Technical assistance for hazardous-waste reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, F.M.; McComas, C.A.
1987-12-01
Minnesota's Waste Management Board has established, developed, and funded the Minnesota Technical Assistance Program (MnTAP). The MnTAP programs offers technical assistance to generators of hazardous waste by offering telephone and onsite consultation, a waste reduction resource bank, information dissemination, a student intern program, and research awards for waste reduction projects. The program has completed three years of successful operation. The increasing interest in and use of MnTAP's services by hazardous-waste generators has justified the belief that state technical assistance programs have an important role to play in helping generators to reduce their waste production.
Dangi, Mohan B; Cohen, Ronald R H; Urynowicz, Michael A; Poudyal, Khem N
2009-05-01
Kathmandu Metropolitan City has attempted to reorganize its solid waste management a number of times. The German Technical and Financial Aid Organization led early efforts that were followed by a number of more recent experiments that left the city with an unsustainable solid waste management system following the termination of foreign aid. To examine this failure, the research team evaluated household surveys, field observations, interviews, and other primary and secondary information within the context of technical, social, and institutional analyses. The survey results show that the solid waste collection rates are far below the 90% claimed by the metropolis and street sweeping consumes approximately 51% of its solid waste budget. As a result of the relatively low collection rates the city residents are encouraged to dump waste into public lands. Consequently, too much of the city's resources are focused on sweeping rather than collection. Kathmandu needs to recognize informal waste picking, privatize, use local techniques, build capacity, promote bottom-up and participatory styles of management, and regulate policies to maintain solid waste management.
Solid Waste Management Available Information Materials. Total Listing 1966-1976.
ERIC Educational Resources Information Center
Larsen, Julie L.
This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...
NATIONAL RESPONSE TEAM TECHNICAL ASSISTANCE ...
This document provides technical information on a wide range of activities to aid in response to intentional release of anthrax in urban environments. It includes initial actions when a potential release is discovered, health and safety issues for responders, sampling and analysis methods, decontamination technologies, decontamination waste disposal, and communication with public. This document provides technical information on a wide range of activities to aid in response to intentional release of anthrax in urban environments. It includes initial actions when a potential release is discovered, health and safety issues for responders, sampling and analysis methods, decontamination technologies, decontamination waste disposal, and communication with public.
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...
To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
1986-09-12
widespread introduction of waste-free technologies or technologies producing small amounts of waste, and there are still serious things to be done also...19980729 041 FBIS FOREIGN BROADCAST INFORMATION SERVICE REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD...VA. 22161 107 NOTE JPRS publications contain information primarily from foreign newspapers, periodicals and books, but also from news agency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, P.J.; Vance, J.N.
1990-08-01
Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less
78 FR 25252 - Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
... nonprofit corporations to fund the development of drinking water, wastewater, and solid waste disposal...), section 310B authorizes Solid Waste Management grants. Grants are made for 100 percent of the cost of assistance. The Technical Assistance and Training Grants and Solid Waste Management Grants programs are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1992-10-01
This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.
Tank characterization report for single-shell tank 241-C-109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, B.C.
1997-05-23
One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less
Functions and requirements document for interim store solidified high-level and transuranic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith-Fewell, M.A., Westinghouse Hanford
1996-05-17
The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture,more » and interfaces.« less
SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARCOT, R.A.
This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less
Tank characterization report for single-shell tank 241-S-111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, J.M.
1997-04-28
One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less
Technical information report: Plasma melter operation, reliability, and maintenance analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, D.W.
1995-03-14
This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.
75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...
Rivas-Cantu, Raul C; Jones, Kim D; Mills, Patrick L
2013-04-01
An assessment of recent technical advances on pretreatment processes and its effects on enzymatic hydrolysis as the main steps of a proposed citrus processing waste (CPW) biorefinery is presented. Engineering challenges and relevant gaps in scientific and technical information for reliable design, modeling and scale up of a CPW biorefinery are also discussed. Some integrated physico-chemical pretreatments are proposed for testing for CPW, including high speed knife-grinding and simultaneous caustic addition. These new proposed processes and the effect of parameters such as particle size, surface area and morphology, pore volume and chemical composition of the diverse fractions resulting from pretreatment and enzymatic hydrolysis need to be evaluated and compared for pretreated and untreated samples of grapefruit processing waste. This assessment suggests the potential for filling the data gaps, and preliminary results demonstrate that the reduction of particle size and the increased surface area for the CPW will result in higher reaction rates and monosaccharide yields for the pretreated waste material.
NASA Astrophysics Data System (ADS)
Huang, J. C.; Wright, W. V.
1982-04-01
The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.
Hazardous and toxic waste management in Botswana: practices and challenges.
Mmereki, Daniel; Li, Baizhan; Meng, Liu
2014-12-01
Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.
10 CFR 1303.113 - Business information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Business information. 1303.113 Section 1303.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.113 Business information. (a) In general. Business information obtained by the Board from a submitter shall be disclosed under the...
10 CFR 1303.113 - Business information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Business information. 1303.113 Section 1303.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.113 Business information. (a) In general. Business information obtained by the Board from a submitter shall be disclosed under the...
10 CFR 1303.113 - Business information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Business information. 1303.113 Section 1303.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.113 Business information. (a) In general. Business information obtained by the Board from a submitter shall be disclosed under the...
10 CFR 1303.113 - Business information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Business information. 1303.113 Section 1303.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.113 Business information. (a) In general. Business information obtained by the Board from a submitter shall be disclosed under the...
10 CFR 1303.113 - Business information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Business information. 1303.113 Section 1303.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.113 Business information. (a) In general. Business information obtained by the Board from a submitter shall be disclosed under the...
Waste isolation safety assessment program. Task 4. Third contractor information meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study ofmore » actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: February 16, 2011--Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Activities Related to Managing Spent Nuclear...-203, Nuclear Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Workshop: June 6-7, 2011--Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board Will Hold a Workshop on Methods for Evaluating Nuclear Waste Streams... 1987, the U.S. Nuclear Waste Technical Review Board will hold a workshop on Monday, June 6, and Tuesday...
Guide to radioactive waste management literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houser, B.L.; Holoway, C.F.; Madewell, D.G.
Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principallymore » at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, M.T.; Reed, B.E.; Gabr, M.
1993-07-01
West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushingmore » (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissani, M; Fischer, R; Kidd, S
2006-04-03
The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less
Waste information management system: a web-based system for DOE waste forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.
2007-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, R.S.; Diamante, J.M.; Duffey, R.B.
1996-07-01
The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to processmore » high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.« less
Preliminary technical data summary No. 3 for the Defense Waste Processing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, L.F.
1980-05-01
This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)
National briefing summaries: Nuclear fuel cycle and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Lakey, L.T.; Silviera, D.J.
The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awarenessmore » to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.« less
Radioactive Liquid Waste Treatment Facility: Environmental Information Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.
1993-11-01
At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Plans for Used Fuel Disposition R... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Salt Lake...
SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 VERSION 2005.0 VOLUME 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARCOT, R.A.
2005-04-13
The SWIFT Report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. This report is an annual update to the SWIFT 2004.1 report that was published in August 2004. The SWIFT Report is published in two volumes. SWIFT Volume II provides detailed analyses of the data, graphical representation, comparison to previous years, and waste generator specific information. The data contained in this report are the official data for solid waste forecasting. In this revision, the volume numbers have been switched to reflect the timingmore » of their release. This particular volume provides the following data reports: (1) Summary volume data by DOE Office, company, and location; (2) Annual volume data by waste generator; (3) Annual waste specification record and physical waste form volume; (4) Radionuclide activities and dose-equivalent curies; and (5) Annual container type data by volume and count.« less
Site characterization report for the basalt waste isolation project. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-11-01
The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987,more » and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.« less
McKenrick, Laurence L; Ii, Keiko; Lawrence, Bill; Kaufmann, Michael; Marshall, Mark
2003-11-01
From January 1, 2000, to August 31, 2001, a team of environmental health specialists from Public Health-Seattle & King County, a partner in King County's Local Hazardous Waste Management Program, made educational visits to 981 automotive repair shops. The purpose was to give the auto repair industry technical assistance on hazardous waste management without using enforcement action. Through site inspections and interviews, the environmental health staff gathered information on the types and amounts of conditionally exempt small-quantity generator (CESQG) hazardous wastes and how they were handled. Proper methods of hazardous waste management, storage, and disposal were discussed with shop personnel. The environmental health staff measured the impact of these educational visits by noting changes made between the initial and follow-up visits. This report focuses on nine major waste streams identified in the auto repair industry. Of the 981 shops visited, 497 were already practicing proper hazardous waste management and disposal. The remaining 484 shops exhibited 741 discrepancies from proper practice. Environmental health staff visited these shops again within six months of the initial visit to assess changes in their practices. The educational visits and technical assistance produced a 76 percent correction of all the discrepancies noted.
A review and overview of nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.L.
1984-12-31
An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-01
West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation ofmore » chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.« less
RCRA Sustainable Materials Management Information
This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia
Superfund Site Reuse How-To Reports
The reports on this page provide technical information on how sites with hazardous waste have been safely reused for various purposes, such as recreation, while ensuring that the protectiveness of the remedy is maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savoie, M.J.; Schanche, G.W.; Mikucki, W.J.
This report provides technical information on modular solid-waste heat-recovery incinerators (HRIs), air-pollution regulations that apply to HRIs, air-pollutant emissions from currently marketed HRIs, and air-polution-control techniques for HRIs. The information will be useful to Army installations, Major Commands, and Corps of Engineers Districts that must plan and design HRI facilities.
Savannah River Site Approved Site Treatment Plan, 2001 Annual Update (Volumes I and II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, B.
2001-04-30
The Compliance Plan Volume (Volume I) identifies project activity scheduled milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.
This asset includes information related to Cleanups at Federal Facilities. Information is provided about contaminated federal facility sites in specific communities, with access to technical fact sheets and tools and resources to help government agencies and their contractors fulfill cleanup obligations. EPA's federal facility information is easily accessible to ensure effective stakeholder involvement and accountability at federal facilities.Multiple federal statutes establish requirements for EPA and other federal agencies to protect health and the human environment through cleanups at Federal Facilities, including the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, which was amended by the Superfund Amendments and Reauthorization Act (SARA) in 1986; the Defense Authorization Amendments and Base Realignment and Closure Acts (BRAC) of 1998 and the Defense Base Closure and Realignment Act of 1990; and the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984 (HS WA) including Subtitle C (hazardous waste), Subtitle D (solid waste), Subtitle I (underground storage tanks), and Subtitle J (Medical Waste Tracking Act of 1988).
Progress and future direction for the interim safe storage and disposal of Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.
This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less
Use of a Knowledge Management System in Waste Management Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruendler, D.; Boetsch, W.U.; Holzhauer, U.
2006-07-01
In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspectmore » will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)« less
Designing testing service at baristand industri Medan’s liquid waste laboratory
NASA Astrophysics Data System (ADS)
Kusumawaty, Dewi; Napitupulu, Humala L.; Sembiring, Meilita T.
2018-03-01
Baristand Industri Medan is a technical implementation unit under the Industrial and Research and Development Agency, the Ministry of Industry. One of the services often used in Baristand Industri Medan is liquid waste testing service. The company set the standard of service is nine working days for testing services. At 2015, 89.66% on testing services liquid waste does not meet the specified standard of services company because of many samples accumulated. The purpose of this research is designing online services to schedule the coming the liquid waste sample. The method used is designing an information system that consists of model design, output design, input design, database design and technology design. The results of designing information system of testing liquid waste online consist of three pages are pages to the customer, the recipient samples and laboratory. From the simulation results with scheduled samples, then the standard services a minimum of nine working days can be reached.
Municipal solid waste management in Phnom Penh, capital city of Cambodia.
Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko
2011-05-01
This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, David M.; Hayes, Timothy A.; Pope, Howard L.
In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)« less
Ontario Waste Exchange: Helping companies recycle their nonhazardous waste and reap the profits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanley, M.J.
1997-12-31
The Ontario Waste Exchange (OWE), operated by ORTECH Corporation, is a technical assistance program committed to helping industries find practical alternatives to disposal. OWE is an active exchange, a Technical Matchmaker, matching waste generators with potential end users or recyclers. The OWE utilizes its extensive Reuse and Recycling Markets database that lists current markets in Ontario and neighboring provinces and states. The OWE maintains the database and electronically disseminates the information to industries in an effective and efficient manner. The OWE encourages industries to recycle their nonhazardous waste if a market is available and the economics are viable. The OWE`smore » true value is in helping to create new markets for currently unwanted wastes. The OWE helps to identify potential business opportunities where problem wastes could be recycled into useful products. The OWE also helps existing recyclers expand their operations by sourcing enough consistent supply of a required material. The OWE is recognized internationally as one of the most successful waste exchanges in the world and a significant contributor to achieving the goal of 50% diversion of nonhazardous waste from disposal by year 2,000. CNN and CBC networks showcased OWE`s unique services, highlighting the recycling businesses that have been helped. The OWE has assisted over a 100,000 companies, exchanged over 3,000 materials and diverted over one million cumulative tons of material from disposal since 1984.« less
Data Quality Objectives for Tank Farms Waste Compatibility Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING, D.L.
1999-07-02
There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presentlymore » in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.« less
PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAY TH
The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revisionmore » includes information on additional feed tanks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less
Waste streams in a crewed space habitat. II
NASA Technical Reports Server (NTRS)
Golub, Morton A.; Wydeven, Theodore
1992-01-01
An update is presented of a compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat which was reported in the NASA Technical Memorandum. New topics under consideration include data obtained from Soviet literature on life support issues and data on various minor human body wastes not presented previously (saliva, Flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen). Attention is also given to the latest information on the environmental control and life support system design parameters for SSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
Waste Package Component Design Methodology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.C. Mecham
2004-07-12
This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and usemore » of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.« less
The political science of radioactive waste disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, L.R. Jr.
1996-06-01
This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don`t overlook the need formore » someone to be on your side. Don`t forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn`t said in 1984? Nothing. {open_quotes}It`s deja vu all over again.{close_quotes}« less
78 FR 63251 - Board Meeting; November 20, 2013 in Washington, DC
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; November 20, 2013 in Washington, DC The U.S. Nuclear Waste Technical Review Board will meet to discuss DOE SNF and HLW management research and... Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting...
76 FR 77270 - Board Meeting; January 9, 2012, Arlington, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; January 9, 2012, Arlington, VA The U.S. Nuclear Waste Technical Review Board will meet to discuss integration efforts undertaken by DOE-NE and DOE... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Arlington...
Current status of waste management in Botswana: A mini-review.
Mmereki, Daniel
2018-05-01
Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.
Tanks Focus Area site needs assessment FY 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by four major US Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). This document describes the TFA`s process of collecting site needs, analyzing them, and creating technical responses to the sites. It also summarizes the information contained within the TFA needs database, portraying information provided by four majormore » DOE sites with tank waste problems. The overall TFA program objective is to deliver a tank technology program that reduces the current cost, and the operational and safety risks of tank remediation. The TFA`s continues to enjoy close, cooperative relationships with each site. During the past year, the TFA has fostered exchanges of technical information between sites. These exchanges have proven to be healthy for all concerned. The TFA recognizes that site technology needs often change, and the TFA must be prepared not only to amend its program in response, but to help the sites arrive at the best technical approach to solve revised site needs.« less
NASA Technical Reports Server (NTRS)
English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.
1977-01-01
The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayberry, J.; Stelle, S.; O`Brien, M.
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).
Hanford Waste Vitrification Plant technical manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, D.E.; Watrous, R.A.; Kruger, O.L.
1996-03-01
A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less
TECHNICAL RESOURCE DOCUMENT: TREATMENT TECHNOLOGIES FOR CORROSIVE-CONTAINING WASTES. VOLUME 2
The Technical Resource Document (TRD) for wastes containing corrosives is one in a series of five documents which evaluate waste management alternatives to land disposal. In addition to this TRD for corrosive wastes, the other four TRDs in the series address land disposal alterna...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chancellor, Christopher John
2016-11-07
The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scopingmore » studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.« less
Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A; Burks, Barry L; Quigley, Keith D
2001-09-28
The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Alexander
2014-04-24
This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK informationmore » used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.« less
Waste in health information systems: a systematic review.
Awang Kalong, Nadia; Yusof, Maryati
2017-05-08
Purpose The purpose of this paper is to discuss a systematic review on waste identification related to health information systems (HIS) in Lean transformation. Design/methodology/approach A systematic review was conducted on 19 studies to evaluate Lean transformation and tools used to remove waste related to HIS in clinical settings. Findings Ten waste categories were identified, along with their relationships and applications of Lean tool types related to HIS. Different Lean tools were used at the early and final stages of Lean transformation; the tool selection depended on the waste characteristic. Nine studies reported a positive impact from Lean transformation in improving daily work processes. The selection of Lean tools should be made based on the timing, purpose and characteristics of waste to be removed. Research limitations/implications Overview of waste and its category within HIS and its analysis from socio-technical perspectives enabled the identification of its root cause in a holistic and rigorous manner. Practical implications Understanding waste types, their root cause and review of Lean tools could subsequently lead to the identification of mitigation approach to prevent future error occurrence. Originality/value Specific waste models for HIS settings are yet to be developed. Hence, the identification of the waste categories could guide future implementation of Lean transformations in HIS settings.
Tank waste remediation system configuration management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, J.M.
The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less
77 FR 1065 - Agency Information Collection Activities OMB Responses
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
....02; Mandatory Reporting of Greenhouse Gases: Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial Waste Landfills (Technical Correction); 40 CFR part 98, subparts T, FF...; Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated Greenhouse Gases, subparts I, L...
Tank characterization report for double-shell tank 241-AW-105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, L.M.
1997-06-05
One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses one of the requirements specified in the safety screening DQO. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-AW-105 and its respective waste types is contained in Appendix E. A majority of the documents listed in Appendix E may be found in the Tank Characterization and Safety Resource Center.« less
Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea
2015-03-01
The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iqbal, M.; Islam, A.; Hossain, A.; Mustaque, S.
