompanied by increased levels of thiosulfinate and thiosulfonate species. This is traced back to thiol reactivity and highlights the important role of sulfenic acid intermediates, which may function as a switch between different oxidation routes.

  17. Simulated effects of sulfur deposition on nutrient cycling in class I wilderness areas

    Treesearch

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Dale W. Johnson; William T. Swank; William Jackson

    2008-01-01

    As a consequence of human land use, population growth, and industrialization, wilderness and other natural areas can be threatened by air pollution, climate change, and exotic diseases or pests. Air pollution in the form of acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from emissions of sulfur dioxide, nitrogen oxides, and ammonia....

  18. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  19. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without themore » formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.« less

  20. Transnitrosation of alicyclic N-nitrosamines containing a sulfur atom.

    PubMed

    Inami, Keiko; Kondo, Sonoe; Ono, Yuta; Saso, Chiharu; Mochizuki, Masataka

    2013-12-15

    Aromatic and aliphatic nitrosamines are known to transfer a nitrosonium ion to another amine. The transnitrosation of alicyclic N-nitroso compounds generates S-nitrosothiols, which are potential nitric oxide donors in vivo. In this study, certain alicyclic N-nitroso compounds based on non-mutagenic N-nitrosoproline or N-nitrosothioproline were synthesised, and the formation of S-nitrosoglutathione (GSNO) was quantified under acidic conditions. We then investigated the effect of a sulfur atom as the substituent and as a ring component on the GSNO formation. In the presence of thiourea under acidic conditions, GSNO was formed from N-nitrosoproline and glutathione, and an N-nitroso compound containing a sulfur atom and glutathione produced GSNO without thiourea. The quantity of GSNO derived from the reaction of the N-nitrosamines containing a sulfur atom and glutathione was higher than that from the N-nitrosoproline and glutathione plus thiourea. Among the analogues that contained a sulfur atom either in the ring or as a substituent, the thiazolidines produced a slightly higher quantity of GSNO than the analogue with a thioamide group. A compound containing sulfur atoms both in the ring and as a substituent exhibited the highest activity for GSNO formation among the alicyclic N-nitrosamines tested. The results indicate that the intramolecular sulfur atom plays an important role in the transnitrosation via alicyclic N-nitroso compounds to form GSNO. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Novel Cysteine-Centered Sulfur Metabolic Pathway in the Thermotolerant Methylotrophic Yeast Hansenula polymorpha

    PubMed Central

    Oh, Doo-Byoung; Kwon, Ohsuk; Lee, Sang Yup; Sibirny, Andriy A.; Kang, Hyun Ah

    2014-01-01

    In yeast and filamentous fungi, sulfide can be condensed either with O-acetylhomoserine to generate homocysteine, the precursor of methionine, or with O-acetylserine to directly generate cysteine. The resulting homocysteine and cysteine can be interconverted through transsulfuration pathway. Here, we systematically analyzed the sulfur metabolic pathway of the thermotolerant methylotrophic yeast Hansenula polymorpha, which has attracted much attention as an industrial yeast strain for various biotechnological applications. Quite interestingly, the detailed sulfur metabolic pathway of H. polymorpha, which was reconstructed based on combined analyses of the genome sequences and validation by systematic gene deletion experiments, revealed the absence of de novo synthesis of homocysteine from inorganic sulfur in this yeast. Thus, the direct biosynthesis of cysteine from sulfide is the only pathway of synthesizing sulfur amino acids from inorganic sulfur in H. polymorpha, despite the presence of both directions of transsulfuration pathway Moreover, only cysteine, but no other sulfur amino acid, was able to repress the expression of a subset of sulfur genes, suggesting its central and exclusive role in the control of H. polymorpha sulfur metabolism. 35S-Cys was more efficiently incorporated into intracellular sulfur compounds such as glutathione than 35S-Met in H. polymorpha, further supporting the cysteine-centered sulfur pathway. This is the first report on the novel features of H. polymorpha sulfur metabolic pathway, which are noticeably distinct from those of other yeast and filamentous fungal species. PMID:24959887

  2. Surface reaction modification: The effect of structured overlayers of sulfur on the kinetics and mechanism of the decomposition of formic acid on Pt(111)

    NASA Astrophysics Data System (ADS)

    Abbas, N.; Madix, R. J.

    The reaction of formic acid (DCOOH) on Pt(111), Pt(111)-(2×2)S and Pt(111)-(√3×√3)R30°S surfaces was examined by temperature programmed reaction spectroscopy. On the clean surface formic acid decomposed to yield primarily carbon dioxide and the hydrogenic species (H 2, HD and D 2) at low coverages. Although the formation of water and carbon monoxide via a dehydration reaction was observed at these coverages, the yield of these products was small when compared to the other products of reaction. The evolution of CO 2 at low temperature was ascribed to the decomposition of the formate intermediate. In the presence of sulfur the amount of molecularly adsorbed formic acid decreased up to a factor of three on the (√3×√3)R30°S surface, and a decline in the reactivity of over an order of magnitude was also observed. The only products formed were the hydrogenic species and carbon dioxide. The absence of carbon monoxide indicated that the dehydration pathway was blocked by sulfur. In addition to the low temperature CO 2 peak a high temperature CO 2-producing path was also evident. It was inferred from both the stoichiometry and the coincident evolution of D 2 and CO 2 in the high temperature states that these products also evolved due to the decomposition of the formate intermediate. On increasing the sulfur coverage to one-third monolayer this intermediate was further stabilized, and a predominance of the decomposition via the high temperature path was observed. Stability of the formate intermediate was attributed to inhibition of the decomposition reaction by sulfur atoms. The activation energy for formate decomposition increased from 15 kcal/gmole on the clean surface to 24.3 kcal/gmol on the (√3×√3)R30°S overlayer.

  3. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    PubMed

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  4. Elemental sulfur aerosol-forming mechanism

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Francisco, Joseph S.

    2017-01-01

    Elemental sulfur aerosols are ubiquitous in the atmospheres of Venus, ancient Earth, and Mars. There is now an evolving body of evidence suggesting that these aerosols have also played a role in the evolution of early life on Earth. However, the exact details of their formation mechanism remain an open question. The present theoretical calculations suggest a chemical mechanism that takes advantage of the interaction between sulfur oxides, SOn (n = 1, 2, 3) and hydrogen sulfide (nH2S), resulting in the efficient formation of a Sn+1 particle. Interestingly, the SOn + nH2S → Sn+1 + nH2O reactions occur via low-energy pathways under water or sulfuric acid catalysis. Once the Sn+1 particles are formed, they may further nucleate to form larger polysulfur aerosols, thus providing a chemical framework for understanding the formation mechanism of S0 aerosols in different environments.

  5. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition.

    PubMed

    Pandurangan, Sudhakar; Sandercock, Mark; Beyaert, Ronald; Conn, Kenneth L; Hou, Anfu; Marsolais, Frédéric

    2015-01-01

    It has been hypothesized that the relatively low concentration of sulfur amino acids in legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris) differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an enhanced concentration of cysteine and methionine, mostly at the expense of the abundant non-protein amino acid, S-methylcysteine. To identify potential effects associated with an increased concentration of sulfur amino acids in the protein pool, the response of the two genotypes to low and high sulfur nutrition was evaluated under controlled conditions. Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment in both genotypes. The concentration of total cysteine and extractible globulins was increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein 4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1 exhibited a slight increase in yield in response to sulfur treatment, typical for common bean.

  6. Open Access Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    USGS Publications Warehouse

    Ehlmann, Bethany L.; Swayze, Gregg A.; Milliken, Ralph E.; Mustard, John F.; Clark, Roger N.; Murchie, Scott L.; Breit, George N.; Wray, James J.; Gondet, Brigitte; Poulet, Francois; Carter, John; Calvin, Wendy M.; Benzel, William M.; Seelos, Kimberly D.

