Sample records for waste transportation system

  1. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    PubMed

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-08-01

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Optimization of waste transportation route at waste transfers point in Lowokwaru District, Malang City

    NASA Astrophysics Data System (ADS)

    Hariyani, S.; Meidiana, C.

    2018-04-01

    Increasing population led to the emergence of the urban infrastructure services issue including waste problems especially waste transportation system. Data in 2016 shows that the amount of waste in Malang was 659.21 tons / day. The amount of waste transported to landfill only reached 464.74 tons / day. This indicates that not all waste can be transported to the landfill Supiturang because Level of Service (LoS) reached 70.49%. This study aims to determine the effectiveness of waste transportation system and determine the fastest route from waste transfers point in Lowokwaru district to the landfill Supiturang. The data collection method in this research were 1) primary survey by interview officials from the Sanitation and Gardening Agency which questions related to the condition of the waste transportation system in waste transfer point, 2) Secondary survey related to data of waste transportation system in Malang City i.e the amount of waste generation in waste transfer point, number of garbage trucks and other data related to the garbage transportation system. To determine the fastest route analyzed by network analyst using ArcGIS software. The results of network analyst show that not all routes are already using the fastest route to the landfill Supiturang.

  3. TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC

    NASA Astrophysics Data System (ADS)

    Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi

    To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.

  4. Optimization of municipal solid waste collection and transportation routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less

  5. Optimization of municipal solid waste collection and transportation routes.

    PubMed

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  7. Improvement of the material and transport component of the system of construction waste management

    NASA Astrophysics Data System (ADS)

    Kostyshak, Mikhail; Lunyakov, Mikhail

    2017-10-01

    Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.

  8. Improvement and modification of the routing system for the health-care waste collection and transportation in Istanbul

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alagoez, Aylin Zeren; Kocasoy, Guenay

    Handling of health-care wastes is among the most important environmental problems in Turkey as it is in the whole world. Approximately 25-30 tons of health-care wastes, in addition to the domestic and recyclable wastes, are generated from hospitals, clinics and other small health-care institutions daily on the European and the Asian sides of Istanbul [Kocasoy, G., Topkaya, B., Zeren, B.A., Kilic, M., et al., 2004. Integrated Health-care Waste Management in Istanbul, Final Report of the LIFE00 TCY/TR/054 Project, Turkish National Committee on Solid Wastes, Istanbul, Turkey; Zeren, B.A., 2004. The Health-care Waste Management of the Hospitals in the European Sidemore » of Istanbul, M.S. Thesis, Bogazici University, Istanbul, Turkey; Kilic, M., 2004. Determination of the Health-care Waste Handling and Final Disposal of the Infected Waste of Hospital-Medical Centers in the Anatolian Side of Istanbul. M.S. Thesis, Bogazici University, Istanbul, Turkey]. Unfortunately, these wastes are not handled, collected or temporarily stored at the institutions properly according to the published Turkish Medical Waste Control Regulation [Ministry of Environment and Forestry, 2005. Medical Waste Control Regulation. Official Gazette No. 25883, Ankara, Turkey]. Besides the inappropriate handling at the institutions, there is no systematic program for the transportation of the health-care wastes to the final disposal sites. The transportation of these wastes is realized by the vehicles of the municipalities in an uncontrolled, very primitive way. As a consequence, these improperly managed health-care wastes cause many risks to the public health and people who handle them. This study has been conducted to develop a health-care waste collection and transportation system for the city of Istanbul, Turkey. Within the scope of the study, the collection of health-care wastes from the temporary storage rooms of the health-care institutions, transportation of these wastes to the final disposal

  9. Improvement and modification of the routing system for the health-care waste collection and transportation in Istanbul.

    PubMed

    Alagöz, Aylin Zeren; Kocasoy, Günay

    2008-01-01

    Handling of health-care wastes is among the most important environmental problems in Turkey as it is in the whole world. Approximately 25-30tons of health-care wastes, in addition to the domestic and recyclable wastes, are generated from hospitals, clinics and other small health-care institutions daily on the European and the Asian sides of Istanbul [Kocasoy, G., Topkaya, B., Zeren, B.A., Kiliç, M., et al., 2004. Integrated Health-care Waste Management in Istanbul, Final Report of the LIFE00 TCY/TR/054 Project, Turkish National Committee on Solid Wastes, Istanbul, Turkey; Zeren, B.A., 2004. The Health-care Waste Management of the Hospitals in the European Side of Istanbul, M.S. Thesis, Boğaziçi University, Istanbul, Turkey; Kiliç, M., 2004. Determination of the Health-care Waste Handling and Final Disposal of the Infected Waste of Hospital-Medical Centers in the Anatolian Side of Istanbul. M.S. Thesis, Boğaziçi University, Istanbul, Turkey]. Unfortunately, these wastes are not handled, collected or temporarily stored at the institutions properly according to the published Turkish Medical Waste Control Regulation [Ministry of Environment and Forestry, 2005. Medical Waste Control Regulation. Official Gazette No. 25883, Ankara, Turkey]. Besides the inappropriate handling at the institutions, there is no systematic program for the transportation of the health-care wastes to the final disposal sites. The transportation of these wastes is realized by the vehicles of the municipalities in an uncontrolled, very primitive way. As a consequence, these improperly managed health-care wastes cause many risks to the public health and people who handle them. This study has been conducted to develop a health-care waste collection and transportation system for the city of Istanbul, Turkey. Within the scope of the study, the collection of health-care wastes from the temporary storage rooms of the health-care institutions, transportation of these wastes to the final disposal

  10. Waste Information Management System with 2012-13 Waste Streams - 13095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Lagos, L.

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less

  11. Transport and transportation pathways of hazardous chemicals from solid waste disposal.

    PubMed Central

    Van Hook, R I

    1978-01-01

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be

  12. Waste Information Management System-2012 - 12114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Shoffner, P.

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project

  13. Environmental-benefit analysis of two urban waste collection systems.

    PubMed

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All

  14. Interstate waste transport -- Emotions, energy, and environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcock, D.

    1993-12-31

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  15. Interstate waste transport -- Emotions, energy, and environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcock, D.

    1993-01-01

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  16. Pareto frontier analyses based decision making tool for transportation of hazardous waste.

    PubMed

    Das, Arup; Mazumder, T N; Gupta, A K

    2012-08-15

    Transportation of hazardous wastes through a region poses immense threat on the development along its road network. The risk to the population, exposed to such activities, has been documented in the past. However, a comprehensive framework for routing hazardous wastes has often been overlooked. A regional Hazardous Waste Management scheme should incorporate a comprehensive framework for hazardous waste transportation. This framework would incorporate the various stakeholders involved in decision making. Hence, a multi-objective approach is required to safeguard the interest of all the concerned stakeholders. The objective of this study is to design a methodology for routing of hazardous wastes between the generating units and the disposal facilities through a capacity constrained network. The proposed methodology uses posteriori method with multi-objective approach to find non-dominated solutions for the system consisting of multiple origins and destinations. A case study of transportation of hazardous wastes in Kolkata Metropolitan Area has also been provided to elucidate the methodology. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  18. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System

  19. Developing an institutional strategy for transporting defense transuranic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Kresny, H.S.

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less

  20. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  1. A spatial analysis of hierarchical waste transport structures under growing demand.

    PubMed

    Tanguy, Audrey; Glaus, Mathias; Laforest, Valérie; Villot, Jonathan; Hausler, Robert

    2016-10-01

    The design of waste management systems rarely accounts for the spatio-temporal evolution of the demand. However, recent studies suggest that this evolution affects the planning of waste management activities like the choice and location of treatment facilities. As a result, the transport structure could also be affected by these changes. The objective of this paper is to study the influence of the spatio-temporal evolution of the demand on the strategic planning of a waste transport structure. More particularly this study aims at evaluating the effect of varying spatial parameters on the economic performance of hierarchical structures (with one transfer station). To this end, three consecutive generations of three different spatial distributions were tested for hierarchical and non-hierarchical transport structures based on costs minimization. Results showed that a hierarchical structure is economically viable for large and clustered spatial distributions. The distance parameter was decisive but the loading ratio of trucks and the formation of clusters of sources also impacted the attractiveness of the transfer station. Thus the territories' morphology should influence strategies as regards to the installation of transfer stations. The use of spatial-explicit tools such as the transport model presented in this work that take into account the territory's evolution are needed to help waste managers in the strategic planning of waste transport structures. © The Author(s) 2016.

  2. Waste Management Information System (WMIS) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  3. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  4. Solid metabolic waste transport and stowage investigation

    NASA Technical Reports Server (NTRS)

    Burt, R. A.; Koesterer, M. G.; Hunt, S. R., Jr.

    1974-01-01

    The basic Waste Collection System (WCS) design under consideration utilized air flow to separate the stool from the WCS user and to transport the fecal material to a slinger device for subsequent deposition on a storage bowel. The major parameters governing stool separation and transport were found to be the area of the air inlet orifices, the configuration of the air inlet orifice and the transport air flow. Separation force and transport velocity of the stool were studied. The developed inlet orifice configuration was found to be an effective design for providing fecal separation and transport. Simulated urine tests and female user tests in zero gravity established air flow rates between 0.08 and 0.25 cu sm/min (3 and 9 scfm) as satisfactory for entrapment, containment and transport of urine using an urinal. The investigation of air drying of fecal material as a substitute for vacuum drying in a WCS breadboard system showed that using baseline conditions anticipated for the shuttle cabin ambient atmosphere, flow rates of 0.14 cu sm/min (5 cfm) were adequate for drying and maintaining biological stability of the fecal material.

  5. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  6. Integrated pneumatic transporter-incinerator-afterburner subsystem development. [for spacecraft waste disposal

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1974-01-01

    The design and fabrication of a prototype automatic transport system to move wastes to an incinerator onboard a spacecraft are described. The commode and debris collector, subsystems to treat noncondensible gases, oxygen supply to incinerator and afterburner, and removal and ash collection from the incinerator are considered, as well as a zero gravity condenser. In-depth performance testing of a totally integrated incineration system and autoclaving as a waste treatment method are included.

  7. Using GIS in risk analysis: a case study of hazardous waste transport.

    PubMed

    Lovett, A A; Parfitt, J P; Brainard, J S

    1997-10-01

    This paper provides an illustration of how a geographic information system (GIS) can be used in risk analysis. It focuses on liquid hazardous waste transport and utilizes records archived by the London Waste Regulatory Authority. This data source provides information on the origin and destination of each waste stream, but not the route followed during transport. A GIS was therefore employed to predict the paths used, taking into account different routing criteria and characteristics of the available road network. Details were also assembled on population distribution and ground-water vulnerability, thus providing a basis for evaluating the potential consequences of a waste spillage during transport. Four routing scenarios were implemented to identify sections of road which consistently saw heavy traffic. These simulations also highlighted that some interventions could lead to risk tradeoffs rather than hazard mitigation. Many parts of the research would not have been possible without a GIS, and the study demonstrates the considerable potential of such software in environmental risk assessment and management.

  8. A multi-echelon supply chain model for municipal solid waste management system.

    PubMed

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A multi-echelon supply chain model for municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less

  10. Feasibility study for a transportation operations system cask maintenance facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the caskmore » systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.« less

  11. Minimization of municipal solid waste transportation route in West Jakarta using Tabu Search method

    NASA Astrophysics Data System (ADS)

    Chaerul, M.; Mulananda, A. M.

    2018-04-01

    Indonesia still adopts the concept of collect-haul-dispose for municipal solid waste handling and it leads to the queue of the waste trucks at final disposal site (TPA). The study aims to minimize the total distance of waste transportation system by applying a Transshipment model. In this case, analogous of transshipment point is a compaction facility (SPA). Small capacity of trucks collects the waste from waste temporary collection points (TPS) to the compaction facility which located near the waste generator. After compacted, the waste is transported using big capacity of trucks to the final disposal site which is located far away from city. Problem related with the waste transportation can be solved using Vehicle Routing Problem (VRP). In this study, the shortest distance of route from truck pool to TPS, TPS to SPA, and SPA to TPA was determined by using meta-heuristic methods, namely Tabu Search 2 Phases. TPS studied is the container type with total 43 units throughout the West Jakarta City with 38 units of Armroll truck with capacity of 10 m3 each. The result determines the assignment of each truck from the pool to the selected TPS, SPA and TPA with the total minimum distance of 2,675.3 KM. The minimum distance causing the total cost for waste transportation to be spent by the government also becomes minimal.

  12. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  13. Quantifying capital goods for collection and transport of waste.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2012-12-01

    The capital goods for collection and transport of waste were quantified for different types of containers (plastic containers, cubes and steel containers) and an 18-tonnes compacting collection truck. The data were collected from producers and vendors of the bins and the truck. The service lifetime and the capacity of the goods were also assessed. Environmental impact assessment of the production of the capital goods revealed that, per tonne of waste handled, the truck had the largest contribution followed by the steel container. Large high density polyethylene (HDPE) containers had the lowest impact per tonne of waste handled. The impact of producing the capital goods for waste collection and transport cannot be neglected as the capital goods dominate (>85%) the categories human-toxicity (non-cancer and cancer), ecotoxicity, resource depletion and aquatic eutrophication, but also play a role (>13%) within the other impact categories when compared with the impacts from combustion of fuels for the collection and transport of the waste, when a transport distance of 25 km was assumed.

  14. Spent fuel and high-level radioactive waste transportation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  15. Spent fuel and high-level radioactive waste transportation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  16. Spent Fuel and High-Level Radioactive Waste Transportation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or nomore » background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  17. [Hygienic requirements for transportation of industrial waste and consumption residues].

    PubMed

    Metel'skiĭ, S V; Sin'kova, N V

    2009-01-01

    All wishing legal persons and individual entrepreneurs are presently engaged in garbage disposal Sanitary-and-epidemiological examination of activities in transportation of waste is complicated by that the existing sanitary regulations lack no requirements for storage, repair, washing, sanitization of waste-carrying transport, particularly epidemiologically dangerous (domestic, food, and biological waste, animal excreta, cut hair, etc.).

  18. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    PubMed

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.

  19. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs

  20. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.11 Requirements for transporters of hazardous wastes. (a) The State...

  1. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.11 Requirements for transporters of hazardous wastes. (a) The State...

  2. GIS based solid waste management information system for Nagpur, India.

    PubMed

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  3. Environmental Factor{trademark} system: RCRA hazardous waste handler information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  4. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  5. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  6. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  7. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  8. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  9. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  10. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  11. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  12. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  13. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  14. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    NASA Astrophysics Data System (ADS)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  15. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    PubMed

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  17. Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy

    2016-04-02

    transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our

  18. Functional specifications for a radioactive waste decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.

    1989-09-01

    It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less

  19. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  20. Design and fabrication of a prototype for an automatic transport system for transferring human and other wastes to an incinerator unit onboard spacecraft, phase A

    NASA Technical Reports Server (NTRS)

    Labak, L. J.; Remus, G. A.; Mansnerus, R.

    1971-01-01

    Three transport system concepts were experimentally evaluated for transferring human and nonhuman wastes from a collection site to an incineration unit onboard spacecraft. The operating parameters, merits, and shortcomings of a porous-pneumatic, nozzle-pneumatic, and a mechanical screw-feed system were determined. An analysis of the test data was made and a preliminary design of two prototype systems was prepared.

  1. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  2. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.

    1997-02-01

    Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are

  3. Consolidation and Centralization of Waste Operations Business Systems - 12319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, D. Dean

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidationmore » into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate - unless however

  4. Next Generation Waste Tracking: Linking Legacy Systems with Modern Networking Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Randy M.; Resseguie, David R.; Shankar, Mallikarjun

    2010-01-01

    This report describes results from a preliminary analysis to satisfy the Department of Energy (DOE) objective to ensure the safe, secure, efficient packaging and transportation of materials both hazardous and non hazardous [1, 2]. The DOE Office of Environmental Management (OEM) through Oak Ridge National Laboratory (ORNL) has embarked on a project to further this objective. OEM and ORNL have agreed to develop, demonstrate and make available modern day cost effective technologies for characterization, identification, tracking, monitoring and disposal of radioactive waste when transported by, or between, motor, air, rail, and water modes. During the past 8 years ORNL hasmore » investigated and deployed Web 2.0 compliant sensors into the transportation segment of the supply chain. ORNL has recently demonstrated operational experience with DOE Oak Ridge Operations Office (ORO) and others in national test beds and applications within this domain of the supply chain. Furthermore, in addition to DOE, these hazardous materials supply chain partners included Federal and State enforcement agencies, international ports, and commercial sector shipping operations in a hazardous/radioactive materials tracking and monitoring program called IntelligentFreight. IntelligentFreight is an ORNL initiative encompassing 5 years of research effort associated with the supply chain. The ongoing ORNL SmartFreight programs include RadSTraM [3], GRadSTraM , Trusted Corridors, SensorPedia [4], SensorNet, Southeastern Transportation Corridor Pilot (SETCP) and Trade Data Exchange [5]. The integration of multiple technologies aimed at safer more secure conveyance has been investigated with the core research question being focused on testing distinctly different distributed supply chain information sharing systems. ORNL with support from ORO have demonstrated capabilities when transporting Environmental Management (EM) waste materials for disposal over an onsite haul road. ORNL has unified the

  5. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrild, Hanna; Larsen, Anna W., E-mail: awla@env.dtu.dk; Christensen, Thomas H.

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the casemore » if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.« less

  6. Optimal routing for efficient municipal solid waste transportation by using ArcGIS application in Chennai, India.

    PubMed

    Sanjeevi, V; Shahabudeen, P

    2016-01-01

    Worldwide, about US$410 billion is spent every year to manage four billion tonnes of municipal solid wastes (MSW). Transport cost alone constitutes more than 50% of the total expenditure on solid waste management (SWM) in major cities of the developed world and the collection and transport cost is about 85% in the developing world. There is a need to improve the ability of the city administrators to manage the municipal solid wastes with least cost. Since 2000, new technologies such as geographical information system (GIS) and related optimization software have been used to optimize the haul route distances. The city limits of Chennai were extended from 175 to 426 km(2) in 2011, leading to sub-optimum levels in solid waste transportation of 4840 tonnes per day. After developing a spatial database for the whole of Chennai with 200 wards, the route optimization procedures have been run for the transport of solid wastes from 13 wards (generating nodes) to one transfer station (intermediary before landfill), using ArcGIS. The optimization process reduced the distances travelled by 9.93%. The annual total cost incurred for this segment alone is Indian Rupees (INR) 226.1 million. Savings in terms of time taken for both the current and shortest paths have also been computed, considering traffic conditions. The overall savings are thus very meaningful and call for optimization of the haul routes for the entire Chennai. © The Author(s) 2015.

  7. Waste management system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Jorgensen, G. K.

    1975-01-01

    The function of the waste management system was to control the disposition of solid and liquid wastes and waste stowage gases. The waste management system consisting of a urine subsystem and a fecal subsystem is described in detail and its overall performance is evaluated. Recommendations for improvement are given.