2016-12-01
Multi-Criteria Decision Making(MCDM) is advanced analytical method to evaluate appropriate result or decision from multiple criterion environment. Present time in advanced research, MCDM technique is progressive analytical process to evaluate a logical decision from various conflict. In addition, Present day Geospatial approach (e.g. Remote sensing and GIS) also another advanced technical approach in a research to collect, process and analyze various spatial data at a time. GIS and Remote sensing together with the MCDM technique could be the best platform to solve a complex decision making process. These two latest process combined very effectively used in site selection for solid waste management in urban policy. The most popular MCDM technique is Weighted Linear Method (WLC) where Analytical Hierarchy Process (AHP) is another popular and consistent techniques used in worldwide as dependable decision making. Consequently, the main objective of this study is improving a AHP model as MCDM technique with Geographic Information System (GIS) to select a suitable landfill site for urban solid waste management. Here AHP technique used as a MCDM tool to select the best suitable landfill location for urban solid waste management. To protect the urban environment in a sustainable way municipal waste needs an appropriate landfill site considering environmental, geological, social and technical aspect of the region. A MCDM model generate from five class related which related to environmental, geological, social and technical using AHP method and input the result set in GIS for final model location for urban solid waste management. The final suitable location comes out that 12.2% of the area corresponds to 22.89 km2 considering the total study area. In this study, Keraniganj sub-district of Dhaka district in Bangladesh is consider as study area which is densely populated city currently undergoes an unmanaged waste management system especially the suitable landfill sites for waste dumping site.
The Spanish General Radioactive Waste Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espejo, J.M.; Abreu, A.
This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and othersmore » are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This system is based on the generation of funds up front, during the operating lifetime of the facilities, through the application of fees established by Statutory provisions. Finally, a mandatory mechanism of annual revision for both technical issues and economic and financial aspects, allows to have updated all the courses of action. (authors)« less
The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...
Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and Reference Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich, E.; Noller, D.K.; Wierzbicki, K.S.
1994-12-22
The Compliance Plan Volume provides overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) and contains procedures to establish milestones to be enforced under the Order. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume and is provided for informational purposes only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCHAUS, P.S.
At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Wastemore » Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.« less
NUSC Technical Volunteer Service (TVS).
1982-12-12
unique evaporator wastewater recycling methods. In this system, water, electroplating metals, and waste heat can all be reused. More information on...lore, leqnd, and trivia to make the ir oject mor, Int: resting. if you scrved aboard the Nautii :, or know someone who did, and have interesting
NASA Astrophysics Data System (ADS)
Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen
2017-10-01
In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.
Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand.
Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin
2017-09-04
This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.
Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand
Yukalang, Nachalida; Clarke, Beverley
2017-01-01
This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas. PMID:28869572
Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil-Holterman, Luciana R.
2012-05-07
This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of themore » open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.« less
EPA'S GROUND WATER TECHNICAL SUPPORT CENTER
The purpose and the services provided by EPA's Ground Water Technical Support Center (GWTSC) will be presented. In 1987 the Office of Solid Waste and Emergency Response, Regional Waste Management Offices, and ORD established the Technical Support Project (TSP)
The purpos...
PNNL Supports Hanford Waste Treatment
None
2018-04-16
For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the siteâs waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.
Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.
Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L
2000-12-15
The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.
Kataki, Sampriti; West, Helen; Clarke, Michèle; Baruah, D C
2016-03-01
Global population growth requires intensification of agriculture, for which a sustainable supply of phosphorus (P) is essential. Since natural P reserves are diminishing, recovering P from wastes and residues is an increasingly attractive prospect, particularly as technical and economic potential in the area is growing. In addition to providing phosphorus for agricultural use, precipitation of P from waste residues and effluents lessens their nutrient loading prior to disposal. This paper critically reviews published methods for P recovery from waste streams (municipal, farm and industrial) with emphasis on struvite (MgNH4PO4·6H2O) crystallisation, including pre-treatments to maximise recovery. Based on compositional parameters of a range of wastes, a Feedstock Suitability Index (FSI) was developed as a guide to inform researchers and operators of the relative potential for struvite production from each waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui
2016-11-01
Waste electrical and electronic equipment (e-waste) is the most rapidly growing waste stream in the world, and the majority of the residues are openly disposed of in developing countries. Waste printed circuit boards (WPCBs) make up the major portion of e-waste, and their informal recycling can cause environmental pollution and health risks. Furthermore, the conventional disposal and recycling techniques-mechanical treatments used to recover valuable metals, including copper-are not sustainable in the long term. Chemical leaching is rapid and efficient but causes secondary pollution. Bioleaching is a promising approach, eco-friendly and economically feasible, but it is slower process. This review considers the recycling potential of microbes and suggests an integrated bioleaching approach for Cu extraction and recovery from WPCBs. The proposed recycling system should be more effective, efficient and both technically and economically feasible.
TRANSIENT ELECTRONICS CATEGORIZATION
2017-08-24
failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE...Recycling Make Sense from an Environmental Perspective?: The Environmental Impacts of the Swiss Take-Back and Recycling Systems for Waste Electrical and...technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings
Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Michael Marquand; Little, Bonnie Colleen
The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid wastemore » was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.« less
Ratkovic, Branislava; Andrejic, Milan; Vidovic, Milorad
2012-06-01
In 2007, the Serbian Ministry of Health initiated specific activities towards establishing a workable model based on the existing administrative framework, which corresponds to the needs of healthcare waste management throughout Serbia. The objective of this research was to identify the reforms carried out and their outcomes by estimating the efficiencies of a sample of 35 healthcare facilities engaged in the process of collection and treatment of healthcare waste, using data envelopment analysis. Twenty-one (60%) of the 35 healthcare facilities analysed were found to be technically inefficient, with an average level of inefficiency of 13%. This fact indicates deficiencies in the process of collection and treatment of healthcare waste and the information obtained and presented in this paper could be used for further improvement and development of healthcare waste management in Serbia.
10 CFR 1303.115 - Preservation of records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Preservation of records. 1303.115 Section 1303.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.115 Preservation of records. The Board shall preserve all correspondence pertaining to the requests that it receives under this...
10 CFR 1303.115 - Preservation of records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Preservation of records. 1303.115 Section 1303.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.115 Preservation of records. The Board shall preserve all correspondence pertaining to the requests that it receives under this...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Denials. 1303.112 Section 1303.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.112 Denials. (a) When denying a request in any respect, the Board shall notify the requestor of that determination in writing. The types of denials...
10 CFR 1303.115 - Preservation of records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Preservation of records. 1303.115 Section 1303.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.115 Preservation of records. The Board shall preserve all correspondence pertaining to the requests that it receives under this...
10 CFR 1303.115 - Preservation of records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Preservation of records. 1303.115 Section 1303.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.115 Preservation of records. The Board shall preserve all correspondence pertaining to the requests that it receives under this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Denials. 1303.112 Section 1303.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.112 Denials. (a) When denying a request in any respect, the Board shall notify the requestor of that determination in writing. The types of denials...
10 CFR 1303.115 - Preservation of records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Preservation of records. 1303.115 Section 1303.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.115 Preservation of records. The Board shall preserve all correspondence pertaining to the requests that it receives under this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Denials. 1303.112 Section 1303.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.112 Denials. (a) When denying a request in any respect, the Board shall notify the requestor of that determination in writing. The types of denials...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Denials. 1303.112 Section 1303.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.112 Denials. (a) When denying a request in any respect, the Board shall notify the requestor of that determination in writing. The types of denials...
10 CFR 1304.113 - Privacy Act training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Privacy Act training. 1304.113 Section 1304.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.113 Privacy Act training. (a) The Board... Board systems are informed of all requirements necessary to protect the privacy of individuals. The...
10 CFR 1304.113 - Privacy Act training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Privacy Act training. 1304.113 Section 1304.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.113 Privacy Act training. (a) The Board... Board systems are informed of all requirements necessary to protect the privacy of individuals. The...
10 CFR 1304.113 - Privacy Act training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Privacy Act training. 1304.113 Section 1304.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.113 Privacy Act training. (a) The Board... Board systems are informed of all requirements necessary to protect the privacy of individuals. The...
10 CFR 1304.113 - Privacy Act training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Privacy Act training. 1304.113 Section 1304.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.113 Privacy Act training. (a) The Board... Board systems are informed of all requirements necessary to protect the privacy of individuals. The...
10 CFR 1304.113 - Privacy Act training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Privacy Act training. 1304.113 Section 1304.113 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.113 Privacy Act training. (a) The Board... Board systems are informed of all requirements necessary to protect the privacy of individuals. The...
Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deltete, D.; Fisher, S.; Kelly, J.J.
1994-05-01
EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less
Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, P.T.; Knox, N.P.; Michelson, D.C.
1988-09-01
The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilitiesmore » Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Garth M.; Saunders, Scott A.
2013-07-01
The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)« less
Waste streams in a typical crewed space habitat: An update
NASA Technical Reports Server (NTRS)
Golub, M. A.; Wydeven, T.
1992-01-01
A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat, reported in a prior NASA Technical Memorandum and a related journal article, was updated. This report augments that compilation by the inclusion of the following new data: those data uncovered since completion of the prior report; those obtained from Soviet literature relevant to life support issues; and those for various minor human body wastes not presented previously (saliva, flatus, hair, finger- and toenails, dried skin and skin secretions, tears, and semen), but included here for purposes of completeness. These waste streams complement those discussed previously: toilet waste (urine, feces, etc.), hygiene water (laundry, shower/handwash, dishwasher water and cleansing agents), trash, humidity condensate, perspiration and respiration water, trace contaminants, and dust generation. This report also reproduces the latest information on the environmental control and life support system design parameters for Space Station Freedom.
Defense Technical Information Center Thesaurus
2000-10-01
acquisition radar 4 + Indicates existence of further generic levels of the term DTIC Thesaurus Actuators Acridines Actinide series (cont.) Activated sintering...BT Heterocyclic compounds+ Uranium+ BT Sintering Acrilan Actinide series compounds Activated sludge process use Acrylonitrile polymers RT Actinide...Waste treatment+ Protactinium compounds Acronyms Thorium compounds+ Activation use Abbreviations Transuranium compounds+ UF Energizing Uranium compounds
10 CFR 1303.116 - Other rights and services.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Other rights and services. 1303.116 Section 1303.116 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.116 Other rights and services. Nothing in this part shall be construed to entitle any person, as a right, to any service or to...
10 CFR 1303.106 - Responsibility, form, and content of responses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Responsibility, form, and content of responses. 1303.106 Section 1303.106 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.106 Responsibility, form, and content of responses. The Board's Executive Director of his/her designated FOIA Officer...
10 CFR 1303.110 - Notice of anticipated fees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Notice of anticipated fees. 1303.110 Section 1303.110 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.110 Notice of anticipated fees. (a) General. The Board shall advise the requetor in writing of any applicable fees. If only...
10 CFR 1303.116 - Other rights and services.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Other rights and services. 1303.116 Section 1303.116 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.116 Other rights and services. Nothing in this part shall be construed to entitle any person, as a right, to any service or to...
10 CFR 1303.105 - Requests for Board records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Requests for Board records. 1303.105 Section 1303.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.105 Requests for Board records. (a) A written FOIA request must be submitted. You may: (1) Write: NWTRB Designated FOIA Officer...
10 CFR 1303.116 - Other rights and services.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Other rights and services. 1303.116 Section 1303.116 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.116 Other rights and services. Nothing in this part shall be construed to entitle any person, as a right, to any service or to...
10 CFR 1303.104 - Board records exempt from public disclosure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Board records exempt from public disclosure. 1303.104 Section 1303.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.104 Board records exempt from public disclosure. 5 U.S.C. 552 provides that the requirements of the FOIA do...
10 CFR 1303.106 - Responsibility, form, and content of responses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility, form, and content of responses. 1303.106 Section 1303.106 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.106 Responsibility, form, and content of responses. The Board's Executive Director of his/her designated FOIA Officer...
10 CFR 1303.105 - Requests for Board records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Requests for Board records. 1303.105 Section 1303.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.105 Requests for Board records. (a) A written FOIA request must be submitted. You may: (1) Write: NWTRB Designated FOIA Officer...
10 CFR 1303.116 - Other rights and services.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Other rights and services. 1303.116 Section 1303.116 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.116 Other rights and services. Nothing in this part shall be construed to entitle any person, as a right, to any service or to...
10 CFR 1303.104 - Board records exempt from public disclosure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Board records exempt from public disclosure. 1303.104 Section 1303.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.104 Board records exempt from public disclosure. 5 U.S.C. 552 provides that the requirements of the FOIA do...
10 CFR 1303.109 - Restrictions on charging fees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Restrictions on charging fees. 1303.109 Section 1303.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.109 Restrictions on charging fees. (a) When determining search or review fees: (1) No search or review fee shall be charged for...
10 CFR 1303.110 - Notice of anticipated fees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Notice of anticipated fees. 1303.110 Section 1303.110 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.110 Notice of anticipated fees. (a) General. The Board shall advise the requetor in writing of any applicable fees. If only...
10 CFR 1303.104 - Board records exempt from public disclosure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Board records exempt from public disclosure. 1303.104 Section 1303.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.104 Board records exempt from public disclosure. 5 U.S.C. 552 provides that the requirements of the FOIA do...
10 CFR 1303.106 - Responsibility, form, and content of responses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility, form, and content of responses. 1303.106 Section 1303.106 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.106 Responsibility, form, and content of responses. The Board's Executive Director of his/her designated FOIA Officer...
10 CFR 1303.116 - Other rights and services.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Other rights and services. 1303.116 Section 1303.116 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.116 Other rights and services. Nothing in this part shall be construed to entitle any person, as a right, to any service or to...
10 CFR 1303.106 - Responsibility, form, and content of responses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Responsibility, form, and content of responses. 1303.106 Section 1303.106 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.106 Responsibility, form, and content of responses. The Board's Executive Director of his/her designated FOIA Officer...
10 CFR 1303.110 - Notice of anticipated fees.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Notice of anticipated fees. 1303.110 Section 1303.110 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.110 Notice of anticipated fees. (a) General. The Board shall advise the requetor in writing of any applicable fees. If only...
10 CFR 1303.110 - Notice of anticipated fees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Notice of anticipated fees. 1303.110 Section 1303.110 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.110 Notice of anticipated fees. (a) General. The Board shall advise the requetor in writing of any applicable fees. If only...
10 CFR 1303.106 - Responsibility, form, and content of responses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility, form, and content of responses. 1303.106 Section 1303.106 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.106 Responsibility, form, and content of responses. The Board's Executive Director of his/her designated FOIA Officer...
10 CFR 1303.104 - Board records exempt from public disclosure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Board records exempt from public disclosure. 1303.104 Section 1303.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.104 Board records exempt from public disclosure. 5 U.S.C. 552 provides that the requirements of the FOIA do...
10 CFR 1303.110 - Notice of anticipated fees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Notice of anticipated fees. 1303.110 Section 1303.110 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.110 Notice of anticipated fees. (a) General. The Board shall advise the requetor in writing of any applicable fees. If only...
10 CFR 1303.105 - Requests for Board records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Requests for Board records. 1303.105 Section 1303.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.105 Requests for Board records. (a) A written FOIA request must be submitted. You may: (1) Write: NWTRB Designated FOIA Officer...
10 CFR 1303.105 - Requests for Board records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Requests for Board records. 1303.105 Section 1303.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.105 Requests for Board records. (a) A written FOIA request must be submitted. You may: (1) Write: NWTRB Designated FOIA Officer...
10 CFR 1303.105 - Requests for Board records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Requests for Board records. 1303.105 Section 1303.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.105 Requests for Board records. (a) A written FOIA request must be submitted. You may: (1) Write: NWTRB Designated FOIA Officer...
10 CFR 1303.107 - Timing of responses to requests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Timing of responses to requests. 1303.107 Section 1303.107 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.107 Timing of... complete the request. If the extension is for more than 10 working days, the Board shall provide the...
10 CFR 1303.107 - Timing of responses to requests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Timing of responses to requests. 1303.107 Section 1303.107 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.107 Timing of... complete the request. If the extension is for more than 10 working days, the Board shall provide the...
10 CFR 1303.107 - Timing of responses to requests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Timing of responses to requests. 1303.107 Section 1303.107 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.107 Timing of... complete the request. If the extension is for more than 10 working days, the Board shall provide the...
10 CFR 1303.107 - Timing of responses to requests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Timing of responses to requests. 1303.107 Section 1303.107 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.107 Timing of... complete the request. If the extension is for more than 10 working days, the Board shall provide the...
10 CFR 1303.107 - Timing of responses to requests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Timing of responses to requests. 1303.107 Section 1303.107 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.107 Timing of... complete the request. If the extension is for more than 10 working days, the Board shall provide the...
Online Hazardous Waste Cleanup Technical Resources
This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.
Environmental Sciences Division annual progress report for period ending September 30, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-01
The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3)more » hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuttica, John; Haefke, Cliff
The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers,more » regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea
2015-03-15
Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30–31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20–24%. Other types of technical solutions – gasification with syngas use in internally fired devices, pyrolysis and plasma gasification – are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency.« less
Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberger, Kent H.
2013-07-01
The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of Southmore » Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chancellor, Christopher John
2016-11-14
The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste thatmore » will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This Technical Memorandum, was developed under Work Breakdown Structure 1.4.12.6.1.01.41.12.02. 11 (Activity Data Sheet 3301, ``WAG 1``). This document provides the Environmental Restoration Program with analytical results from liquid and sludge samples from the Gunite and Associated Tanks (GAAT). Information provided in this report forms part of the technical basis for criticality safety, systems safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAGmore » 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.« less
TRU Waste Management Program. Cost/schedule optimization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.
This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less
Engineering Forum Issue Paper: Online Hazardous Waste Cleanup Technical Resources
This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.
Vegas, I; Ibañez, J A; San José, J T; Urzelai, A
2008-01-01
The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.
Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, E.W.; Wu, C.F.; Goff, T.E.
1993-12-31
The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less
Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.
In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of inmore » the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.« less
Schmitt, Elliott; Bura, Renata; Gustafson, Rick; Cooper, Joyce; Vajzovic, Azra
2012-01-01
There is little research literature on the conversion of lignocellulosic rich waste streams to ethanol, and even fewer have investigated both the technical aspects and environmental impacts together. This study assessed technical and environmental challenges of converting three lignocellulosic waste streams to ethanol: municipal solid waste (MSW), low grade mixed waste paper (MWP), and organic yard waste (YW). Experimental results showed high conversion yields for all three streams using suitable conversion methods. Environmental impacts are highly dependent on conversion technology, and process conditions used. Life cycle assessment results showed that both chemicals production and waste collection are important factors to be included within a waste-to-ethanol study. Copyright © 2011 Elsevier Ltd. All rights reserved.
Volatile species of technetium and rhenium during waste vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongsang; Kruger, Albert A.
Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less
Volatile species of technetium and rhenium during waste vitrification
Kim, Dongsang; Kruger, Albert A.
2017-10-26
Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less
EPA's Office of Research and Development is responsible to EPA's Office of Solid Waste to provide research and technical support for waste site closures and the development of technical guidance in support of environmental regulations and programmatic policies. ORD is also respo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulm, Franz-Josef
2000-03-31
OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)
Application of geographical information system in disposal site selection for hazardous wastes.