    2016-01-01

    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling

  7. Hydration of AN Acid Anhydride: the Water Complex of Acetic Sulfuric Anhydride

    NASA Astrophysics Data System (ADS)

    Smith, CJ; Huff, Anna; Mackenzie, Becca; Leopold, Ken

    2017-06-01

    The water complex of acetic sulfuric anhydride (ASA, CH_{3}COOSO_{2}OH) has been observed by pulsed nozzle Fourier transform microwave spectroscopy. ASA is formed in situ in the supersonic jet via the reaction of SO_{3} and acetic acid and subsequently forms a complex with water during the expansion. Spectra of the parent and fully deuterated form, as well as those of the species derived from CH_{3}^{13}COOH, have been observed. The fitted internal rotation barrier of the methyl group is 219.599(21), \\wn indicating the complexation with water lowers the internal rotation barrier of the methyl group by 9% relative to that of free ASA. The observed species is one of several isomers identified theoretically in which the water inserts into the intramolecular hydrogen bond of the ASA. Aspects of the intermolecular potential energy surface are discussed.

  8. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  9. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste

    PubMed Central

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-01-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis–sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m2 g−1, which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g−1 of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)–sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste. PMID:23939253

  10. The Plant Target of Rapamycin Kinase: A connecTOR between Sulfur and Growth.

    PubMed

    Forzani, Céline; Turqueto Duarte, Gustavo; Meyer, Christian

    2018-06-01

    Sulfur is an essential macronutrient for plants that is incorporated into sulfur-containing amino acids or metabolites crucial for plant growth and stress adaptation. A recent publication shows a connection between sulfur sensing, growth processes, and the conserved eukaryotic target of rapamycin (TOR) kinase signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    PubMed

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  12. Humic Acids Enhanced U(VI) Attenuation in Acidic Waste Plumes: An In-situ Remediation Approach

    NASA Astrophysics Data System (ADS)

    Wan, J.; Dong, W.; Tokunaga, T. K.

    2010-12-01

    In the process of extracting plutonium for nuclear weapons production during the Cold War, large volumes of acidic waste solutions containing low-level radionuclides were discharged for decades into unlined seepage basins in several US Department of Energy (DOE) weapon facilities such as the Savannah River Site (SRS), Oak Ridge (OR), and 300 Area of the Hanford Site. Although the basins have been capped and some sites have gone through many years of active remediation, groundwaters currently remain acidic with pH values as low as 3.0 near the basins, and uranium concentrations remain much higher than its maximum contaminant level (MCL). A sustainable U biogeochemical remediation method has not yet been developed, especially under acidic conditions (pH 3-5). Bioreduction-based U remediation requires permanent maintenance of reducing conditions through indefinite supply of electron donor, and when applied in acidic plumes a high-cost pretreatment procedure is required. Methods based on precipitation of phosphate minerals depend on maintenance of high P concentrations. Precipitating of uranyl vanadates can lower U to below its MCL, but this approach is only effective at near-neutral pH. There is an urgent need for developing a sustainable method to control U mobility in acidic conditions. In this paper, we propose a method of using humic acids (HAs) to attenuate contaminant U mobility in acidic waste plumes. Our laboratory experiment results show that HAs are able to strongly and quickly adsorb onto aquifer sediments from the DOE’s SRS and OR. With a moderate addition of HA, U adsorption increased to near 100% at pH below 5.0. Because U partitioning onto the HA modified mineral surfaces is so strong, U concentration in groundwaters can be sustainably reduced to below its MCL. We conducted flow through experiments for U desorption by acidic groundwater leaching at pH 3.5 and 4.5 from HA-treated SRS contaminated sediments. The results show that desorption of both U

  13. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  14. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. CHARACTERIZATION OF SULFUR CONTAINING ANALOGS OF MONOMETHYLARSONIC ACID IN AQUEOUS PHASE STANDARDS AND CARROT EXTRACTS BY IC-ICP-MS AND IC-ESI-MS/MS

    EPA Science Inventory

    Recently, sulfur analogs of well known arsenicals have been identified, generating a need for stable species-specific standards. This presentation will focus on the identification and characterization of a novel species, monomethylthioarsonic acid (MMTA), in carrots. A standard...

  16. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production.

    PubMed

    El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M

    2012-10-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained.

  17. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    PubMed Central

    El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.

    2012-01-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  18. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.

    PubMed

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea

    2011-10-19

    The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation

    PubMed Central

    El-Sayed, Ashraf S. A.; Yassin, Marwa A.; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway. PMID:26633307

  20. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    PubMed

    El-Sayed, Ashraf S A; Yassin, Marwa A; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  1. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Research on the Composition and Distribution of Organic Sulfur in Coal.

    PubMed

    Zhang, Lanjun; Li, Zenghua; Yang, Yongliang; Zhou, Yinbo; Li, Jinhu; Si, Leilei; Kong, Biao

    2016-05-13

    The structure and distribution of organic sulfur in coals of different rank and different sulfur content were studied by combining mild organic solvent extraction with XPS technology. The XPS results have shown that the distribution of organic sulfur in coal is related to the degree of metamorphism of coal. Namely, thiophenic sulfur content is reduced with decreasing metamorphic degree; sulfonic acid content rises with decreasing metamorphic degree; the contents of sulfate sulfur, sulfoxide and sulfone are rarely related with metamorphic degree. The solvent extraction and GC/MS test results have also shown that the composition and structure of free and soluble organic sulfur small molecules in coal is closely related to the metamorphic degree of coal. The free organic sulfur small molecules in coal of low metamorphic degree are mainly composed of aliphatic sulfides, while those in coal of medium and high metamorphic degree are mainly composed of thiophenes. Besides, the degree of aromatization of organic sulfur small molecules rises with increasing degree of coalification.

  3. 300 Area waste acid treatment system closure plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  4. UPLC-QTOF-MS/MS-guided isolation and purification of sulfur-containing derivatives from sulfur-fumigated edible herbs, a case study on ginseng.

    PubMed

    Zhang, Li; Shen, Hong; Xu, Jun; Xu, Jin-Di; Li, Zhen-Ling; Wu, Jie; Zou, Ye-Ting; Liu, Li-Fang; Li, Song-Lin

    2018-04-25

    In this study, a novel ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS/MS)-guidance strategy was proposed for preparation of sulfur-containing derivatives in sulfur-fumigated edible herbs. Being versatile in both chromatographic separation and mass spectrometric detection, UPLC-QTOF-MS/MS was inducted into each experimental step for multifaceted purposes including finding, tracking, purity determination and structural elucidation of targeted compounds as well as UPLC-HPLC chromatographic conditions transplantation, whereby the isolation and purification procedures were greatly facilitated. Using this strategy, a new sulfur-containing ginsenoside Rg 1 derivative (named compound I) was obtained from sulfur-fumigated ginseng. The chemical structure of compound I was elucidated to be (3β, 6α, 12β)-3, 12-dihydroxydammar-25-ene-6, 20-diylbis-β-d-glucopyranoside, 24-sulfonic acid by QTOF-MS/MS, 1 H-NMR and 13 C-NMR analysis, and its generation mechanisms by sulfur-fumigation were accordingly discussed. The research deliverable suggests that the UPLC-QTOF-MS/MS-guidance strategy is promising for targeted preparation of sulfur-containing derivatives from sulfur-fumigated edible herbs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development and testing of a PEM SO 2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    DOE PAGES

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; ...

    2015-09-02

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less

  6. Development and testing of a PEM SO 2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less

  7. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  8. Anaerobic digestion of tuna waste for the production of volatile fatty acids.