  8. An innovative national health care waste management system in Kyrgyzstan.

    PubMed

    Toktobaev, Nurjan; Emmanuel, Jorge; Djumalieva, Gulmira; Kravtsov, Alexei; Schüth, Tobias

    2015-02-01

    A novel low-cost health care waste management system was implemented in all rural hospitals in Kyrgyzstan. The components of the Kyrgyz model include mechanical needle removers, segregation using autoclavable containers, safe transport and storage, autoclave treatment, documentation, recycling of sterilized plastic and metal parts, cement pits for anatomical waste, composting of garden wastes, training, equipment maintenance, and management by safety and quality committees. The gravity-displacement autoclaves were fitted with filters to remove pathogens from the air exhaust. Operating parameters for the autoclaves were determined by thermal and biological tests. A hospital survey showed an average 33% annual cost savings compared to previous costs for waste management. All general hospitals with >25 beds except in the capital Bishkek use the new system, corresponding to 67.3% of all hospital beds. The investment amounted to US$0.61 per capita covered. Acceptance of the new system by the staff, cost savings, revenues from recycled materials, documented improvements in occupational safety, capacity building, and institutionalization enhance the sustainability of the Kyrgyz health care waste management system. © The Author(s) 2015.

  9. Comparing Waste-to-Energy technologies by applying energy system analysis.

    PubMed

    Münster, Marie; Lund, Henrik

    2010-07-01

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO(2) reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. A lunar transportation system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  11. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who notifies tribes of the transport of radioactive waste? 170.903 Section 170.903 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE) has...

  12. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Who notifies tribes of the transport of radioactive waste? 170.903 Section 170.903 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE) has...

  13. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form

  14. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong.

    PubMed

    Hossain, Md Uzzal; Wu, Zezhou; Poon, Chi Sun

    2017-11-01

    This study aimed to compare the environmental performance of building construction waste management (CWM) systems in Hong Kong. Life cycle assessment (LCA) approach was applied to evaluate the performance of CWM systems holistically based on primary data collected from two real building construction sites and secondary data obtained from the literature. Different waste recovery rates were applied based on compositions and material flow to assess the influence on the environmental performance of CWM systems. The system boundary includes all stages of the life cycle of building construction waste (including transportation, sorting, public fill or landfill disposal, recovery and reuse, and transformation and valorization into secondary products). A substitutional LCA approach was applied for capturing the environmental gains due to the utilizations of recovered materials. The results showed that the CWM system by using off-site sorting and direct landfilling resulted in significant environmental impacts. However, a considerable net environmental benefit was observed through an on-site sorting system. For example, about 18-30kg CO 2 eq. greenhouse gases (GHGs) emission were induced for managing 1 t of construction waste through off-site sorting and direct landfilling, whereas significant GHGs emission could be potentially avoided (considered as a credit -126 to -182kg CO 2 eq.) for an on-site sorting system due to the higher recycling potential. Although the environmental benefits mainly depend on the waste compositions and their sortability, the analysis conducted in this study can serve as guidelines to design an effective and resource-efficient building CWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    PubMed

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  16. Space transportation and destination considerations for extraterrestrial disposal of radioactive waste

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.

    1973-01-01

    A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.

  17. Environmental Factor(tm) system: RCRA hazardous waste handler information (on cd-rom). Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    Environmental Factor(tm) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information - dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  18. System dynamic modeling on construction waste management in Shenzhen, China.

    PubMed

    Tam, Vivian W Y; Li, Jingru; Cai, Hong

    2014-05-01

    This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.

  19. Fate and transport of phenol in a packed bed reactor containing simulated solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saquing, Jovita M., E-mail: jmsaquing@gmail.com; Knappe, Detlef R.U., E-mail: knappe@ncsu.edu; Barlaz, Morton A., E-mail: barlaz@ncsu.edu

    Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictivemore » models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended

  20. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    PubMed

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  1. Detail view of the Waste Management System, the space potty, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Waste Management System, the space potty, onboard the Orbiter Discovery. It is located on the aft wall on the port side of the mid deck of the orbiter. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less

  3. Development and Implementation of the Waste Management Information System to Support Hanford's River Corridor Cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, L. M.

    2006-07-01

    This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generationmore » to disposal. (authors)« less

  4. Infectious waste feed system

    DOEpatents

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  5. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  6. Nuclear waste transportation: case studies of identifying stakeholder risk information needs.

    PubMed Central

    Drew, Christina H; Grace, Deirdre A; Silbernagel, Susan M; Hemmings, Erin S; Smith, Alan; Griffith, William C; Takaro, Timothy K; Faustman, Elaine M

    2003-01-01

    The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation's nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997-1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes. PMID:12611653

  7. Hazardous waste management system design under population and environmental impact considerations.

    PubMed

    Yilmaz, Ozge; Kara, Bahar Y; Yetis, Ulku

    2017-12-01

    This paper presents a multi objective mixed integer location/routing model that aims to minimize transportation cost and risks for large-scale hazardous waste management systems (HWMSs). Risks induced by hazardous wastes (HWs) on both public and the environment are addressed. For this purpose, a new environmental impact definition is proposed that considers the environmentally vulnerable elements including water bodies, agricultural areas, coastal regions and forestlands located within a certain bandwidth around transportation routes. The solution procedure yields to Pareto optimal curve for two conflicting objectives. The conceptual model developed prior to mathematical formulation addresses waste-to-technology compatibility and HW processing residues to assure applicability of the model to real-life HWMSs. The suggested model was used in a case study targeting HWMS in Turkey. Based on the proposed solution, it was possible to identify not only the transportation routes but also a set of information on HW handling facilities including the types, locations, capacities, and investment/operational cost. The HWMS of this study can be utilized both by public authorities and private sector investors for planning purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    PubMed

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    PubMed

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  10. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATTHEW,; KOZAK, W.

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  11. A facility location model for municipal solid waste management system under uncertain environment.

    PubMed

    Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K

    2017-12-15

    In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. WASTE-TO-RESOURCE: NOVEL MEMBRANE SYSTEMS FOR SAFE AND SUSTAINABLE BRINE MANAGEMENT

    EPA Science Inventory

    Decentralized waste-to-reuse systems will be optimized to maximize resource and energy recovery and minimize chemicals and energy use. This research will enhance fundamental knowledge on simultaneous heat and mass transport through membranes, lower process costs, and furthe...

  13. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  14. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  15. Performance evaluation model of a pilot food waste collection system in Suzhou City, China.

    PubMed

    Wen, Zongguo; Wang, Yuanjia; De Clercq, Djavan

    2015-05-01

    This paper analyses the food waste collection and transportation (C&T) system in a pilot project in Suzhou by using a novel performance evaluation method. The method employed to conduct this analysis involves a unified performance evaluation index containing qualitative and quantitative indicators applied to data from Suzhou City. Two major inefficiencies were identified: a) low system efficiency due to insufficient processing capacity of commercial food waste facilities; and b) low waste resource utilization due to low efficiency of manual sorting. The performance evaluation indicated that the pilot project collection system's strong points included strong economics, low environmental impact and low social impact. This study also shows that Suzhou's integrated system has developed a comprehensive body of laws and clarified regulatory responsibilities for each of the various government departments to solve the problems of commercial food waste management. Based on Suzhou's experience, perspectives and lessons can be drawn for other cities and areas where food waste management systems are in the planning stage, or are encountering operational problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  17. Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, A.; Gordon, S.; Goldston, W.

    2013-07-08

    This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for

  18. Finite element analysis of ion transport in solid state nuclear waste form materials

    NASA Astrophysics Data System (ADS)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  19. Expert System for Building TRU Waste Payloads - 13554

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Heather; Slater, Bryant

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiativemore » intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)« less

  20. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  1. GIS-based planning system for managing the flow of construction and demolition waste in Brazil.

    PubMed

    Paz, Diogo Henrique Fernandes da; Lafayette, Kalinny Patrícia Vaz; Sobral, Maria do Carmo

    2018-05-01

    The objective of this article was to plan a network for municipal management of construction and demolition waste in Brazil with the assistance of a geographic information system, using the city of Recife as a case study. The methodology was carried out in three stages. The first was to map the illegal construction and demolition of waste disposal points across Recife and classify the waste according to its recyclability. In sequence, a method for indicating suitable areas for installation of voluntary delivery points, for small waste generators, are presented. Finally, a method for indicating suitable areas for the installation of trans-shipment and waste sorting areas, developed for large generators, is presented. The results show that a geographic information system is an essential tool in the planning of municipal construction and demolition waste management, in order to facilitate the spatial analysis and control the generation, sorting, collection, transportation, and final destination of construction and demolition waste, increasing the rate of recovery and recycling of materials.

  2. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  3. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the

  4. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    -to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  5. Waste information management system: a web-based system for DOE waste forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.

    2007-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less

  6. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece.

    PubMed

    Economopoulou, M A; Economopoulou, A A; Economopoulos, A P

    2013-11-01

    The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 milliont/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact

  7. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictionsmore » about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.« less

  8. DEMONSTRATION BULLETIN: X*TRAX MODEL 200 THERMAL DESORPTION SYSTEMS - CHEMICAL WASTE MANAGEMENT, INC.

    EPA Science Inventory

    The X*TRAX™ Mode! 200 Thermal Desorption System developed by Chemical Waste Management, Inc. (CWM), is a low-temperature process designed to separate organic contaminants from soils, sludges, and other solid media. The X*TRAX™ Model 200 is fully transportable and consists of thre...

  9. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  10. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  11. Aerospace vehicle water-waste management

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  12. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste.

    PubMed

    Chee-Sanford, Joanne C; Mackie, Roderick I; Koike, Satoshi; Krapac, Ivan G; Lin, Yu-Feng; Yannarell, Anthony C; Maxwell, Scott; Aminov, Rustam I

    2009-01-01

    Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.

  13. 40 CFR 761.211 - Manifest system-Transporter requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...

  14. 40 CFR 761.211 - Manifest system-Transporter requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...

  15. Simulation of soluble waste transport and buildup in surface waters using tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1993-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.

  16. Simulation of soluble waste transport and buildup in surface waters using tracers

    USGS Publications Warehouse

    Kilpatrick, Frederick A.

    1992-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges.The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals on dye tracing with emphasis on the expanded use of time-of-travel type data.

  17. Real-time gamma imaging of technetium transport through natural and engineered porous materials for radioactive waste disposal.

    PubMed

    Corkhill, Claire L; Bridge, Jonathan W; Chen, Xiaohui C; Hillel, Phil; Thornton, Steve F; Romero-Gonzalez, Maria E; Banwart, Steven A; Hyatt, Neil C

    2013-12-03

    We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of (99)Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in (99m)Tc activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-inputs of ~20 MBq (99m)Tc were introduced into short (<10 cm) water-saturated columns at a constant flow of 0.33 mL min(-1). Changes in calibrated mass distribution of (99m)Tc at 30 s intervals, over a period of several hours, were quantified by spatial moments analysis. Transport parameters were fitted to the experimental data using a one-dimensional convection-dispersion equation, yielding transport properties for this radionuclide in a model GDF environment. These data demonstrate that (99)Tc in the pertechnetate form (Tc(VII)O4(-)) does not sorb to cement backfill during transport under model conditions, resulting in closely conservative transport behavior. This methodology represents a quantitative development of radiotracer imaging and offers the opportunity to conveniently and rapidly characterize transport of gamma-emitting isotopes in opaque media, relevant to the geological disposal of nuclear waste and potentially to a wide variety of other subsurface environments.

  18. Real-Time Gamma Imaging of Technetium Transport through Natural and Engineered Porous Materials for Radioactive Waste Disposal

    PubMed Central

    2013-01-01

    We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of 99Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in 99mTc activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-inputs of ∼20 MBq 99mTc were introduced into short (<10 cm) water-saturated columns at a constant flow of 0.33 mL min–1. Changes in calibrated mass distribution of 99mTc at 30 s intervals, over a period of several hours, were quantified by spatial moments analysis. Transport parameters were fitted to the experimental data using a one-dimensional convection–dispersion equation, yielding transport properties for this radionuclide in a model GDF environment. These data demonstrate that 99Tc in the pertechnetate form (Tc(VII)O4–) does not sorb to cement backfill during transport under model conditions, resulting in closely conservative transport behavior. This methodology represents a quantitative development of radiotracer imaging and offers the opportunity to conveniently and rapidly characterize transport of gamma-emitting isotopes in opaque media, relevant to the geological disposal of nuclear waste and potentially to a wide variety of other subsurface environments. PMID:24147650

  19. A comprehensive risk assessment framework for offsite transportation of inflammable hazardous waste.

    PubMed

    Das, Arup; Gupta, A K; Mazumder, T N

    2012-08-15

    A framework for risk assessment due to offsite transportation of hazardous wastes is designed based on the type of event that can be triggered from an accident of a hazardous waste carrier. The objective of this study is to design a framework for computing the risk to population associated with offsite transportation of inflammable and volatile wastes. The framework is based on traditional definition of risk and is designed for conditions where accident databases are not available. The probability based variable in risk assessment framework is substituted by a composite accident index proposed in this study. The framework computes the impacts due to a volatile cloud explosion based on TNO Multi-energy model. The methodology also estimates the vulnerable population in terms of disability adjusted life years (DALY) which takes into consideration the demographic profile of the population and the degree of injury on mortality and morbidity sustained. The methodology is illustrated using a case study of a pharmaceutical industry in the Kolkata metropolitan area. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Functional analysis, a resilience improvement tool applied to a waste management system - application to the "household waste management chain"

    NASA Astrophysics Data System (ADS)

    Beraud, H.; Barroca, B.; Hubert, G.

    2012-12-01

    A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site. 1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.). These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005).

  1. Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sueiae, S.; Fabjan, M.; Hrastar, U.

    2008-07-01

    software development life-cycle methodology the Waterfall methodology was used. The reason for choosing this methodology lied in its simple approach: analyze the problem, design the solution, implement the code, test the code, integrate and deploy. ARAO's institutional radioactive waste management process was improved in the way that it is more efficient, better organized, allowing traceability and availability of all documents and operational procedures within the field of institutional radioactive waste. The tailored made IBS system links all activities of the institutional radioactive waste management process: collection, transportation, takeover, acceptance, storing, treatment, radiation protection, etc. into one management system. All existing and newly designed evidences, operational procedures and other documents can be searched and viewed via secured Internet access from different locations. (authors)« less

  2. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    PubMed

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  3. Technology development of the Space Transportation System mission and terrestrial applications of satellite technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.

  4. Potential for gulls to transport bacteria from human waste sites to beaches.

    PubMed

    Alm, Elizabeth W; Daniels-Witt, Quri R; Learman, Deric R; Ryu, Hodon; Jordan, Dustin W; Gehring, Thomas M; Santo Domingo, Jorge

    2018-02-15

    Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human fecal microorganisms associated with that waste. If these gulls also visit beaches, they may serve as vectors, transporting fecal microorganisms to the beach where they may subsequently contaminate sand and water. In this study, samples collected from landfills, treated wastewater storage lagoons, and public beaches demonstrated a spatial and temporal overlap of markers for gull and human-associated microorganisms. In addition, markers for gull, fecal indicator bacteria, and the human-associated marker, HF183, were detected in gull feces and cloacae samples. Further, HF183 was detected in cloacae samples from gulls that were documented by radio-telemetry traveling between human waste sites and public beaches. This study highlights the potential for gulls that visit human waste sites to disperse human-associated microorganisms in the beach landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.

    2007-07-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less

  6. A study of the feasibility of pneumatic transport of municipal solid waste and recyclables in Manhattan using existing transportation infrastructure.

    DOT National Transportation Integrated Search

    2013-07-01

    This study explored possibilities for using existing transportation infrastructure for the cost-effective : installation of pneumatic waste-collection technology in Manhattan. If shown to be economically and : operationally feasible, reducing the num...

  7. Multi-objective model of waste transportation management for crude palm oil industry

    NASA Astrophysics Data System (ADS)

    Silalahi, Meslin; Mawengkang, Herman; Irsa Syahputri, Nenna

    2018-02-01

    The crude palm oil industry is an agro-industrial commodity. The global market of this industry has experienced rapid growth in recent years, such that it has a strategic value to be developed for Indonesian economy. Despite these economic benefits there are a number of environmental problems at the factories, such as high water consumption, the generation of a large amount of wastewater with a high organic content, and the generation of a large quantity of solid wastes and air pollution. In terms of waste transportation, we propose a multiobjective programming model for managing business environmental risk in a crude palm oil manufacture which gives the best possible configuration of waste management facilities and allocates wastes to these facilities. Then we develop an interactive approach for tackling logistics and environmental risk production planning problem for the crude palm oil industry.

  8. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  9. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  10. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  11. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  12. Digital modeling of radioactive and chemical waste transport in the aquifer underlying the Snake River Plain at the National Reactor Testing Station, Idaho

    USGS Publications Warehouse

    Robertson, J.B.

    1974-01-01

    Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the

  13. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR

  14. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  15. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrum, Lee; Manic, Milos

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses onmore » is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.« less

  16. STUDY ON THE RECYCLING SYSTEM OF WASTE PLASTICS AND MIXED PAPER FROM A LONG-TERM PERSPECTIVE

    NASA Astrophysics Data System (ADS)

    Fujii, Minoru; Fujita, Tsuyoshi; Chen, Xudong; Ohnishi, Satoshi; Osako, Masahiro; Moriguchi, Yuichi; Yamaguchi, Naohisa

    Plastics and mixed paper in municipal solid waste are valuable resources with high calorific value. However, the recycling cost to utilize them tends to be expensive. In addition, recycling system has to be consistent with the reduce of wastes on which should be put higher-priority to lower carbon emission and save resources in the long term. In this paper, we proposed a recycling system (smart recycling system) which consists of a local center an d existing facilities in arterial industries. In the local center, collected waste plastics and mixed paper from household are processed on the same line into a form suitable for transportation and handling in a facility of arterial in dustry which can utilize those wastes effectively. At the same time, a part of plastics with high quality is processed into a recycled resin in the center. It was suggested that, by utilizing existing facilities in arterial industries which have enough and flexible capacity to accept those wastes, the system can be a robust system even if the amount of wastes generation fluctuates widely. The effect of CO2 reduction and cost by installing the system were calculated and it was estimated that 3.5 million ton of additional annual CO2 reduction could be brought in Tokyo and surrounding three prefectures without co nsiderable increase in cost.

  17. 76 FR 70220 - New Jersey Regulations on Transportation of Regulated Medical Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    .... PHMSA-2011-0294 (PDA-35(R)] New Jersey Regulations on Transportation of Regulated Medical Waste AGENCY... administrative determination is issued by PHMSA's Chief Counsel. Rebuttal comments may discuss only those issues...: The Institute's application and all comments received may be reviewed in the Docket Operations...

  18. Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model.