Rezaeimahmoudi, Mehdi; Esmaeli, Abdolreza; Gharegozlu, Alireza; Shabanian, Hassan; Rokni, Ladan
2014-01-01
The aim of this study was to provide a scientific method based on Geographical Information System (GIS) regarding all sustainable development measures to locate a proper landfill for disposal of hazardous wastes, especially industrial (radioactive) wastes. Seven effective factors for determining hazardous waste landfill were applied in Qom Province, central Iran. These criteria included water, slope, population centers, roads, fault, protected areas and geology. The Analysis Hierarchical Process (AHP) model based on pair comparison was used. First, the weight of each factor was determined by experts; afterwards each layer of maps entered to ARC GIS and with special weight multiplied together, finally the best suitable site was introduced. The most suitable sites for burial were in northwest and west of Qom Province and eventually five zones were introduced as the sample sites. GIs and AHP model is introduced as the technical, useful and accelerator tool for disposal site selection. Furthermore it is determined that geological factor is the most effective layer for site selection. It is suggested that geological conditions should be considered primarily then other factors are taken into consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deju, R.A.
1982-10-01
The Basalt Waste Isolation Project's mission is to assess whether or not a nuclear waste repository can be sited in the basalts beneath the Hanford Site. Dr. Deju summarizes the results of the siting studies, the activities connected with waste package development, and ongoing engineering studies. In addition, he gives a glimpse of past technical reviews of the project and comments on major technical activities planned in the near future.
10 CFR 1303.111 - Requirements for waiver or reduction of fees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Requirements for waiver or reduction of fees. 1303.111 Section 1303.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.111 Requirements for waiver or reduction of fees. (a) Records shall be furnished without charge or at a reduced...
10 CFR 1304.104 - Privacy Act records maintained by the Board.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...
10 CFR 1303.103 - Public reading area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Public reading area. 1303.103 Section 1303.103 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.103 Public reading area. (a) A... policy adopted by the Board. (3) Board reports to the U.S. Congress and the U.S. Secretary of Energy. (4...
10 CFR 1303.111 - Requirements for waiver or reduction of fees.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Requirements for waiver or reduction of fees. 1303.111 Section 1303.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.111 Requirements for waiver or reduction of fees. (a) Records shall be furnished without charge or at a reduced...
10 CFR 1303.103 - Public reading area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Public reading area. 1303.103 Section 1303.103 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.103 Public reading area. (a) A... policy adopted by the Board. (3) Board reports to the U.S. Congress and the U.S. Secretary of Energy. (4...
10 CFR 1303.103 - Public reading area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Public reading area. 1303.103 Section 1303.103 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.103 Public reading area. (a) A... policy adopted by the Board. (3) Board reports to the U.S. Congress and the U.S. Secretary of Energy. (4...
10 CFR 1304.104 - Privacy Act records maintained by the Board.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...
10 CFR 1303.111 - Requirements for waiver or reduction of fees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Requirements for waiver or reduction of fees. 1303.111 Section 1303.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.111 Requirements for waiver or reduction of fees. (a) Records shall be furnished without charge or at a reduced...
10 CFR 1303.103 - Public reading area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Public reading area. 1303.103 Section 1303.103 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.103 Public reading area. (a) A... policy adopted by the Board. (3) Board reports to the U.S. Congress and the U.S. Secretary of Energy. (4...
10 CFR 1303.111 - Requirements for waiver or reduction of fees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Requirements for waiver or reduction of fees. 1303.111 Section 1303.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.111 Requirements for waiver or reduction of fees. (a) Records shall be furnished without charge or at a reduced...
10 CFR 1304.104 - Privacy Act records maintained by the Board.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...
10 CFR 1304.104 - Privacy Act records maintained by the Board.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...
10 CFR 1304.104 - Privacy Act records maintained by the Board.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...
Solid Waste Program technical baseline description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, A.B.
1994-07-01
The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.
TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES
This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. he document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic drai...
TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES
This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...
Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation
NASA Technical Reports Server (NTRS)
Huang, C. J.; Dalton, C.
1975-01-01
A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.
Evaluation of recycling programmes in household waste collection systems.
Dahlén, Lisa; Lagerkvist, Anders
2010-07-01
A case study and a literature review have been carried out to address the two questions: how can waste flow data from collection systems be interpreted and compared? and which factors are decisive in the results of recycling programmes in household waste collection systems? The aim is to contribute to the understanding of how recycling programmes affect the quantity of waste and sorting activities. It is shown how the results from various waste sorting systems can be interpreted and made comparable. A set of waste flow indicators is proposed, which together with generic system descriptions can facilitate comparisons of different collections systems. The evaluation of collection systems depends on the system boundaries and will always be site-specific to some degree. Various factors are relevant, e.g. environmental objectives, technical function, operating costs, types of recyclable materials collected separately, property-close collection or drop-off systems, economic incentives, information strategies, residential structure, social codes, etc. Kerbside collection of recyclables and weight-based billing led to increased waste sorting activities in the case study. Forty-three decisive factors are listed and discussed.
Waste Information Management System: One Year After Web Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.
2008-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less
International nuclear waste management fact book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahms, C W; Patridge, M D; Widrig, J E
1995-11-01
The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addressesmore » and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdes, K.D.; Holtzscheiter, E.W.
2006-07-01
The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with the Russian Federal Atomic Energy Agency - Rosatom (formerly Minatom) for 14 years on waste management challenges of mutual concern. Currently, EM is cooperating with Rosatom to explore issues related to high-level waste and investigate Russian experience and technologies that could support EM site cleanup needs. EM and Rosatom are currently implementing six collaborative projects on high-level waste issues: 1) Advanced Melter Technology Application to the U.S. DOE Defense Waste Processing Facility (DWPF) - Cold Crucible Induction Heated Melter (CCIM); 2) - Design Improvements to themore » Cold Crucible Induction Heated Melter; 3) Long-term Performance of Hanford Low-Activity Glasses in Burial Environments; 4) Low-Activity-Waste (LAW) Glass Sulfur Tolerance; 5) Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms; and, 6) Documentation of Mixing and Retrieval Experience at Zheleznogorsk. Preliminary results and the path forward for these projects will be discussed. An overview of two new projects 7) Entombment technology performance and methodology for the Future 8) Radiation Migration Studies at Key Russian Nuclear Disposal Sites is also provided. The purpose of this paper is to provide an overview of EM's objectives for participating in cooperative activities with the Russian Federal Atomic Energy Agency, present programmatic and technical information on these activities, and outline specific technical collaborations currently underway and planned to support DOE's cleanup and closure mission. (authors)« less
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
Support for designing waste sorting systems: A mini review.
Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa
2017-11-01
This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.
ERIC Educational Resources Information Center
Rocas, Giselle; Gonzalez, Wania R. Coutinho; Araujo, Flavia Monteiro de Barros
2009-01-01
This study focuses on the implementation of selective waste collection in a school located on the outskirts of the city of Rio de Janeiro. The participants consisted mainly of 64 students taking an Environmental Control technical course during 2007 and 2008. By addressing selective waste collection, the pedagogical proposal aimed at: a) enabling…
Monitoring technologies for ocean disposal of radioactive waste
NASA Astrophysics Data System (ADS)
Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.
1982-01-01
The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.
Possible applications for municipal solid waste fly ash.
Ferreira, C; Ribeiro, A; Ottosen, L
2003-01-31
The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.
HANDBOOK: APPROACHES FOR REMEDIATION OF ...
This publication was developed by the Center for Environmental Research Information (CERI), Office of Research and Development, of the U.S. Environmental Protection Agency (EPA). The information in the document is based primarily on presentations at two technology transfer seminar series: Technologies for Remediating Sites Contaminated with Explosive and Radioactive Wastes, sponsored jointly by EPA and the U.S. Department of Defense (DOD) in spring and summer 1993; and Radioactive Site Remediation, sponsored by EPA and the Department of Energy (DOE) in summer 1992. Additional information has been provided by technical experts from EPA, DOD, DOE, academia, and private industry. present information
This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 12 2011-01-01 2011-01-01 false Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz
2003-09-01
This source-term summary document is intended to describe the current understanding of contaminant source terms and the conceptual model for potential source-term release to the environment at the Idaho National Engineering and Environmental Laboratory (INEEL), as presented in published INEEL reports. The document presents a generalized conceptual model of the sources of contamination and describes the general categories of source terms, primary waste forms, and factors that affect the release of contaminants from the waste form into the vadose zone and Snake River Plain Aquifer. Where the information has previously been published and is readily available, summaries of the inventorymore » of contaminants are also included. Uncertainties that affect the estimation of the source term release are also discussed where they have been identified by the Source Term Technical Advisory Group. Areas in which additional information are needed (i.e., research needs) are also identified.« less
US EPA's Ecological Risk Assessment Support Center ...
BackgroundThe ERASC provides technical information and addresses scientific questions of concern or interest on topics relevant to ecological risk assessment at hazardous waste sites for EPA's Office of Solid Waste and Emergency Response (OSWER) personnel and the Office of Resource Conservation and Recovery (ORCR) staff. Requests are channeled to ERASC through the Ecological Risk Assessment Forum (ERAF). To assess emerging and complex scientific issues that require expert judgment, the ERASC relies on the expertise of scientists and engineers located throughout EPA's Office of Research and Development (ORD) labs and centers.ResponseERASC develops responses that reflect the state of the science for ecological risk assessment and also provides a communication point for the distribution of the responses to other interested parties. For further information, contact Ecology_ERASC@epa.gov or call 513-569-7940.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James S. Tulenko; Carl Crane
2004-08-24
The report covers the 2003-04 contract period, with a retrospective of the 11 years for the contract, from 1993 to 2004. This includes personnel, technical publications and reports, plus research laboratories employed. Specific information is given in eight research areas, reporting on all technology developed and/or deployed by the University of Florida.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This individualized, self-paced course for independent study in plumbing was adapted from military curriculum materials for use in vocational education. The course provides the theory to accompany on-the-job training in the plumbing trade. It provides basic information on job safety and tools, waste systems, and water supply systems and fixtures.…
FINISHING FABRICATED METAL PRODUCTS WITH ...
This report provides a technical and economic evaluation of a polyester powder coating system applied to the exterior and interior surfaces of metal boxes fabricated for the telephone and cable industries. This evaluation summarized many of the requirements and benefits of a clean technology that effectively eliminates the use of hazardous solvents and prevents the generation of volatile organic emissions and hazardous solid waste. publish information
Fossil energy waste management. Technology status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, S.J.; Newman, D.A.
1995-02-01
This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less
The Office of Technology Development technical reports. A bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex;more » Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.« less
Matching the needs of a nation: The strategic roles of indicators for decisionmaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, P.J.
Indicators are important tools for communicating and making accessible scientific and technical information to policymakers and the general public. They therefore play an important role in transforming information into action. Worldwide, many initiatives are underway to construct indicators for a variety of purposes, including those for reporting on sustainable development. This paper briefly describes the attempts made so far, but stresses that the users of the indicators should play a greater role in indicator construction. In developing countries, a substantial lack of data has meant that specific policy formulation may develop without adequate technical input. In developed countries also, datamore » gaps may hinder policy formulation, implementation, and evaluation. However, the development of indicators as tools to assist in the management of hazardous wastes and toxic chemicals is still in the early stages of formulation. A more imaginative program of indicators and indices is required, where targets are well defined and the users clearly identified to assist in decision making, especially at the local and national levels. A broader range of pressure indicators, beyond hazardous wastes, is proposed to integrate toxic chemicals, emissions, and environmental and human health impacts. 39 refs., 3 figs.« less
A Goal Programming/Constrained Regression Review of the Bell System Breakup.
1985-05-01
characteristically employ. 4 .- - -. . ,. - - ;--.. . . .. 2. MULTI-PRODUCT COST MODEL AND DATA DETAILS When technical efficiency (i.e. zero waste ) can be assumed...assumming, but we believe that it was probably technical (= zero waste ) efficiency by virtue of the following reasons. Scale efficien- cy was a
Solid waste management in Abuja, Nigeria.
Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R
2008-01-01
The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.
Engineering concepts for the placement of wastes on the abyssal seafloor
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Palowitch, Andrew W.; Young, David K.
1998-05-01
The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management techniques in higher-priced areas, such as the New York-New Jersey area. In conclusion, the abyssal seafloor waste isolation concept is technically feasible and cost-effective for many waste sources.
Nuclear waste transportation: case studies of identifying stakeholder risk information needs.
Drew, Christina H; Grace, Deirdre A; Silbernagel, Susan M; Hemmings, Erin S; Smith, Alan; Griffith, William C; Takaro, Timothy K; Faustman, Elaine M
2003-01-01
The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation's nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997-1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes. PMID:12611653
Low-level radioactive waste technology: a selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fore, C.S.; Vaughan, N.D.; Hyder, L.K.
1980-10-01
This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.
The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
Review of Waste Management Symposium 2007, Tucson, AZ, USA
Luna, Robert E.; Yoshimura, R. H.
2007-03-01
The Waste Management Symposium 2007 is the most recent in a long series that has been held at Tucson, Arizona. The meeting has become extremely popular as a venue for technical exchange, marketing, and networking involving upward of 1800 persons involved with various aspects of radioactive waste management. However, in a break with tradition, the symposium organizers reported that next year’s Waste Management Symposium would be held at the Phoenix, AZ convention center. Additionally, most of the WM07 sessions dealt with the technical and institutional issues relating to the resolution of waste disposal and processing challenges, including a number ofmore » sessions dealing with related transport activities.« less
International development workshops. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-06
The US Department of Energy (DOE) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) began to act on their recognition of the importance of education in nuclear literacy, specifically in radioactive waste management (RWM), several years ago. To address this Goal for nuclear literacy, the US DOE; through the Information and Education Division of the Office of Civilian Radioactive Waste Management (OCRWM) and in cooperation with the OECD/NEA, organized an ``International Workshop on Education in the Field of Radioactive Waste Management`` in Engelberg, Switzerland in June of 1991. To this end, amore » grant to support nuclear literacy and RWM was written and funded by the OCRWM and the education division of the DOE Yucca Mountain Office in 1990. The over-riding Goal of that workshop and the DOE grant was to find ways of raising the level of nuclear literacy in the general public through educational programs in radioactive waste management (RWM). The two Main Objectives of the workshop were: first, to contribute to an information base for education systems, on global aspects of radioactive waste management; and second, to achieve international consensus on the basic tools and methods required to develop the information base. These two objectives also became the principal objectives of the DOE International Workshops grant. In other words, the global and local (Nevada) objectives were one and the same. Workshop overviews and accomplishments are summarized in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepherd, P
1994-07-01
US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technicalmore » reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.« less
Characterization, monitoring, and sensor technology catalogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.
1995-12-01
This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community.more » Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.« less
Initial Radionuclide Inventories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.« less
Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Robert Wesley; Hargis, Kenneth Marshall
2014-09-01
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...
10 CFR 1304.101 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...
10 CFR 1304.101 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...
10 CFR 1304.101 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...
10 CFR 1304.105 - Requests for access to records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...
10 CFR 1304.105 - Requests for access to records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...
10 CFR 1304.101 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...
10 CFR 1304.105 - Requests for access to records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...
10 CFR 1304.105 - Requests for access to records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...
10 CFR 1304.101 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...
10 CFR 1304.103 - Privacy Act inquiries.
Code of Federal Regulations, 2010 CFR
2010-01-01
... writing may be sent to: Privacy Act Officer, U.S. Nuclear Waste Technical Review Board, 2300 Clarendon... NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.103 Privacy Act inquiries. (a) Requests... contains a record pertaining to him or her may file a request in person or in writing, via the internet, or...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
Waste Isolation Pilot Plant Technical Assessment Team Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).
Separate collection of plastic waste, better than technical sorting from municipal solid waste?
Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U
2017-02-01
The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.
Nuclear waste management. Semiannual progress report, October 1982-March 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T.D.; Powell, J.A.
1983-06-01
This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.
Pit 9 Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth M.
2014-01-08
A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP).This report summarizes available information on the origin, configuration, and composition of the waste containers within Pit 9, their physical and radiological characteristics, and issues that may be encountered in their retrieval and processing. Review of the available information indicates that Pit 9 should present no major issues in retrieval and processing, and most drums contain TRU waste that can be shipped to WIPP. The primary concern in retrieval is the integrity of containers that have been stored below-ground for 35 to 40 years. The most likely issue that will be encountered in processing containers retrieved from Pit 9 is the potential for items that are prohibited at WIPP such as sealed containers greater than four liters in size and free liquids that exceed limits for WIPP.« less
77 FR 22229 - Hazardous Waste Technical Corrections and Clarifications Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... concerning this amendment from Safe Food and Fertilizer (hereafter referred to as Safe Food), a grassroots.... * * * * * (a) * * * Industry and EPA hazardous waste No. Hazardous waste Hazard code * * * * * * * Organic...
The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)
NASA Astrophysics Data System (ADS)
Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael
2014-05-01
Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and possible supergene alteration. Clay minerals present are kaolinite, smectite and chlorite. The formation of these minerals is however ambiguous, and can form during both hydrothermal as weathering processes, calling for a detailed micromorphological study. Micromorphological investigations on undisturbed samples by microscopic and ultramicroscopic techniques allow us to interpretate the processes behind the formation of technic soil in the matrix of the waste rock pile, as well as the rate and chronology of mineral formation and arenisation related to weathering (formation of protosoil and saprolitisation). By studying the formation of weathering aureaoles in between the different granitic blocks, we quantify the anthropogenic influence on weathering of this rock pile and their impacts on local ecosystem by comparing our site with natural occuring outcrops of granites currently subjected to weathering. Electron microscope imaging and microgeochemical mapping permits us to make detailed micromorphological observations linking nanoscale processes to petrolographical macroscopic features and field observations. Different petrographic and electronic images of the mineral paragenesis in the micromass associated to their microgeochemical characteristics will be presented. Also, the impact of previous hydrothermal alteration will be highlighted.
Solid waste projection model: Model version 1. 0 technical reference manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, M.L.; Crow, V.L.; Buska, D.E.
1990-11-01
The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Modelmore » User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Technical Assistance and Training Grants § 1775.36 Purpose. Grants... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to... facilities. (e) Pay the expenses associated with providing the technical assistance and/or training...
Waste to energy – key element for sustainable waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut
2015-03-15
Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together withmore » prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.« less
Technical viability and development needs for waste forms and facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegg, I.; Gould, T.
1996-05-01
The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It wasmore » not the intent of this session to recommend or advocate any one technology over another.« less
Energy utilization: municipal waste incineration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaBeck, M.F.
An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezeah, Chukwunonye, E-mail: C.Ezeah2@wlv.ac.uk; Fazakerley, Jak A.; Roberts, Clive L.