    PubMed

    Bermúdez-Penabad, Noela; Kennes, Christian; Veiga, Maria C

    2017-10-01

    Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCOD VFA /gCOD waste . At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Mogensen, D.; Yue, D. L.; Zheng, J.; Zhang, R. Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z. J.; Wiedensohler, A.; Boy, M.

    2013-11-01

    Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00-18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=Khet[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.

  10. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions.

    PubMed

    Baroni, Mélanie; Thiemens, Mark H; Delmas, Robert J; Savarino, Joël

    2007-01-05

    The observed mass-independent sulfur isotopic composition (Delta33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Delta33S changes over time from an initial positive component to a negative value. Delta33S is created during photochemical oxidation of sulfur dioxide to sulfuric acid on a monthly time scale, which indicates a fast process. The reproducibility of the results reveals that Delta33S is a reliable tracer to chemically identify atmospheric processes involved during stratospheric volcanism.

  11. Kinetics of Ni3S2 sulfide dissolution in solutions of sulfuric and hydrochloric acids

    NASA Astrophysics Data System (ADS)

    Palant, A. A.; Bryukvin, V. A.; Vinetskaya, T. N.; Makarenkova, T. A.

    2008-02-01

    The kinetics of Ni3S2 sulfide (heazlewoodite) dissolution in solutions of hydrochloric and sulfuric acids is studied. The process under study in the temperature range of 30 90°C is found to occur in a kinetic regime and is controlled by the corresponding chemical reactions of the Ni3S2 decomposition by solutions of inorganic acids ( E a = 67 92 kJ/mol, or 16 22 kcal/mol). The only exception is the Ni3S2-HCl system at elevated temperatures (60 90°C). In this case, the apparent activation energy decreases sharply to 8.8 kJ/mol (2.1 kcal/mol), which is explained by the catalytic effect of gaseous chlorine formed under these conditions. The studies performed are related to the physicochemical substantiation of the hydrometallurgical processing of the copper-nickel converter mattes produced in the industrial cycle of the Norilsk Mining Company.

  12. Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers.

    PubMed

    Mattiello, Edson M; da Silva, Rodrigo C; Degryse, Fien; Baird, Roslyn; Gupta, Vadakattu V S R; McLaughlin, Michael J

    2017-02-15

    Acidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated. Four granulated ES-Zn fertilizers with and without S-oxidizing microorganisms, a commercial ES pastille, ZnSO 4 , and ZnO were applied to the center of Petri dishes containing two contrasting pH soils. Soil pH, CaCl 2 -extractable S and Zn, and remaining ES were evaluated at 30 and 60 days in two soil sections (0-5 and 5-9 mm from the fertilizer application site). A visualization test was performed to evaluate Zn diffusion over time. A significant pH decrease was observed in the acidic soil for all ES-Zn fertilizer treatments and in the alkaline soil for the Acidithiobacillus thiooxidans-inoculated treatment only. In agreement with Zn visualization tests, extractable-Zn concentrations were higher from the point of application in the acidic (62.9 mg dm -3 ) compared to the alkaline soil (5.5 mg dm -3 ). Elemental S oxidation was greater in the acidic soil (20.9%) than slightly alkaline soil (12%). The ES-Zn granular fertilizers increased S and Zn concentrations in soil and can provide a strategically slow release of nutrients to the soil.

  13. Sulfur 'Concrete' for Lunar Applications - Environmental Considerations

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. For the purpose of this Technical Memorandum, it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, bricks. With this stipulation, it is then noted that the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. The work presented here evaluates two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar simulant as an aggregate addition. One set was subjected to extended periods in high vacuum to evaluate sublimation issues, and the other was cycled between room and liquid nitrogen temperatures to investigate their subsequent mechanical integrity. Results are presented from both investigations, discussed, and put into the context of the lunar environment.

  14. Influence of sulfur oxidation state and steric bulk upon trifluoromethyl ketone (TFK) binding kinetics to carboxylesterases and fatty acid amide hydrolase (FAAH)

    PubMed Central

    Wheelock, Craig E.; Nishi, Kosuke; Ying, Andy; Jones, Paul D.; Colvin, Michael E.; Olmstead, Marilyn M.; Hammock, Bruce D.

    2009-01-01

    Carboxylesterases metabolize numerous exogenous and endogenous ester-containing compounds including the chemotherapeutic agent CPT-11, anti-influenza viral agent oseltamivir and many agrochemicals. Trifluoromethyl ketone (TFK)-containing compounds with a sulfur atom beta to the ketone moiety are some of the most potent carboxylesterase and amidase inhibitors identified to date. This study examined the effects of alkyl chain length (i.e., steric effects) and sulfur oxidation state upon TFK inhibitor potency (IC50) and binding kinetics (ki). The selective carboxylesterase inhibitor benzil was used as a non-TFK containing control. These effects were examined using two commercial esterases (porcine and rabbit liver esterase) and two human recombinant esterases (hCE-1 and hCE-2) as well as human recombinant fatty acid amide hydrolase (FAAH). In addition, the inhibition mechanism was examined using a combination of 1H NMR, X-ray crystallography and ab initio calculations. Overall, the data show that while sulfur oxidation state profoundly affects both inhibitor potency and binding kinetics, the steric effects dominate and override the contributions of sulfur oxidation. In addition, the data suggest that inclusion of a sulfur atom beta to the ketone contributes an increase (~5-fold) in inhibitor potency due to effects upon ketone hydration and/or intramolecular hydrogen bond formation. These results provide further information on the nature of the TFK binding interaction and will be useful in increasing our understanding of this basic biochemical process. PMID:18023188

  15. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  16. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2018-01-01

    The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (∼200 °C). Smectites were analyzed by X-ray diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ∼3 and trioctahedral smectite saponite at final pH ∼4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model

  17. Single-bubble sonoluminescence in sulfuric acid and water: bubble dynamics, stability, and continuous spectra.

    PubMed

    Puente, Gabriela F; García-Martínez, Pablo; Bonetto, Fabián J

    2007-01-01

    We present theoretical calculations of an argon bubble in a liquid solution of 85%wt sulfuric acid and 15%wt water in single-bubble sonoluminescence. We used a model without free parameters to be adjusted. We predict from first principles the region in parameter space for stable bubble evolution, the temporal evolution of the bubble radius, the maximum temperature, pressures, and the light spectra due to thermal emissions. We also used a partial differential equation based model (hydrocode) to compute the temperature and pressure evolutions at the center of the bubble during maximum compression. We found the behavior of this liquid mixture to be very different from water in several aspects. Most of the models in sonoluminescence were compared with water experimental results.

  18. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  19. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate.

    PubMed

    Porvali, Antti; Wilson, Benjamin P; Lundström, Mari

    2018-01-01

    In NiMH battery leaching, rare earth element (REE) precipitation from sulfate media is often reported as being a result of increasing pH of the pregnant leach solution (PLS). Here we demonstrate that this precipitation is a phenomenon that depends on both Na + and SO 4 2- concentrations and not solely on pH. A two-stage leaching for industrially crushed NiMH waste is performed: The first stage consists of H 2 SO 4 leaching (2 M H 2 SO 4 , L/S = 10.4, V = 104 ml, T = 30 °C) and the second stage of H 2 O leaching (V = 100 ml, T = 25 °C). Moreover, precipitation experiments are separately performed as a function of added Na 2 SO 4 and H 2 SO 4 . During the precipitation, higher than stoichiometric quantities of Na to REE are utilized and this increase in both precipitation reagent concentrations results in an improved double sulfate precipitation efficiency. The best REE precipitation efficiencies (98-99%) - achieved by increasing concentrations of H 2 SO 4 and Na 2 SO 4 by 1.59 M and 0.35 M, respectively - results in a 21.8 times Na (as Na 2 SO 4 ) and 58.3 times SO 4 change in stoichiometric ratio to REE. Results strongly indicate a straightforward approach for REE recovery from NiMH battery waste without the need to increase the pH of PLS. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    DOEpatents

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  1. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-06-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  2. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-03-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  3. Role of Cystathionine β-Lyase in Catabolism of Amino Acids to Sulfur Volatiles by Genetic Variants of Lactobacillus helveticus CNRZ 32▿

    PubMed Central

    Lee, Won-Jae; Banavara, Dattatreya S.; Hughes, Joanne E.; Christiansen, Jason K.; Steele, James L.; Broadbent, Jeffery R.; Rankin, Scott A.