    PubMed

    Nguyen-Trong, Khanh; Nguyen-Thi-Ngoc, Anh; Nguyen-Ngoc, Doanh; Dinh-Thi-Hai, Van

    2017-01-01

    The amount of municipal solid waste (MSW) has been increasing steadily over the last decade by reason of population rising and waste generation rate. In most of the urban areas, disposal sites are usually located outside of the urban areas due to the scarcity of land. There is no fixed route map for transportation. The current waste collection and transportation are already overloaded arising from the lack of facilities and insufficient resources. In this paper, a model for optimizing municipal solid waste collection will be proposed. Firstly, the optimized plan is developed in a static context, and then it is integrated into a dynamic context using multi-agent based modelling and simulation. A case study related to Hagiang City, Vietnam, is presented to show the efficiency of the proposed model. From the optimized results, it has been found that the cost of the MSW collection is reduced by 11.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P., E-mail: eco@otenet.gr

    2013-11-15

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/ormore » wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was

  20. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  1. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment

    DOE PAGES

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; ...

    2015-10-26

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. Here, this balancesmore » the insufficient characterisation information and provides the means for future mechanical–physical–chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(VI) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(VI) diffusion the method is extended to account for sorption and convection. Finally, rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.« less

  2. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    PubMed

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  3. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form evenmore » though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.« less

  4. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California

    USGS Publications Warehouse

    Leenheer, J.A.; Hsu, J.; Barber, L.B.

    2001-01-01

    In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .

  5. Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department.

    PubMed

    White, Benjamin A; Yun, Brian J; Lev, Michael H; Raja, Ali S

    2017-04-01

    Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013-3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5-7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7-8.2]; to 23.3 ± 3.5 min, P=0.003), and 26% one year

  6. Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department

    PubMed Central

    White, Benjamin A.; Yun, Brian J.; Lev, Michael H.; Raja, Ali S.

    2017-01-01

    Introduction Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques. Methods This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013–3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods. Results Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5–7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7–8.2]; to 23.3 ± 3

  7. Multiple system modelling of waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less

  8. Mass Transport: Circulatory System with Emphasis on Nonendothermic Species.

    PubMed

    Crossley, Dane A; Burggren, Warren W; Reiber, Carl L; Altimiras, Jordi; Rodnick, Kenneth J

    2016-12-06

    Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017. Copyright © 2017 John

  9. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemispheremore » and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto

  10. 10 CFR 51.52 - Environmental effects of transportation of fuel and waste-Table S-4.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nuclear Power Plants,” WASH-1238, December 1972, and Supp. 1 NUREG-75/038 April 1975. Both documents are... 10 Energy 2 2010-01-01 2010-01-01 false Environmental effects of transportation of fuel and waste... Environmental effects of transportation of fuel and waste—Table S-4. Under § 51.50, every environmental report...

  11. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and sitemore » properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.« less

  12. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and

  13. Integrated waste and water management system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  14. Dumping and illegal transport of hazardous waste, danger of modern society.

    PubMed

    Obradović, Mario; Kalambura, Sanja; Smolec, Danijel; Jovicić, Nives

    2014-06-01

    Increasing the production of hazardous waste during the past few years and stricter legislation in the area of permanent disposal and transportation costs were significantly elevated above activities. This creates a new, highly lucrative gray market which opens the way for the criminalization. Of great importance is the identification of illegal trafficking of hazardous waste since it can have a significant impact on human health and environmental pollution. Barriers to effective engagement to prevent these activities may vary from region to region, country to country, but together affect the ability of law enforcement authorities to ensure that international shipments of hazardous waste comply with national laws and maritime regulations. This paper will overview the legislation governing these issues, and to analyze the barriers to their implementation, but also try to answer the question of why and how this type of waste traded. Paper is an overview of how Croatia is prepared to join the European Union in this area and indicates the importance and necessity of the cooperation of all of society, and international organizations in the fight with the new trend of environmental crime.

  15. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils.

    PubMed

    Karathanasis, A D; Johnson, D M C; Matocha, C J

    2005-01-01

    Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.

  16. Toward a community coastal sediment transport modeling system: the second workshop

    USGS Publications Warehouse

    Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford

    2002-01-01

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  17. Toward a community coastal sediment transport modeling system: The second workshop

    NASA Astrophysics Data System (ADS)

    Sherwood, Christopher R.; Harris, Courtney K.; Rockwell Geyer, W.; Butman, Bradford

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  18. WCATS: Waste Documentation, Course No. 8504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Sandy

    2016-04-14

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  19. Transportation needs assessment: Emergency response section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The transportation impacts of moving high level nuclear waste (HLNW) to a repository at Yucca Mountain in Nevada are of concern to the residents of the State as well as to the residents of other states through which the nuclear wastes might be transported. The projected volume of the waste suggests that shipments will occur on a daily basis for some period of time. This will increase the risk of accidents, including a catastrophic incident. Furthermore, as the likelihood of repository construction and operation and waste shipments increase, so will the attention given by the national media. This document ismore » not to be construed as a willingness to accept the HLNW repository on the part of the State. Rather it is an initial step in ensuring that the safety and well-being of Nevada residents and visitors and the State`s economy will be adequately addressed in federal decision-making pertaining to the transportation of HLNW into and across Nevada for disposal in the proposed repository. The Preferred Transportation System Needs Assessment identifies critical system design elements and technical and social issues that must be considered in conducting a comprehensive transportation impact analysis. Development of the needs assessment and the impact analysis is especially complex because of the absence of information and experience with shipping HLNW and because of the ``low probability, high consequence`` aspect of the transportation risk.« less

  20. Waste Preparation and Transport Chemistry: Results of the FY 2001 Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R.D.

    2002-03-25

    During FY 2001, tank farm operations at Hanford and the Savannah River Site (SRS) continued to be negatively impacted by the unintended formation of solids. At Hanford, the primary solids formation problem involves a series of plugged pipes and pumps during the saltwell pumping activities of the interim stabilization program. For example, transfers of tank S-102 waste were suspended due to a plugged pipeline or a mechanical problem with the transfer pump. The replacement pump then failed within 2 weeks. In contrast, since full-scale waste remediation activities such as vitrification were initiated, the SRS has encountered a wider range ofmore » problems due to unwanted solids. The 2H evaporator system was shut down because of the formation of aluminosilicate deposits with enriched uranium in the evaporator pot. While high concentrations of aluminum are expected in the tank waste due to previous canyon operations, the primary source of silicon is the recycle stream from the vitrifier. While solids formation can be expected when waste streams are combined, the formation of the aluminosilicate deposits required an elevated temperature within the evaporator. The shutdown of the 2H evaporator led to a severe shortage of tank space. Therefore, the SRS tank farm was forced to transfer highly concentrated waste, which led to a plugged transfer pump in tank 32. For each of the proposed cesium removal technologies for the SRS, unwanted solids formation occurred during the large laboratory-scale tests prior to the final selection of the solvent extraction process. It can be expected that further problems will be encountered as more unit operations of the remediation effort are deployed and as more waste streams are combined. Since these problems have already led to costly schedule delays, the tank farm operators at both sites have identified the prevention of solids formation as a high-priority need. In response to this need, the Tank Focus Area has assembled a team of

  1. Los Alamos Plutonium Facility Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Montoya, A.; Wieneke, R.

    1997-02-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facilitymore » on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.« less

  2. Analytical method of waste allocation in waste management systems: Concept, method and case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergeron, Francis C., E-mail: francis.b.c@videotron.ca

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. Themore » conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  3. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; Zhang, Z. F.; Meyer, Philip D.

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parametersmore » for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.« less

  4. Intelligent Transport Systems in the Management of Road Transportation

    NASA Astrophysics Data System (ADS)

    Kalupová, Blanka; Hlavoň, Ivan

    2016-11-01

    Extension of European Union causes increase of free transfer of people and goods. At the same time they raised the problems associated with the transport, e.g. congestion and related accidents on roads, air traffic delays and more. To increase the efficiency and safety of transport, the European Commission supports the introduction of intelligent transport systems and services in all transport sectors. Implementation of intelligent transport systems and services in the road transport reduces accident frequency, increases the capacity of existing infrastructure and reduces congestions. Use of toll systems provides resources needed for the construction and operation of a new road network, improves public transport, cycling transport and walking transport, and also their multimodal integration with individual car transport.

  5. Revolutionary advances in medical waste management. The Sanitec system.

    PubMed

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the

  6. 78 FR 75672 - New Jersey Regulations on Transportation of Regulated Medical Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ...(R), 69 FR at 34717. See also 49 CFR 173.134(a)(5). However, New Jersey's regulations appear to treat.... PHMSA-2011-0294 (PD-35(R)] New Jersey Regulations on Transportation of Regulated Medical Waste AGENCY... U.S.C. 5101 et seq., and the Hazardous Materials Regulations (HMR), 49 CFR parts 171-180. Modes...

  7. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection...

  8. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  9. Transport of hydraulic fracturing waste from Pennsylvania wells: A county-level analysis of road use and associated road repair costs

    USGS Publications Warehouse

    Patterson, Lauren A.; Maloney, Kelly O.

    2016-01-01

    Pennsylvania’s rapid unconventional oil and gas (UOG) development—from a single well in 2004 to more than 6700 wells in 2013—has dramatically increased UOG waste transport by heavy trucks. This study quantified the amount of UOG waste and the distance it traveled between wells and disposal facilities on each type of road in each county between July 2010 and December 2013. In addition, the study estimated the associated financial costs to each county’s road infrastructure over that period. We found that UOG wells produced a median wastewater volume of 1294 m3 and a median of 89,267 kg of solid waste. The median number of waste-transport truck trips per well was 122. UOG wells existed in 38 Pennsylvania counties, but we estimated trucks transporting well waste traveled through 132 counties, including counties in West Virginia, Ohio, and New York. Median travel distance varied by disposal type, from 106 km to centralized treatment facilities up to 237 km to injection wells. Local roads experienced the greatest amount of truck traffic and associated costs ($1.1–6.5 M) and interstates, the least ($0.3–1.6 M). Counties with oil and gas development experienced the most truck traffic and incurred the highest associated roadway costs. However, many counties outside the active development area also incurred roadway repair costs, highlighting the extension of UOG development’s spatial footprint beyond the active development area. An online data visualization tool is available here: www.nicholasinstitute.duke.edu/transportation-of-hydraulic-fracturing-waste.

  10. Are MUPs a Toxic Waste Disposal System?

    PubMed

    Kwak, Jae; Strasser, Eva; Luzynski, Ken; Thoß, Michaela; Penn, Dustin J

    2016-01-01

    Male house mice produce large quantities of major urinary proteins (MUPs), which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds ('toxic waste hypothesis'). In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP), in the urine of wild-derived house mice (Mus musculus musculus). Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa) separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT), the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.

  11. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops.

    PubMed

    Verbyla, M E; Iriarte, M M; Mercado Guzmán, A; Coronado, O; Almanza, M; Mihelcic, J R

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Medical waste treatment and decontamination system

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  13. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, W.A.

    1997-05-09

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  14. Modelling of the reactive transport for rock salt-brine in geological repository systems based on improved thermodynamic database (Invited)

    NASA Astrophysics Data System (ADS)

    Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.

    2009-12-01

    The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database

  15. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  16. Fate and Transport of 17β-estradiol Beneath Animal Waste Holding Ponds

    NASA Astrophysics Data System (ADS)

    Gibson, L. A.; Tyner, J. S.; Hawkins, S. A.; Lee, J.; Buchanan, J. R.

    2011-12-01

    Steroidal hormones, such as 17β-estradiol (E2), are prevalent in animal waste and are a common subject of study due to potential stream and groundwater contamination. These particular hormones are labeled as Endocrine Disrupting Chemicals (EDCs) because of their developmental effects in reptiles and amphibians. Dairy waste at concentrated animal feeding operations is typically stored in a pond that is regulated by law to include an underlying soil liner with a minimal hydraulic conductivity to limit leaching beneath the pond, yet some studies have traced stream and groundwater contamination to these ponds. Previous studies have shown that the soil underlying earthen ponds are always unsaturated. This increases the pore water velocity relative to a given flux, which itself is dictated almost entirely by an organic seal that forms at the bottom of a waste pond. This increased velocity results in more rapid transport and less retention time within the vadose zone where E2 could biodegrade into its daughter product, estrone (E1). And since the soil is unsaturated and therefore has a negative pressure, preferential flow should not serve as a method of transport. On the contrary, E2 and E1 may sorb to mobile colloids increasing their mobility. This study will evaluate the use of biochar, an increasingly common activated carbon source, as a soil liner amendment. Biochar has a specific surface area that can exceed 1,500 m2/g and is high in organic matter, which E2 sorbs to strongly. The biochar amendment should be most effective and enduring as a layer located at the bottom of the soil liner so that the leachate has been treated by the soil prior to contact. Another proposed amendment technique is to uniformly mix the biochar within the soil liner to increase the leachate contact time with the biochar, but realistically could prove to be too costly and energy-intensive. Field and laboratory studies were conducted to analyze hormone persistence and transport processes and

  17. Understanding Transportation Systems : An Integrated Approach to Modeling Complex Transportation Systems

    DOT National Transportation Integrated Search

    2013-01-01

    The ability to model and understand the complex dynamics of intelligent agents as they interact within a transportation system could lead to revolutionary advances in transportation engineering and intermodal surface transportation in the United Stat...

  18. Shuttle waste management system design improvements and flight evaluation

    NASA Technical Reports Server (NTRS)

    Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.

    1986-01-01

    The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.

  19. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)« less

  20. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.« less

  1. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.

    1997-08-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less

  2. Space Station tethered waste disposal

    NASA Technical Reports Server (NTRS)

    Rupp, Charles C.

    1988-01-01

    The Shuttle Transportation System (STS) launches more payload to the Space Station than can be returned creating an accumulation of waste. Several methods of deorbiting the waste are compared including an OMV, solid rocket motors, and a tether system. The use of tethers is shown to offer the unique potential of having a net savings in STS launch requirement. Tether technology is being developed which can satisfy the deorbit requirements but additional effort is required in waste processing, packaging, and container design. The first step in developing this capability is already underway in the Small Expendable Deployer System program. A developmental flight test of a tether initiated recovery system is seen as the second step in the evolution of this capability.

  3. Transport of hydraulic fracturing waste from Pennsylvania wells: A county-level analysis of road use and associated road repair costs.

    PubMed

    Patterson, Lauren A; Maloney, Kelly O

    2016-10-01

    Pennsylvania's rapid unconventional oil and gas (UOG) development-from a single well in 2004 to more than 6700 wells in 2013-has dramatically increased UOG waste transport by heavy trucks. This study quantified the amount of UOG waste and the distance it traveled between wells and disposal facilities on each type of road in each county between July 2010 and December 2013. In addition, the study estimated the associated financial costs to each county's road infrastructure over that period. We found that UOG wells produced a median wastewater volume of 1294 m(3) and a median of 89,267 kg of solid waste. The median number of waste-transport truck trips per well was 122. UOG wells existed in 38 Pennsylvania counties, but we estimated trucks transporting well waste traveled through 132 counties, including counties in West Virginia, Ohio, and New York. Median travel distance varied by disposal type, from 106 km to centralized treatment facilities up to 237 km to injection wells. Local roads experienced the greatest amount of truck traffic and associated costs ($1.1-6.5 M) and interstates, the least ($0.3-1.6 M). Counties with oil and gas development experienced the most truck traffic and incurred the highest associated roadway costs. However, many counties outside the active development area also incurred roadway repair costs, highlighting the extension of UOG development's spatial footprint beyond the active development area. An online data visualization tool is available here: www.nicholasinstitute.duke.edu/transportation-of-hydraulic-fracturing-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Feasibility of space disposal of radioactive nuclear waste. 2: Technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of transporting radioactive waste produced in the process of generating electricity in nuclear powerplants into space for ultimate disposal was investigated at the request of the AEC as a NASA in-house effort. The investigation is part of a broad AEC study of methods for long-term storage or disposal of radioactive waste. The results of the study indicate that transporting specific radioactive wastes, particularly the actinides with very long half-lives, into space using the space shuttle/tug as the launch system, appears feasible from the engineering and safety viewpoints. The space transportation costs for ejecting the actinides out of the solar system would represent less than a 5-percent increase in the average consumer's electric bill.

  5. Comparative analyses of spent nuclear fuel transport modal options: Transport options under existing site constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.

    1989-08-01

    The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.

  6. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less

  7. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic

  8. Temporal evolution of the environmental performance of implementing selective collection in municipal waste management systems in developing countries: A Brazilian case study.

    PubMed

    Ibáñez-Forés, Valeria; Bovea, María D; Coutinho-Nóbrega, Claudia; de Medeiros-García, Hozana R; Barreto-Lins, Raissa

    2018-02-01

    The aim of this study is to analyse the evolution of the municipal solid waste management system of João Pessoa (Brazil), which was one of the Brazilian pioneers cities in implementing door-to-door selective collection programmes, in order to analyse the effect of policy decisions adopted in last decade with regard to selective collection. To do it, this study focuses on analysing the evolution, from 2005 to 2015, of the environmental performance of the municipal solid waste management (MSWM) system implemented in different sorting units with selective collection programmes by applying the Life Cycle Assessment (LCA) methodology and using as a starting point data collected directly from the different stakeholders involved in the MSWM system. This article presents the temporal evolution of environmental indicators measuring the environmental performance of the MSWM system implemented in João Pessoa by sorting unit, for each stage of the life cycle of the waste (collection, classification, intermediate transports, recycling and landfilling), for each waste fraction and for each collection method (selective collection or mixed collection), with the aim of identifying the key aspects with the greatest environmental impact and their causes. Results show on one hand, that environmental behaviour of waste management in a door-to-door selective collection programme significantly improves the behaviour of the overall waste management system. Consequently, the potential to reduce the existing environmental impact based on citizens' increased participation in selective collection is evidenced, so the implementation of awareness-raising campaigns should be one of the main issues of the next policies on solid waste. On the other hand, increasing the amount of recyclable wastes collected selectively, implementing alternative methods for valorising the organic fraction (compost/biomethanization) and improving the efficiency of the transportation stage by means of optimizing

  9. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    PubMed

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  10. Greenhouse Gas Emission Reduction Due to Improvement of Biodegradable Waste Management System

    NASA Astrophysics Data System (ADS)

    Bendere, R.; Teibe, I.; Arina, D.; Lapsa, J.