Highlights: • Reviewed emerging trends in Informal Sector Recycling (ISR) in developing countries. • In some countries we found that ISR is the key factor in the recycling of waste materials. • Overall impact of ISR upon the urban economy and environment is positive. • In some instances ISR subsidises large areas of the formal sector. • Ignoring the informal sector could result in unsustainable interventions. - Abstract: Optimistic estimates suggest that only 30–70% of waste generated in cities of developing countries is collected for disposal. As a result, uncollected waste is often disposed of into open dumps, along themore » streets or into water bodies. Quite often, this practice induces environmental degradation and public health risks. Notwithstanding, such practices also make waste materials readily available for itinerant waste pickers. These ‘scavengers’ as they are called, therefore perceive waste as a resource, for income generation. Literature suggests that Informal Sector Recycling (ISR) activity can bring other benefits such as, economic growth, litter control and resources conservation. This paper critically reviews trends in ISR activities in selected developing and transition countries. ISR often survives in very hostile social and physical environments largely because of negative Government and public attitude. Rather than being stigmatised, the sector should be recognised as an important element for achievement of sustainable waste management in developing countries. One solution to this problem could be the integration of ISR into the formal waste management system. To achieve ISR integration, this paper highlights six crucial aspects from literature: social acceptance, political will, mobilisation of cooperatives, partnerships with private enterprises, management and technical skills, as well as legal protection measures. It is important to note that not every country will have the wherewithal to achieve social inclusion and so the level of integration must be ‘flexible’. In addition, the structure of the ISR should not be based on a ‘universal’ model but should instead take into account local contexts and conditions.« less
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT
EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
10 CFR 61.56 - Waste characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...
Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M.
2015-07-30
Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.
Reclamation chain of waste concrete: A case study of Shanghai.
Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao
2016-02-01
A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit. Copyright © 2015 Elsevier Ltd. All rights reserved.
Del Rey, Isaac; Ayuso, Jesús; Galvín, Adela P.; Jiménez, José R.; Barbudo, Auxi
2016-01-01
Social awareness aims to increase practical skills, such as sustainable development, which seeks to increase the use of different types of waste in construction activities. Although insufficient attention is sometimes given to these actions, it is essential to spread information regarding new studies in the field of waste recycling, which encourages and promotes waste use. Reusing and recycling construction waste in the creation of buildings and infrastructure are fundamental strategies to achieving sustainability in the construction and engineering sectors. In this context, the concept of waste would no longer exist, as waste would become a material resource. Therefore, this study analyses the behaviours of two unbound mixed recycled aggregates (MRA) in the structural layers of an unpaved rural road with low traffic (category T43). The sections were built on inappropriate soil (A-7-6) with a high degree of free swelling. The experimental road consisted of three sections: the first was made with natural aggregates (NA) that were used as a control, the second was composed of MRA in the subbase and NA in the base, and the third section was completely composed of MRA. The materials were characterised in the laboratory. The behaviours of the structural layers in the experimental road were determined by controlling compaction (“in situ” density and moisture) and measuring the deflections and load capacity (deflectometer) during the 18 months after construction. The results show that the sections made with recycled aggregates meet the technical specifications required by General Technical Specifications for Road and Bridge Works (PG-3). Therefore, the water-soluble sulphate content and Los Angeles abrasion coefficient limits can be increased for recycled aggregates without compromising the quality of this type of road with low traffic. To the best of our knowledge, this is the first study regarding the use of unbound MRA made from construction and demolition waste (CDW) in the construction of an unpaved rural road with low traffic on an expansive clay subgrade. PMID:28774053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaldini, C.; Waterland, L.R.
1987-03-01
The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue-gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less
Emerging trends in informal sector recycling in developing and transition countries.
Ezeah, Chukwunonye; Fazakerley, Jak A; Roberts, Clive L
2013-11-01
Optimistic estimates suggest that only 30-70% of waste generated in cities of developing countries is collected for disposal. As a result, uncollected waste is often disposed of into open dumps, along the streets or into water bodies. Quite often, this practice induces environmental degradation and public health risks. Notwithstanding, such practices also make waste materials readily available for itinerant waste pickers. These 'scavengers' as they are called, therefore perceive waste as a resource, for income generation. Literature suggests that Informal Sector Recycling (ISR) activity can bring other benefits such as, economic growth, litter control and resources conservation. This paper critically reviews trends in ISR activities in selected developing and transition countries. ISR often survives in very hostile social and physical environments largely because of negative Government and public attitude. Rather than being stigmatised, the sector should be recognised as an important element for achievement of sustainable waste management in developing countries. One solution to this problem could be the integration of ISR into the formal waste management system. To achieve ISR integration, this paper highlights six crucial aspects from literature: social acceptance, political will, mobilisation of cooperatives, partnerships with private enterprises, management and technical skills, as well as legal protection measures. It is important to note that not every country will have the wherewithal to achieve social inclusion and so the level of integration must be 'flexible'. In addition, the structure of the ISR should not be based on a 'universal' model but should instead take into account local contexts and conditions. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less
Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit
2016-02-01
Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.
10 CFR 61.58 - Alternative requirements for waste classification and characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2014-01-01 2014-01-01 false Alternative requirements for waste classification and...
10 CFR 61.58 - Alternative requirements for waste classification and characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2012-01-01 2012-01-01 false Alternative requirements for waste classification and...
10 CFR 61.58 - Alternative requirements for waste classification and characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2010-01-01 2010-01-01 false Alternative requirements for waste classification and...
10 CFR 61.58 - Alternative requirements for waste classification and characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2013-01-01 2013-01-01 false Alternative requirements for waste classification and...
10 CFR 61.58 - Alternative requirements for waste classification and characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2011-01-01 2011-01-01 false Alternative requirements for waste classification and...
Slope failures in municipal solid waste dumps and landfills: a review.
Blight, Geoffrey
2008-10-01
Between 1977 and 2005 six large-scale failures of municipal solid waste dumps and landfills have been recorded in the technical literature. The volumes of waste mobilized in the failures varied from 10-12 000 m(3) in a failure that killed nearly 300 people to 1.5 million m(3) in a failure that caused no deaths or injuries. Of the six failures, four occurred in dumps that, as far as is known, had not been subjected to any prior technical investigation of their shear stability. The remaining two failures occurred in engineer-designed landfills, one of which practised leachate recirculation, and the other co-disposed of liquid waste along with solid waste. The paper reviews, describes and analyses the failures and summarizes their causes.
10 CFR 960.5-2 - Technical guidelines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORY Preclosure Guidelines § 960.5-2 Technical guidelines. The technical guidelines in this subpart set... repository and to the transportation of waste to a repository site. The third group includes conditions on...
An On-line Technology Information System (OTIS) for Advanced Life Support
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriquez, Luis
2003-01-01
OTIS is an on-line communication platform designed for smooth flow of technology information between advanced life support (ALS) technology developers, researchers, system analysts, and managers. With pathways for efficient transfer of information, several improvements in the ALS Program will result. With OTIS, it will be possible to provide programmatic information for technology developers and researchers, technical information for analysts, and managerial decision support. OTIS is a platform that enables the effective research, development, and delivery of complex systems for life support. An electronic data collection form has been developed for the solid waste element, drafted by the Solid Waste Working Group. Forms for other elements (air revitalization, water recovery, food processing, biomass production and thermal control) will also be developed, based on lessons learned from the development of the solid waste form. All forms will be developed by consultation with other working groups, comprised of experts in the area of interest. Forms will be converted to an on-line data collection interface that technology developers will use to transfer information into OTIS. Funded technology developers will log in to OTIS annually to complete the element- specific forms for their technology. The type and amount of information requested expands as the technology readiness level (TRL) increases. The completed forms will feed into a regularly updated and maintained database that will store technology information and allow for database searching. To ensure confidentiality of proprietary information, security permissions will be customized for each user. Principal investigators of a project will be able to designate certain data as proprietary and only technical monitors of a task, ALS Management, and the principal investigator will have the ability to view this information. The typical OTIS user will be able to read all non-proprietary information about all projects.Interaction with the database will occur over encrypted connections, and data will be stored on the server in an encrypted form. Implementation of OTIS will initiate a community-accessible repository of technology development information. With OTIS, ALS element leads and managers will be able to carry out informed technology selection for programmatic decisions. OTIS will also allow analysts to make accurate evaluations of technology options. Additionally, the range and specificity of information solicited will help educate technology developers of program needs. With augmentation, OTIS reporting is capable of replacing the current fiscal year-end reporting process. Overall, the system will enable more informed R&TD decisions and more rapid attainment of ALS Program goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs aremore » discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptualmore » model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.« less
Tank waste remediation system functions and requirements document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, K.E
1996-10-03
This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technicalmore » Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.« less
The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...
A fundamental investigation is proposed to provide a technical basis for the development of a novel, liquid-fluidized bed classification (LFBC) technology for the continuous separation of complex waste plastic mixtures for in-process recycling and waste minimization. Although ...
Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.
ERIC Educational Resources Information Center
Richardson, John G.
The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…
32 CFR 203.12 - Technical assistance for public participation provider qualifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste problems. (2) Experience in making technical presentations. (3) Demonstrated writing skills. (4... 32 National Defense 2 2010-07-01 2010-07-01 false Technical assistance for public participation... THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS TECHNICAL ASSISTANCE FOR PUBLIC PARTICIPATION (TAPP...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se; Bramryd, Torleif
Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market thatmore » determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...
Code of Federal Regulations, 2012 CFR
2012-01-01
... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...
Nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.
1978-01-01
Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.
The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.« less
Environmental Assessment for Boston Harbor Maintenance Dredging, Boston, Massachusetts.
1981-12-01
Harbor was developed by Jerome et al (1966), Chesmore et al (1971) and Iwanowicz et al. (1973). The studies on the Lower Mystic River were concentrated in... Iwanowicz et al. (1973) and this data should be referred to for detailed information. Waters overlying the shellfish beds are contaminated by wastes...DMRP Technical Report DS-78-5, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. Iwanowicz , H. R., R D
Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong; Ashraf, Uzma
2017-04-01
Proper management of healthcare waste is a critical concern in many countries of the world. Rapid urbanization and population growth rates pose serious challenges to healthcare waste management infrastructure in such countries. This study was aimed at assessing the situation of hospital waste management in a major city of Pakistan. Simple random sampling was used to select 12 government and private hospitals in the city. Field visits, physical measurements, and questionnaire survey method were used for data collection. Information was obtained regarding hospital waste generation, segregation, collection, storage, transportation, and disposal. Data envelopment analysis (DEA) was used to classify the hospitals on the basis of their relative waste management efficiencies. The weighted average total waste generation at the surveyed hospitals was discovered to be 1.53 kg/patient/day of which 75.15% consisted of general waste and the remaining consisted of biomedical waste. Of the total waste, 24.54% came from the public hospital and the remaining came from the private hospitals. DEA showed that seven of the surveyed hospitals had scale or pure technical inefficiencies in their waste management activities. The public hospital was relatively less efficient than most of the private hospitals in these activities. Results of the questionnaire survey showed that none of the surveyed hospitals was carrying out waste management in strict compliance with government regulations. Moreover, hospital staff at all the surveyed hospitals had low level of knowledge regarding safe hospital waste management practices. The current situation should be rectified in order to avoid environmental and epidemiological risks.
A DECISION SUPPORT TOOL (DST) FOR DISPOSAL OF ...
Symposium Paper AFTER A BUILDING OR WATER TREATMENT/DISTRIBUTION FACILITY HAS GONE THROUGH DECONTAMINATION ACTIVITIES FOLLOWING A CONTAMINATION EVENT WITH CHEMICAL/BIOLOGICAL WARFARE AGENTS OR TOXIC INDUSTRIAL CHEMICAL, THERE WILL BE A SIGNIFICANT AMOUNT OF RESIDUAL MATERIAL AND WASTE TO BE DISPOSED. A CONTAMINATION EVENT COULD OCCUR FROM TERRORIST ACTIVITY OR FROM A NATURAL DISASTER SUCH AS THE RECENT HURRICANE EVENTS IN THE GULF COAST WHERE MOLD AND POLLUTANTS FROM DAMAGED CHEMICAL AND INDUSTRIAL FACILITIES HAVE RESULTED IN SIGNIFICANT QUANTITIES OF CONTAMINATED MATERIALS. IT iS LIKELY THAT MUCH OF THIS MATERIAL WILL BE DISPOSED OF IN PERMITTED LANDFILLS OR HIGH TEMPERATURE THERMAL INCINERATION FACILITIES. DATA HAS BEEN COLLECTED FROM THE OPEN LITERATURE, FROM STATE AND FEDERAL REGULATORY AGENCIES, AND FROM WASTE MANAGEMENT AND WATER UTILITY INDUSTRY STAKEHOLDER GROUPS, TO DEVELOP TECHNICAL GUIDANCE FOR DISPOSAL OF THESe RESIDUES. THE INFORMATION BECOMES AVAILABLE, AND OLD INFORMATION (SUCH AS CONTACT INFORMATION FOR KEY PERSONNEL) CHANGES. THE PRiMARY AUDIENCE FOR THIS TOOL WILL BE: 1) EMERGENCY RESPONSE AUTHORITIES WHO HAVE TO DECIDE THE MOST APPROPRIATE DECONTAMINATION METHODS AND DISPOSAL OF THE RESULTING RESIDUES; 2)STATE AND LOCAL PERMITTING AGENCIES, WHO HAVE TO MAKE DECISIONS ABOUT WHICH FACILITIES WILL BE ALLOWED TO DISPOSE OF THE MATERIALS: AND 3) THE WASTE MANAGEMENT AND WATER UTILITY INDUSTRY, THAT NEEDS TO SAFELY DISPOSE OF DECONTAMINATION RESIDUE
WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 2. APPENDICES
The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOZLOWSKI, S.D.
2007-05-30
This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less
NASA Astrophysics Data System (ADS)
Rankin, Matthew J.
Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been integrated into wastewater treatment facilities nationwide for many decades to increase the economic viability of the treatment process by converting a waste stream into two valuable products: biogas and fertilizer. Thus, anaerobic digestion offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. The use of biogas has many applications, including cogeneration, direct combustion, upgrading for conversion to feed a fuel cell, and compression for injection into the natural gas grid or for vehicular use. The potential benefits of waste diversion and renewable energy generation are now being realized by major organic waste generators in New York State, in particular the food manufacturing and dairy industries, thus warranting an analysis of the energy generation potential for these waste products. Anaerobic codigestion of dairy manure and food-based feedstocks reflects a cradle-to- cradle approach to organic waste management. Given both of their abundance throughout New York State, waste-to-energy processes represent promising waste management strategies. The objective of this thesis was to evaluate the current technical and economic feasibility of anaerobically codigesting existing dairy manure and food manufacturing waste feedstocks in New York State to produce high quality biogas for renewable energy generation. The first element to determining the technical feasibility of anaerobic codigestion potential in New York State was to first understand the feedstock availability. A comprehensive survey of existing organic waste streams was conducted. The key objective was to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State to make codigestion of multiple feedstocks in centralized anaerobic codigestion facilities an economically attractive alternative to traditional waste disposal pathways (e.g. landfill and wastewater treatment facilities). A technical and environmental assessment of processing food manufacturing wastes and dairy manure for production of electricity via cogeneration, while dependent on biogas quantity and quality as well as the proximity of the waste generators to the centralized codigestion facility, suggests that a real possibility exists for integrating dairy operations with food manufacturing facilities, dependent on the values of the parameters indicated in this thesis. The results of the environmental analysis show that considerable electricity generation and greenhouse gas emissions reductions are possible, depending primarily on feedstock availability and proximity to the centralized anaerobic digester. The initial results are encouraging and future work is warranted for analyzing the site-specific technical and economic viability of codigesting dairy manure and food manufacturing wastes to produce high quality biogas for renewable energy generation in New York State.
Technical Support for Contaminated Sites
In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled...
40 CFR 265.1059 - Standards: Delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...
Proceedings of the scientific visit on crystalline rock repository development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka
2013-02-01
A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations.more » Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.« less
Wastewater Characterization and Hazardous Waste Technical Assistance Survey, Bergstrom AFB Texas
1990-01-01
1 FCTE " MAR 12J990 US NANCY S. HEDGECOCK, I t USAF BSC January 1990 Final Report Distribution Is unlimited; approved for public release AF...names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recomendation for use by the United...States Air Force. The Public Affairs Office has reviewed this report, and it is releasable to the National lechnical Information Service, where it
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-01-01
The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of seniormore » YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.« less
FY 1986 current fiscal year work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office/RI during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, taskmore » monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. System models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less
Organic Waste Diversion in Columbia, South Carolina, Feasibility Study
The study found that a variety of methods are technically and economically feasible for diverting food wastes and providing a positive return on investment for the source. Potential barriers and considerations for food waste diversion are identified in the study. Given the E...
75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... comment will not take effect, and the reason for such withdrawals. We do not intend to institute a second... Environmental protection, Hazardous waste, Recycling, Reporting and recordkeeping requirements. 40 CFR Part 262... Part 266 Environmental protection, Energy, Hazardous waste, Recycling, Reporting and recordkeeping...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birdsell, Kay Hanson; Stauffer, Philip H.; French, Sean B.
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 atmore » Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.« less
Geochemical Aspects of Radioactive Waste Disposal
NASA Astrophysics Data System (ADS)
Moody, Judith B.
1984-04-01
The author's stated purpose in writing this book is to summarize the large number of government-sponsored research reports on the geochemical aspects of high-level nuclear waste isolation. Although this book has a 1984 publication date, the majority of the cited documents were published before 1982. Unfortunately, passage of the Nuclear Waste Policy Act (NWPA) of 1982 and its signing into law by President Reagan (January 1983) [U.S. Congress, 1983] has significantly altered the U.S. Department of Energy (DOE) Civilian Radioactive Waste Management (CRWM) Program. Therefore this book does not accurately reflect the present U.S. program in geologic disposal of high-level nuclear waste. For example, chapter 2, “Radioactive Waste Management,” is almost 3 years out of date in a field that is changing rapidly (see U.S. DOE [1984a] for the current status of the CRWM Program). Additionally, the source material, which forms the input for this book, is chiefly grey literature, i.e., the referenced documents may or may not have undergone peer review and therefore do not represent the technical judgment of the scientific community. Also, this book only presents a selective sampling of information because the literature cited does not include a representative selection of the widespread available literature on this topic.
Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Bruce Alan; Funk, David John; Stevens, Patrice Ann
2016-03-17
This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options,more » ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragolici, F.; Turcanu, C. N.; Rotarescu, G.
2003-02-25
The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-01
The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less
Nuclear facility decommissioning and site remedial actions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, N.P.; Webb, J.R.; Ferguson, S.D.