    2007-01-01

    Catabolism of sulfur-containing amino acids plays an important role in the development of cheese flavor. During ripening, cystathionine β-lyase (CBL) is believed to contribute to the formation of volatile sulfur compounds (VSCs) such as methanethiol and dimethyl disulfide. However, the role of CBL in the generation of VSCs from the catabolism of specific sulfur-containing amino acids is not well characterized. The objective of this study was to investigate the role of CBL in VSC formation by Lactobacillus helveticus CNRZ 32 using genetic variants of L. helveticus CNRZ 32 including the CBL-null mutant, complementation of the CBL-null mutant, and the CBL overexpression mutant. The formation of VSCs from methionine, cystathionine, and cysteine was determined in a model system using gas chromatography-mass spectrometry with solid-phase microextraction. With methionine as a substrate, CBL overexpression resulted in higher VSC production than that of wild-type L. helveticus CNRZ 32 or the CBL-null mutant. However, there were no differences in VSC production between the wild type and the CBL-null mutant. With cystathionine, methanethiol production was detected from the CBL overexpression variant and complementation of the CBL-null mutant, implying that CBL may be involved in the conversion of cystathionine to methanethiol. With cysteine, no differences in VSC formation were observed between the wild type and genetic variants, indicating that CBL does not contribute to the conversion of cysteine. PMID:17337535

  4. Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Paleska, I.; Pruszkowska-Drachal, R.; Kotowski, J.; Dziudzi, A.; Milewski, J. D.; Kopczyk, M.; Czerwiński, A.

    The electrochemical behavior of lead, lead-antimony, and lead-calcium-aluminium-tin alloys has been studied in solutions containing various concentrations of sulfuric and phosphoric acids. The dependence of these electrode processes on some experimental conditions (mainly sweep rate and potential range) has been studied. The measurements were performed using a cyclic voltammetry technique. The study and the analysis of the morphology of alloys have been performed using a scanning electron microscope (SEM). Cyclic voltammograms of the lead-antimony alloy electrodes, similarly to pure lead electrode, also show the "anodic excursion" peak under some experimental conditions. Well defined current waves, corresponding to the oxidation and reduction processes of Sb, are observed, if the alloy surface is freshly abraded. The oxidation of antimony starts at potentials at which the formation of PbO takes place. The peak current of Sb oxidation reaction decreases during successive cycles, suggesting that Sb dissolves from the alloy surface during the first CV sweeps. Another explanation for this effect might be the formation of a PbSO 4 selective membrane.

  5. Acid-Alkali Resistance of New Reclaimed Tiles Containing Sewage Sludge Ash and Waste Glass

    PubMed Central

    Lin, Deng-Fong; Lin, Kuo-Liang; Luo, Huan-Lin; Xu, Jia-Qin

    2016-01-01

    In this study, properties of newly developed reclaimed tiles in a harmful environment were investigated. A portion of clay used to manufacture tiles was replaced with sewage sludge ash (SSA) and waste glass to produce the new reclaimed tiles. To investigate the effects of SSA and waste glass on the properties of the tiles, different specimens were blended and placed in acid-alkali solutions. The reclaimed tile specimens were manufactured by clay, 10% SSA, and five different mixes of waste glass replacement, namely, 0%, 10%, 20%, 40%, and 60%. These specimens were calcined at 1000 °C and subsequently underwent a series of tests, including TGA/DTA (thermogravimetric analysis/differential thermal analysis), SEM (scanning electron microscopy), XRD (X-ray diffraction), bending strength, weight loss, and porosity. Test results show that shortcomings associated with the introduction of the sludge ash were improved by the admixture of waste glass, especially in the aspects of shrinkage and bending strength. The study showed that the new reclaimed tiles performed relatively well in acid-alkali resistance tests but appeared to have better alkali resistance than acid resistance. It was also found that the optimal mix of such reclaimed tiles was 10% SSA, 10% waste glass, and 80% clay. PMID:28773668

  6. Sulfur in human nutrition and applications in medicine.

    PubMed

    Parcell, Stephen

    2002-02-01

    Because the role of elemental sulfur in human nutrition has not been studied extensively, it is the purpose of this article to emphasize the importance of this element in humans and discuss the therapeutic applications of sulfur compounds in medicine. Sulfur is the sixth most abundant macromineral in breast milk and the third most abundant mineral based on percentage of total body weight. The sulfur-containing amino acids (SAAs) are methionine, cysteine, cystine, homocysteine, homocystine, and taurine. Dietary SAA analysis and protein supplementation may be indicated for vegan athletes, children, or patients with HIV, because of an increased risk for SAA deficiency in these groups. Methylsulfonylmethane (MSM), a volatile component in the sulfur cycle, is another source of sulfur found in the human diet. Increases in serum sulfate may explain some of the therapeutic effects of MSM, DMSO, and glucosamine sulfate. Organic sulfur, as SAAs, can be used to increase synthesis of S-adenosylmethionine (SAMe), glutathione (GSH), taurine, and N-acetylcysteine (NAC). MSM may be effective for the treatment of allergy, pain syndromes, athletic injuries, and bladder disorders. Other sulfur compounds such as SAMe, dimethylsulfoxide (DMSO), taurine, glucosamine or chondroitin sulfate, and reduced glutathione may also have clinical applications in the treatment of a number of conditions such as depression, fibromyalgia, arthritis, interstitial cystitis, athletic injuries, congestive heart failure, diabetes, cancer, and AIDS. Dosages, mechanisms of action, and rationales for use are discussed. The low toxicological profiles of these sulfur compounds, combined with promising therapeutic effects, warrant continued human clinical trails.

  7. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions.

  8. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.

    PubMed

    Birloaga, Ionela; Coman, Vasile; Kopacek, Bernd; Vegliò, Francesco

    2014-12-01

    This study refers to two chemical leaching systems for the base and precious metals extraction from waste printed circuit boards (WPCBs); sulfuric acid with hydrogen peroxide have been used for the first group of metals, meantime thiourea with the ferric ion in sulfuric acid medium were employed for the second one. The cementation process with zinc, copper and iron metal powders was attempted for solutions purification. The effects of hydrogen peroxide volume in rapport with sulfuric acid concentration and temperature were evaluated for oxidative leaching process. 2M H2SO4 (98% w/v), 5% H2O2, 25 °C, 1/10 S/L ratio and 200 rpm were founded as optimal conditions for Cu extraction. Thiourea acid leaching process, performed on the solid filtrate obtained after three oxidative leaching steps, was carried out with 20 g/L of CS(NH2)2, 6g/L of Fe(3+), 0.5M H2SO4, The cross-leaching method was applied by reusing of thiourea liquid suspension and immersing 5 g/L of this reagent for each other experiment material of leaching. This procedure has lead to the doubling and, respectively, tripling, of gold and silver concentrations into solution. These results reveal a very efficient, promising and environmental friendly method for WPCBs processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    PubMed

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (<10%). This was due to the highly acid-consuming nature of the battery waste. Multistage leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Sulfur-containing constituents and one 1H-pyrrole-2-carboxylic acid derivative from pineapple [Ananas comosus (L.) Merr.] fruit.