    2014-12-01

    To reduce emissions of greenhouse gas (GHG) from landfills, the European Union (EU) Landfill Directive 1999/31/EC requires that there be a progressive decrease in the municipal biodegradable waste disposal. The main problem of waste management (WM) in Latvia is its heavy dependence on the waste disposal at landfills. The poorly developed system for the sorted municipal waste collection and the promotion of landfilling as a major treatment option led to the disposal of 84% of the total collected municipal waste in 2012, with a high biodegradable fraction. In Latvia, the volume of emissions due to activities of the WM branch was 5.23% (632.6 CO2 eq.) of the total GHG emissions produced in the National economy in 2010 (12 097 Gg CO2 eq., except the land use, land-use change and forestry). Having revised the current situation in the management of biodegradable waste in Latvia, the authors propose improvements in this area. In the work, analysis of environmental impact was carried out using Waste Management Planning System (WAMPS) software in the WM modelling scenarios. The software computes the emissions, energy and turnover of waste streams for the processes within the WM system such as waste collection and transportation, composting, anaerobic digestion, and the final disposal (landfilling or incineration). The results of WAMPS modelling are presented in four categories associated with the environmental impact: acidification, global warming, eutrophication and photo-oxidant formation, each characterised by a particular emission. These categories cover an integrated WM system, starting with the point when products turn to waste which is then thrown into the bin for waste at its generation source, and ending with the point where the waste transforms either into useful material (recycled material, biogas or compost) or contributes to emissions into environment after the final disposal at a landfill or an incineration plant Rakstā veikts pašvaldības bioloģiski no

  11. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...

  12. Comparison of waste combustion and waste electrolysis - A systems analysis

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.

    1989-01-01

    A steady state model of a closed environmental system has been developed which includes higher plant growth for food production, and is designed to allow wastes to be combusted or electrolyzed. The stoichiometric equations have been developed to evaluate various trash compositions, food items (both stored and produced), metabolic rates, and crew sizes. The advantages of waste electrolysis versus combustion are: (1) oxygen is not required (which reduces the load on the oxygen producing system); (2) the CO2 and H2 products are produced in pure form (reducing the load on the separators); and (3) nitrogen is converted to nitrate (which is directly usable by plants). Weight tradeoff studies performed using this model have shown that waste electrolysis reduces the life support weight of a 4-person crew by 1000 to 2000 kg.

  13. Risk-informed radioactive waste classification and reclassification.

    PubMed

    Croff, Allen G

    2006-11-01

    Radioactive waste classification systems have been developed to allow wastes having similar hazards to be grouped for purposes of storage, treatment, packaging, transportation, and/or disposal. As recommended in the National Council on Radiation Protection and Measurements' Report No. 139, Risk-Based Classification of Radioactive and Hazardous Chemical Wastes, a preferred classification system would be based primarily on the health risks to the public that arise from waste disposal and secondarily on other attributes such as the near-term practicalities of managing a waste, i.e., the waste classification system would be risk informed. The current U.S. radioactive waste classification system is not risk informed because key definitions--especially that of high-level waste--are based on the source of the waste instead of its inherent characteristics related to risk. A second important reason for concluding the existing U.S. radioactive waste classification system is not risk informed is there are no general principles or provisions for exempting materials from being classified as radioactive waste which would then allow management without regard to its radioactivity. This paper elaborates the current system for classifying and reclassifying radioactive wastes in the United States, analyzes the extent to which the system is risk informed and the ramifications of its not being so, and provides observations on potential future direction of efforts to address shortcomings in the U.S. radioactive waste classification system as of 2004.

  14. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used to...

  15. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  16. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    NASA Astrophysics Data System (ADS)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  17. Payload transportation system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A standard size set of shuttle payload transportation equipment was defined that will substantially reduce the cost of payload transportation and accommodate a wide range of payloads with minimum impact on payload design. The system was designed to accommodate payload shipments between the level 4 payload integration sites and the launch site during the calendar years 1979-1982. In addition to defining transportation multi-use mission support equipment (T-MMSE) the mode of travel, prime movers, and ancillary equipment required in the transportation process were also considered. Consistent with the STS goals of low cost and the use of standardized interfaces, the transportation system was designed to commercial grade standards and uses the payload flight mounting interfaces for transportation. The technical, cost, and programmatic data required to permit selection of a baseline system of MMSE for intersite movement of shuttle payloads were developed.

  18. Evaluation of recycling programmes in household waste collection systems.

    PubMed

    Dahlén, Lisa; Lagerkvist, Anders

    2010-07-01

    A case study and a literature review have been carried out to address the two questions: how can waste flow data from collection systems be interpreted and compared? and which factors are decisive in the results of recycling programmes in household waste collection systems? The aim is to contribute to the understanding of how recycling programmes affect the quantity of waste and sorting activities. It is shown how the results from various waste sorting systems can be interpreted and made comparable. A set of waste flow indicators is proposed, which together with generic system descriptions can facilitate comparisons of different collections systems. The evaluation of collection systems depends on the system boundaries and will always be site-specific to some degree. Various factors are relevant, e.g. environmental objectives, technical function, operating costs, types of recyclable materials collected separately, property-close collection or drop-off systems, economic incentives, information strategies, residential structure, social codes, etc. Kerbside collection of recyclables and weight-based billing led to increased waste sorting activities in the case study. Forty-three decisive factors are listed and discussed.

  19. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...

  20. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  1. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  2. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    PubMed

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  3. Waste Handeling Building Conceptual Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less

  4. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  5. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  6. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  7. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  8. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  9. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    PubMed

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  10. Development of a Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    A concept for a Universal Waste Management System (UWMS) has been developed based on the knowledge gained from over 50 years of space travel. It is being designed for Commercial Orbital Transportation Services (COTS) and Multi ]Purpose Crew Vehicle (MPCV) and is based upon the Extended Duration Orbiter (EDO) commode. The UMWS was modified to enhance crew interface and reduce volume and cost. The UWMS will stow waste in fecal canisters, similar to the EDO, and urine will be stowed in bags for in orbit change out. This allows the pretreated urine to be subsequently processed and recovered as drinking water. The new design combines two fans and a rotary phase separator on a common shaft to allow operation by a single motor. This change enhances packaging by reducing the volume associated with an extra motor, associated controller, harness, and supporting structure. The separator pumps urine to either a dual bag design for COTS vehicles or directly into a water reclamation system. The commode is supported by a concentric frame, enhancing its structural integrity while further reducing the volume from the previous design. The UWMS flight concept development effort is underway and an early output of the development will be a ground based UMWS prototype for manned testing. Referred to as the Gen 3 unit, this prototype will emulate the crew interface included in the UWMS and will offer a great deal of knowledge regarding the usability of the new design, allowing the design team the opportunity to modify the UWMS flight concept based on the manned testing.

  11. Lunar transportation system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  12. Lunar transportation system

    NASA Astrophysics Data System (ADS)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  13. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be theirmore » ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.« less

  14. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespreadmore » availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.« less

  15. Stormwater run-off and pollutant transport related to the activities carried out in a modern waste management park.

    PubMed

    Marques, M; Hogland, W

    2001-02-01

    Stormwater run-off from twelve different areas and roads has been characterized in a modern waste disposal site, where several waste management activities are carried out. Using nonparametric statistics, medians and confidence intervals of the medians, 22 stormwater quality parameters were calculated. Suspended solids, chemical oxygen demand, biochemical oxygen demand, total nitrogen and total phosphorus, as well as run-off from several areas, showed measured values above standard limits for discharge into recipient waters--even higher than those of leachate from covered landfill cells. Of the heavy metals analyzed, copper, zinc and nickel were the most prevalent, being detected in every sample. Higher concentrations of metals such as zinc, nickel, cobalt, iron and cadmium were found in run-off from composting areas, compared to areas containing stored and exposed scrap metal. This suggests that factors other than the total amount of exposed material affect the concentration of metals in run-off, such as binding to organic compounds and hydrological transport efficiency. The pollutants transported by stormwater represent a significant environmental threat, comparable to leachate. Careful design, monitoring and maintenance of stormwater run-off drainage systems and infiltration elements are needed if infiltration is to be used as an on-site treatment strategy.

  16. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release tomore » the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.« less

  17. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    PubMed

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  18. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  19. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...-R05-RCRA-2010-0843; SW-FRL-9221-2] Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... hazardous wastes. The Agency has tentatively decided to grant the petition based on an evaluation of waste...

  20. System for Odorless Disposal of Human Waste

    NASA Technical Reports Server (NTRS)

    Jennings, Dave; Lewis, Tod

    1987-01-01

    Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.

  1. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    2000-01-01

    Intelligent Transportation Systems (ITS), formerly Intelligent Vehicle-Highway Systems (IVHS), provide the technology applications helping the nation address current surface transportation problems while concurrently providing approaches for dealing ...

  2. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    1999-01-01

    Intelligent Transportation Systems (ITS), formerly Intelligent Vehicle-Highway Systems (IVHS), provide the technology applications helping the nation address current surface transportation problems and while concurrently providing approaches for deal...

  3. Long-term Effects of Organic Waste Fertilizers on Soil Structure, Tracer Transport, and Leaching of Colloids.

    PubMed

    Lekfeldt, Jonas Duus Stevens; Kjaergaard, Charlotte; Magid, Jakob

    2017-07-01

    Organic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores. Total porosity was positively correlated with SOC content. Yearly applications of sewage sludge increased absolute microporosity (pores <30 μm) and decreased relative macroporosity (pores >30 μm) compared with the unfertilized control, whereas organic household waste compost fertilization increased both total porosity and the absolute porosity in all pore size classes (though not significant for 100-600 μm). Treatments receiving large amounts of organic fertilizers exhibited significantly lower levels of dispersible colloids compared with an unfertilized control and a treatment that had received moderate applications of cattle slurry. The content of water-dispersible colloids could not be explained by a single factor, but differences in SOC content, electrical conductivity, and sodium adsorption ratio were important factors. Moreover, we found that the fertilizer treatments did not significantly affect the solute transport properties of the topsoil. Finally, we found that the leaching of soil colloids was significantly decreased in treatments that had received large amounts of organic waste fertilizers, and we ascribe this primarily to treatment-induced differences in effluent electrical conductivity during leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 2. Waste Glass.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWD) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  5. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation). Final Report. Volume 3. Waste Tires.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  6. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    1998-01-01

    Intelligent Transportation Systems (ITS), formerly Intelligent Vehicle-Highway Systems (IVHS), provide the tools to help us address current surface transportation problems, as well as anticipate and address future demands through an intermodal, strat...

  7. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  8. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  9. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  10. Environmental Compliance Assessment System (ECAS)

    DTIC Science & Technology

    1993-09-01

    hazardous waste onsite? How and where? 8. Do satellite/offpost facilitiesminstallations (i.e., USARCs) transport hazardous wastes to the installation...Contractor ? In-house personnel_ ? 3. Is waste transported off-installation for disposal: a. In landfills? b. In incinerators? c. Transfer stations? d...Does the installation dispose of PCBs or PCB items at the installation? 4. Does the facility transport PCBs? 5. Is there a working management system

  11. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  12. Space Transportation Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

    2001-01-01

    This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

  13. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system.

    PubMed

    Punkkinen, Henna; Merta, Elina; Teerioja, Nea; Moliis, Katja; Kuvaja, Eveliina

    2012-10-01

    Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO(2) and NO(x). The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Next generation: In-space transportation system(s)

    NASA Technical Reports Server (NTRS)

    Huffaker, Fredrick; Redus, Jerry; Kelley, David L.

    1991-01-01

    The development of the next generation In-Space Transportation System presents a unique challenge to the design of a propulsion system for the Space Exploration Initiative (SEI). Never before have the requirements for long-life, multiple mission use, space basing, high reliability, man-rating, and minimum maintenance come together with performance in one system that must protect the lives of space travelers, support the mission logistics needs, and do so at an acceptable cost. The challenge that is presented is to quantify the bounds of these requirements. The issue is one of degree. The length of acceptable life in space, the time it takes for reuse to pay off, and the degree to which space basing is practical (full, partial, or expended) are the issues that determine the reusable bounds of a design and include dependability, contingency capabilities, resilency, and minimum dependence on a maintenance node in preparation for and during a mission. Missions to planet earth, other non-NASA missions, and planetary missions will provide important but less demanding requirements for the transportation systems of the future. The mission proposed for the SEI require a family of transportation vehicles to meet the requirements for establishing a permanent human presence on the Moon and eventually on Mars. Specialized vehicles are needed to accomplish the different phases of each mission. These large scale missions require assembly in space and will provide the greatest usage of the planned integrated transportation system. The current approach to defining the In-Space Transportation System for the SEI Moon missions with later Mars mission applications is presented. Several system development options, propulsion concepts, current/proposed activities are reviewed, and key propulsion design criteria, issues, and technology challenges for the next generation In-Space Transportation System(s) are outlined.

  15. Health-care waste management in India.

    PubMed

    Patil, A D; Shekdar, A V

    2001-10-01

    Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes.

  16. [Management of hazardous waste in a hospital].

    PubMed

    Neveu C, Alejandra; Matus C, Patricia

    2007-07-01

    An inadequate management of hospital waste, that have toxic, infectious and chemical wastes, is a risk factor for humans and environment. To identify, quantify and assess the risk associated to the management of hospital residues. A cross sectional assessment of the generation of hazardous waste from a hospital, between June and August 2005, was performed. The environmental risk associated to the management of non-radioactive hospital waste was assessed and the main problems related to solid waste were identified. The rate of generation of hazardous non-radioactive waste was 1.35 tons per months or 0.7 kg/bed/day. Twenty five percent of hazardous liquid waste were drained directly to the sewage system. The drug preparation unit of the pharmacy had the higher environmental risk associated to the generation of hazardous waste. The internal transport of hazardous waste had a high risk due to the lack of trip planning. The lack of training of personnel dealing with these waste was another risk factor. Considering that an adequate management of hospital waste should minimize risks for patients, the hospital that was evaluated lacks an integral management system for its waste.

  17. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  18. Design for waste-management system

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R.

    1973-01-01

    Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.

  19. Trash track--active location sensing for evaluating e-waste transportation.

    PubMed

    Offenhuber, Dietmar; Wolf, Malima I; Ratti, Carlo

    2013-02-01

    Waste and recycling systems are complex and far-reaching, but its mechanisms are poorly understood by the public, in some cases government organizations and even the waste management sector itself. The lack of empirical data makes it challenging to assess the environmental impact of trash collection, removal and disposal. This is especially the case for the global movement of electronic wastes. Senseable City Lab's Trash Track project tackles this scarcity of data by following the trajectories of individual objects. The project presents a methodology involving active location sensors that were placed on end-of-life products donated by volunteers in the Seattle, Washington area. These tags sent location messages chronicling their journey, some over the course of a month or more. In this paper, the authors focus on the analysis of traces acquired from 146 items of electronic waste, estimating evaluating the environmental impact, including the travel distances and end-of-life treatments for the products. Combining this information with impact evaluation from the US Environmental Protection Agency's Waste Reduction Model (WARM) allows for the creation of environmental impact profiles for individual pieces of trash.

  20. Analysis of space systems study for the space disposal of nuclear waste study report. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.

  1. Transportation Management Workshop: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  2. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 1. Municipal Waste Combustor Ash.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evlauate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  3. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Airport transportation systems. 37.33 Section 37... WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a) Transportation systems operated by public airport operators, which provide designated public transportation and connect...

  4. Support for designing waste sorting systems: A mini review.

    PubMed

    Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa

    2017-11-01

    This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.

  5. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a) Transportation...

  6. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a) Transportation...

  7. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a) Transportation...

  8. Advanced rural transportation systems (ARTS) : rural intelligent transportation systems (ITS) : program plan

    DOT National Transportation Integrated Search

    1996-08-01

    This Program Plan for the Advanced Rural Transportation Systems (ARTS) implements the goals and objectives established in the U.S. Department of Transportations (USDOTs) Strategic Plan for the ARTS. This Program Plan proposes five years (FY 97...

  9. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  10. Feasibility of Space Disposal of Radioactive Nuclear Waste. 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This NASA study, performed at the request of the AEC, concludes that transporting radioactive waste (primarily long-lived isotopes) into space is feasible. Tentative solutions are presented for technical problems involving safe packaging. Launch systems (existing and planned), trajectories, potential hazards, and various destinations were evaluated. Solar system escape is possible and would have the advantage of ultimate removal of the radioactive waste from man's environment. Transportation costs would be low (comparable to less than a 5 percent increase in the cost of electricity) even though more than 100 space shuttle launches per year would be required by the year 2000.

  11. Active waste-injection systems in Florida, 1976

    USGS Publications Warehouse

    Vecchioli, John; McKenzie, D.J.; Pascale, C.A.; Wilson, W.E.

    1979-01-01

    As of the end of 1976, seven systems were injecting liquid wastes into Florida 's subsurface environment at a combined average rate of 15 million gallons per day. This report presents for each of these systems information on the kind and amount of waste injected and type of pretreatment, construction characteristics of the injection and monitor wells, type of test and monitoring data available, and brief discussion of any operational problems experienced. (Kosco-USGS)

  12. Transportation Systems Evaluation

    NASA Technical Reports Server (NTRS)

    Fanning, M. L.; Michelson, R. A.

    1972-01-01

    A methodology for the analysis of transportation systems consisting of five major interacting elements is reported. The analysis begins with the causes of travel demand: geographic, economic, and demographic characteristics as well as attitudes toward travel. Through the analysis, the interaction of these factors with the physical and economic characteristics of the transportation system is determined. The result is an evaluation of the system from the point of view of both passenger and operator. The methodology is applicable to the intraurban transit systems as well as major airlines. Applications of the technique to analysis of a PRT system and a study of intraurban air travel are given. In the discussion several unique models or techniques are mentioned: i.e., passenger preference modeling, an integrated intraurban transit model, and a series of models to perform airline analysis.

  13. The impact of changes in the rheological parameters of fine-grained hydromixtures on the efficiency of a selected industrial gravitational hydraulic transport system

    NASA Astrophysics Data System (ADS)

    Popczyk, Marcin

    2017-11-01

    Polish hard coal mines commonly use hydromixtures in their fire prevention practices. The mixtures are usually prepared based on mass-produced power production wastes, namely the ashes resulting from power production [1]. Such hydromixtures are introduced to the caving area which is formed due to the advancement of a longwall. The first part of the article presents theoretical fundamentals of determining the parameters of gravitational hydraulic transport of water and ash hydromixtures used in the mining pipeline systems. Each hydromixture produced based on fine-grained wastes is characterized by specified rheological parameters that have a direct impact on the future flow parameters of a given pipeline system. Additionally, the gravitational character of the hydraulic transport generates certain limitations concerning the so-called correct hydraulic profile of the system in relation to the applied hydromixture characterized by required rheological parameters that should ensure safe flow at a correct efficiency [2]. The paper includes an example of a gravitational hydraulic transport system and an assessment of the correctness of its hydraulic profile as well as the assessment of the impact of rheological parameters of fine-grained hydromixtures (water and ash) produced based on laboratory tests, depending on the specified flow parameters (efficiency) of the hydromixture in the analyzed system.

  14. Waste in the U.S. Health Care System: A Conceptual Framework

    PubMed Central

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-01-01

    Context Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. Methods This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Findings Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Conclusions Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that—by improving the market for health insurance and health care—will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system. PMID:19120983

  15. Waste in the U.S. Health care system: a conceptual framework.

    PubMed

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-12-01

    Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that-by improving the market for health insurance and health care-will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system.