1990-09-01
The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3)more » Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.« less
A Challenge for Radioactive Waste Management: Memory Preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charton, P.; Ouzounian, G.
2008-07-01
ANDRA, the French National Radioactive Waste Management Agency, is responsible for managing all radioactive waste in France over the long term. In the case of short-lived waste for which disposal facilities have a life expectancy of a few centuries, the Agency has set up a system for preserving the memory of those sites. Based on the historical analysis on a comparable timescale and on an appraisal of information-conservation means, a series of regulatory as well as technical provisions was made in order to ensure that sound information be transmitted to future generations. Requirements associated to the provisions deal mostly withmore » legibility and a clear understanding of the information that must be decrypted and understood at least during the lifetime of the facilities (i.e., a few centuries). It must therefore be preserved throughout the same period. Responses to the requirements will be presented notably on various information-recording media, together with the information-diffusion strategy to the different authorities and structures within French society. A concrete illustration of the achievements made so far is the Centre de la Manche Disposal Facility, which was closed down in 1994 and is currently in its post-closure monitoring phase since 2003. In the case of deep geological repositories for long-lived radioactive waste, preserving memory takes a different aspect. First of all, timescales are much longer and are counted in hundreds of thousands of years. It is therefore much more difficult to consider how to maintain the richness of the information over such time periods than it is for short-lived waste. Both the nature and the form of the information to be transmitted must be revised. It would be risky indeed to base memory preservation over the long term on similar mechanisms beyond 1,000 years. Based on the heritage of a much more ancient history, we must seek to find appropriate means in order to develop surface markers and even more to ensure their conservation over compatible timescales with those of deep geological repositories. It will also be necessary, in the light of the experiments and efforts made in order to decrypt the messages written on rupestral paintings or in pyramids, find suitable expression means that will help, not the next few generations, but much more future generations, to grasp the meaning of what we aim at transmitting them. This paper presents the state of the French reflection on memory preservation and transmission over the very long term, for timescales consistent with the long-lived radioactive geological waste disposal projects. (author)« less
Test Plan: WIPP bin-scale CH TRU waste tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molecke, M.A.
1990-08-01
This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less
NASA Astrophysics Data System (ADS)
Mabrouk, Patricia Ann
2001-12-01
This paper describes a course for first-year graduate students that teaches the fundamental so-called "soft skills" required for success in graduate school and beyond. Topics covered are ethics, laboratory safety and waste management, chemical information retrieval and literacy, experimental design, scientific record keeping, statistics, career development, and communications, including technical writing and oral presentation. Whenever possible students are put in direct contact with local technical experts and available resources. The course, well regarded by both students and faculty, has now been taught at Northeastern University for five years in the summer academic quarter to graduate students in chemistry and related departments (pharmacy and chemical engineering) who have successfully completed their first-year course work.
Closed-ecology life support systems /CELSS/ for long-duration, manned missions
NASA Technical Reports Server (NTRS)
Modell, M.; Spurlock, J. M.
1979-01-01
Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.
Methanol from wood waste : a technical and economic study
A. E. Hokanson; R. M. Rowell
1977-01-01
A methanol-from-wood waste facility having a capacity of 50 million gallons per year requires 1,500 ovendry tons (ODT) of wood waste per day. The yield of methanol from wood is about 38 percent, or about 100 gallons per ODT of wood. This yield is based on all process energy required coming from the wood waste. At a wood waste cost of $15/ODT, the selling price of...
NASA Astrophysics Data System (ADS)
Tata, A.; Beone, F.
1995-09-01
Hospital waste (HW) disposal is becoming a problem of increasing importance in almost all industrially advanced countries. In Italy the yearly hospital waste production is about 250,000 tons and only 60,000 tons are treated by incineration at present time. As by a recent Italian law a meaningful percentage of HW (50 to 60%), corresponding to food residuals, plastics, paper, various organic materials, etc., could be landfilled as municipal refuses if preliminarily submitted to a suitable sterilization treatment. Under this perspective, sterilization/sanitation techniques represent now a technically and commercially viable alternative to HW thermal destruction that, besides, is more and more socially and politically less accepted. Electron Beam (EB) and Microwave (MW) treatments are two of the most interesting and emerging HW sterilization techniques, and, based on engineering real data, a technical and economic comparison is carried out, focusing vantages and limits of each process.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling... landfills. (c) Provide technical assistance and/or training for operators of landfills which are closed or... with providing the technical assistance and/or training authorized in paragraphs (a) through (d) of...
MINE WASTE TECHNOLOGY PROGRAM:HISTORICAL PERSPECTIVES. CURRENT HIGHLIGHTS, FUTURE OPPORTUNITIES
For the past 13 years, the Mine Waste Technology Program has been technically driven by the National Risk Management Research Lab. A portion of the MWTP funding has been used to perform field demonstrations of innovative technologies with the potential to address mine waste issue...
Engineering for cover over solid hazardous waste addresses complex interactions among many technical, environmental, and economical factors. The document emphasizes the special characteristics of solid waste management as they bear on the cover system while at the same time stres...
10 CFR 60.133 - Additional design criteria for the underground facility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...
10 CFR 60.133 - Additional design criteria for the underground facility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...
10 CFR 60.133 - Additional design criteria for the underground facility.
Code of Federal Regulations, 2011 CFR
2011-01-01
... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...
10 CFR 60.133 - Additional design criteria for the underground facility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of waste. The underground facility shall be designed to permit retrieval of waste in accordance with the... RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usher, Sam
2007-07-01
Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence of the public and other stakeholders. However, in today's modern society, communities will not simply accept the word of scientists for setting policy based purely on technical grounds. This is particularly so in areas where there are significant social andmore » ethical issues, such as radioactive waste disposal. To develop and implement effective policy, governments, waste owners and implementing bodies must develop processes which effectively integrate both complex technical and scientific issues, with equally challenging social and ethical concerns. These integrating processes must marry often intricate technical issues with broad public and stakeholder engagement programmes, in programmes which can expect the highest levels of public scrutiny, and must invariably be delivered within challenging time and budget constraints. This paper considers a model for how such integrating processes can be delivered. The paper reviews, as a case study, how such challenges were overcome by the Committee on Radioactive Waste Management (CoRWM), which, in July 2006, made recommendations to the UK government for the establishment of a long-term radioactive waste policy. Its recommendations were underpinned by sound science, but also engendered public confidence through undertaking the largest and most significant deliberative public and stakeholder engagement programme on a complex policy issue in the UK. Effective decision-making was enabled through the integration of both proven and bespoke methodologies, including Multi-criteria Decision Analysis and Holistic assessments, coupled with an overarching deliberative approach. How this was managed and delivered to programme demonstrates how important effective integration of different issues, interests and world views can be achieved, and the paper looks forward to how the continued integration of both natural and social sciences is essential if public confidence is to be maintained through implementation stages. This paper will be particularly relevant to governments, waste owners and implementing bodies who are responsible for developing and implementing policy. (author)« less
NASA Astrophysics Data System (ADS)
Solano Meza, Johanna; Romero Hernandez, Claudia; Rodrigo Ilarri, Javier
2017-04-01
One of the main environmental issues to address in the Capital City of Bogotá (Colombia) is the increasing production of solid waste. Despite significant efforts have been made to implement an integral solid waste system management, the current management methods do not provide a permanent alternative to minimize waste production. According to the most recent data, Bogotá is producing almost 2,7 Mt/year of solid waste and only 17,12% of this amount is reused. This means that 82,88% of the waste production has to be disposed on the municipal landfill which has an estimated life of 7,6 years [1]. Bogotá is nowadays running the so-called Zero Waste Program, which tries to run an adequate solid waste management scheme while updating the most recent Integral Solid Waste Management Plan (ISWMP). However, various strategies and methodologies are still needed to fulfill their objetives. The analysis of the solid waste production inside the city using geographic information systems (GIS) is one of the available strategies that may contribute to the environmental impacts minimization, acting at the same time as a decission support tool. These techniques have already been used to the analysis and optimization of the waste collection routes and the location of waste disposal sites. They allow to visualize the critical urban zones with increasing waste production so the next steps of the management process can be properly designed (collection, trasnport routes design, location of treatment facilities and final waste disposal sites). The estimation of the urban solid waste generation is done applying different mathematical and statistical methods, which are based on the relation between the total population of the city and the per capita waste production. GIS methods allow i) to determine the total amount of waste generated as a function of the population increasement and ii) provide a full view of the zones where priority actions are needed as they take into account both the geographical and spatial component. The behaviour of the waste generation is explained considering also the socieconomic stratiphication. Results show in this research are obtained using ArcGIS considering the official 2005 census population, the population estimation in 2020, the amount of waste recycled and disposed on the municipal landfill and the socioeconomical of the different urban areas following the local waste management plans and programs. [1]Technical Support document, Solid Waste Management Plan of Bogotá D.C. Alcaldía Mayor de Bogotá, November 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyder, L.K.; Fore, C.S.; Vaughan, N.D.
This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology;more » Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Channell, J.K.; Walker, B.A.
2000-05-01
Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, Mark H.
2012-07-01
The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA providesmore » the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific data will be evaluated through the Special Analysis process. The FTF Special Analyses process will be utilized to evaluate information regarding the final residual waste that will be grouted in place in the FTF Tanks and assess the potential impact the new inventory information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. The purpose of this paper is to discuss the Special Analysis process and share insights gained while implementing this process. An example of an area of interest in the revision process is balancing continuous improvement versus configuration control of agreed upon methodologies. Other subjects to be covered include: 1) defining the scope of the revisions included in the Special Analysis, 2) determining which PA results should be addressed in the Special Analysis, and 3) deciding whether the Special Analysis should utilize more qualitative or quantitative assessments. For the SRS FTF, an FTF PA has been prepared to provide the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of FTF. The FTF Special Analyses process will be utilized to evaluate the impact new information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. In preparing SAs, it is crucial that the scope of the SA be well defined within the SA, since the specific scope will vary from SA to SA. Since the SAs are essentially addendums to the PA, the SA scope should utilize the PA as the baseline from which the SA scope is defined. The SA needs to focus on evaluating the change associated with the scope, and not let other changes interfere with the ability to perform that evaluation by masking the impact of the change. In preparing the SA, it is also important to let the scope determine whether the Special Analysis should utilize more qualitative or quantitative assessments and also which results from the PA should be addressed in the Special Analysis. These decisions can vary from SA and should not be predetermined. (author)« less
Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R
2006-01-01
Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.
Geotechnical support and topical studies for nuclear waste geologic repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technicalmore » and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upshall, I.R.; McCarthy, G.J.
A contextual framework comprises 'entities' that exhibit one or more definable relationships with a particular 'event'. People, organisations, concepts, ideas, places, natural phenomena, events themselves, cultural artefacts including records, books, works of art can all be conceptualised as entities. If these entities are registered in an information management system where the relationships between them can be defined and systematically managed then it is possible to create a contextual information framework that represents a particular view of what occurs in real life. The careful identifying and mapping of the relationships between these entities and the selected event can lead rapidly tomore » the creation of an information network that closely reflects the human approach to knowledge acquisition and application. The 'event' referred to in this paper is the safe management of radioactive waste. It is widely accepted that society will expect that knowledge about the waste will be maintained for many decades, if not centuries. Delivering on this expectation will demand the application of management approaches that are both innovative and sustainable. Effective inter-generational transfer of information using many 'conventional' techniques will be highly dependent on societal stability - something that cannot be guaranteed over such long periods of time. Consequently, alternative approaches should be explored and, where appropriate, implemented to give reasonable assurance that future generations of waste custodians will not be unduly burdened by the need to recreate information about the waste long after its disposal. In actual fact, the contextual information framework model is not 'new technology' but simply a means for rationalising and representing the way humans naturally tend to use information in the pursuit of knowledge enhancement. By making use of multiple information entities and their relationships, it is often possible to convert otherwise impossibly complex socio-technical environments into information architectures or networks with remarkable and useful properties. The International Atomic Energy Agency, in its ongoing work to encourage the application of systems to manage radioactive waste information over the long term, has embraced the contextual information framework as a potentially viable approach to this particular challenge. To this end, it invited Member States to contribute to the production of a Safety Report that used the contextual information framework model, building on the wealth of existing IAEA guidance. The report focuses, not on the important area of records management, but on the benefits that can arise from the development of an information management approach that increases the likelihood that future generations will recognise the significance and value of the information contained in these records. Our understanding of 'inter-generational transfer' should extend beyond the simple physical transfer of records into an archival repository towards the establishment of a working culture that places sufficient contemporary information into a form that ensures it remains accessible, and ultimately enhances, the knowledge of future generations. Making information accessible is therefore the key and whilst the use of stable records media, storage environments and quality assurance are important elements, they cannot be considered solutions in themselves. This paper articulates some of the lessons that have been learned about using the contextual information framework model when applied to the long term management of radioactive waste. The draft IAEA Safety Report entitled 'Preservation and Transfer to Future Generations of Information Important to the Safety of Waste Disposal Facilities', on which this paper is based, is expected to be published in 2007. (authors)« less
75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator..., NW., Washington, DC 20460. Attention Docket ID No. EPA-HQ-RCRA-2008-0678. Please include a total of 2 copies. Hand Delivery: EPA West Building, Room 3334, 1301 Constitution Ave., NW., Washington, DC. Such...
The purpose of this paper is to provide RPMs and others investigating hazardous waste sites a summary of the technical issues that need to be considered when determining if a site (i.e., hazardous waste site/area of concern) has elevated levels of ...
78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...
75 FR 62759 - Notice of Proposed Change to Section IV of the Virginia State Technical Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
..., Roof Runoff Structure; 600, Terrace; 620, Underground Outlet; 313, Waste Storage Facility; 359, Waste Treatment Lagoon; 633, Waste Utilization; 638, Water and Sediment Control Basin. These practices will be used to plan and install conservation practices on cropland, pastureland, woodland, and wildlife land...
The report gives results of a detailed emissions characterization study undertaken to examine, characterize, and quantify emissions from the simulated burning of household waste in barrels. The study evaluated two waste streams: that of an avid recycler, who removed most of the r...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul
This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less
Technical specifications for mechanical recycling of agricultural plastic waste.
Briassoulis, D; Hiskakis, M; Babou, E
2013-06-01
Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.
Alagöz, B Aylin Zeren; Kocasoy, Günay
2007-02-01
Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn
Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less
Technique for Reduction of Environmental Pollution from Construction Wastes
NASA Astrophysics Data System (ADS)
Bakaeva, N. V.; Klimenko, M. Y.
2017-11-01
The results of the research on the negative impact construction wastes have on the urban environment and construction ecological safety are described. The research results are based on the statistical data and indicators calculated with the use of environmental pollution assessment in the restoration system of urban buildings technical conditions. The technique for the reduction of environmental pollution from construction wastes is scientifically based on the analytic summary of scientific and practical results for ecological safety ensuring at major overhaul and current repairs (reconstruction) of the buildings and structures. It is also based on the practical application of the probability theory method, system analysis and disperse system theory. It is necessary to execute some stages implementing the developed technique to reduce environmental pollution from construction wastes. The stages include various steps starting from information collection to the system formation with optimum performance characteristics which are more resource saving and energy efficient for the accumulation of construction wastes from urban construction units. The following tasks are solved under certain studies: basic data collection about construction wastes accumulation; definition and comparison of technological combinations at each system functional stage intended for the reduction of construction wastes discharge into the environment; assessment criteria calculation of resource saving and energy efficiency; optimum working parameters of each implementation stage are created. The urban construction technique implementation shows that the resource saving criteria are from 55.22% to 88.84%; potential of construction wastes recycling is 450 million tons of construction damaged elements (parts).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger; Phifer, Mark; Suttora, Linda
2015-03-17
On-site disposal cells are in use and being considered at several USDOE sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the USEPA in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical andmore » policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. One task completed by the working group addressed approaches for considering the performance of covers and liners/leachate collection systems in the context of a performance assessment (PA). A document has been prepared which provides recommendations for a general approach to address covers and liners/leachate collection systems in a PA and how to integrate assessments with defense-in-depth considerations such as design, operations and waste acceptance criteria to address uncertainties. Specific information and references are provided for details needed to address the evolution of individual components of cover and liner/leachate collection systems. This information is then synthesized into recommendations for best practices for cover and liner system design and examples of approaches to address the performance of covers and liners as part of a performance assessment of the disposal system.« less
7 CFR 1775.67 - Allocation of funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.67 Allocation of funds. The maximum amount for a single applicant for a Solid Waste Management project will be 25 percent...
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
Godinho-Castro, Alcione P; Testolin, Renan C; Janke, Leandro; Corrêa, Albertina X R; Radetski, Claudemir M
2012-01-01
Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool for the technical and environmental evaluation of this recycling process, bacterial and daphnid tests being more sensitive than algae and fish tests. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedgecock, N.S.
1990-01-01
At the request of 67 Combat Support Group/DEEV the Air Force Occupational and Environmental Health Laboratory conducted a waste-water characterization and hazardous-waste technical assistance survey at Bergstrom AFB (BAFB) from 6-15 Mar 89. The scope of the waste-water survey was to characterize the effluent exiting the base and the effluent from 23 industrial facilities and 10 food-serving facilities. The scope of the hazardous-waste survey was to address hazardous-waste-management practices and explore opportunities for hazardous waste minimization. Specific recommendations from the survey include: (1) Accompany City of Austin personnel during waste-water sampling procedures; (2) Sample at the manhole exiting the mainmore » lift station rather than at the lift station wet well; (3) Split waste-water samples with the City of Austin for comparison of results; (4) Ensure that oil/water separators and grease traps are functioning properly and are cleaned out regularly; (5) Limit the quantity of soaps and solvents discharged down the drain to the sanitary sewer; (6) Establish a waste disposal contract for the removal of wastes in the Petroleum Oils and Lubricants underground storage tanks. (7) Remove, analyze, and properly dispose of oil contaminated soil from accumulation sites. (8) Move indoors or secure, cover, and berm the aluminum sign reconditioning tank at 67 Civil Engineering Squadron Protective Coating. (9) Connect 67 Combat Repair Squadron Test Cell floor drains to the sanitary sewer.« less
Technical specifications for mechanical recycling of agricultural plastic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.
Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plasticmore » waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.« less
Talking with the Public about Regulating High-level Waste Disposal: Recent Progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotra, J. P.; Leslie, B. W.