    PubMed

    Zheng, Zong-Ping; Ma, Jinyu; Cheng, Ka-Wing; Chao, Jianfei; Zhu, Qin; Chang, Raymond Chuen-Chung; Zhao, Ming; Lin, Zhi-Xiu; Wang, Mingfu

    2010-12-01

    Two sulfur-containing compounds, (S)-2-amino-5-((R)-1-carboxy-2-((E)-3-(4-hydroxy-3-methoxyphenyl)allylthio)ethyl-amino)-5-oxopentanoic acid (1) and (S)-2-amino-5-((R)-1-(carboxymethylamino)-3-((E)-3-(4-hydroxyphenyl)allylthio)-1-oxopropan-2-ylamino)-5-oxopentanoic acid (2), and one 1H-pyrrole-2-carboxylic acid derivative, 6-(3-(1H-pyrrole-2-carbonyloxy)-2-hydroxypropoxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-carboxylic acid (3), together with eighteen known phenolic compounds, were isolated from the fruits of pineapple. Their structures were elucidated by a combination of spectroscopic analyses. Some of these compounds showed inhibitory activities against tyrosinase. The half maximal inhibitory concentration values of compounds 1, 4, 5, 6, 7 are lower than 1 mM. These compounds may contribute to the well-known anti-browning effect of pineapple juice and be potential skin whitening agents in cosmetic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  12. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  13. Glycolic acid physical properties and impurities assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Pickenheim, B. R.; Bibler, N. E.

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment tomore » meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  14. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park.

    PubMed

    Macur, R E; Jay, Z J; Taylor, W P; Kozubal, M A; Kocar, B D; Inskeep, W P

    2013-01-01

    Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments. © 2012 Blackwell Publishing Ltd.

  15. Photochemical Formation of Sulfur-Containing Aerosols

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2017-06-01

    In order to understand planetary climate systems, modeling the properties of atmospheric aerosols is vital. Aerosol formation plays an important role in planetary climates and is tied to feedback loops that can either warm or cool a planet. Sulfur compounds are known to play an important role in new particle aerosol formation and have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere; however, several discrepancies arise when comparing observations of the Venusian atmosphere with model predictions. This suggests that there are still problems in our fundamental understanding of sulfur chemistry. This is concerning given recent renewed interest in sulfate injections in the stratosphere for solar radiation management geo-engineering schemes. We investigate the role of sunlight as a potential driver of the formation of sulfur-containing aerosols. I will present recent work investigating the generation of large quantities of aerosol from the irradiation of mixtures of SO_2 with water and organic species, using a solar simulator that mimics the light that is available in the Earth's troposphere and the Venusian middle atmosphere. I will present on recent work done in our lab suggesting the formation of sulfurous acid, H_2SO_3, and describe experimental work that supports this proposed mechanism. Additionally I will present on new work showing the highly reactive nature of electronically excited SO_2 with saturated alkane species. The implications of this photochemically induced sulfur aerosol formation in the atmosphere of Earth and other planetary atmospheres will be discussed.

  16. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF ratesmore » spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 10 5 and 1 × 10 9cm -3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximumof ~1400 parts per trillion by volume (pptv).We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm -3 s -1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH 3 levels. In conclusion, we compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.« less

  17. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    DOE PAGES

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; ...

    2016-10-27

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF ratesmore » spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 10 5 and 1 × 10 9cm -3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximumof ~1400 parts per trillion by volume (pptv).We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm -3 s -1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH 3 levels. In conclusion, we compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.« less

  18. Online air analysis of reduced sulfur compounds at a swine facility

    USDA-ARS?s Scientific Manuscript database

    Reduced sulfur compounds are emitted from waste management handling and can be important in odor production and atmospheric chemistry. Data on the emissions of these compounds have been obtained using off-line sampling and analysis methods, but on-line methods providing information on temporal chang...

  19. 40 CFR 372.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., roasters, and foundry furnaces). (8) Titanium dioxide chloride process oxidation reactors. (9) Methane... sulfur values from spent sulfuric acid. (12) Halogen acid furnaces (HAFs) for the production of acid from halogenated hazardous waste generated by chemical production facilities where the furnace is located on the...

  20. 40 CFR 372.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., roasters, and foundry furnaces). (8) Titanium dioxide chloride process oxidation reactors. (9) Methane... sulfur values from spent sulfuric acid. (12) Halogen acid furnaces (HAFs) for the production of acid from halogenated hazardous waste generated by chemical production facilities where the furnace is located on the...

  1. Marine bacteria from the Roseobacter clade produce sulfur volatiles via amino acid and dimethylsulfoniopropionate catabolism.

    PubMed

    Brock, Nelson L; Menke, Markus; Klapschinski, Tim A; Dickschat, Jeroen S

    2014-07-07

    Dimethylsulfoniopropionate (DMSP) is a versatile sulfur source for the production of sulfur-containing secondary metabolites by marine bacteria from the Roseobacter clade. (34)S-labelled DMSP and cysteine, and several DMSP derivatives with modified S-alkyl groups were synthesised and used in feeding experiments that gave insights into the biosynthesis of sulfur volatiles from these bacteria.

  2. 21 CFR 186.1093 - Sulfamic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sulfamic acid. 186.1093 Section 186.1093 Food and... Substances Affirmed as GRAS § 186.1093 Sulfamic acid. (a) Sulfamic acid (H3NO3S, CAS Reg. No. 5329-14-6) is a white crystalline solid manufactured from urea, sulfur trioxide, and sulfuric acid. It is soluble and...

  3. Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-09-01

    Hydrothermal acid treatment, was adopted to extract eicosapentaenoic acid (EPA) from wet biomass of Nannochloropsis salina. It was found that sulfuric acid-based treatment increased EPA yield from 11.8 to 58.1 mg/g cell in a way that was nearly proportional to its concentration. Nitric acid exhibited the same pattern at low concentrations, but unlike sulfuric acid its effectiveness unexpectedly dropped from 0.5% to 2.0%. The optimal and minimal conditions for hydrothermal acid pretreatment were determined using a statistical approach; its maximum EPA yield (predicted: 43.69 mg/g cell; experimental: 43.93 mg/g cell) was established at a condition of 1.27% of sulfuric acid, 113.34 °C of temperature, and 36.71 min of reaction time. Our work demonstrated that the acid-catalyzed cell disruption, accompanied by heat, can be one potentially promising option for ω-3 fatty acids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Impact of supplementation with amino acids or their metabolites on muscle wasting in patients with critical illness or other muscle wasting illness: a systematic review.

    PubMed

    Wandrag, L; Brett, S J; Frost, G; Hickson, M

    2015-08-01

    Muscle wasting during critical illness impairs recovery. Dietary strategies to minimise wasting include nutritional supplements, particularly essential amino acids. We reviewed the evidence on enteral supplementation with amino acids or their metabolites in the critically ill and in muscle wasting illness with similarities to critical illness, aiming to assess whether this intervention could limit muscle wasting in vulnerable patient groups. Citation databases, including MEDLINE, Web of Knowledge, EMBASE, the meta-register of controlled trials and the Cochrane Collaboration library, were searched for articles from 1950 to 2013. Search terms included 'critical illness', 'muscle wasting', 'amino acid supplementation', 'chronic obstructive pulmonary disease', 'chronic heart failure', 'sarcopenia' and 'disuse atrophy'. Reviews, observational studies, sport nutrition, intravenous supplementation and studies in children were excluded. One hundred and eighty studies were assessed for eligibility and 158 were excluded. Twenty-two studies were graded according to standardised criteria using the GRADE methodology: four in critical care populations, and 18 from other clinically relevant areas. Methodologies, interventions and outcome measures used were highly heterogeneous and meta-analysis was not appropriate. Methodology and quality of studies were too varied to draw any firm conclusion. Dietary manipulation with leucine enriched essential amino acids (EAA), β-hydroxy-β-methylbutyrate and creatine warrant further investigation in critical care; EAA has demonstrated improvements in body composition and nutritional status in other groups with muscle wasting illness. High-quality research is required in critical care before treatment recommendations can be made. © 2014 The British Dietetic Association Ltd.