  16. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  17. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    PubMed

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-11-01

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  19. Investigating the effect of compression on solute transport through degrading municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.

    2014-11-15

    Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to themore » presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.« less

  20. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  1. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  2. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusionmore » coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport

  3. Survivability of intelligent transportation systems

    DOT National Transportation Integrated Search

    1999-10-01

    Intelligent Transportation Systems (ITS) are being deployed around the world to improve the safety and efficiency of surface transportation through the application of advanced information technology. The introduction of ITS exposes the transportation...

  4. Packaging waste prevention activities: A life cycle assessment of the effects on a regional waste management system.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2015-09-01

    A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories. © The Author(s) 2015.

  5. Design, implementation, and evaluation of an Internet of Things (IoT) network system for restaurant food waste management.

    PubMed

    Wen, Zongguo; Hu, Shuhan; De Clercq, Djavan; Beck, M Bruce; Zhang, Hua; Zhang, Huanan; Fei, Fan; Liu, Jianguo

    2018-03-01

    Catering companies around the world generate tremendous amounts of waste; those in China are no exception. The paper discusses the design, implementation, and evaluation of a sensor-based Internet of Things (IoT) network technology for improving the management of restaurant food waste (RFW) in the city of Suzhou, China. This IoT-based system encompasses the generation, collection, transportation and final disposal of RFW. The Suzhou case study comprised four steps: (1) examination of the required functionality of an IoT-enabled system in the specific context of Suzhou; (2) configuration of the system architecture, both software and hardware components, according to the identified functionality; (3) installation of the components of the IoT system at the facilities of the stakeholders across the RFW generation-collection-transportation-disposal value chain; and (4) evaluation of the performance of the entire system, based on data from three years of operation. The results show that the system had a strong impact. Positive results include: (1) better management of RFW generation, as evidenced by a 20.5% increase in RFW collected via official channels and a 207% increase in the number of RFW generators under official contract; (2) better law enforcement in response to RFW malpractice, enabled by the monitoring capabilities of the IoT system; and (3) an overall reduction in illicit RFW activities and better process optimization across the RFW value chain. Negative results include: (1) Radio-frequency identification (RFID) tags need to be renewed often due to the frequent handling of waste bins, thus increasing operating costs; (2) dynamic/automatic weight sensors had a higher degree of error than the more time-consuming static/manual weighing method; and (3) there were disagreements between the city's government agencies about how to interpret data from the IoT system, which led to some inefficiencies in management. In sum, the Suzhou IoT system enabled data

  6. Source separation of household waste: a case study in China.

    PubMed

    Zhuang, Ying; Wu, Song-Wei; Wang, Yun-Long; Wu, Wei-Xiang; Chen, Ying-Xu

    2008-01-01

    A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference.

  7. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  8. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  9. A National MagLev Transportation System

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  10. Characteristics of urban transportation systems. A handbook for transportation planners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-05-01

    The objective of the handbook, specifically for use by transportation planners in the evaluation of alternative systems, is to provide a single simplified reference source which characterizes the most important performance characteristics of the following contemporary urban transportation systems: (1) rail (commuter, rapid, and light); (2) local bus and bus rapid transit; (3) automobile-highway system (automobiles and other vehicles); (4) pedestrian assistance systems; and (5) activity center systems--people mover systems that have been installed at airports, zoos, amusement parks, etc. The handbook assesses the supply or performance aspect of urban transportation dealing with passenger demand implicitly. Seven supply parameters studiedmore » are: speed, capacity (service volume), operating cost (vehicle), energy consumption (vehicle or source), pollution, capital cost, and accident frequency.« less

  11. Use of theoretical waste inventories in planning and monitoring of hazardous waste management systems.

    PubMed

    Yilmaz, Ozge; Can, Zehra S; Toroz, Ismail; Dogan, Ozgur; Oncel, Salim; Alp, Emre; Dilek, Filiz B; Karanfil, Tanju; Yetis, Ulku

    2014-08-01

    Hazardous waste (HW) generation information is an absolute necessity for ensuring the proper planning, implementation, and monitoring of any waste management system. Unfortunately, environmental agencies in developing countries face difficulties in gathering data directly from the creators of such wastes. It is possible, however, to construct theoretical HW inventories using the waste generation factors (WGFs). The objective of this study was to develop a complete nationwide HW inventory of Turkey that relies on nation-specific WGFs to support management activities of the Turkish Ministry of Environment and Urbanization (MoEU). Inventory studies relied on WGFs from: (a) the literature and (b) field studies and analysis of waste declarations reflecting country-specific industrial practices. Moreover, new tools were introduced to the monitoring infrastructure of MoEU to obtain a comprehensive waste generation data set. Through field studies and a consideration of country specific conditions, it was possible to more thoroughly elucidate HW generation trends in Turkey, a method that was deemed superior to other alternatives. Declaration and literature based WGFs also proved most helpful in supplementing field observations that could not always be conducted. It was determined that these theoretical inventories could become valuable assets in supporting regulating agencies in developing countries for a more thorough implementation of HW management systems. © The Author(s) 2014.

  12. The cost of hybrid waste water systems: A systematic framework for specifying minimum cost-connection rates.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-10-15

    To determine the optimal connection rate (CR) for regional waste water treatment is a challenge that has recently gained the attention of academia and professional circles throughout the world. We contribute to this debate by proposing a framework for a total cost assessment of sanitation infrastructures in a given region for the whole range of possible CRs. The total costs comprise the treatment and transportation costs of centralised and on-site waste water management systems relative to specific CRs. We can then identify optimal CRs that either deliver waste water services at the lowest overall regional cost, or alternatively, CRs that result from households freely choosing whether they want to connect or not. We apply the framework to a Swiss region, derive a typology for regional cost curves and discuss whether and by how much the empirically observed CRs differ from the two optimal ones. Both optimal CRs may be reached by introducing specific regulatory incentive structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Marshall Space Flight Center solid waste characterization and recycling improvement study

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.

  14. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  15. Interpretation of leaching data for cementitious waste forms using analytical solutions based on mass transport theory and empiricism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, R.D.; Godbee, H.W.; Tallent, O.K.

    1989-01-01

    The analysis of leaching data using analytical solutions based on mass transport theory and empiricism is presented. The waste forms leached to generate the data used in this analysis were prepared with a simulated radioactive waste slurry with traces of potassium ion, manganese ions, carbonate ions, phosphate ions, and sulfate ions solidified with several blends of cementitious materials. Diffusion coefficients were estimated from the results of ANS - 16.1 tests. Data of fraction leached versus time is presented and discussed.

  16. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  17. Transportation infrastructure : states' implementation of transportation management systems

    DOT National Transportation Integrated Search

    1997-01-13

    This report focuses on the U.S. General Accounting Office's ISTEA update of the states' implementation of pavement management systems, bridges, highway safety, congestion management systems, public transportation, and intermodal management systems. A...

  18. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less

  19. An expert system for municipal solid waste management simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M.C.; Chang, N.B.

    1996-12-31

    Optimization techniques were usually used to model the complicated metropolitan solid waste management system to search for the best dynamic combination of waste recycling, facility siting, and system operation, where sophisticated and well-defined interrelationship are required in the modeling process. But this paper applied the Concurrent Object-Oriented Simulation (COOS), a new simulation software construction method, to bridge the gap between the physical system and its computer representation. The case study of Kaohsiung solid waste management system in Taiwan is prepared for the illustration of the analytical methodology of COOS and its implementation in the creation of an expert system.

  20. An improved waste collection system for space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry

    1986-01-01

    Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.

  1. 77 FR 34194 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 [NRC-1999-0005] Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending...

  2. Challenges and opportunities associated with waste management in India

    PubMed Central

    Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh

    2017-01-01

    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362

  3. Hospital waste management in El-Beheira Governorate, Egypt.

    PubMed

    Abd El-Salam, Magda Magdy

    2010-01-01

    This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and

  4. Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS)

    NASA Astrophysics Data System (ADS)

    Zainun, Noor Yasmin; Rahman, Ismail Abdul; Azwana Rothman, Rosfazreen

    2016-11-01

    Illegal dumping of solid waste not only affecting the environment but also social life of communities, hence authorities should have an effective system to cater this problem. Malaysia is experiencing extensive physical developments and this has led to an increase of construction waste illegal dumping. However, due to the lack of proper data collection, the actual figure for construction waste illegal dumping in Malaysia are not available. This paper presents a mapping of construction waste illegal dumping in Kluang district, Johor using Geographic Information System (GIS) software. Information of the dumped waste such as coordinate, photos, types of material and quantity of waste were gathered manually through site observation for three months period. For quantifying the dumped waste, two methods were used which are the first method is based on shape of the waste (pyramids or squares) while the second method is based weighing approach. All information regarding the waste was assigned to the GIS for the mapping process. Results indicated a total of 12 types of construction waste which are concrete, tiles, wood, gypsum board, mixed construction waste, brick and concrete, bricks, sand, iron, glass, pavement and tiles, and concrete at 64 points locations of illegal dumping on construction waste in Kluang. These wastes were accounted to an estimated volume of 427.2636 m3. Hopefully, this established map will assist Kluang authority to improve their solid waste management system in Kluang.

  5. A BIM-based system for demolition and renovation waste estimation and planning.

    PubMed

    Cheng, Jack C P; Ma, Lauren Y H

    2013-06-01

    Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry

  6. Bicycle Transportation and Pedestrian Walkways System

    DOT National Transportation Integrated Search

    1996-10-28

    The idea for this Trans-Atlantic workshop on system architecture for Intelligent Transport Systems (ITS) was born at the Second World Congress on Intelligent Transport Systems, November 1995. In my discussions with those closely involved with the USA...

  7. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less

  8. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false University transportation systems. 37.25 Section... INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems. (a) Transportation services operated by private institutions of higher education are subject to the provisions of...

  9. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false University transportation systems. 37.25 Section... INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems. (a) Transportation services operated by private institutions of higher education are subject to the provisions of...

  10. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false University transportation systems. 37.25 Section... INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems. (a) Transportation services operated by private institutions of higher education are subject to the provisions of...

  11. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false University transportation systems. 37.25 Section... INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems. (a) Transportation services operated by private institutions of higher education are subject to the provisions of...

  12. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false University transportation systems. 37.25 Section... INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems. (a) Transportation services operated by private institutions of higher education are subject to the provisions of...

  13. Outcome of 7-S, TQM technique for healthcare waste management.

    PubMed

    Ullah, Junaid Habib; Ahmed, Rashid; Malik, Javed Iqbal; Khan, M Amanullah

    2011-12-01

    To assess the present waste management system of healthcare facilities (HCFs) attached with Shalamar Hospital, Lahore by applying the 7-S technique of Total Quality Management (TQM) and to find out the outcome after imparting training. Interventional quasi-experimental study. The Shalamar Hospital, Lahore, Punjab, Pakistan, November, 2009 to November, 2010. Mckinsey's 7-S, technique of TQM was applied to assess the 220 HCFs from Lahore, Gujranwala and Sheikhupura districts for segregation, collection, transportation and disposal (SCTD) of hospital waste. Direct interview method was applied. Trainings were provided in each institution. After one year action period, the status of four areas of concern was compared before and after training. The parameters studied were segregation, collection, transportation and disposal systems in the 220 HCFs. Each of these were further elaborated by strategy, structure, system, staff, skill, style and stakeholder/shared value factors. Standard error of difference of proportion was applied to assess significance using 95% confidence level. There was marked improvement in all these areas ranging from 20% to 77% following a training program of 3 months. In case of disposal of the waste strategy, structure and system an increase of 60%, 65% and 75% was observed after training. The 7-S technique played a vital role in assessing the hospital waste management system. Training for the healthcare workers played a significant role in healthcare facilities.

  14. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... systems operated by public airport operators, which provide designated public transportation and connect.... Public airports which operate fixed route transportation systems are subject to the requirements of this... part. (b) Fixed-route transportation systems operated by public airport operators between the airport...

  15. The influence of institutions and organizations on urban waste collection systems: an analysis of waste collection system in Accra, Ghana (1985-2000).

    PubMed

    Fobil, Julius N; Armah, Nathaniel A; Hogarh, Jonathan N; Carboo, Derick

    2008-01-01

    Urban waste collection system is a pivotal component of all waste management schemes around the world. Therefore, the efficient performance and the success of these schemes in urban pollution control rest on the ability of the collection systems to fully adapt to the prevailing cultural and social contexts within which they operate. Conceptually, institutions being the rules guiding the conduct of public service provision and routine social interactions, waste collection systems embedded in institutions can only realize their potentials if they fully evolve continuously to reflect evolving social and technical matrices underlying the cultures, organizations, institutions and social conditions they are designed to address. This paper is a product of an analysis of waste collection performance in Ghana under two different institutional and/or organizational regimes; from an initial entirely public sector dependence to a current mix of public-private sector participation drawing on actual planning data from 1985 to 2000. The analysis found that the overall performance of waste collection services in Ghana increased under the coupled system, with efficiency (in terms of total waste clearance and coverage of service provision) increasing rapidly with increased private-sector controls and levels of involvement, e.g. for solid waste, collection rate and disposal improved from 51% in 1998 to about 91% in the year 2000. However, such an increase in performance could not be sustained beyond 10 years of public-private partnerships. This analysis argues that the sustainability of improved waste collection efficiency is a function of the franchise and lease arrangements between private sector group on the one hand and public sector group (local authorities) on the other hand. The analysis therefore concludes that if such franchise and lease arrangements are not conceived out of an initial transparent process, such a provision could undermine the overall sustainability of

  16. Safety aspects of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  17. Waste management as an effort to improve urban area cleanliness and community income (journal review)

    NASA Astrophysics Data System (ADS)

    Kinantan, Bag; Rahim Matondang, A.; Hidayati, Juliza

    2018-02-01

    The problem of urban waste has reached a point of concern. Population and economic growth are thought to be the cause of increasing the waste generation. The major problem related to this condition is the increasing of waste production which is not balance with the increase of its management capacity. Based on the Law Number 18 of 2008 that waste management starts from the source by applying the 3R approach (Reduction, Reuse, Recycle). This regulation provides a way which expect the waste management can be better, so that, the level of waste service can be improved and load on landfills (TPA) can be reduced.The cost of garbage collection and transport are 85% of the total waste management cost, so if this is optimized, it will optimize the system as a whole. Subsequent research focuses on how to optimize the garbage collection and transport sub-systems by finding the shortest route of transportation to the landfill by developing a Vehicle Routing Problem (VRP) model. The development of an urban area leads to the preparation of the best route is no longer an optimal solution. The complexity of the waste problem is not only related to the technical matters, but also the social and economic problems of the community. So, it is necessary to develop a model of waste management which does not only pay attention to the technical aspects, but also the social and economic. Waste is expected to be no longer a burden, but can also be utilized economically to increase community income.

  18. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  19. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-01-10

    Describes the hardware and software for the AZ-101 Mixer Pump Data Acquisition System. The purpose of the tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste (NCAW), and eventual disposal as glass via the Hanford Waste Vitrification Plant.

  20. A prototype knowledge-based decision support system for industrial waste management. Part 1: The decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, C.A.; Baetz, B.W.

    1998-12-31

    Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less

  1. Catalog of selected heavy duty transport energy management models

    NASA Technical Reports Server (NTRS)

    Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.

    1983-01-01

    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.

  2. Nuclear energy waste-space transportation and removal

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  3. A multi-objective approach to solid waste management.

    PubMed

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  4. A multi-objective approach to solid waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galante, Giacomo, E-mail: galante@dtpm.unipa.i; Aiello, Giuseppe; Enea, Mario

    2010-08-15

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached inmore » a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).« less

  5. A Segway RMP-based robotic transport system

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia

    2004-12-01

    In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.

  6. Tank-connected food waste disposer systems--current status and potential improvements.

    PubMed

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Sensor Technologies for Intelligent Transportation Systems

    PubMed Central

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  8. Sensor Technologies for Intelligent Transportation Systems.

    PubMed

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  9. Intelligent Transportation Systems Early Deployment Planning Study

    DOT National Transportation Integrated Search

    1996-06-01

    INTELLIGENT TRANSPORTATION SYSTEMS (ITS) REFER TO INNOVATIVE APPROACHES TO SOLVING TRANSPORTATION PROBLEMS AND PROVIDING SERVICES TO TRAVELERS. ITS SOLUTIONS ARE TYPICALLY BASED ON A USER'S VIEW OF THE TRANSPORTATION SYSTEM, AND RELY ON PARTNERSHIPS ...

  10. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  11. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  12. Lifecycle assessment of a system for food waste disposers to tank - A full-scale system evaluation.

    PubMed

    Bernstad Saraiva, A; Davidsson, Å; Bissmont, M

    2016-08-01

    An increased interest for separate collection of household food waste in Sweden has led to development of a number of different collection-systems - each with their particular benefits and drawbacks. In the present study, two systems for collection of food waste in households were compared; (a) use of food waste disposers (FWD) in kitchen sinks and (b) collection of food waste in paper bags for further treatment. The comparison was made in relation to greenhouse gas emissions as well as primary energy utilization. In both cases, collected food waste was treated through anaerobic digestion and digestate was used as fertilizer on farmland. Systems emissions of greenhouse gases from collection and treatment of 1ton of food waste (dry matter), are according to the performed assessment lower from the FWD-system compared to the reference system (-990 and -770kgCO2-eq./ton food waste dry matter respectively). The main reasons are a higher substitution of mineral nitrogen fertilizer followed by a higher substitution of diesel. Performed uncertainty analyses state that results are robust, but that decreasing losses of organic matter in pre-treatment of food waste collected in paper bags, as well as increased losses of organic matter and nutrients from the FWD-system could change the hierarchy in relation to greenhouse gas emissions. Owing to a higher use of electricity in the FWD-system, the paper bag collection system was preferable in relation to primary energy utilization. Due to the many questions still remaining regarding the impacts of an increased amount of nutrients and organic matter to the sewage system through an increased use of FWD, the later treatment of effluent from the FWD-system, as well as treatment of wastewater from kitchen sinks in the reference system, was not included in the assessment. In future work, these aspects would be of relevance to monitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Integrated technologies for solid waste bin monitoring system.

    PubMed

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  14. Overview of waste heat utilization systems

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  15. Environmental and economic benefits of the recovery of materials in a municipal solid waste management system.

    PubMed

    De Feo, Giovanni; Ferrara, Carmen; Finelli, Alessio; Grosso, Alberto

    2017-12-07

    The main aim of this study was to perform a Life cycle assessment study as well as an economic evaluation of the recovery of recyclable materials in a municipal solid waste management system. If citizens separate erroneously waste fractions, they produce both environmental and economic damages. The environmental and economic evaluation was performed for the case study of Nola (34.349 inhabitants) in Southern Italy, with a kerbside system that assured a source separation of 62% in 2014. The economic analysis provided a quantification of the economic benefits obtainable for the population in function of the achievable percentage of source separation. The comparison among the environmental performance of four considered scenarios showed that the higher the level of source separation was, the lower the overall impacts were. This occurred because, even if the impacts of the waste collection and transport increased, they were overcome by the avoided impacts of the recycling processes. Increasing the source separation by 1% could avoid the emission of 5 kg CO 2 eq. and 5 g PM10 for each single citizen. The economic and environmental indicators defined in this study provide simple and effective information useful for a wide-ranging audience in a behavioural change programme perspective.