Increasing public confidence in the U.S. Nuclear Regulatory Commission (NRC) as an effective and independent regulator is an explicit goal of the Agency (1). Consistent with long-established mechanisms and procedures, NRC provides the public access to its decision-making process. Recently, during the course of a rulemaking required by statute, NRC examined its means for inviting public access as well as the NRC staff's effectiveness in furthering public confidence in it's actions as a regulator. When developing new, site-specific regulations for the proposed geologic repository at Yucca Mountain, Nevada, NRC's Division of Waste Management found it necessary to adapt and improvemore » its efforts to inform and involve the public in NRC's decision making process. Major changes were made to the way in which technical staff prepare for speaking to general audiences. The format used for public meetings was modified to encourage dialogue with participants. Handout and presentation materials that explain NRC's role and technical topics of concern in plain language were developed and are regularly updated. NRC successfully applied these and other institutional changes as it completed final regulations for Yucca Mountain and while developing and introducing a draft license review plan for public comment.« less
Stevens, Peter R.; Nicholson, Thomas J.
1996-01-01
This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This military-developed text contains the third section of a four-part course to train environmental support specialists. Covered in the individual sections are field sanitation, classes and sources of waste, composition and characteristics of sewage, principles of sewage treatment, primary waste treatment, secondary waste treatment, tertiary…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovach, L.A.; Murphy, W.M.
1995-09-01
A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papersmore » also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, T.
The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronymsmore » of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.
The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release frommore » Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design or Safety Analyses.”« less
Technical considerations in the preparation and dispensing of chemotherapy.
Peters, B G
1995-01-01
The safe handling of cytotoxic agents is intimately related to the technical aspects of drug preparation, dispensing, and administration. The appropriate equipment, supplies, protective clothing, and waste disposal systems must be available to the health care worker who is called upon to prepare cytotoxic agents. In addition, the health care worker must be adequately trained in and familiar with the safe use of these products and equipment and the preparation techniques or manipulations necessary during cytotoxic drug compounding. The article describes in detail and reviews the technical considerations, such as aseptic technique, proper use of the biological safety cabinet, gowning and gloving, labeling, and waste disposal, that are essential to the safe preparation and dispensing of chemotherapy.
Technical guidelines for environmental dredging of contaminated sediments
DOT National Transportation Integrated Search
2008-09-01
This report provides technical guidelines for evaluating : environmental dredging as a sediment remedy component. This document : supports the Contaminated Sediment Remediation Guidance for : Hazardous Waste Sites, released by the U.S. Environmental ...
TECHNICAL APPROACHES TO CHARACTERIZING AND ...
The document provides brownfields planners with an overview of the technical methods that can be used to achieve successful site assessment and cleanup which are two key components of the brownfields redevelopment process. No two brownfields sites are identical and planners will need to base assessment and cleanup activities on the conditions of the particular sites with which they are dealing. A site assessment strategy should address: the type and extent of contamination, if any, that is present, the types of data needed to adequately assess the site; appropriate sampling and analytical methods to characterize the contamination; acceptable level of uncertainty and cleanup technologies that contain or treat the types of wastes present.This document includes references to state agency roles including the Voluntary Cleanup Program, public involvement and other guidances that may be used. Information
NASA Astrophysics Data System (ADS)
Rahayu, Suparni Setyowati; Budiyono; Purwanto
2018-02-01
A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.
Sustainable Approaches for Materials Management in Remote ...
Remote, economically challenged areas in the Commonwealth of the Northern Marianas Islands (CNMI) and American Samoa in the US Pacific island territories face unique challenges with respect to solid waste management. These islands are remote and isolated, with some islands supporting only small populations, thus limiting options for pooling resources among communities in the form of regional waste management facilities, as is common on the US mainland. This isolation also results in greater costs for waste management compared to those encountered in the mainland US, a consequence of, among other factors, more expensive construction and maintenance costs because of the necessary transport of facility components (e.g., landfill liner materials) and the decreased attractiveness of waste recovery for recycling because of lower commodity prices after off-island transportation. Adding to these economic limitations, the gross domestic product and per capita income of the Pacific territories is less than half what it is in parts of the US. The first section of this report outlines a snapshot of the current state of solid waste management overall in the US Pacific island territories, primarily based on site visits.. Steps involved in this work included a review of selected existing published information related to the subject; site visits to Guam, Saipan, Tinian, Rota, Tutuila, and Apia; an assessment of the technical and economic feasibility of different solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.
The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)« less
Research on information security system of waste terminal disposal process
NASA Astrophysics Data System (ADS)
Zhou, Chao; Wang, Ziying; Guo, Jing; Guo, Yajuan; Huang, Wei
2017-05-01
Informatization has penetrated the whole process of production and operation of electric power enterprises. It not only improves the level of lean management and quality service, but also faces severe security risks. The internal network terminal is the outermost layer and the most vulnerable node of the inner network boundary. It has the characteristics of wide distribution, long depth and large quantity. The user and operation and maintenance personnel technical level and security awareness is uneven, which led to the internal network terminal is the weakest link in information security. Through the implementation of security of management, technology and physics, we should establish an internal network terminal security protection system, so as to fully protect the internal network terminal information security.
The Vapor Plume at Material Disposal Are C in Relation to Pajarito Corridor Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masse, William B.
2012-04-02
A vapor plume made up of volatile organic compounds is present beneath Material Disposal Area C (MDA C) at Los Alamos National Laboratory (LANL). The location and concentrations within the vapor plume are discussed in relation to existing and planned facilities and construction activities along Pajarito Road (the 'Pajarito Corridor') and in terms of worker health and safety. This document provides information that indicates that the vapor plume does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of proposed facilities along Pajarito Road. The Los Alamos National Laboratorymore » (LANL or the Laboratory) monitors emissions, effluents, and environmental media to meet environmental compliance requirements, determine actions to protect the environment, and monitor the long-term health of the local environment. LANL also studies and characterizes 'legacy' waste from past Laboratory operations to make informed decisions regarding eventual corrective actions and the disposition of that waste. Starting in 1969, these activities have been annually reported in the LANL Environmental Report (formerly Environmental Surveillance Report), and are detailed in publicly accessible technical reports meeting environmental compliance requirements. Included among the legacy sites being investigated are several formerly used material disposal areas (MDAs) set aside by the Laboratory for the general on-site disposal of waste from mission-related activities. One such area is MDA C located in Technical Area 50 (TA-50), which was used for waste disposal between 1948 and 1974. The location of TA-50 is depicted in Figure 1. The present paper uses a series of maps and cross sections to address the public concerns raised about the vapor plume at MDA C. As illustrated here, extensive sampling and data interpretation indicate that the vapor plume at MDA C does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of the proposed facilities and utility trenches. The public cannot be directly exposed to the vapor plume beneath MDA C because Pajarito Road is closed to the public.« less
Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitt, Daniel Glenn; Birdsell, Kay Hanson; Jennings, Terry L.
Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automatedmore » dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also indicate that other areas of the vadose zone are affected by waste disposal activities that have been ongoing at Area G since 1957, a period of nearly 60 years. In some areas, water content profiles indicate increases in water content to depths of tens of meters, especially in areas covered by asphalt and structures.« less
Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.
2005-01-01
The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.
Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, M. D.; Hunsberger, R.; Ness, J. E.
2014-08-01
This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.
Anaerobic digestion of municipal solid waste: Technical developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C.J.
1996-01-01
The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.
The importance of scientific literacy to OCRWM's mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, G.P.
1990-01-01
The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (CRWM) has the unique mission of finding a permanent solution to the nation's high-level radioactive waste management problems. This paper explores a vital question: will OCRWM have sufficient scientific and technical resources as well as a sufficient level of public support to carry out its mission An affirmative answer to this question will require that adequate numbers of science and engineering students enter the field of radioactive waste management and that overall scientific literacy also be enhanced. This paper outlines current activities and programs within DOE and OCRWMmore » to increase scientific literacy and to recruit and develop scientists and engineers. While this paper offers only a summary inspection of the issues surrounding the solution of developing and maintaining the human technical capabilities to carry forth OCRWM's mission, it is meant to initiate a continuing examination by the American Nuclear Society, DOE, and professional and technical societies of fundamental scientific education issues.« less
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
Introduction to Energy Conservation and Production at Waste Cleanup Sites
This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUECK, K.J.
2004-10-18
This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, andmore » summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation.« less
Based on the requirements presented in 40 CFR 194.24(c )(2) to (4) and 194.22(a)(1) and using experience gained as part of the CH waste characterization program, EPA examined the DOE's RH Waste Characterization Proposal as presented in the WCPIP.
As a result of the high level of interest in innovative hazardous waste control technologies, U.S. EPA's Office of Solid Waste and Emergency Response (OSWER) and Risk Reduction Engineering Laboratory (RREL) jointly conducted this conference. The conference consisted of presenta...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.
The U. S. Department of Energy's (DOE) Office of Environmental Management (EM) has the responsibility for cleaning up 60 sites in 22 states that were associated with the legacy of the nation's nuclear weapons program and other research and development activities. These sites are unique and many of the technologies needed to successfully disposition the associated wastes have yet to be developed or would require significant re-engineering to be adapted for future EM cleanup efforts. In 2008, the DOE-EM Engineering and Technology Program (EM-22) released the Engineering and Technology Roadmap in response to Congressional direction and the need to focusmore » on longer term activities required for the completion of the aforementioned cleanup program. One of the strategic initiatives included in the Roadmap was to enhance long term performance monitoring as defined by 'Develop and deploy cost effective long-term strategies and technologies to monitor closure sites (including soil, groundwater, and surface water) with multiple contaminants (organics, metals and radionuclides) to verify integrated long-term cleanup performance'. To support this long-term monitoring (LTM) strategic initiative, EM 22 and the Savannah River National Laboratory (SRNL) organized and held an interactive symposia, known as the 2009 DOE-EM Long-Term Monitoring Technical Forum, to define and prioritize LTM improvement strategies and products that could be realized within a 3 to 5 year investment time frame. This near-term focus on fundamental research would then be used as a foundation for development of applied programs to improve the closure and long-term performance of EM's legacy waste sites. The Technical Forum was held in Atlanta, GA on February 11-12, 2009, and attended by 57 professionals with a focus on identifying those areas of opportunity that would most effectively advance the transition of the current practices to a more effective strategy for the LTM paradigm. The meeting format encompassed three break-out sessions, which focused on needs and opportunities associated with the following LTM technical areas: (1) Performance Monitoring Tools, (2) Systems, and (3) Information Management. The specific objectives of the Technical Forum were to identify: (1) technical targets for reducing EM costs for life-cycle monitoring; (2) cost-effective approaches and tools to support the transition from active to passive remedies at EM waste sites; and (3) specific goals and objectives associated with the lifecycle monitoring initiatives outlined within the Roadmap. The first Breakout Session on LTM performance measurement tools focused on the integration and improvement of LTM performance measurement and monitoring tools that deal with parameters such as ecosystems, boundary conditions, geophysics, remote sensing, biomarkers, ecological indicators and other types of data used in LTM configurations. Although specific tools were discussed, it was recognized that the Breakout Session could not comprehensively discuss all monitoring technologies in the time provided. Attendees provided key references where other organizations have assessed monitoring tools. Three investment sectors were developed in this Breakout Session. The second Breakout Session was on LTM systems. The focus of this session was to identify new and inventive LTM systems addressing the framework for interactive parameters such as infrastructure, sensors, diagnostic features, field screening tools, state of the art characterization monitoring systems/concepts, and ecosystem approaches to site conditions and evolution. LTM systems consist of the combination of data acquisition and management efforts, data processing and analysis efforts and reporting tools. The objective of the LTM systems workgroup was to provide a vision and path towards novel and innovative LTM systems, which should be able to provide relevant, actionable information on system performance in a cost-effective manner. Two investment sectors were developed in this Breakout Session. The last Breakout Session of the Technical Forum was on LTM information management. The session focus was on the development and implementation of novel information management systems for LTM including techniques to address data issues such as: efficient management of large and diverse datasets; consistency and comparability in data management and incorporation of accurate historical information; data interpretation and information synthesis including statistical methods, modeling, and visualization; and linage of data to site management objectives and leveraging information to forge consensus among stakeholders. One investment sector was developed in this Breakout Session.« less
NASA Astrophysics Data System (ADS)
Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki
2014-05-01
Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand (population density) and transport infrastructure is used as input data to an engineering model (BeWhere) for optimizing scale and location of waste treatment plants with potential energy and fertilizer co-generation. Finally, this paper quantifies the economic dimension of mitigation through innovative waste treatment while considering the additional business-feasibility and potential benefits from waste treatment co-products such as energy generation, fertilizer and biochar production for counteracting soil degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapleton, J.
Apple pomace, the solid residue from juice production, is a solid waste problem in the Hudson Valley. This study investigates possibilities for converting it to a resource. The characteristics of the region's apple growing and processing industries are examined at length, including their potential for converting waste biomass. The properties of apple pomace are described. From interviews with Hudson Valley apple processors the following information is presented: quantities of pomace produced; seasonality of production; disposal procedures, costs, and revenues; trends in juice production; and attitudes toward alternatives. Literature research resulted in a list of more than 25 end uses formore » apple pomace of which eight were selected for analysis. Landfilling, landspreading, composting, animal feed, direct burning, gasification, anaerobic digestion (methane generation), and fermentation (ethanol production) were analyzed with regard to technical availability, regulatory and environmental impact, attitudes toward end use, and energetic and economic feasibility (See Table 19). The study recommends (1) a pilot anaerobic digestion plant be set up, (2) the possibility of extracting methane from the Marlborough landfill be investigated, (3) a study of the mid-Hudson waste conversion potential be conducted, and (4) an education program in alternative waste management be carried out for the region's industrial and agricultural managers.« less
Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P
2018-03-01
The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.
Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A
2015-11-01
Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nuclear Waste: Defense Waste Processing Facility-Cost, Schedule, and Technical Issues.
1992-06-17
gallons of high-level radioactive waste stored in underground tanks at the savannah major facility involved Is the Defense Waste Processing Facility ( DwPF ...As a result of concerns about potential problems with the DWPF and delays in its scheduled start-up, the Chairman of the Environment, Energy, and...Natural Resources Subcommittee, House Committee on Government Operations, asked GAO to review the status of the DWPF and other facilities. This report
Lincoln County nuclear waste project. Quarterly progress report, October 1, 1991--December 31, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.
Lincoln County nuclear waste project. Quarterly progress report, January 1, 1992--March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.
Lincoln County nuclear waste project quarterly progress report, April 1, 1992--June 30, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.P.; Hedgecock, N.S.
1989-10-01
Personnel from the AFOEHL conducted a waste-water characterization and hazardous-waste technical assistance survey at MAFB from 28 Nov to 9 Dec 1988. The scope of this survey was to characterize the waste-water, address hazardous-waste-management practices, and explore opportunities for hazardous waste minimization. The waste water survey team analyzed the base's industrial effluent, effluent from oil/water separators, and storm water. The team performed a shop-by-shop evaluation of chemical-waste-management practices. Survey results showed that MAFB needs to improve its hazardous-waste-management program. Recommendations for improvement include: (1) Collecting two additional grab samples on separate days from the hospital discharge. Analyze for EPA Methodmore » 601 to determine if the grab sample from the survey gives a true indication of what is being discharged. (2) Locate the source and prevent mercury from the hospital from discharging into the sanitary sewer. (3) Dilute the soaps used for cleaning at the Fuels Lab, Building 7060. (4) Investigate the source of chromium from the Photo Lab. (5) Clean out the sewer system manhole directly downgradient from the Photo Lab. (6) Locate the source of contamination in the West Ditch Outfall. (7) Reconnect the two oil/water separators that discharge into the storm sewerage system. (8) Investigate the source of methylene chloride coming on the base. (9) Investigate the source of mercury at Fuel Cell Repair, building 7005.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, W.C.
1996-12-31
Public perceptions of risk have proven to be a critical barrier to the federal government`s extensive, decade-long, technical and scientific effort to site facilities for the interim storage and permanent disposal of high-level radioactive waste (HLW). The negative imagery, fear, and anxiety that are linked to ``nuclear`` and ``radioactive`` technologies, activities, and facilities by the public originate from the personal realities and experiences of individuals and the information they receive. These perceptions continue to be a perplexing problem for those responsible for making decisions about federal nuclear waste management policies and programs. The problem of understanding and addressing public perceptionsmore » is made even more difficult because there are decidedly different opinions about HLW held by the public and nuclear industry and radiation health experts.« less
Ciplak, Nesli; Kaskun, Songul
2015-12-01
The need for proper healthcare waste management has been a crucial issue in many developing countries as it is in Turkey. The regulation regarding healthcare wastes in Turkey was updated in 2005 in accordance with the European Union (EU) waste directives, but it still falls behind meeting the requirements of current waste treatment technologies. Therefore, this study aims to reveal deficiencies, inconsistencies, and improper applications of healthcare waste management in the western part of the Turkish Black Sea Region. In this study, it was revealed that nearly 1 million people live in the region, resulting in 5 million hospital admissions annually. All the healthcare waste produced (1000 tons yr(-1)) is treated in an autoclave plant. However, treating some categories of healthcare wastes in autoclave units mismatches with the EU waste regulations, as alternative treatment technologies are not technically able to treat all types of healthcare wastes. A proper waste management system, therefore, requires an internal segregation scheme to divert these wastes from the main healthcare waste stream. The existing malpractice in the region could cause serious health problems if no measure is taken urgently. It is expected that healthcare waste management in the region and then all across Turkey will be improved with the significant deficiencies and inconsistencies pointed out in this research. In developed countries, specific rules and regulations have already been implemented along with the recommendations for handling of healthcare waste. However, in Turkey, these wastes are treated in autoclave units, which mismatches with the European Union waste regulations, as alternative treatment technologies are not technically capable to treat all types of healthcare wastes. The existing malpractice could cause serious health problems if no measure is taken urgently. The authors demonstrated the existing status of Turkish waste management and revealed deficiencies, inconsistencies, and improper applications in comparison with developed and developing nations to align Turkish practice to European Union requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, L J; Borisov, G B
2004-07-21
A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46more » Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, T.E.; Magleby, E.H.
1985-09-06
A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably completemore » and consistent with the review guidelines.« less
Reference commercial high-level waste glass and canister definition
NASA Astrophysics Data System (ADS)
Slate, S. C.; Ross, W. A.; Partain, W. L.
1981-09-01
Technical data and performance characteristics of a high level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository are presented. The borosilicate glass contained in the stainless steel canister represents the probable type of high level waste product that is produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson
The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.