  5. Sulfur and Nitrogen Deposition on Ecosystems in the United States

    EPA Science Inventory

    The ecological impacts of atmospheric sulfur and nitrogen deposition first gained attention in the United States in the early 1970s with reports of "acid rain" falling to earth, causing lakes and streams to become acidic and resulting in conditions that were unsuitable for repro...

  6. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Colombo, Peter; Kalb, Paul D.; Heiser, III, John H.

    1997-11-14

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  7. Microwave absorptivity by sulfuric acid in the Venus atmosphere derived from the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Oschlisniok, J.; Pätzold, M.; Häusler, B.; Tellmann, S.; Bird, M.; Andert, T.; Remus, S.; Krüger, C.; Mattei, R.

    2011-10-01

    Earth's nearest planetary neighbour Venus is shrouded within a roughly 22 km thick three-layered cloud deck, which is located approximately 48 km above the surface and extends to an altitude of about 70 km. The clouds are mostly composed of sulfuric acid. The latter is responsible for a strong absorption of radio signals at microwaves, which is observed in radio occultation experiments. The absorption of the radio signal intensity is used to determine the abundance of H2SO4. This way a detailed study of the H2SO4 height distribution within the cloud deck is possible. The Venus Express spacecraft is orbiting Venus since 2006. The Radio Science Experiment VeRa onboard probes the atmosphere with radio signals at 3.4 cm (X-Band) and 13 cm (S-Band). Absorptivity profiles of the 3.4 cm radio wave and the resulting vertical sulfuric acid profiles in the cloud region of Venus' atmosphere are presented. The three-layered structure and a distinct latitudinal variation of H2SO4 are observed. Convective atmospheric motions within the equatorial latitudes, which transport absorbing material from lower to higher altitudes, are clearly visible. Results of the Venus Monitoring Camera (VMC) and the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) are compared with the VeRa results.

  8. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    PubMed

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  9. Ion chromatographic determination of sulfur in fuels

    NASA Technical Reports Server (NTRS)

    Mizisin, C. S.; Kuivinen, D. E.; Otterson, D. A.

    1978-01-01

    The sulfur content of fuels was determined using an ion chromatograph to measure the sulfate produced by a modified Parr bomb oxidation. Standard Reference Materials from the National Bureau of Standards, of approximately 0.2 + or - 0.004% sulfur, were analyzed resulting in a standard deviation no greater than 0.008. The ion chromatographic method can be applied to conventional fuels as well as shale-oil derived fuels. Other acid forming elements, such as fluorine, chlorine and nitrogen could be determined at the same time, provided that these elements have reached a suitable ionic state during the oxidation of the fuel.

  10. Physicochemical and in vitro antioxidant properties of pectin extracted from hot pepper (Capsicum annuum L. var. acuminatum (Fingerh.)) residues with hydrochloric and sulfuric acids.

    PubMed

    Xu, Honggao; Tai, Kedong; Wei, Tong; Yuan, Fang; Gao, Yanxiang

    2017-11-01

    Transformation of hot pepper residues to value-added products with concomitant benefits on environmental pollution would be of great value to capsicum oleoresin manufacturers. Pectin, a soluble dietary fiber with multiple functions, from hot pepper residues was investigated in this study. The extraction of hot pepper pectin using hydrochloric acid was first optimized using response surface methodology (RSM). The most efficient parameters for maximum hot pepper pectin yield (14.63%, dry basis) were a pH of 1.0, a temperature of 90 °C, an extraction time of 2 h and a liquid-to-solid ratio of 20 L g -1 . The pectin was mainly composed of uronic acids, and the major neutral sugars were galactose and glucose. The structure of hot pepper pectin was characterized by homogalacturonan and rhamnogalacturonan I elements. The physicochemical properties of hot pepper pectin extracted by sulfuric acid and hydrochloric acid were further investigated. The content of protein and degree of esterification in hot pepper pectin extracted with sulfuric acid solution (SP) were higher (P < 0.05) than those in that extracted with hydrochloric acid solution (HP), while the mean molecular weight of SP was lower than that of HP. Compared with HP, SP exhibited higher viscosity and better emulsifying property. Based on the yield and physicochemical properties of hot pepper pectin, hot pepper residues would be a new source to obtain pectin, and SP would be more preferred than HP. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Degradation of carbohydrates during dilute sulfuric acid pretreatment can interfere with lignin measurements in solid residues.

    PubMed

    Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F

    2013-04-03

    The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.

  12. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  13. Sulfuric acid/hydrogen peroxide digestion and colorimetric a collaborative study.

    PubMed

    Christians, D K; Aspelund, T G; Brayton, S V; Roberts, L L

    1991-01-01

    Seven laboratories participated in a collaborative study of a method for determination of phosphorus in meat and meat products. Samples are digested in sulfuric acid and hydrogen peroxide; digestion is complete in approximately 10 min. Phosphorus is determined by colorimetric analysis of a dilute aliquot of the sample digest. The collaborators analyzed 3 sets of blind duplicate samples from each of 6 classes of meat (U.S. Department of Agriculture classifications): smoked ham, water-added ham, canned ham, pork sausage, cooked sausage, and hamburger. The calibration curve was linear over the range of standard solutions prepared (phosphorus levels from 0.05 to 1.00%); levels in the collaborative study samples ranged from 0.10 to 0.30%. Standard deviations for repeatability (sr) and reproducibility (SR) ranged from 0.004 to 0.012 and 0.007 to 0.014, respectively. Corresponding relative standard deviations (RSDr and RSDR, respectively) ranged from 1.70 to 7.28% and 3.50 to 9.87%. Six laboratories analyzed samples by both the proposed method and AOAC method 24.016 (14th Ed.). One laboratory reported results by the proposed method only. Statistical evaluations indicated no significant difference between the 2 methods. The method has been adopted official first action by AOAC.

  14. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes

    NASA Astrophysics Data System (ADS)

    McDermott, Jill M.; Ono, Shuhei; Tivey, Margaret K.; Seewald, Jeffrey S.; Shanks, Wayne C.; Solow, Andrew R.

    2015-07-01

    disproportionation is an additional process that contributes sulfur to a different back-arc system and to acid spring-type hydrothermal fluid circulation. At the sedimented Guaymus Basin, near-zero Δ33S values are also observed, despite negative δ34S values that indicate inputs of biogenic pyrite for some samples. In contrast with previous studies reporting isotope disequilibrium between H2S and chalcopyrite, the δ34S values of chalcopyrite sampled from the inner 1-2 mm of a chimney wall are within ±1‰ of δ34S values for H2S in the paired vent fluid, suggesting equilibrium fluid-mineral sulfur isotope exchange at 300-400 °C. Isotopic equilibrium between hydrothermal fluid H2S and precipitating chalcopyrite implies that sulfur isotopes in the chalcopyrite lining across a chimney wall may accurately record past hydrothermal activity.