  16. Development of a waste collection system for the space shuttle.

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Swider, J. E., Jr.

    1972-01-01

    The development of a waste collection system to accommodate both male and female crew members for the space shuttle is discussed. The waste collection system, with emphasis on the collection and transfer of urine, is described. Human-interface requirements, zero-gravity influences and effects, and operational considerations required for total system design are discussed.

  17. Development of a Sediment Transport Component for DHSVM

    NASA Astrophysics Data System (ADS)

    Doten, C. O.; Bowling, L. C.; Maurer, E. P.; Voisin, N.; Lettenmaier, D. P.

    2003-12-01

    The effect of forest management and disturbance on aquatic resources is a problem of considerable, contemporary, scientific and public concern in the West. Sediment generation is one of the factors linking land surface conditions with aquatic systems, with implications for fisheries protection and enhancement. Better predictive techniques that allow assessment of the effects of fire and logging, in particular, on sediment transport could help to provide a more scientific basis for the management of forests in the West. We describe the development of a sediment transport component for the Distributed Hydrology Soil Vegetation Model (DHSVM), a spatially distributed hydrologic model that was developed specifically for assessment of the hydrologic consequences of forest management. The sediment transport module extends the hydrologic dynamics of DHSVM to predict sediment generation in response to dynamic meteorological inputs and hydrologic conditions via mass wasting and surface erosion from forest roads and hillslopes. The mass wasting component builds on existing stochastic slope stability models, by incorporating distributed basin hydrology (from DHSVM), and post-failure, rule-based redistribution of sediment downslope. The stochastic nature of the mass wasting component allows specification of probability distributions that describe the spatial variability of soil and vegetation characteristics used in the infinite slope model. The forest roads and hillslope surface erosion algorithms account for erosion from rain drop impact and overland erosion. A simple routing scheme is used to transport eroded sediment from mass wasting and forest roads surface erosion that reaches the channel system to the basin outlet. A sensitivity analysis of the model input parameters and forest cover conditions is described for the Little Wenatchee River basin in the northeastern Washington Cascades.

  18. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    NASA Astrophysics Data System (ADS)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  19. Life cycle assessment of capital goods in waste management systems.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2016-10-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m(3) collection truck, a composting plant, an anaerobic digestion plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation, Human Health: 2-91%, Photochemical Ozone Formation: 2-56%, Freshwater Eutrophication: 0.05-99%, Marine Eutrophication: 0.03-8%, Terrestrial Acidification: 2-13%, Terrestrial Eutrophication: 1-8%, Particulate Matter: 11-26%, Human Toxicity, Cancer Effect: 10-92%, Human Toxicity, non-Cancer Effect: 1-71%, Freshwater Ecotoxicity: 3-58%. Depletion of Abiotic Resources - Fossil: 1-31% and Depletion of Abiotic Resources - Elements (Reserve base): 74-99%. The single most important contribution by capital goods was made by the high use of steel. Environmental impacts from capital goods are more significant for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  1. PRESTO-II: a low-level waste environmental transport and risk assessment code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, D.E.; Emerson, C.J.; Chester, R.O.

    PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed for the evaluation of possible health effects from shallow-land and, waste-disposal trenches. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion,more » surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach. Data are included for three example sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. A code listing and example input for each of the three sites are included in the appendices to this report.« less

  2. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  3. Waste in health information systems: a systematic review.

    PubMed

    Awang Kalong, Nadia; Yusof, Maryati

    2017-05-08

    Purpose The purpose of this paper is to discuss a systematic review on waste identification related to health information systems (HIS) in Lean transformation. Design/methodology/approach A systematic review was conducted on 19 studies to evaluate Lean transformation and tools used to remove waste related to HIS in clinical settings. Findings Ten waste categories were identified, along with their relationships and applications of Lean tool types related to HIS. Different Lean tools were used at the early and final stages of Lean transformation; the tool selection depended on the waste characteristic. Nine studies reported a positive impact from Lean transformation in improving daily work processes. The selection of Lean tools should be made based on the timing, purpose and characteristics of waste to be removed. Research limitations/implications Overview of waste and its category within HIS and its analysis from socio-technical perspectives enabled the identification of its root cause in a holistic and rigorous manner. Practical implications Understanding waste types, their root cause and review of Lean tools could subsequently lead to the identification of mitigation approach to prevent future error occurrence. Originality/value Specific waste models for HIS settings are yet to be developed. Hence, the identification of the waste categories could guide future implementation of Lean transformations in HIS settings.

  4. Waste Management Using Request-Based Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Katriou, Stamatia Ann; Fragidis, Garyfallos; Ignatiadis, Ioannis; Tolias, Evangelos; Koumpis, Adamantios

    Waste management is on top of the political agenda globally as a high priority environmental issue, with billions spent on it each year. This paper proposes an approach for the disposal, transportation, recycling and reuse of waste. This approach incorporates the notion of Request Based Virtual Organizations (RBVOs) using a Service Oriented Architecture (SOA) and an ontology that serves the definition of waste management requirements. The populated ontology is utilized by a Multi-Agent System which performs negotiations and forms RBVOs. The proposed approach could be used by governments and companies searching for a means to perform such activities in an effective and efficient manner.

  5. A Mars/phobos Transportation System

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A transportation system will be necessary to support construction and operation of bases on Phobos and Mars beginning in the year 2020 or later. An approach to defining a network of vehicles and the types of vehicles which may be used in the system are presented. The network will provide a convenient, integrated means for transporting robotically constructed bases to Phobos and Mars. All the technology needed for the current plan is expected to be available for use at the projected date of cargo departure from the Earth system. The modular design of the transportation system provides easily implemented contingency plans, so that difficulties with any one vehicle will have a minimal effect on the progress of the total mission. The transportation network proposed consists of orbital vehicles and atmospheric entry vehicles. Initially, only orbital vehicles will participate in the robotic construction phase of the Phobos base. The Interplanetary Transfer Vehicle (ITV) will carry the base and construction equipment to Phobos where the Orbital Maneuvering Vehicles (OMV's) will participate in the initial construction of the base. When the Mars base is ready to be sent, one or more ITV's will be used to transport the atmospheric entry vehicles from Earth. These atmospheric vehicles are the One Way Landers (OWL's) and the Ascent/Descent Vehicles (ADV's). They will be used to carry the base components and/or construction equipment. The OMV's and the Orbital Transfer Vehicles (OTV's) will assist in carrying the atmospheric entry vehicles to low Martian orbit where the OWL's or ADV's will descent to the planet surface. The ADV's were proposed to accommodate expansion of the system. Additionally, a smaller version of the ADV class is capable of transporting personnel between Mars and Phobos.

  6. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  7. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Williams, B. D.; Snyder, Michelle M. V.

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting themore » U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption K d (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.« less

  8. The disposal of nuclear waste in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  9. Facilitating the improved management of waste in South Africa through a national waste information system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Linda

    2008-07-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such asmore » South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.« less

  10. Waste Management System overview for future spacecraft.

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1973-01-01

    Waste Management Systems (WMS) for post Apollo spacecraft will be significantly more sophisticated and earthlike in user procedures. Some of the features of the advanced WMS will be accommodation of both males and females, automatic operation, either tissue wipe or anal wash, measurement and sampling of urine, feces and vomitus for medical analysis, water recovery, and solids disposal. This paper presents an overview of the major problems of and approaches to waste management for future spacecraft. Some of the processes discussed are liquid/gas separation, the Dry-John, the Hydro-John, automated sampling, vapor compression distillation, vacuum distillation-catalytic oxidation, incineration, and the integration of the above into complete systems.

  11. Integrated software system for low level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worku, G.

    1995-12-31

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less

  12. Flight test of an improved solid waste collection system

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Brasseaux, H.; Whitmore, H.

    1991-01-01

    A system for human waste collection is described and evaluated on the basis of a prototype employed for the shuttle flight STS-35. The manually operated version of the unit is designed to collect, compact, and store human waste and cleaning material in replaceable volumes. The system is presented with illustrations and descriptions of the disposable pads that are used to clean the cylinder and occlusive air valves as well as seal the unit. Temporary retention and waste entrainment are provided by the variable airflow in the manual unit tested. The prototype testing indicates that sufficient airflow is achieved at 45 CFM and that the stowage volume (18.7 cu in.) is adequate for storing human waste with minimal logistical support. Higher compaction pressure and the use of a directed airstream are proposed for improving the packing efficiency of the unit.

  13. Life cycle assessment of a packaging waste recycling system in Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. Themore » operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.« less

  14. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS,more » as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for

  15. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    PubMed

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.

  16. Dynamic waste management (DWM): towards an evolutionary decision-making approach.

    PubMed

    Rojo, Gabriel; Glaus, Mathias; Laforest, Valerie; Laforest, Valérie; Bourgois, Jacques; Bourgeois, Jacques; Hausler, Robert

    2013-12-01

    To guarantee sustainable and dynamic waste management, the dynamic waste management approach (DWM) suggests an evolutionary new approach that maintains a constant flow towards the most favourable waste treatment processes (facilities) within a system. To that end, DWM is based on the law of conservation of energy, which allows the balancing of a network, while considering the constraints of incoming (h1 ) and outgoing (h2 ) loads, as well as the distribution network (ΔH) characteristics. The developed approach lies on the identification of the prioritization index (PI) for waste generators (analogy to h1 ), a global allocation index for each of the treatment processes (analogy to h2 ) and the linear index load loss (ΔH) associated with waste transport. To demonstrate the scope of DWM, we outline this approach, and then present an example of its application. The case study shows that the variable monthly waste from the three considered sources is dynamically distributed in priority to the more favourable processes. Moreover, the reserve (stock) helps temporarily store waste in order to ease the global load of the network and favour a constant feeding of the treatment processes. The DWM approach serves as a decision-making tool by evaluating new waste treatment processes, as well as their location and new means of transport for waste.

  17. A composite smeared finite element for mass transport in capillary systems and biological tissue.

    PubMed

    Kojic, M; Milosevic, M; Simic, V; Koay, E J; Fleming, J B; Nizzero, S; Kojic, N; Ziemys, A; Ferrari, M

    2017-09-01

    One of the key processes in living organisms is mass transport occurring from blood vessels to tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse direction - transport of waste products of cell metabolism to blood vessels. The mass exchange from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process has been investigated experimentally over centuries, and also in the last decades by the use of computational methods. Due to geometrical and functional complexity and heterogeneity of capillary systems, it is however not feasible to model in silico individual capillaries (including transport through the walls and coupling to tissue) within whole organ models. Hence, there is a need for simplified and robust computational models that address mass transport in capillary-tissue systems. We here introduce a smeared modeling concept for gradient-driven mass transport and formulate a new composite smeared finite element (CSFE). The transport from capillary system is first smeared to continuous mass sources within tissue, under the assumption of uniform concentration within capillaries. Here, the fundamental relation between capillary surface area and volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, we formulate the CSFE which relies on the transformation of the one-dimensional (1D) constitutive relations (for transport within capillaries) into the continuum form expressed by Darcy's and diffusion tensors. The introduced CSFE is composed of two volumetric parts - capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and concentration for each of the two domains. The domains are coupled by connectivity elements at each node. The fictitious connectivity elements take into account the surface area of capillary walls which belongs to each node, as well as the wall material properties (permeability and partitioning

  18. STARS: The Space Transportation Architecture Risk System

    NASA Technical Reports Server (NTRS)

    Greenberg, Joel S.

    1997-01-01

    Because of the need to perform comparisons between transportation systems that are likely to have significantly different levels of risk, both because of differing degrees of freedom in achieving desired performance levels and their different states of development and utilization, an approach has been developed for performing early comparisons of transportation architectures explicitly taking into account quantitative measures of uncertainty and resulting risk. The approach considers the uncertainty associated with the achievement of technology goals, the effect that the achieved level of technology will have on transportation system performance and the relationship between transportation system performance/capability and the ability to accommodate variations in payload mass. The consequences of system performance are developed in terms of expected values and associated standard deviations of nonrecurring, recurring and the present value of transportation system life cycle cost. Typical results are presented to illustrate the application of the methodology.

  19. Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow.

    PubMed

    Rod, Kenton A; Um, Wooyong; Flury, Markus

    2010-11-01

    We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.

  20. A roadmap for development of sustainable E-waste management system in India.

    PubMed

    Wath, Sushant B; Vaidya, Atul N; Dutt, P S; Chakrabarti, Tapan

    2010-12-01

    The problem of E-waste has forced Environmental agencies of many countries to innovate, develop and adopt environmentally sound options and strategies for E-waste management, with a view to mitigate and control the ever growing threat of E-waste to the environment and human health. E-waste management is given the top priority in many developed countries, but in rapid developing countries like India, it is difficult to completely adopt or replicate the E-waste management system in developed countries due to many country specific issues viz. socio-economic conditions, lack of infrastructure, absence of appropriate legislations for E-waste, approach and commitments of the concerned, etc. This paper presents a review and assessment of the E-waste management system of developed as well as developing countries with a special emphasis on Switzerland, which is the first country in the world to have established and implemented a formal E-waste management system and has recycled 11kg/capita of WEEE against the target of 4kg/capita set by EU. And based on the discussions of various approaches, laws, legislations, practices of different countries, a road map for the development of sustainable and effective E-waste management system in India for ensuring environment, as well as, occupational safety and health, is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. 49 CFR 173.197 - Regulated medical waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (bio) medical waste must be rigid containers meeting the provisions of subpart B of this part. (b) Non... medical waste or clinical waste or (bio) medical waste must be UN standard packagings conforming to the... filled. (2) Liquids. Liquid regulated medical waste or clinical waste or (bio) medical waste transported...

  2. Analysis of post-mining excavations as places for municipal waste

    NASA Astrophysics Data System (ADS)

    Górniak-Zimroz, Justyna

    2018-01-01

    Waste management planning is an interdisciplinary task covering a wide range of issues including costs, legal requirements, spatial planning, environmental protection, geography, demographics, and techniques used in collecting, transporting, processing and disposing of waste. Designing and analyzing this issue is difficult and requires the use of advanced analysis methods and tools available in GIS geographic information systems containing readily available graphical and descriptive databases, data analysis tools providing expert decision support while selecting the best-designed alternative, and simulation models that allow the user to simulate many variants of waste management together with graphical visualization of the results of performed analyzes. As part of the research study, there have been works undertaken concerning the use of multi-criteria data analysis in waste management in areas located in southwestern Poland. These works have proposed the inclusion in waste management of post-mining excavations as places for the final or temporary collection of waste assessed in terms of their suitability with the tools available in GIS systems.

  3. Quantifying the transport impacts of domestic waste collection strategies.

    PubMed

    McLeod, Fraser; Cherrett, Tom

    2008-11-01

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream.

  4. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  5. System catalytic neutralization control of combustion engines waste gases in mining technologies

    NASA Astrophysics Data System (ADS)

    Korshunov, G. I.; Solnitsev, R. I.

    2017-10-01

    The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.

  6. Integrating the transportation system with a university transportation master plan.

    DOT National Transportation Integrated Search

    2010-02-01

    Introduction and Research Objectives : -TxDOT commissioned TTI and the University of Texas at El Paso (UTEP) to perform a : research study of the integration of the transportation system with the UTEP : transportation master plan : -The objective is ...

  7. Bicarbonate transport in health and disease.

    PubMed

    Alka, Kumari; Casey, Joseph R

    2014-09-01

    Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer. © 2014 International Union of Biochemistry and Molecular Biology.

  8. Animal biocalorimeter and waste management system

    NASA Technical Reports Server (NTRS)

    Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)

    1995-01-01

    A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.

  9. High-Level Waste System Process Interface Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d'Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  10. LCLS-II CRYOMODULE TRANSPORT SYSTEM TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, Naeem; Daly, Edward F.; McGee, Michael W.

    The Cryomodules (CM) for the Linear Coherent Light Source II (LCLS-II) will be shipped to SLAC (Menlo Park, California) from JLab (Newport News, Virginia) and FNAL (Batavia, Illinois). A transportation system has been designed and built to safely transport the CMs over the road. It uses an array of helical isolator springs to attenuate shocks on the CM to below 1.5g in all directions. The system rides on trailers equipped with Air-Ride suspension, which attenuates vibration loads. The prototype LCLS-II CM (pCM) was driven 750 miles to test the transport system; shock loggers recorded the shock attenuation on the pCMmore » and vacuum gauges were used to detect any compromises in beamline vacuum. Alignment measurements were taken before and after the trip to check whether cavity positions had shifted beyond the ± 0.2mm spec. Passband frequencies and cavity gradients were measured at 2K at the Cryomodule Test Facility (CMTF) at JLab to identify any degradation of CM performance after transportation. The transport system was found to have safely carried the CM and is cleared to begin shipments from JLab and FNAL to SLAC.« less

  11. Future space transportation systems analysis study. Phase 1 extension: Transportation systems reference data, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Transportation mass requirements are developed for various mission and transportation modes based on vehicle systems sized to fit the exact needs of each mission. The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data are described.

  12. FFTF disposable solid waste cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less

  13. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

  14. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  15. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  16. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies.

    PubMed

    Rada, E C; Ragazzi, M; Fedrizzi, P

    2013-04-01

    Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Surveillance systems for intermodal transportation

    NASA Astrophysics Data System (ADS)

    Jakovlev, Sergej; Voznak, Miroslav; Andziulis, Arunas

    2015-05-01

    Intermodal container monitoring is considered a major security issue in many major logistic companies and countries worldwide. Current representation of the problem, we face today, originated in 2002, right after the 9/11 attacks. Then, a new worldwide Container Security Initiative (CSI, 2002) was considered that shaped the perception of the transportation operations. Now more than 80 larger ports all over the world contribute to its further development and integration into everyday transportation operations and improve the regulations for the developing regions. Although, these new improvements allow us to feel safer and secure, constant management of transportation operations has become a very difficult problem for conventional data analysis methods and information systems. The paper deals with a proposal of a whole new concept for the improvement of the Containers Security Initiative (CSI) by virtually connecting safety, security processes and systems. A conceptual middleware approach with deployable intelligent agent modules is proposed to be used with possible scenarios and a testbed is used to test the solution. Middleware examples are visually programmed using National Instruments LabView software packages and Wireless sensor network hardware modules. An experimental software is used to evaluate he solution. This research is a contribution to the intermodal transportation and is intended to be used as a means or the development of intelligent transport systems.