Schouw, Nanette Levanius; Bregnhøj, Henrik; Mosbaek, Hans; Tjell, Jens Christian
2003-06-01
Technical, economic and environmental criteria were used to evaluate the feasibility of recycling plant nutrients in kitchen waste, human excreta and sullage from households in Phattalung (urban), Kuan Lang (peri urban) and Prik (rural) in Southern Thailand. The difference in situation and context of the three areas called for individual solutions, and for each area three sanitation systems were evaluated. However, in all three areas recycling human excreta and kitchen waste via composting latrines was found to be more environmental feasible than human excreta managed in septic tanks or sub surface trickle irrigation and kitchen waste disposed of at landfill sites or treated at composting plants. Sullage should in Kuan Lang and Prik be used directly on garden crops, but in Phattalung be treated in waste stabilisation ponds before discharge, to be environmentally feasible. The economic feasibility results varied among the three areas and among the involved stakeholders: farmers and Kuan Lang administration benefited from recycling waste, at the expense of other private users, Phattalung municipality and Prik municipality. The main cause of these conflicting interests was lack of cost recovery and public participation, which should therefore serve as the fundament of any future environmental and economic feasible sanitation system.
Chemical safety practice amongst the health workers of Fiji.
Naduva, Adriu
2006-09-01
The National Health Service of Fiji includes private and public institutions that use a variety of chemicals of varying hazardousness. A survey was carried out to describe chemical safety issues amongst health workers in Fiji. Questionnaires were given to 133 private and Government health institutions. Most health facilities lack awareness on safe chemical waste management and do not have technical training on chemical safety. Most institutions do not have chemical handling, packaging and labelling procedure and equipment with a marked deficiency in the vector sector. Most facilities state that they have adequate chemical safety information from the suppliers, while a few alarmingly still resort to container labels and information from colleagues.
Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britt, Phillip F
2015-03-01
Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey
2014-03-03
The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiroyoshi Ueda; Katsuhiko Ishiguro; Kazumi Kitayama
2007-07-01
NUMO (Nuclear Waste Management Organization of Japan) has a responsibility for implementing geological disposal of vitrified HLW (High-Level radioactive Waste) in the Japanese nuclear waste management programme. Its staged siting procedure was initiated in 2002 by an open call for volunteer sites. Careful management strategy and methodology for the technical decision-making at every milestone are required to prepare for the volunteer site application and the site investigation stages after that. The formal Requirement Management System (RMS) is planned to support the computerized implementation of the specific management methodology, termed the NUMO Structured Approach (NSA). This planned RMS will help formore » comprehensive management of the decision-making processes in the geological disposal project, change management towards the anticipated project deviations, efficient project driving such as well programmed R and D etc. and structured record-keeping regarding the past decisions, which leads to soundness of the project in terms of the long-term continuity. The system should have handling/management functions for the database including the decisions/requirements in the project in consideration, their associated information and the structures composed of them in every decision-making process. The information relating to the premises, boundary conditions and time plan of the project should also be prepared in the system. Effective user interface and efficient operation on the in-house network are necessary. As a living system for the long-term formal use, flexibility to updating is indispensable. In advance of the formal system development, two-year activity to develop the preliminary RMS was already started. The purpose of this preliminary system is to template the decision/requirement structure, prototype the decision making management and thus show the feasibility of the innovative RMS. The paper describes the current status of the development, focusing on the initial stage including work analysis/modeling and the system conceptualization. (authors)« less
NASA Astrophysics Data System (ADS)
Kinantan, Bag; Rahim Matondang, A.; Hidayati, Juliza
2018-02-01
The problem of urban waste has reached a point of concern. Population and economic growth are thought to be the cause of increasing the waste generation. The major problem related to this condition is the increasing of waste production which is not balance with the increase of its management capacity. Based on the Law Number 18 of 2008 that waste management starts from the source by applying the 3R approach (Reduction, Reuse, Recycle). This regulation provides a way which expect the waste management can be better, so that, the level of waste service can be improved and load on landfills (TPA) can be reduced.The cost of garbage collection and transport are 85% of the total waste management cost, so if this is optimized, it will optimize the system as a whole. Subsequent research focuses on how to optimize the garbage collection and transport sub-systems by finding the shortest route of transportation to the landfill by developing a Vehicle Routing Problem (VRP) model. The development of an urban area leads to the preparation of the best route is no longer an optimal solution. The complexity of the waste problem is not only related to the technical matters, but also the social and economic problems of the community. So, it is necessary to develop a model of waste management which does not only pay attention to the technical aspects, but also the social and economic. Waste is expected to be no longer a burden, but can also be utilized economically to increase community income.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Qingshi; Zhu, Chao; McAvoy, Drew C., E-mail: mcavoydm@ucmail.uc.edu
Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of theirmore » implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.« less
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.
2015-03-30
Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is justmore » getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.« less
TECHNICAL RESOURCE DOCUMENT ON MONITORED NATURAL RECOVERY
In 2005, the United States Environmental Protection Agency (EPA) published a document entitled Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (EPA, 2005), which provides technical and policy guidance for project managers and teams making risk manageme...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, C.A., Westinghouse Hanford
The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.
Aleluia, João; Ferrão, Paulo
2016-12-01
This paper characterizes municipal solid waste (MSW) management practices in developing Asia, with a focus on low and middle-income countries. The analysis that is conducted supports a proposed framework that maps out the trends observed in the region in relation to two parameters, waste compositions and urban dimension, which was prepared based on a set of national and urban case studies. The management of MSW in developing Asian countries is driven, first and foremost, by a public health imperative: the collection and disposal of waste in order to avoid the spread of disease vectors from uncollected waste. This comes, however, at a high cost, with local government authorities in these countries spending up to 50% of their budgets in the provision of these services. Little or no value is derived from waste, which is typically seen as a liability and not as a resource that can be harnessed. On the other hand, in many cities in developing Asia there is an informal sector that ekes out a living from the recovery of recyclable materials found in waste. Members of this "informal waste sector" are especially active in areas that are not served by formal waste collection systems, such as slums or squatter areas. A distinctive element shared among many cities in developing Asian countries concerns the composition of the municipal solid waste. MSW in those countries tends to be richer in biodegradable organic matter, which usually accounts for more than 50% of the total waste composition, suggesting that biological methods are more appropriate for treating this organic fraction. Conversely, thermal combustion technologies, which are extensively applied in high-income countries, are technically and economically challenging to deploy in light of the lower calorific value of waste streams which are rich in organics and moisture. Specific approaches and methods are therefore required for designing adequate waste management systems in developing Asian countries. In addition, despite some common characteristics shared among cities in developing Asia, their specific circumstances can significantly vary, even within the same country, calling for the need for context-specific waste management approaches. Set against this background, this paper proposes a guiding framework in the form of a matrix that maps out approaches observed in the management of municipal solid waste in cities of developing Asian countries as a function of the city dimension, share of organics on waste streams, and wealth generated by the city. The cities of Surabaya (Indonesia), Bangalore (India), Quy Nhon (Viet Nam), and Matale (Sri Lanka) are showcased as good practices in the region in the management of solid waste, with their experiences used to illustrate the framework laid out in the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2004-01-01
This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.
NASA Astrophysics Data System (ADS)
Basavarajappa, T. H.
2012-07-01
Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering a suitable methodology was developed. The feasibility of site selection in the study area based on different criteria was used to obtain the layered data by integrating Remote Sensing and GIS. This methodology is suitable for all practical applications in other cities, also.
EPA ASSESSMENT OF TECHNOLOGIES FOR CONTROLLING EMISSIONS FROM MUNICIPAL WASTE COMBUSTION
The article examines EPA technical activities relating to the development of regulations pertaining to the control of both new and existing municipal waste combustion facilities (MWCs). The activities include: (1) assessing combustion and flue gas cleaning technologies, (2) colle...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... Protection Agency (EPA) requesting to import up to 20,000 tons of polychlorinated biphenyl (PCB) waste from... requesting to import up to 20,000 tons of PCB waste from various locations in Mexico for disposal at Veolia's...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
10 CFR 61.59 - Institutional requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.59 Institutional requirements. (a) Land ownership. Disposal of radioactive waste received from other persons may be permitted only on land owned in fee by the...
Brownfields Grants Information
This asset includes all types of information regarding Brownfields grant programs that subsidize/support Brownfield cleanup. This includes EPA's Brownfields Program grant funding for brownfields assessment, cleanup, revolving loans, and environmental job training. Assessment grants provide funding for a grant recipient to inventory, characterize, assess, and conduct planning and community involvement related to brownfield sites. Revolving Loan Fund Grants enable States, political subdivisions, and Indian tribes to make low interest loans to carryout cleanup activities at brownfields properties. Cleanup grants provide funding for a grant recipient to carry out cleanup activities at brownfield sites. Environmental Workforce Development and Job Training Grants are designed to provide funding to eligible entities, including nonprofit organizations, to recruit, train, and place predominantly low-income and minority, unemployed and under-employed residents of solid and hazardous waste-impacted communities with the skills needed to secure full-time, sustainable employment in the environmental field and in the assessment and cleanup work taking place in their communities. Training, Research, and Technical Assistance Grants provide funding to eligible organizations to provide training, research, and technical assistance to facilitate brownfields cleanup. Regulatory authority for the collection and use of this information is found in the Small Business Liability Relief
NASA Astrophysics Data System (ADS)
Susmono
2017-03-01
Indonesia is a big country with circa 250 million population, with more than 500 Local Governments and they are going to improve their municiple solid waste dumping method from Open Dumping to Sanitary Landfill (SLF) and to promote Reduce-Reuse-Recycling (3R) since many years ago, and it is strengthened by issuing of Solid Waste Management Act No.18/2008, MSW Government Regulation No.12/2012 and other regulations which are issued by Central Government and Local Governments. During “Water and Sanitation Decade 1980-1990” through “Integrated Urban Infrastructures Development Program” some pilot project such as 30 units of 3R station were developed in the urban areas, and modified or simplification of SLF call Controlled Landfill (CLF) were implemented. In the year of 2002 about 45 units of composting pilot projects were developed under “Western Java Environmental Management Project”, and the result was notified that some of them are not sustain because many aspects. At the beginning of 2007 until now, some pilot projects of 3R were continued in some cities and since 2011 some Waste Banks are growing fast. In the year of 2014 was recorded that of 70 % of 3Rs in Java Island well developed (2014, Directorate of Environment Sanitation Report), and in the year of 2012 was recorded that development of Communal Waste Banks were growing fast during two months from 400 units to 800 units (2012, Ministry of Environment report), now more Communal Waste Banks all ready exist. After the last overview monitoring activity by Ministry of Environment and JICA (2008), because of lack of data is very difficult to give current accurate information of Municiple Solid Waste Handling in Indonesia. Nevertheless some innovation are developed because of impact of many pilot projects, Adipura City Cleanest Competition among Local Governments and growing of the spirit of autonomous policy of Local Governments, but some Local Governments still dependence on Central Government support, both technically and non technically aspects such as new appropriate technology development, new integration management especially between formal and informal organizations, acceleration of community education/empowerment, new required regulations development and law enforcement support. Political will of government. In the beginning, government and people of Indonesia follow the paradigm that municipal solid waste management could be managed by Collecting-Transferring-Dumping system only. This paradigm is appropriate if no problem increase of land providing for solid waste dumping site. Most of local governments are not able to decide it because so many aspects and complexity of problems such as choosing an appropriate technology, finding location for solid waste transfer stations and dumping site, developing of waste management, limitation of affordability, improving people behaviour to increase their low health environment consciousness, as well as lack of professional staffs. Indonesia Ministry of Environment who is responsible for solid waste handling regulations and Ministry of Public Works who is responsible for urban infrastructures development have changed their paradigm that in municipal solid waste handling it is better to reduce as soon as possible. The new approach is to introduce 3R methods from the sources to the solid waste dumping site for minimizing cost of transportation and dumping site area. The Municipal Solid Waste Management Law no 18/2008 stated that municipal solid waste handling consists of Reduction-Reuse-Recycling of waste and running waste management services such as collection of the rest to transport, treat and dumping in the end of the system. Based on the Autonomous Law, the local governments are still the main responsible governments to handle municipal solid waste management in their administrative area. Community participation. During the last few years many solid waste communal and non-governmental organizations were grown and developed, some solid waste communal leaders were born, and solid waste handling motivation and participation of community are grown. To accelerate this situation, the government introduces many training and education to produce more municipal solid waste handling facilitators. Since 2007, environment sanitation motivation activities runs through the yearly Sanitation Jamboree that educate, short train, motivate junior school children and competition among other. Technology innovation. Local governments, with or without central government support, are being to make some improvement how to handle municipal solid waste and through Sister City Program, many innovations were developed such as in Surabaya City (home Takakura composter), Depok (waste separation and composting), Bogor City (management), Malang City, Makasar City and others. The new Closing the Loops of solid waste handling approaches should be introduced in the future to break the bottle neck that always happened in the past. Integration between solid waste management and the farming activities, land plantation rehabilitations, city landscaping and gardening is very urgent to develop, including integration of 3R stakeholders in the region. The challenges. The municipal solid waste problem in urban areas is relative more complicated compared with the same problem in the rural areas. Accurate data collection and analyzing periodically is very important. Road map development and mobilizing of all stake holders both in central government and in local government such as NGOs, private sectors, education and research institutions, civil societies and the community are very urgent. New research action is required to find our new urban municipal solid waste characteristic and our appropriate technology and management to give some input to the central government, local governments and the community or others who involve in the municipal solid waste handling due to the recent fast growing of urban people income and changing of their life style. Conclusion. For the future, the strengthening of central and local governments’ political will is still required including financial mobilization, community education and/or empowerment, law enforcement, technical innovations, management development, providing required urban and regional solid waste management infrastructures, and Public Private Partnership promotion.
Incident Waste Decision Support Tool - Waste Materials ...
Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LEHMAN LL
2008-01-23
Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.« less
ERIC Educational Resources Information Center
Mutungwe, Edlight; Tsvere, Maria; Dondo, Beauty; Munikwa, Simbarashe
2011-01-01
Waste management is a major challenge facing urban councils in Zimbabwe and Chinhoyi Municipality is no exception. Lack of resources and technical and administrative know-how is hindering proper waste management. Raw sewage and industrial waste flow into streams and rivers and uncollected rubbish bins and strewn litter is a common feature in the…
Installation-Restoration Program Preliminary Assessment, Naknek Recreational Camps, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
The Hazardous Materials Technical Center (HMTC) was retained in January 1988 to conduct the Installation-Restoration Program (IRP) Preliminary Assessment of Naknek Recreational Camps, Alaska, DoD policy is to identify and fully evaluate suspected problems associated with past hazardous-material disposal sites on DoD facilities, control the migration of hazardous contamination from such facilities, and control hazards to health and welfare that may have resulted from these past operations. Past installation operations involved the use and disposal of materials and wastes that were subsequently categorized as hazardous. The major operations of Naknek Camp I and Camp II did not use or disposemore » of HM/HW; however, these camps were used by the Air Force as dump areas and landfills. Waste oils, fuels, and polychlorinated biphenyls (PCBs) were among the wastes disposed of during these dumping activities. Information obtained through interviews, records, and field observations resulted in the identification of three sites that are potentially contaminated with HM/HW. At each of the identified sites, the potential exists for contamination of surface water, soils, and/or ground water and subsequent contaminant migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulm, Franz-Josef
2000-06-30
OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4. The analysis of the effect of cracks on the acceleration of the calcium leaching process of cement-based materials has been pursued. During the last period (Technical Progress Report No 3), we have introduced a modeling accounting for the high diffusivity of fractures in comparison with the weak solid material diffusivity. It has been shown through dimensional and asymptotic analysis that small fractures do not significantly accelerate the material aging process. This important result for the overall structural aging kinetics of containment structure has beenmore » developed in a paper submitted to the international journal ''Transport in Porous Media''.« less
Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are includedmore » in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).« less
TECHNICAL GUIDANCE DOCUMENT: INSPECTION TECHNIQUES FOR THE FABRICATION OF GEOMEMBRANE FIELD SEAMS
Subtitle C of the Resource Conservation and Recovery Act (RCRA) requires the U.S. Environmental Protection Agency (EPA) to establish a Federal hazardous waste management program. This program must ensure that hazardous wastes are handled safely from generation until final dispos...
On August 27, 1991 (56 FR 42504) and August 25, 1992 (57 FR 38558), the Environmental Protection Agency (EPA) published technical amendments, clarifications, and corrections to the final rule for boilers and industrial furnaces burning hazardous waste.
This action corrects several technical errors and provides clarifying amendments to the final recycled used oil management standards rule. The final rule was published on September 10, 1992 (57 FR 41566).
Air Quality, Climate and Economic Impacts of Biogas Management Technologies
Anaerobically digested organic waste (e.g. manure, sewage, and municipal solid waste) produces biogas, a source of renewable energy. A recent analysis indicates that the technical resource in California could produce nearly 93 billion cubic feet per year of biomethane from availa...
HANDBOOK: MATERIAL RECOVERY FACILITIES FOR MUNICIPAL SOLID WASTE.
The purpose of this document is to address the technical and economic aspects of material recovery facility (MRF) equipment and technology in such a manner that the document may be of assistance to solid waste planners and engineers at the local community level. This docum...
FIELD SCREENING METHODS FOR HAZARDOUS WASTES AND TOXIC CHEMICALS
The purpose of this document is to present the technical papers that were presented at the Second International Symposium on Field Screening Methods for Hazardous Wastes and Toxic Chemicals. ixty platform presentations were made and included in one of ten sessions: hemical sensor...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... Repository Geologies Pursuant to its authority under section 5051 of Public Law 100-203, the Nuclear Waste... repository. A representative of the U.S. Geological Survey (USGS) will provide a USGS perspective on this...
OVERVIEW OF THE MINE WASTE TECHNOLOGY PROGRAM; INTERAGENCY COORDINATION MEETING ON MINING
The Mine Waste Technology Program is a Congressionally-mandated research program jointly administered by the EPA Office of Research and Development (for technical direction) and by the DoE Western Environmental Technology Office (administrative direction). The goal of the resear...
Experiments and Modeling to Support Field Test Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Peter Jacob; Bourret, Suzanne Michelle; Zyvoloski, George Anthony
Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested atmore » several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.« less
10 CFR 961.11 - Text of the contract.
Code of Federal Regulations, 2012 CFR
2012-01-01
... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...
10 CFR 961.11 - Text of the contract.
Code of Federal Regulations, 2011 CFR
2011-01-01
... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...