  15. Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Suo; Liu, Songhang; Zhang, Jianqiu; Wang, Yong

    2015-10-01

    Environmental pollution and energy deficiency are two key issues for the sustainable development of the modern society. Polyurethane foam is a typical commercial polymer with a large production quantity and its waste needs to be recycled. Lithium-sulfur battery is a promising energy-storage device with high energy density and low cost, but its demerits such as poor conductivity of the sulfur and severe capacity degradation due to the soluble lithium polysulfides are still a big challenge. This work reports a facile method to prepare nitrogen-doped porous carbon (NPC) from the polyurethane foam (PUF) waste and use it as a reservoir to impregnate sulfur for lithium-sulfur batteries. The obtained NPC has a unique interconnected sheet-like porous morphology with a large surface area of 1315 m2 g-1. The NPC-S composite delivers a large reversible capacity of 1118 mAh g-1 with good cycling performances and excellent high-rate capabilities. A large reversible capacity of 460 mAh g-1 can be retained at a large current of 5C (8.35 A g-1) after 100 cycles.

  16. Influence of Pb 2+ ions in the H 2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.

    The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.

  17. The use of elemental sulfur as an alternative feedstock for polymeric materials

    NASA Astrophysics Data System (ADS)

    Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae; Yoon, Hyunsik; Simmonds, Adam G.; Ji, Hyun Jun; Dirlam, Philip T.; Glass, Richard S.; Wie, Jeong Jae; Nguyen, Ngoc A.; Guralnick, Brett W.; Park, Jungjin; Somogyi, Árpád; Theato, Patrick; Mackay, Michael E.; Sung, Yung-Eun; Char, Kookheon; Pyun, Jeffrey

    2013-06-01

    An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed ‘inverse vulcanization’) to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g-1 at 100 cycles) and enhanced capacity retention.

  18. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region.

    PubMed

    Liu, Xin; Zhang, Bo; Zhao, Wenrui; Wang, Ling; Xie, Dejin; Huo, Wentong; Wu, Yanwen; Zhang, Jinchi

    2017-12-01

    Acid rain is mainly caused by dissolution of sulfur dioxide and nitrogen oxides in the atmosphere, and has a significant negative effect on ecosystems. The relative composition of acid rain is changing gradually from sulfuric acid rain (SAR) to nitric acid rain (NAR) with the rapidly growing amount of nitrogen deposition. In this study, we investigated the impact of simulated SAR and NAR on litter decomposition and the soil microbial community over four seasons since March 2015. Results first showed that the effects of acid rain on litter decomposition and soil microbial were positive in the early period of the experiment, except for SAR on soil microbes. Second, soil pH with NAR decreased more rapidly with the amount of acid rain increased in summer than with SAR treatments. Only strongly acid rain (both SAR and NAR) was capable of depressing litter decomposition and its inhibitory effect was stronger on leaf than on fine root litter. Meanwhile, NAR had a higher inhibitory effect on litter decomposition than SAR. Third, in summer, autumn and winter, PLFAs were negatively impacted by the increased acidity level resulting from both SAR and NAR. However, higher acidity level of NAR (pH=2.5) had the strongest inhibitory impact on soil microbial activity, especially in summer. In addition, Gram-negative bacteria (cy19:0) and fungi (18:1ω9) were more sensitive to both SAR and NAR, and actinomycetes was more sensitive to SAR intensity. Finally, soil total carbon, total nitrogen and pH were the most important soil property factors affecting soil microbial activity, and high microbial indices (fungi/bacteria) with high soil pH. Our results suggest that the ratio of SO 4 2- to NO 3 - in acid rain is an important factor which could affect litter decomposition and soil microbial in subtropical forest of China. Copyright © 2017. Published by Elsevier B.V.

  19. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling.

    PubMed

    Ye, Tingting; Li, Xiang; Zhang, Ting; Su, Yinglong; Zhang, Wenjuan; Li, Jun; Gan, Yanfei; Zhang, Ai; Liu, Yanan; Xue, Gang

    2018-06-01

    Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu 2+ /g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu 2+ /g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOEpatents

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  1. Sulfur reduction in sediments of marine and evaporite environments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.; Boston, P.; Francois, R.; Gyure, R. A.; Javor, B.; Tribble, G.; Vairavamurthy, A.

    1985-01-01

    Transformations of sulfur in sediments of ponds ranging in salinities from that of normal seawater to those of brines saturated with sodium chloride were examined. The chemistry of the sediment and pore waters were focused on with emphasis on the fate of sulfate reduction. The effects of increasing salinity on both forms of sulfur and microbial activity were determined. A unique set of chemical profiles and sulfate-reducing activity was found for the sediments of each of the sites examined. The quantity of organic matter in the salt pond sediments was significantly greater than that occurring in the adjacent intertidal site. The total quantitative and qualitative distribution of volatile fatty acids was also greater in the salt ponds. Volatile fatty acids increased with salinity.

  2. Development of a universal solvent for the decontamination of acidic liquid radioactive wastes

    NASA Astrophysics Data System (ADS)

    Todd, T. A.; Brewer, K. N.; Law, J. D.; Wood, D. J.; Herbest, R. S.; Romanovskiy, V. N.; Esimantovskiy, V. M.; Smirnov, I. V.; Babain, V. A.

    1999-01-01

    A teritiary solvent containing chlorinated cobalt dicarbollide, polyethylene glycol and diphenylcarbamoylmethylphosphine oxide was evaluated in different non-nitroaromatic diluents for the separation of cesium, strontium, actinides and rare earth elements from acidic liquid radioactive waste. Decontamination factors of >95% for Cs, 99.7% for Sr, and 99.99% for actinides were achieved in four successive batch contacts using actual radioactive waste. Pilot plant testing in centrifugal contactors using simulated wastes, has demonstrated removal of >99% of all targeted ions.

  3. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE PAGES

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla; ...

    2016-01-13

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H 2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H 2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilizationmore » systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  4. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland.

    PubMed

    Susanti, Dwi; Johnson, Eric F; Lapidus, Alla; Han, James; Reddy, T B K; Pilay, Manoj; Ivanova, Natalia N; Markowitz, Victor M; Woyke, Tanja; Kyrpides, Nikos C; Mukhopadhyay, Biswarup

    2016-01-01

    This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.

  5. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H 2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H 2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilizationmore » systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  6. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.

    PubMed

    Guo, Juchen; Xu, Yunhua; Wang, Chunsheng

    2011-10-12

    The commercialization of lithium-sulfur batteries is hindered by low cycle stability and low efficiency, which are induced by sulfur active material loss and polysulfide shuttle reaction through dissolution into electrolyte. In this study, sulfur-impregnated disordered carbon nanotubes are synthesized as cathode material for the lithium-sulfur battery. The obtained sulfur-carbon tube cathodes demonstrate superior cyclability and Coulombic efficiency. More importantly, the electrochemical characterization indicates a new stabilization mechanism of sulfur in carbon induced by heat treatment.

  7. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  8. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis.

    PubMed

    Chihobo, Chido H; Chowdhury, Arindrajit; Kuipa, Pardon K; Simbi, David J

    2016-12-01

    Pyrolysis is an attractive thermochemical conversion technology that may be utilised as a safe disposal option for acid tar waste. The kinetics of acid tar pyrolysis were investigated using thermogravimetry coupled with mass spectrometry under a nitrogen atmosphere at different heating rates of 10, 15 and 20 K min -1 The thermogravimetric analysis shows three major reaction peaks centred around 178 °C, 258 °C, and 336 °C corresponding to the successive degradation of water soluble lower molecular mass sulphonic acids, sulphonated high molecular mass hydrocarbons, and high molecular mass hydrocarbons. The kinetic parameters were evaluated using the iso-conversional Kissinger-Akahira-Sunose method. A variation in the activation energy with conversion revealed that the pyrolysis of the acid tar waste progresses through complex multi-step kinetics. Mass spectrometry results revealed a predominance of gases such as hydrogen, methane and carbon monoxide, implying that the pyrolysis of acid tar waste is potentially an energy source. Thus the pyrolysis of acid tar waste may present a viable option for its environmental treatment. There are however, some limitations imposed by the co-evolution of corrosive gaseous components for which appropriate considerations must be provided in both pyrolysis reactor design and selection of construction materials. © The Author(s) 2016.