  18. Disposal of Kitchen Waste from High Rise Apartment

    NASA Astrophysics Data System (ADS)

    Ori, Kirki; Bharti, Ajay; Kumar, Sunil

    2017-09-01

    The high rise building has numbers of floor and rooms having variety of users or tenants for residential purposes. The huge quantities of heterogenous mixtures of domestic food waste are generated from every floor of the high rise residential buildings. Disposal of wet and biodegradable domestic kitchen waste from high rise buildings are more expensive in regards of collection and vertical transportation. This work is intended to address the technique to dispose of the wet organic food waste from the high rise buildings or multistory building at generation point with the advantage of gravity and vermicomposting technique. This innovative effort for collection and disposal of wet organic solid waste from high rise apartment is more economical and hygienic in comparison with present system of disposal.

  19. Hazard ranking systems for chemical wastes and chemical waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be theirmore » ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.« less

  20. Understanding waste for lean health information systems: a preliminary review.

    PubMed

    Kalong, Nadia Awang; Yusof, Maryati Mohd

    2013-01-01

    Despite the rapid application of the Lean method in healthcare, its study in IT environments, particularly in Health Information Systems (HIS), is still limited primarily by a lack of waste identification. This paper aims to review the literature to provide an insight into the nature of waste in HIS from the perspective of Lean management. Eight waste frameworks within the context of healthcare and information technology were reviewed. Based on the review, it was found that all the seven waste categories from the manufacturing sector also exist in both the healthcare and IT domains. However, the nature of the waste varied depending on the processes of the domains. A number of additional waste categories were also identified. The findings reveal that the traditional waste model can be adapted to identify waste in both the healthcare and IT sectors.

  1. National information network and database system of hazardous waste management in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less

  2. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  3. Sustainable Transport Systems: Linkages Between Environmental Issues, Public Transport, Non-Motorized Transport And Safety

    DOT National Transportation Integrated Search

    2000-10-01

    A sustainable transport system must provide mobility and accessibility to all urban residents in a safe and end environmentally friendly mode of transport. This is a complex and difficult task when the needs and demands of people belonging to differe...

  4. A Robust Scalable Transportation System Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew; DeLaurentis, Daniel

    2006-01-01

    This report documents the 2005 Revolutionary System Concept for Aeronautics (RSCA) study entitled "A Robust, Scalable Transportation System Concept". The objective of the study was to generate, at a high-level of abstraction, characteristics of a new concept for the National Airspace System, or the new NAS, under which transportation goals such as increased throughput, delay reduction, and improved robustness could be realized. Since such an objective can be overwhelmingly complex if pursued at the lowest levels of detail, instead a System-of-Systems (SoS) approach was adopted to model alternative air transportation architectures at a high level. The SoS approach allows the consideration of not only the technical aspects of the NAS", but also incorporates policy, socio-economic, and alternative transportation system considerations into one architecture. While the representations of the individual systems are basic, the higher level approach allows for ways to optimize the SoS at the network level, determining the best topology (i.e. configuration of nodes and links). The final product (concept) is a set of rules of behavior and network structure that not only satisfies national transportation goals, but represents the high impact rules that accomplish those goals by getting the agents to "do the right thing" naturally. The novel combination of Agent Based Modeling and Network Theory provides the core analysis methodology in the System-of-Systems approach. Our method of approach is non-deterministic which means, fundamentally, it asks and answers different questions than deterministic models. The nondeterministic method is necessary primarily due to our marriage of human systems with technological ones in a partially unknown set of future worlds. Our goal is to understand and simulate how the SoS, human and technological components combined, evolve.

  5. Municipal solid waste transportation optimisation with vehicle routing approach: case study of Pontianak City, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Kamal, M. A.; Youlla, D.

    2018-03-01

    Municipal solid waste (MSW) transportation in Pontianak City becomes an issue that need to be tackled by the relevant agencies. The MSW transportation service in Pontianak City currently requires very high resources especially in vehicle usage. Increasing the number of fleets has not been able to increase service levels while garbage volume is growing every year along with population growth. In this research, vehicle routing optimization approach was used to find optimal and efficient routes of vehicle cost in transporting garbage from several Temporary Garbage Dump (TGD) to Final Garbage Dump (FGD). One of the problems of MSW transportation is that there is a TGD which exceed the the vehicle capacity and must be visited more than once. The optimal computation results suggest that the municipal authorities only use 3 vehicles from 5 vehicles provided with the total minimum cost of IDR. 778,870. The computation time to search optimal route and minimal cost is very time consuming. This problem is influenced by the number of constraints and decision variables that have are integer value.

  6. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less

  7. A study of characteristics of intercity transportation systems. Phase 1: Definition of transportation comparison methodology

    NASA Technical Reports Server (NTRS)

    English, J. M.; Smith, J. L.; Lifson, M. W.

    1978-01-01

    Decision making in early transportation planning must be responsive to complex value systems representing various policies and objectives. The assessment of alternative transportation concepts during the early initial phases of the system life cycle, when supportive research and technology development activities are defined, requires estimates of transportation, environmental, and socio-economic impacts throughout the system life cycle, which is a period of some 40 or 50 years. A unified methodological framework for comparing intercity passenger and freight transportation systems is described and is extended to include the comparison of long term transportation trends arising from implementation of the various R & D programs. The attributes of existing and future transportation systems are reviewed in order to establish measures for comparison, define value functions, and attribute weightings needed for comparing alternative policy actions for furthering transportation goals. Comparison criteria definitions and an illustrative example are included.

  8. Profiles, sources, and transport of polycyclic aromatic hydrocarbons in soils affected by electronic waste recycling in Longtang, south China.

    PubMed

    Huang, De-Yin; Liu, Chuan-Ping; Li, Fang-Bai; Liu, Tong-Xu; Liu, Cheng-Shuai; Tao, Liang; Wang, Yan

    2014-06-01

    We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.

  9. Healthcare waste management status in Lagos State, Nigeria: a case study from selected healthcare facilities in Ikorodu and Lagos metropolis.

    PubMed

    Longe, Ezechiel O

    2012-06-01

    A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.

  10. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.

  11. Learn about the Hazardous Waste Electronic Manifest System (e-Manifest)

    EPA Pesticide Factsheets

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  12. Not planning a sustainable transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnveden, Göran, E-mail: goran.finnveden@abe.kth.se; Åkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment.more » Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.« less

  13. Organelle-localized potassium transport systems in plants.

    PubMed

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Gomberg, Steve

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less

  15. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  16. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  17. REPORT ON THE HOMELAND SECURITY WORKSHOP ON TRANSPORT AND DISPOSAL OF WASTES FROM FACILITIES CONTAMINATED WITH CHEMICAL AND BIOLOGICAL AGENTS

    EPA Science Inventory

    This report summarizes discussions from the "Homeland Security Workshop on Transport and Disposal of Wastes From Facilities Contaminated With Chemical or Biological Agents." The workshop was held on May 28-30, 2003, in Cincinnati, Ohio, and its objectives were to:

    .Documen...

  18. Cementitious waste option scoping study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored asmore » a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.« less

  19. Droplet transport system and methods

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul (Inventor)

    2010-01-01

    Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.

  20. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  1. UFD Storage and Transportation - Transportation Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references suchmore » as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part

  2. Urban Transportation Planning Short Course: Evaluation of Alternative Transportation Systems.

    ERIC Educational Resources Information Center

    Federal Highway Administration (DOT), Washington, DC.

    This urban transportation pamphlet delves into the roles of policy groups and technical staffs in evaluating alternative transportation plans, evaluation criteria, systems to evaluate, and evaluation procedures. The introduction admits the importance of subjective, but informed, judgment as an effective tool in weighing alternative transportation…

  3. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-02-14

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoringmore » equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.« less

  4. Synopsis of hydrologic data collected by waste management for characterization of unsaturated transport at Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E.

    1998-03-01

    Data which have been collected by Los Alamos National Laboratory waste management for the hydrologic characterization of the subsurface at the low level radioactive waste disposal facility, Area G, are reported and discussed briefly. The data includes Unsaturated Flow Apparatus measurements of the unsaturated conductivity in samples from borehole G-5. Analysis compares these values to the predictions from van Genuchten estimates, and the implications for transport and data matching are discussed, especially at the location of the Vapor Phase Notch (VPN). There, evaporation drives a significant vapor flux and the liquid flux cannot be measured accurately by the UFA device.more » Data also include hydrologic characterization of samples from borehole G-5, Area G surface soils, Los Alamos (Cerros de Rio) basalt, Tsankawi and Cerro-Toledo layers, the Vapor Phase Notch (VPN), and additional new samples from the uppermost tuff layer at Area G. Hydraulic properties from these sample groups can be used to supplement the existing data base. The data in this report can be used to improve the accuracy and reduce the uncertainty in future computational modeling of the unsaturated transport at Area G. This report supports the maintenance plan for the Area G Performance Assessment.« less

  5. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  6. Utilization of Information Technology for Non Domestic Waste Management in Semarang City

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad; Hadi, Sudharto P.; Soemantri, Maman

    2018-02-01

    Garbage problem is often very complex in urban areas. The handling pattern of collecting, transporting and disposing that has been applied up to this day has not yet produced an appropriate solution. This is evident from the data of statistic centre institution in 2015 that 76.31% of the existing waste in the community has not been sorted, while 10.28% sorted to be used and 13.41% sorted to be discarded, showing the community amount of unsorted garbage large enough to necessitate managerial efforts at the waste sources. In designing a systematic and structured waste management system, the generations, compositions, and characteristics of the waste are indispensable. Therefore, a research is conducted on these three dimensions to the non-domestic waste in Semarang City, which involves commercial waste (from the markets, restaurants, and hotels), institutional waste (from the offices and schools). From the research result the average of 0,24kgs/person/day in weight unit of the City's non-domestical waste generation is derived. The waste composition is dominated by organic waste of around 61.95%, while the rest percentage is inorganic. The management policy is directed with the application of Management Information System model based on Information Technology because of the system's abilities to effectuate the waste management.

  7. Transportation Systems Center Bibliography of Technical Reports

    DOT National Transportation Integrated Search

    1973-01-01

    The bibliography lists unlimited distribution reports released by the Transportation Systems Center from January through December 1978. It supplements the Transportation Systems Center Bibliography of Technical Reports, July 1970 - December 1976 (DOT...

  8. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    2001-01-01

    Surface transportation systems in the United States today face a number of significant challenges. Congestion and safety continue to present serious problems in spite of the nations superb roadway systems. Congestion imposes an exorbitant cost on ...

  9. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    2002-01-01

    Surface transportation systems in the United States today face a number of significant challenges. Congestion and safety continue to present serious problems in spite of the nations superb roadway systems. Congestion imposes an exorbitant cost on ...

  10. Waste Collector System Technology Comparisons for Constellation Applications

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2006-01-01

    The Waste Collection Systems (WCS) for space vehicles have utilized a variety of hardware for collecting human metabolic wastes. It has typically required multiple missions to resolve crew usability and hardware performance issues that are difficult to duplicate on the ground. New space vehicles should leverage off past WCS systems. Past WCS hardware designs are substantially different and unique for each vehicle. However, each WCS can be analyzed and compared as a subset of technologies which encompass fecal collection, urine collection, air systems, pretreatment systems. Technology components from the WCS of various vehicles can then be combined to reduce hardware mass and volume while maximizing use of previous technology and proven human-equipment interfaces. Analysis of past US and Russian WCS are compared and extrapolated to Constellation missions.

  11. Concept of Integrated Information Systems of Rail Transport

    NASA Astrophysics Data System (ADS)

    Siergiejczyk, Mirosław; Gago, Stanisław

    This paper will present a need to create integrated information systems of the rail transport and their links with other means of public transportation. IT standards will be discussed that are expected to create the integrated information systems of the rail transport. Also the main tasks will be presented of centralized information systems, the concept of their architecture, business processes and their implementation as well as the proposed measures to secure data. A method shall be proposed to implement a system to inform participants of rail transport in Polish conditions.

  12. Tank waste remediation system configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less

  13. Performance measures for rural transportation systems : guidebook.

    DOT National Transportation Integrated Search

    2006-06-01

    This Performance Measures for Rural Transportation Systems Guidebook provides a : standardized and supportable performance measurement process that can be applied to : transportation systems in rural areas. The guidance included in this guidebook was...

  14. The Space Transportation System. [Space Shuttle-Spacelab-Space Tug system

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.; Brazill, E. J.

    1976-01-01

    The Space Transportation System, consisting of the Space Shuttle, Spacelab, and the Space Tug, is discussed from the viewpoint of reductions in the cost of space operations. Each of the three vehicles is described along with its mission capabilities, and the time table for system development activities is outlined. Basic attributes of the Space Transportation System are reviewed, all operational modes are considered, and the total cost picture of the system is examined from the standpoint of a mission economic analysis. It is concluded that as the features of the Space Transportation System, especially the Shuttle and the Tug, are put to more efficient use during the maturing-operation phase, the total cost of conducting space missions should be about half of what it would be if any other system were employed.

  15. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  16. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey; Conley, Gerald; Diaz, Claudine; Dimella, Timothy; Dodson, Pete; Hykin, Jeff; Richards, Byron; Richardson, Kroy; Shetzer, Christie; Vandyke, Melissa

    1990-01-01

    A first generation lunar transportation vehicle was designed for use on the surface of the Moon between the years 2010 and 2020. Attention is focussed on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three cart, six-wheeled articulated vehicle. It's purpose will be for the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 kilometers). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the asronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include: a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat restraints, heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model was built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  17. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum

  18. [Outsourcing: theory and practice at a clinical hospital in Szczecin exemplified by medical waste transport and treatment service].

    PubMed

    Kotlega, Dariusz; Nowacki, Przemysław; Lewiński, Dariusz; Chmurowicz, Ryszard; Ciećwiez, Sylwester

    2011-01-01

    Outsourcing proves to be a useful tool in the difficult process of improving the financial result of hospitals. Outsourcing means separation of some functions and services in one entity and their transfer to another. The aim of this study was to analyze the use of outsourcing at the Second Independent Public University Hospital of the Pomeranian Medical University (SPSK 2 PUM) in Szczecin. We studied the transport and treatment of medical waste. Outsourcing of waste treatment services led to financial savings. The cost of treatment of one kilogram of waste by an external company was PLN 2.53. The same service provided by the hospital would cost approximately PLN 7 per kilogram. Appropriate attention should be paid to the quality of services. It seems useful to have appropriate tools for quality control and monitoring. SPSK 2 PUM can serve as a good example of effective use of outsourcing.

  19. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  20. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    NASA Astrophysics Data System (ADS)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  1. System dynamics of subcellular transport.

    PubMed

    Chen, Vivien Y; Khersonsky, Sonya M; Shedden, Kerby; Chang, Young Tae; Rosania, Gus R

    2004-01-01

    In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.

  2. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that such wastes do not present a hazard to human health or the environment. These requirements shall... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements...

  3. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that such wastes do not present a hazard to human health or the environment. These requirements shall... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements...

  4. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that such wastes do not present a hazard to human health or the environment. These requirements shall... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements...

  5. Hyperspectral imaging utility for transportation systems

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver

    2015-03-01

    The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

  6. Municipal solid waste system analysis through energy consumption and return approach.

    PubMed

    Tomić, Tihomir; Schneider, Daniel Rolph

    2017-12-01

    Inappropriate waste management and poor resource efficiency are two of the biggest problems which European Union is trying to solve through Landfill Directive, Waste Framework Directive and Circular Economy Package by increasing recycling and reuse and reducing waste disposal. In order to meet set goals, new European Union member states must quickly change national legislature and implement appropriate solutions. In the circumstances of strong EU resource and energy dependence, decision makers need to analyse which of the considered waste management systems leads to higher overall benefits ie. which is more sustainable. The main problem in this kind of analysis is a wide range of possible technologies and the difference in inputs and outputs. Sustainability of these systems is analysed through single-score LCA based assessment, using primary energy used to produce materials and energy vectors as a common measure. To ensure reliable results, interoperability between different data sources and material flows of waste and its components are monitored. Tracking external and internal material, and energy flows enable modelling of mutual interactions between different facilities. Resulting PERI, primary energy return based index, is used for comparison of different waste management scenarios. Results show that time and legislation dependent changes have great influence on decision making related to waste management and interconnected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    NASA Technical Reports Server (NTRS)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  8. Lightweight Monorail Transport System

    NASA Technical Reports Server (NTRS)

    Weir, Harold F.; Wood, Kenneth E.; Strecker, Myron T.

    1987-01-01

    Report proposes monorail transportation system for zero-gravity environment. System carries materials and parts between locations on space station. Includes tubular rails instead of open channels usually found in overhead conveyor systems. Since resistance to torque of closed tube greater than that of open channel for same amount of material, tubular monorail designed for higher loads or for greater spacing between support points.

  9. The help of simulation codes in designing waste assay systems using neutron measurement methods: Application to the alpha low level waste assay system PROMETHEE 6

    NASA Astrophysics Data System (ADS)

    Mariani, A.; Passard, C.; Jallu, F.; Toubon, H.

    2003-11-01

    The design of a specific nuclear assay system for a dedicated application begins with a phase of development, which relies on information from the literature or on knowledge resulting from experience, and on specific experimental verifications. The latter ones may require experimental devices which can be restricting in terms of deadline, cost and safety. One way generally chosen to bypass these difficulties is to use simulation codes to study particular aspects. This paper deals with the potentialities offered by the simulation in the case of a passive-active neutron (PAN) assay system for alpha low level waste characterization; this system has been carried out at the Nuclear Measurements Development Laboratory of the French Atomic Energy Commission. Due to the high number of parameters to be taken into account for its development, this is a particularly sophisticated example. Since the PAN assay system, called PROMETHEE (prompt epithermal and thermal interrogation experiment), must have a detection efficiency of more than 20% and preserve a high level of modularity for various applications, an improved version has been studied using the MCNP4 (Monte Carlo N-Particle) transport code. Parameters such as the dimensions of the assay system, of the cavity and of the detection blocks, and the thicknesses of the nuclear materials of neutronic interest have been optimised. Therefore, the number of necessary experiments was reduced.

  10. Transportation Planning with Immune System Derived Approach

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kenji; Yaji, Yasuhito; Ootsuki, John Takuya; Fujimoto, Yasutaka; Sekiguchi, Takashi

    This paper presents an immune system derived approach for planning transportation of materials between manufacturing processes in the factory. Transportation operations are modeled by Petri Net, and divided into submodels. Transportation orders are derived from the firing sequences of those submodels through convergence calculation by the immune system derived excitation and suppression operations. Basic evaluation of this approach is conducted by simulation-based investigation.