Hazardous Waste Cleanup: Veolia ES Technical Solutions, L.L.C. in Middlesex, New Jersey
Veolia ES Technical Solutions is located at 125 Factory Lane in Middlesex, New Jersey. Veolia owns and operates a solvent-reprocessing facility that is located on a four-acre site in an industrial area of Middlesex Borough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-11-01
The Hazardous Materials Technical Center (HMTC) was retained in May 1986 to conduct the Installation-Restoration Program (IRP) Preliminary Assessment (PA) - Records Search for the 155th Tactical Reconnaissance Group (TRG), Nebraska Air National Guard, Lincoln Municipal Airport, Lincoln, Nebraska (hereinafter referred to as the Base). The Records Search included: an onsite visit including interviews with 19 Base personnel conducted by HMTC personnel on 21-23 May 1986; the acquisition and analysis of pertinent information and records on hazardous materials use and hazardous-waste generation and disposal at the Base; the acquisition and analysis of available geologic, hydrologic, meteorologic, and environmental data frommore » pertinent Federal, State, and local agencies; and the identification of sites on the Base that may be potentially contaminated with hazardous materials/hazardous wastes (HM/HW).« less
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The purpose of the workshop was to foster communication within the technical community on issues surrounding stabilization and immobilization of the Department`s surplus plutonium and plutonium- contaminated wastes. The workshop`s objectives were to: build a common understanding of the performance, economics and maturity of stabilization and immobilization technologies; provide a system perspective on stabilization and immobilization technology options; and address the technical issues associated with technologies for stabilization and immobilization of surplus plutonium and plutonium- contaminated waste. The papers presented during this workshop have been indexed separately.
Feasibility analysis of wastewater and solid waste systems for application in Indonesia.
Kerstens, S M; Leusbrock, I; Zeeman, G
2015-10-15
Indonesia is one of many developing countries with a backlog in achieving targets for the implementation of wastewater and solid waste collection, treatment and recovery systems. Therefore a technical and financial feasibility analysis of these systems was performed using Indonesia as an example. COD, BOD, nitrogen, phosphorus and pathogen removal efficiencies, energy requirements, sludge production, land use and resource recovery potential (phosphorus, energy, duckweed, compost, water) for on-site, community based and off-site wastewater systems were determined. Solid waste systems (conventional, centralized and decentralized resource recovery) were analyzed according to land requirement, compost and energy production and recovery of plastic and paper. In the financial analysis, investments, operational costs & benefits and Total Lifecycle Costs (TLC) of all investigated options were compared. Technical performance and TLC were used to guide system selection for implementation in different residential settings. An analysis was undertaken to determine the effect of price variations of recoverable resources and land prices on TLC. A 10-fold increase in land prices for land intensive wastewater systems resulted in a 5 times higher TLC, whereas a 4-fold increase in the recovered resource selling price resulted in maximum 1.3 times higher TLC. For solid waste, these impacts were reversed - land price and resource selling price variations resulted in a maximum difference in TLC of 1.8 and 4 respectively. Technical and financial performance analysis can support decision makers in system selection and anticipate the impact of price variations on long-term operation. The technical analysis was based on published results of international research and the approach can be applied for other tropical, developing countries. All costs were converted to per capita unit costs and can be updated to assess other countries' estimated costs and benefits. Consequently, the approach can be used to guide wastewater and solid waste system planning in developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghipour, Hassan, E-mail: hteir@yahoo.com; Amjad, Zahra; Jafarabadi, Mohamad Asghari
2014-07-15
Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability ofmore » sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrower, Alex W.; Janairo, Lisa
2013-07-01
The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to responsible management of the United States' nuclear waste legacy. Themore » Commission recommended Congressional action to rewrite parts of the Nuclear Waste Policy Act (NWPA); however, a comprehensive legislative overhaul will likely take years to fully implement. The nature and characteristics of nuclear waste, the activities that generated it, and the past history of federal efforts to manage the waste make it virtually certain that finding workable solutions will be controversial and difficult. As the BRC report suggests, this difficulty can be made insurmountable if top-down, federally-mandated efforts are forced upon unwilling States, Tribes, and local communities. Decades of effort and billions of ratepayer and taxpayer dollars have been spent attempting to site and operate spent fuel storage and disposal facilities in this manner. The experience thus far indicates that voluntary consent and active partnership of States, Tribes, and local governments in siting, designing, and operating such facilities are critical. Some States, Tribes, and local communities have indicated that, given adequate scientific and technical information, along with appropriate incentives, assurances, and authority, they might be willing to consider hosting facilities for consolidated storage and disposal of spent nuclear fuel. The authors propose a new regional approach to identifying and resolving issues related to the selection of a consolidated storage site. The approach would be characterized by informed discussion and deliberation, bringing together stakeholders from government, the non-governmental (NGO) community, industry, and other sectors. Because site selection would result in regional transportation impacts, the development of the transportation system (e.g., route identification, infrastructure improvements) would be integrated into the issue-resolution process. In addition to laying out the necessary steps and associated timeline, the authors address the challenges of building public trust and confidence in the new waste management program, as well as the difficulty of reaching and sustaining broad-based consensus on a decision to host a consolidated storage facility. (authors)« less
Radioactive Waste...The Problem and Some Possible Solutions
ERIC Educational Resources Information Center
Olivier, Jean-Pierre
1977-01-01
Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)
Guidelines for Local Governments on Solid Waste Management.
ERIC Educational Resources Information Center
National Association of Counties, Washington, DC. Research Foundation.
This document consists of ten guides on Solid Waste Management to assist local elected and appointed policy-making officials. They are entitled: Areawide Approaches; Legal Authority, Planning, Organization Design and Operation, Financing, Technical and Financial Assistance, Citizen Support, Personnel, and Action Plan and Bibliography. The guides…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thien, Mike G.; Barnes, Steve M.
2013-07-01
The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broadmore » spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)« less
10 CFR 72.28 - Contents of application: Applicant's technical qualifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application: Applicant's technical qualifications. 72.28 Section 72.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...
Site Characterization and Monitoring Technical Support Center FY16 Report
SCMTSC’s primary goal is to provide technical assistance to regional programs on complex hazardous waste site characterization issues. This annual report illustrates the range and extent of projects that SCMTSC supported in FY 2016. Our principal audiences are site project manage...
Waste Receiving and Processing (WRAP) Module 1 Hazards Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
CAMPBELL, L.R.
1999-09-29
This document establishes the technical basis in support of Emergency Planning activities for the WRAP Module 1 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone is demonstrated.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... (CRA or ``application'') for the Waste Isolation Pilot Plant (WIPP) is complete. EPA provided written... disposal regulations. EPA is now engaged in the full technical review that will determine if WIPP remains... technical difficulties and cannot contact [[Page 41422
Material Recover and Waste Form Development--2016 Accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry A.; Vienna, John; Paviet, Patricia
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. Thismore » report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hang, T.
2003-07-16
The U.S. Department of Energy (DOE) and the Nuclear Energy Commission of Argentina (CNEA) have a collaborative project to separate cesium/strontium from waste resulting from the production of Mo-99. The Pacific Northwest National Laboratory (PNNL) is assisting DOE on this joint project by providing technical guidance to CNEA scientists. As part of the collaboration, PNNL staff works with staff at the Savannah River Technology Center (SRTC) to run the VERSE-LC model for removal of cesium from the Mo-99 waste using the crystalline silicotitanate (CST) material (IONSIV(R) IE-911, UOP LLC, DesPlaines, IL) based on technical data provided by CNEA. This reportmore » discusses the VERSE-LC ion-exchange-column model and the predicted results of CNEA test cases.« less
Separations and Waste Forms Research and Development FY 2013 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during themore » fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.« less
Marketable energy resources in Alabama: a partially annotated research bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
This bibliography has been compiled to provide a guide to the published research, both basic and applied, on the commercial potential and possible energy contribution of selected domestic renewable and non-renewable energy resources in Alabama. Some of the renewable and non-renewable energy resources documented in published form and highlighted in this bibliography include coal, oil, small-scale hydroelectric power, natural gas, wind energy, waste wood, and uranium. Citations dealing mainly with solar energy can be obtained by contacting organizations involved in the development of solar energy. The information for this publication was derived from a number of sources; including the Geologicalmore » Survey of Alabama, Office of State Planning and Federal Program's Planning Reference Service, US Department of Energy's Technical Information Center at Oak Ridge, Tennessee, School of Mines and Energy Development of the University of Alabama, Mineral Resources Institute and State Mine Experiment Station of the University of Alabama. Each citation is complete insofar as the information was available to the compiler. Most abstracts contain some summary information on uses, technology, and economics. These summaries are not meant to be exhaustive. Users of the bibliography should deal directly with the Technical Information Center, US Department of Energy, PO Box 62, Oak Ridge, Tennessee 37830, or the supporting organization or project investigator as to the availability of copies of completed projects in report or book form. (PSB)« less
Technical change in forest sector models: the global forest products model approach
Joseph Buongiorno; Sushuai Zhu
2015-01-01
Technical change is developing rapidly in some parts of the forest sector, especially in the pulp and paper industry where wood fiber is being substituted by waste paper. In forest sector models, the processing of wood and other input into products is frequently represented by activity analysis (inputâoutput). In this context, technical change translates in changes...
Clean Energy Application Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freihaut, Jim
2013-09-30
The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the followingmore » efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caniato, Marco, E-mail: marcocaniato@gmail.com; Vaccari, Mentore, E-mail: mentore.vaccari@unibs.it; Visvanathan, Chettiyappan, E-mail: visu@ait.ac.th
Highlights: • Assessment of infectious waste management in Bangkok, in particular incineration. • Integration of social network and stakeholder analysis assessment methods. • Assessment of stakeholder characteristics, role, interaction and communication. • Interviewees self-evaluate their own characteristics and the system. • Non-technical aspects are important for system acceptability, and sustainability. - Abstract: Assessing the strengths and weaknesses of a solid waste management scheme requires an accurate analysis and integration of several determining features. In addition to the technical aspects, any such system shows a complex interaction of actors with varying stakes, decision-making power and influence, as well as a favourablemore » or disabling environment. When capitalizing on the knowledge and experience from a specific case, it is also crucial that experts do not “forget” or underestimate the importance of such social determinants and that they are familiar with the methods and tools to assess them. Social network analysis (SNA) and stakeholder analysis (SA) methods can be successfully applied to better understand actors’ role and actions, analyse driving forces and existing coordination among stakeholders, as well as identify bottlenecks in communication which affect daily operations or strategic planning for the future way forward. SNA and SA, appropriately adjusted for a certain system, can provide a useful integration to methods by assessing other aspects to ensure a comprehensive picture of the situation. This paper describes how to integrate SNA and SA in order to survey a solid waste management system. This paper presents the results of an analysis of On-Nuch infectious waste incinerator in Bangkok, Thailand. Stakeholders were interviewed and asked to prioritize characteristics and relationships which they consider particularly important for system development and success of the scheme. In such a way, a large quantity of information about organization, communication between stakeholders and their perception about operation, environmental and health impact, and potential alternatives for the system was collected in a systematic way. The survey results suggest that stakeholders are generally satisfied with the system operation, though communication should be improved. Moreover, stakeholders should be strategically more involved in system development planning, according to their characteristics, to prevent negative reactions.« less
Aparcana, Sandra
2017-03-01
The Municipal Solid Waste Management (MSWM) sector represents a major challenge for low-and middle-income countries due to significant environmental and socioeconomic issues involving rapid urbanization, their MSWM systems, and the existence of the informal waste sector. Recognizing its role, several countries have implemented various formalization measures, aiming to address the social problems linked to this sector. However, regardless of these initiatives, not all attempts at formalization have proved successful due to the existence of barriers preventing their implementation in the long term. Along with this, there is a frequent lack of knowledge or understanding regarding these barriers and the kind of measures that may enable formalization, thereby attaining a win-win situation for all the stakeholders involved. In this context, policy- and decision-makers in the public and private sectors are frequently confronted with the dilemma of finding workable approaches to formalization, adjusted to their particular MSWM contexts. Building on the review of frequently implemented approaches to formalization, including an analysis of the barriers to and enabling measures for formalization, this paper aims to address this gap by explaining to policy- and decision-makers, and to waste managers in the private sector, certain dynamics that can be observed and that should be taken into account when designing formalization strategies that are adapted to their particular socioeconomic and political-institutional context. This includes possible links between formalization approaches and barriers, the kinds of barriers that need to be removed, and enabling measures leading to successful formalization in the long term. This paper involved a literature review of common approaches to formalization, which were classified into three categories: (1) informal waste workers organized in associations or cooperatives; (2) organized in CBOs or MSEs; and (3) contracted as individual workers by the formal waste sector. This was followed by the identification and subsequent classification of measures for removing common barriers to formalization into five categories: policy/legal, institutional/organizational, technical, social, and economic/financial. The approaches to formalization, as well as the barrier categories, were validated through the assessment of twenty case studies of formalization. Building on the assessment, the paper discussed possible links between formalization approaches and barriers, the 'persistent' challenges that represent barriers to formalization, as well as key enabling factors improving the likelihood of successful formalization. Regardless of the type of approach adopted to formalization, the review identifies measures to remove barriers in all five categories, with a stronger link between the approaches 1 and 2 and the existence of measures in the policy, institutional, and financial categories. Regarding persistent barriers, the review identified ones arising from the absence of measures to address a particular issue before formalization or due to specific country- or sector-related conditions, and their interaction with the MSWM context. 75% of the case studies had persistent barriers in respect of policy/legal issues, 50% of institutional/organizational, 45% of financial/economic, and 40%, and 35% of social and technical issues respectively. This paper concludes that independently of the formalization approach, the lack of interventions or measures in any of the five categories of barriers may lead formalization initiatives to fail, as unaddressed barriers become 'persistent' after formalization is implemented. Furthermore, 'persistent barriers' may also appear due to unfavorable country-specific conditions. The success of a formalization initiative does not depend on a specific approach, but most likely on the inclusion of country-appropriate measures at the policy, economic and institutional levels. The empowerment of informal waste-workers is again confirmed as a further key success factor for their formalization. Copyright © 2016 Elsevier Ltd. All rights reserved.
SME Acceptability Determination For DWPF Process Control (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.
2017-06-12
The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successfulmore » operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.« less
CHARACTERIZING CONTAINERIZED MIXED LOW-LEVEL WASTE FOR TREATMENT - A WORKSHOP PROCEEDINGS
This report is the product of a technical workshop held in May 1993 in Las Vegas, Nevada addressing Mixed Low-Level Waste (MLLW). he workshop was conducted by the Environmental Protection Agency (EPA) and the Department of Energy (DOE). ts purpose was to define the characterizati...
40 CFR 35.4190 - How does my group identify a qualified technical advisor?
Code of Federal Regulations, 2011 CFR
2011-07-01
... issues or public health issues as those issues relate to hazardous substance/toxic waste issues, as... public health issues must have received his or her public health or related training at accredited... hazardous or toxic waste problems, relocation, redevelopment or public health issues, and communicating...
EPA is today promulgating a final listing decision for used oils based upon the technical criteria provided in the Resource Conservation and Recovery Act (RCRA) sections 1004 and 3001 and in 40 CFR 261.11 (a)(1) and (a)(3).
Anaerobically digested organic waste (e.g. manure, sewage, and municipal solid waste) produces biogas, a source of renewable energy. A recent analysisindicates that the technical resource in California could produce nearly 93 billion cubic feet per year of biomethane from availab...
77 FR 56241 - Board Meeting; October 17, 2012; Idaho Falls, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
.... Nuclear Waste Technical Review Board will meet to discuss DOE work on packaging, transporting, and...) plans for the packaging, transportation, and disposition of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). Among the topics that will be discussed are current activities being undertaken by...
On June 11 -13,1991, the U.S. Environmental Protection Agency's Technology Innovation Office and Risk Reduction Engineering Laboratory hosted an international conference in Dallas, TX, to exchange solutions to hazardous waste treatment problems. This conference, the Third Forum...
MARINE PROCESSES, THEIR RELATIONSHIP TO POLLUTION AND A FRAMEWORK FOR WASTE MANAGEMENT
The transport and transformation processes which influence th way in which waste materials are dispersed and incorporated into the marine environment are reviewed and summarized as a preface for appreciation of the technical papers which follow in this volume. n a similar vein th...
The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describes the...
TWRS technical baseline database manager definition document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acree, C.D.
1997-08-13
This document serves as a guide for using the TWRS Technical Baseline Database Management Systems Engineering (SE) support tool in performing SE activities for the Tank Waste Remediation System (TWRS). This document will provide a consistent interpretation of the relationships between the TWRS Technical Baseline Database Management software and the present TWRS SE practices. The Database Manager currently utilized is the RDD-1000 System manufactured by the Ascent Logic Corporation. In other documents, the term RDD-1000 may be used interchangeably with TWRS Technical Baseline Database Manager.
Taghipour, Hassan; Amjad, Zahra; Jafarabadi, Mohamad Asghari; Gholampour, Akbar; Norouz, Prviz
2014-07-01
From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products' useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place. Copyright © 2014 Elsevier Ltd. All rights reserved.
10 CFR 72.26 - Contents of application: Technical specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Contents of application: Technical specifications. 72.26 Section 72.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
10 CFR 72.26 - Contents of application: Technical specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application: Technical specifications. 72.26 Section 72.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...
This report highlights significant projects that the ETSC has supported throughout fiscal year 2014. Projects have addressed an array of environmental scenarios, including but not limited to remote mining contamination, expansive landfill waste, sediment remediation by capping, ...
Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro
2015-03-01
This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, R.T.
The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.
Othman, Jamal; Khee, Pek Chuen
2014-05-01
A choice experiment analysis was conducted to estimate the preference for specific waste disposal technologies in Malaysia. The study found that there were no significant differences between the choice of a sanitary landfill or an incinerator. What matters is whether any disposal technology would lead to obvious social benefits. A waste disposal plan which is well linked or integrated with the community will ensure its acceptance. Local authorities will be challenged to identify solid waste disposal sites that are technically appropriate and also socially desirable.
Hazardous Waste Technical Assistance Survey, Fairchild AFB, Washington
1988-09-01
disposal is primarI"f the-: !--3,,Psp iih; o-1’ shoe -S gc-nearLig .na waste. Waste generators keep ;ogs on the ar-oL(0!, and.c types of ;D~:sc ino ili-jced...to the sanitary sewer. All paint waste skimmed off the top of the water is placed into a 55-gallon drum along with any sludge removed from the bottom...responsible for inspecting aircraft and aircraft parts for structural flaws using magnetic particle inspection and dye penetrant inspection. The magnetic
Abyssal seafloor waste isolation: the concept
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Young, David K.; Sawyer, William B.; Wright, Thomas D.
1998-05-01
The Naval Research Laboratory (NRL), with industry and university participation, conducted an assessment of the concept of isolating certain wastes (i.e., sewage sludge, fly ash from municipal incinerators, and contaminated dredged material) on the oceans' abyssal seafloor. In this assessment the advantages, disadvantages, and economic and environmental viability of potential engineering methods for achieving abyssal waste isolation were identified and compared. This paper presents background to the Abyssal Plains Waste Isolation (APWI) Project, describes the characteristics of the waste streams and quantities potentially available for disposal via the abyssal isolation concept, summarizes regulations affecting use of the abyssal seafloor for disposal of wastes, and introduces the technical and scientific premises underlying implementation of the concept.
Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in themore » Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.« less
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less