  9. Hepatic betaine-homocysteine methyltransferase activity in the chicken is influenced by dietary intake of sulfur amino acids, choline and betaine.

    PubMed

    Emmert, J L; Garrow, T A; Baker, D H

    1996-08-01

    There is much interest in the metabolism of homocysteine, because elevated plasma homocysteine [hyperhomocyst(e)inemia] is an independent risk factor for the development of cardiovascular disease. Four chick assays were conducted to determine the effects of varying dietary sulfur amino acids, choline and betaine on the activity of hepatic betaine-homocysteine methyltransferase (BHMT), an enzyme likely to be important in modulating plasma homocysteine. In Experiment 1, chicks were fed a purified crystalline amino acid diet containing adequate sulfur amino acids and choline. Excess dietary methionine, or the combination of excess cystine with choline or betaine, caused a small increase (P < 0.05) in BHMT activity. In Experiment 2, use of a methionine-deficient purified diet resulted in a threefold increase (P < 0.05) in BHMT activity, and addition of choline or betaine further increased (P < 0.05) BHMT activity. In Experiment 3, use of a methionine-deficient corn-peanut meal diet increased BHMT (P < 0.05) relative to that of chicks supplemented with adequate methionine, and addition of surfeit choline to the methionine-deficient basal diet caused a further increase (P < 0.05). In Experiment 4, addition of both surfeit choline and surfeit betaine to the methionine-deficient corn-peanut meal diet caused an increase (P < 0.05) in BHMT activity relative to that observed in chicks fed the methionine-deficient basal diet. These assays show that large increases in BHMT activity can be produced under methionine-deficient conditions, especially in the presence of excess choline or betaine.

  10. Validation of a Sulfuric Acid Digestion Method for Inductively Coupled Plasma Mass Spectrometry Quantification of TiO2 Nanoparticles.

    PubMed

    Watkins, Preston S; Castellon, Benjamin T; Tseng, Chiyen; Wright, Moncie V; Matson, Cole W; Cobb, George P

    2018-04-13

    A consistent analytical method incorporating sulfuric acid (H 2 SO 4 ) digestion and ICP-MS quantification has been developed for TiO 2 quantification in biotic and abiotic environmentally relevant matrices. Sample digestion in H 2 SO 4 at 110°C provided consistent results without using hydrofluoric acid or microwave digestion. Analysis of seven replicate samples for four matrices on each of 3 days produced Ti recoveries of 97% ± 2.5%, 91 % ± 4.0%, 94% ± 1.8%, and 73 % ± 2.6% (mean ± standard deviation) from water, fish tissue, periphyton, and sediment, respectively. The method demonstrated consistent performance in analysis of water collected over a 1 month.

  11. Evidence for abiotic sulfurization of marine dissolved organic matter in sulfidic environments

    NASA Astrophysics Data System (ADS)

    Pohlabeln, A. M.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Sedimentary organic matter abiotically sulfurizes in sulfidic marine environments. Here we hypothesize that sulfurization also affects dissolved organic matter (DOM), and that sulfidic marine environments are sources of dissolved organic sulfur (DOS) to the ocean. To test these hypotheses we studied solid-phase extractable (SPE) DOS in the Black Sea at various water column depths (oxic and anoxic) and in sediment porewaters from the German Wadden Sea. The concentration and molecular composition of SPE-DOS from these sites and from the oxic water columns of the North Sea (Germany) and of the North Pacific were compared. In support of our hypotheses, SPE-DOS concentrations were elevated in sulfidic waters compared to oxic waters. For a detailed molecular characterization of SPE-DOS, selective wet-chemical alteration experiments targeting different sulfur-containing functional groups were applied prior to Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These experiments included harsh hydrolysis, selective derivatization of thiols, oxidation, and deoxygenation to test for thioesters, sulfonic acid esters, alkylsulfates, thiols, non-aromatic thioethers, and sulfoxides. Additionally, collision-induced fragmentation experiments were applied to test for sulfonic acids. The tests revealed that the sulfonic acid group was the main structural feature in SPE-DOS, independent of the environmental conditions of the sampling site. Only in Wadden Sea anoxic porewater also non-aromatic thioethers were found which are presumably not stable in oxic waters. The findings from our field studies were confirmed in laboratory experiments, where we abiotically sulfurized marine and algal-derived DOM under conditions similar to that in anoxic marine sediments.

  12. Acid rain and sugar maple decline

    Treesearch

    Paul G. Schaberg

    2017-01-01

    Through the increased combustion of fossil fuels, humans have dramatically increased pollutant additions of sulfur and nitrogen into the atmosphere where it conbines with water to form sulfuric and nitric acids, creating acid rain (Driscoll et al. 2001). Incoming acid rain has various impacts on human and natural systems, including the accelerated degradation of built...

  13. Metal mobilization from metallurgical wastes by soil organic acids.

    PubMed

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    PubMed

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  15. Quantitative on-line analysis of sulfur compounds in complex hydrocarbon matrices.

    PubMed

    Djokic, Marko R; Ristic, Nenad D; Olahova, Natalia; Marin, Guy B; Van Geem, Kevin M

    2017-08-04

    An improved method for on-line measurement of sulfur containing compounds in complex matrices is presented. The on-line system consists of a specifically designed sampling system connected to a comprehensive two-dimensional gas chromatograph (GC×GC) equipped with two capillary columns (Rtx ® -1 PONA×SGE BPX50), a flame ionization detector (FID) and a sulfur chemiluminescence detector (SCD). The result is an unprecedented sensitivity down to ppm level (1 ppm-w) for various sulfur containing compounds in very complex hydrocarbon matrices. In addition to the GC×GC-SCD, the low molecular weight sulfur containing compounds such as hydrogen sulfide (H 2 S) and carbonyl sulfide (COS) can be analyzed using a thermal conductivity detector of a so-called refinery gas analyzer (RGA). The methodology was extensively tested on a continuous flow pilot plant for steam cracking, in which quantification of sulfur containing compounds in the reactor effluent was carried out using 3-chlorothiophene as internal standard. The GC×GC-FID/-SCD settings were optimized for ppm analysis of sulfur compounds in olefin-rich (ethylene- and propylene-rich) hydrocarbon matrices produced by steam cracking of petroleum feedstocks. Besides that is primarily used for analysis of the hydrocarbon matrix, FID of the GC×GC-FID/-SCD set-up serves to double check the amount of added sulfur internal standard which is crucial for a proper quantification of sulfur compounds. When vacuum gas oil containing 780 ppm-w of elemental sulfur in the form of benzothiophenes and dibenzothiophenes is subjected to steam cracking, the sulfur balance was closed, with 75% of the sulfur contained in the feed is converted to hydrogen sulfide, 13% to alkyl homologues of thiophene while the remaining 12% is present in the form of alkyl homologues of benzothiophenes. The methodology can be applied for many other conversion processes which use sulfur containing feeds such as hydrocracking, catalytic cracking, kerogen

  16. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    PubMed

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-04

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  17. A Review of the Pollution Abatement Programs Relating to the Petroleum Refinery Industry in the Great Lakes Basin

    DTIC Science & Technology

    1982-11-01

    of spent acids and caustics . The oil content of disposed wastes is 6,200 metric tons per year or approximately .01% of the average crude refinery rate...ALKYLATION "The major discharge from sulfuric acid alkylation are the spent caustics from the neutralization of hydrocarbon streams leaving the sulfuric... spent caustic waste stream. Any leaks or spills that involve loss of fluorides constitute a serious and difficult pollution problem. Formation of

  18. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  20. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    NASA Astrophysics Data System (ADS)

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.