  11. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks

  12. Solutions to Improve Person Transport System in the Pitesti City by Analyzing Public Transport vs. Private Transport

    NASA Astrophysics Data System (ADS)

    Mihaela, Istrate; Alexandru, Boroiu; Viorel, Nicolae; Ionel, Vieru

    2017-10-01

    One of the major problems facing the Pitesti city is the road congestion that occurs in the central area of the city during the peak hours. With all the measures taken in recent years - the widening of road arteries, increasing the number of parking spaces, the creation of overground road passages - it is obvious that the problem can only be solved by a new philosophy regarding urban mobility: it is no longer possible to continue through solutions to increase the accessibility of the central area of the city, but it is necessary, on the contrary, to promote a policy of discouraging the penetration of vehicles in the city center, coupled with a policy of improving the connection between urban public transport and county public transport. This new approach is also proposed in the new Urban Mobility Plan of Pitesti city, under development. The most convincing argument for the necessity of this new orientation in the Pitesti city mobility plan is based on the analysis of the current situation of passenger transport on the territory of Pitesti city: the analysis of “public transport versus private transport” reveals a very low occupancy rate for cars and the fact that the road surface required for a passenger (the dynamic area) is much higher in the case of private transport than in the case of public transport. Measurements of passenger flows and vehicle flows on the 6 penetration ways in the city have been made and the calculations clearly demonstrate the benefits of an urban public transport system connected by “transshipment buses” to be made at the edge of the city, to the county public transport system. In terms of inter-county transport, it will continue to be connected to the urban public transport system by existing bus Station, within the city: South Bus Station and North Bus Station. The usefulness of the paper is that it identifies the solutions for sustainable mobility in Pitesti city and proposes concrete solutions for the development of the

  13. Integrated Intermodal Passenger Transportation System

    NASA Technical Reports Server (NTRS)

    Klock, Ryan; Owens, David; Schwartz, Henry; Plencner, Robert

    2012-01-01

    Modern transportation consists of many unique modes of travel. Each of these modes and their respective industries has evolved independently over time, forming a largely incoherent and inefficient overall transportation system. Travelers today are forced to spend unnecessary time and efforts planning a trip through varying modes of travel each with their own scheduling, pricing, and services; causing many travelers to simply rely on their relatively inefficient and expensive personal automobile. This paper presents a demonstration program system to not only collect and format many different sources of trip planning information, but also combine these independent modes of travel in order to form optimal routes and itineraries of travel. The results of this system show a mean decrease in inter-city travel time of 10 percent and a 25 percent reduction in carbon dioxide emissions over personal automobiles. Additionally, a 55 percent reduction in carbon dioxide emissions is observed for intra-city travel. A conclusion is that current resources are available, if somewhat hidden, to drastically improve point to point transportation in terms of time spent traveling, the cost of travel, and the ecological impact of a trip. Finally, future concepts are considered which could dramatically improve the interoperability and efficiency of the transportation infrastructure.

  14. Effectiveness of work zone intelligent transportation systems.

    DOT National Transportation Integrated Search

    2013-12-01

    In the last decade, Intelligent Transportation Systems (ITS) have increasingly been deployed in work zones by state departments of transportation. Also known as smart work zone systems they improve traffic operations and safety by providing real-time...

  15. Preparing Texas' freight transportation system for 2055.

    DOT National Transportation Integrated Search

    2017-04-01

    Efficient, reliable, and safe freight transportation is critical to the economic prosperity of any region. An efficient multimodal and intermodal transportation system reduces transportation and supply chain transaction costs and increases connectivi...

  16. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less

  17. Assessment study for multi-barrier system used in radioactive borate waste isolation based on Monte Carlo simulations.

    PubMed

    Bayoumi, T A; Reda, S M; Saleh, H M

    2012-01-01

    Radioactive waste generated from the nuclear applications should be properly isolated by a suitable containment system such as, multi-barrier container. The present study aims to evaluate the isolation capacity of a new multi-barrier container made from cement and clay and including borate waste materials. These wastes were spiked by (137)Cs and (60)Co radionuclides to simulate that waste generated from the primary cooling circuit of pressurized water reactors. Leaching of both radionuclides in ground water was followed and calculated during ten years. Monte Carlo (MCNP5) simulations computed the photon flux distribution of the multi-barrier container, including radioactive borate waste of specific activity 11.22KBq/g and 4.18KBq/g for (137)Cs and (60)Co, respectively, at different periods of 0, 15.1, 30.2 and 302 years. The average total flux for 100cm radius of spherical cell was 0.192photon/cm(2) at initial time and 2.73×10(-4)photon/cm(2) after 302 years. Maximum waste activity keeping the surface radiation dose within the permissible level was calculated and found to be 56KBq/g with attenuation factors of 0.73cm(-1) and 0.6cm(-1) for cement and clay, respectively. The average total flux was 1.37×10(-3)photon/cm(2) after 302 years. Monte Carlo simulations revealed that the proposed multi-barrier container is safe enough during transportation, evacuation or rearrangement in the disposal site for more than 300 years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Transportation Systems Technology : a Twenty-Year Outlook

    DOT National Transportation Integrated Search

    1971-08-01

    An overall technology assessment of new and improved transportation systems is given. A broad survey has been made of new systems concepts for passenger and freight transportation in urban and interurban applications. Results of the findings are repo...

  19. Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems.

    PubMed

    Conde, Artur; Diallinas, George; Chaumont, François; Chaves, Manuela; Gerós, Hernâni

    2010-06-01

    The recent breakthrough discoveries of transport systems assigned with atypical functions provide evidence for complexity in membrane transport biochemistry. Some channels are far from being simple pores creating hydrophilic passages for solutes and can, unexpectedly, act as enzymes, or mediate high-affinity uptake, and some transporters are surprisingly able to function as sensors, channels or even enzymes. Furthermore, numerous transport studies have demonstrated complex multiphasic uptake kinetics for organic and mineral nutrients. The biphasic kinetics of glucose uptake in Saccharomyces cerevisiae, a result of several genetically distinct uptake systems operating simultaneously, is a classical example that is a subject of continuous debate. In contrast, some transporters display biphasic kinetics, being bona fidae dual-affinity transporters, their kinetic properties often modulated by post-translational regulation. Also, aquaporins have recently been reported to exhibit diverse transport properties and can behave as highly adapted, multifunctional channels, transporting solutes such as CO(2), hydrogen peroxide, urea, ammonia, glycerol, polyols, carbamides, purines and pyrimidines, metalloids, glycine, and lactic acid, rather than being simple water pores. The present review provides an overview on some atypical functions displayed by transporter proteins and discusses how this novel knowledge on cellular uptake systems may be related to complex multiphasic uptake kinetics often seen in a wide variety of living organisms and the intriguing diffusive uptake of sugars and other solutes. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performancemore » considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.« less

  1. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... on- site in the pickle acid and low level radioactive wastewater treatment systems. Support... water production waste treatment system. Once- through non-contact cooling water does not require... production (deionized and make- up non-contact cooling water) treatment system and once through non- contact...

  2. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    PubMed

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  3. Intelligent transportation systems and intermodal freight transportation. Final report, May-December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylward, A.D.

    1996-12-01

    This paper describes the various advanced technologies already in use in the intermodal freight transportation industry and addresses the opportunity for improved communication between the public and private sector regarding technology applications to the freight transportation system that could enhance the capacity of the system as a whole. The current public interest in freight transportation policy creates an opportunity to develop a shared vision of the future needs of international intermodal freight transportation in the United States. The Federal government can impact this vision by taking action in the following areas: Provide Infrastructure Funding to Support Efficiency and Global Competitiveness;more » Support Regional and Corridor Efforts; Understand the Freight Sector and Develop a Shared Vision of Technology Benefits; Lead Transportation Technology Efforts of Federal Agencies; and Maintain Commitment to Open ITS Architecture.« less

  4. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The students of the Florida A&M/Florida State University College of Engineering continued their design from 1988 to 1989 on a first generation lunar transportation vehicle for use on the surface of the Moon between the years 2010 and 2020. Attention is focused on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three-cart, six-wheeled articulated vehicle. Its purpose will be the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 km). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the astronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat retraints; heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model has been built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  5. Intelligent Transportation Systems : critical standards

    DOT National Transportation Integrated Search

    1999-06-01

    Intelligent Transportation Systems (ITS) standards are industry-consensus standards that provide the details about how different systems interconnect and communicate information to deliver the ITS user services described in the National ITS Architect...

  6. Integrated waste management system costs in a MPC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supko, E.M.

    1995-12-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.

  7. Implementation of an intraoperative blood transport and storage initiative and its effect on reducing red blood cell and plasma waste.

    PubMed

    Brown, Michael J; Button, Lisa M; Badjie, Karafa S; Guyer, Jean M; Dhanorker, Sarah R; Brach, Erin J; Johnson, Pamela M; Stubbs, James R

    2014-03-01

    The national waste rate for hospital-issued blood products ranges from 0% to 6%, with operating room-responsible waste representing up to 70% of total hospital waste. A common reason for blood product waste is inadequate intraoperative storage. Our transfusion service database was used to quantify and categorize red blood cell (RBC) and fresh-frozen plasma (FFP) units issued for intraoperative transfusion that were wasted over a 27-month period. Two cohorts were created: 1) before implementation of a blood transport and storage initiative (BTSI)-RBC and plasma waste January 1, 2011-May 31, 2012; 2) after implementation of BTSI-RBC and plasma waste June 1, 2012, to March 31, 2013. The BTSI replaced existing storage coolers (8-hr coolant life span with temperature range of 1-10°C) with a cooler that had a coolant life span of 18 hours and a temperature range of 1 to 6°C and included an improved educational cooler placard and an alert mechanism in the electronic health record. Monthly median RBC and plasma waste and its associated cost were the primary outcomes. An intraoperative BTSI significantly reduced median monthly RBC (1.3% vs. 0.07%) and FFP (0.4% vs. 0%) waste and its associated institutional cost. The majority of blood product waste was due to an unacceptable temperature of unused returned blood products. An intraoperative BTSI significantly reduced median monthly RBC and FFP waste. The cost to implement this initiative was small, resulting in a significant estimated return on investment that may be reproducible in institutions other than ours. © 2013 American Association of Blood Banks.

  8. Advanced public transportation systems benefits

    DOT National Transportation Integrated Search

    1996-03-01

    Benefits and cost savings for various Advanced Public Transportation Systems are outlined here. Operational efficiencies are given for Transit Management Systems in different locales, as well as compliant resolution and safety. Electronic Fare Paymen...

  9. Optimal concentrations in transport systems

    PubMed Central

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  10. Tank waste remediation system systems engineering management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves.more » The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.« less

  11. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  12. The Space Shuttle - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1974-01-01

    The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.

  13. EPA Sets Rules on Hazardous Wastes.

    ERIC Educational Resources Information Center

    Smith, R. Jeffrey

    1980-01-01

    Announces the final rules published by the Environmental Protection Agency requiring that generators, transporters, and disposers of hazardous wastes report exactly where the wastes will be taken. (Author/SA)

  14. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  15. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2003-01-01

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance. Published by Elsevier Science Ltd on behalf of COSPAR.

  16. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index.

    PubMed

    Wheeler, Raymond M

    2003-01-01

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance. Published by Elsevier Science Ltd on behalf of COSPAR.

  17. Carbon balance in bioregenerative life support systems: Some effects of system closure, waste management, and crop harvest index

    NASA Astrophysics Data System (ADS)

    Wheeler, Raymond M.

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.

  18. The SIMPSONS project: An integrated Mars transportation system

    NASA Astrophysics Data System (ADS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  19. The SIMPSONS project: An integrated Mars transportation system

    NASA Technical Reports Server (NTRS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    1992-01-01

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  20. Biodiesel from waste cooking oil in Mexico City.

    PubMed

    Sheinbaum, Claudia; Balam, Marco V; Robles, Guillermo; Lelo de Larrea, Sebastian; Mendoza, Roberto

    2015-08-01

    The aim of this article is to evaluate the potential use of biodiesel produced from waste cooking oil in Mexico City. The study is divided in two main areas: the analysis of a waste cooking oil collection pilot project conducted in food markets of a Mexico City region; and the exhaust emissions performance of biodiesel blends measured in buses of the Mexico City public bus transportation network (RTP). Results from the waste cooking oil collection pilot project show that oil quantities disposed depend upon the type of food served and the operational practices in a cuisine establishment. Food markets' waste cooking oil disposal rate from fresh oil is around 10%, but with a very high standard deviation. Emission tests were conducted using the Ride-Along-Vehicle-Emissions-Measuring System in two different types of buses while travelling a regular route. Results shows that the use of biodiesel blends reduces emissions only for buses that have exhaust gas recirculation systems, as analysed by repeated measure analysis of variance. The potential use in Mexico City of waste cooking oil for biodiesel is estimated to cover 2175 buses using a B10 blend. © The Author(s) 2015.

  1. Solid waste information and tracking system server conversion project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  2. Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Kaushik; Clarity, Justin B; Cumberland, Riley M

    This will be licensed via RSICC. A new, integrated data and analysis system has been designed to simplify and automate the performance of accurate and efficient evaluations for characterizing the input to the overall nuclear waste management system -UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database within UNF-ST&DARDS provides a standard means by which UNF-ST&DARDS can succinctly store and retrieve modeling and simulation (M&S) parameters for specific spent nuclear fuel analysis. A library of various analysis model templates provides the ability to communicate the various set of M&S parameters to the most appropriate M&S application.more » Interactive visualization capabilities facilitate data analysis and results interpretation. UNF-ST&DARDS current analysis capabilities include (1) assembly-specific depletion and decay, (2) and spent nuclear fuel cask-specific criticality and shielding. Currently, UNF-ST&DARDS uses SCALE nuclear analysis code system for performing nuclear analysis.« less

  3. Transportation Air Pollution Studies (TAPS) System

    DOT National Transportation Integrated Search

    1974-03-01

    This report describes the Transportation Air Pollution Studies (TAPS) Data Base and the Software System which has been developed in association with it. : The TAPS Data Base will be used to store the transportation air pollution data (including emiss...

  4. Solute carrier transporters: potential targets for digestive system neoplasms.

    PubMed

    Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang

    2018-01-01

    Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms.

  5. Solute carrier transporters: potential targets for digestive system neoplasms

    PubMed Central

    Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang

    2018-01-01

    Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms. PMID:29416375

  6. Use of a Knowledge Management System in Waste Management Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.

    2006-07-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspectmore » will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)« less

  7. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  8. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National

  9. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  10. APTS : advanced public transportation systems program : technical assistance brief

    DOT National Transportation Integrated Search

    1993-01-01

    Advanced Public Transportation Systems, or APTS, are advanced navigation and communication technologies applied to all aspects of public transportation system operations. APTS provides the technology for transportation agencies to make timely transit...

  11. Cardiovascular system

    MedlinePlus Videos and Cool Tools

    The cardiovascular system is composed of the heart and the network of arteries, veins, and capillaries that transport blood throughout the ... carries waste products from the tissues to the systems of the body through which they are eliminated. ...

  12. Waste to Energy at SUNY Cobleskill

    DTIC Science & Technology

    2011-05-10

    Overview on Army Net Zero Concepts • Gasification Intro. • SUNY Cobleskill Center for Environmental Science and Technology. • TURNW2E™ Gasification ...5 GASIFICATION A TECHNOLOGY 2-fer • Waste Reduction • Reduced Logistics for Waste Transportation • Reduced environmental and personnel impact... GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy

  13. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks aremore » prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister

  14. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less

  15. Modeling Transportation Systems : an Overview

    DOT National Transportation Integrated Search

    1971-06-01

    The purpose of this report is to outline the role of systems analysis and mathematical modeling in the planning of transportation systems. The planning process is divided into three sectors (demand, supply, and policy) reflecting the demand for trans...

  16. Systematic Development of Intelligent Systems for Public Road Transport.

    PubMed

    García, Carmelo R; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-07-16

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network.

  17. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  18. Implementation of Benchmarking Transportation Logistics Practices and Future Benchmarking Organizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, A.W.; Patric, J.; Keister, M.

    2008-07-01

    The purpose of the Office of Civilian Radioactive Waste Management's (OCRWM) Logistics Benchmarking Project is to identify established government and industry practices for the safe transportation of hazardous materials which can serve as a yardstick for design and operation of OCRWM's national transportation system for shipping spent nuclear fuel and high-level radioactive waste to the proposed repository at Yucca Mountain, Nevada. The project will present logistics and transportation practices and develop implementation recommendations for adaptation by the national transportation system. This paper will describe the process used to perform the initial benchmarking study, highlight interim findings, and explain how thesemore » findings are being implemented. It will also provide an overview of the next phase of benchmarking studies. The benchmarking effort will remain a high-priority activity throughout the planning and operational phases of the transportation system. The initial phase of the project focused on government transportation programs to identify those practices which are most clearly applicable to OCRWM. These Federal programs have decades of safe transportation experience, strive for excellence in operations, and implement effective stakeholder involvement, all of which parallel OCRWM's transportation mission and vision. The initial benchmarking project focused on four business processes that are critical to OCRWM's mission success, and can be incorporated into OCRWM planning and preparation in the near term. The processes examined were: transportation business model, contract management/out-sourcing, stakeholder relations, and contingency planning. More recently, OCRWM examined logistics operations of AREVA NC's Business Unit Logistics in France. The next phase of benchmarking will focus on integrated domestic and international commercial radioactive logistic operations. The prospective companies represent large scale shippers and have vast

  19. Aspects of transport system management within mining complex using information and telecommunication systems

    NASA Astrophysics Data System (ADS)

    Semykina, A. S.; Zagorodniy, N. A.; Konev, A. A.; Duganova, E. V.

    2018-05-01

    The paper considers aspects of transport system management within the mining complex. It indicates information and telecommunication systems that are used to increase transportation efficiency. It also describes key advantages and disadvantages. It is found that software products of the Modular Company used in pits allow increasing transport performance, minimizing losses and ensuring efficient transportation of minerals.

  20. Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.

    PubMed

    Allesch, Astrid; Brunner, Paul H

    2017-01-03

    This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.

  1. Wet oxidation as a waste treatment in closed systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  2. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastesmore » for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four

  3. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2003-02-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Informationmore » and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.« less

  4. Space Transportation systems overview

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1979-01-01

    Planning for the operations phase of the Space Transportation system is reviewed. Attention is given to mission profile (typical), applications, manifesting rationale, the Operational Flight Test manifest, the operations manifest, pricing policy, and potential applications of the STS.

  5. Modeling of urban solid waste management system: The case of Dhaka city

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, M.A.; Bala, B.K.

    2007-07-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less

  6. 77 FR 55266 - Marine Transportation System National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration Marine Transportation System National... announces that the Marine Transportation System National Advisory Council (MTSNAC) will hold a meeting to discuss preliminary recommendations that have been developed by the Shipbuilding Subcommittee to support...

  7. Environmental impact assessment of solid waste management in Beijing City, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yan; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Tsinghua University, 100084 Beijing; Christensen, Thomas H.

    2011-04-15

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significantmore » environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.« less

  8. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  9. Priority System for Multimodal and Intermodal Transportation Planning

    DOT National Transportation Integrated Search

    1997-01-01

    Prioritization is an increasingly important concept for transportation system planning and programming. The resources for capital improvements to state and regional transportation systems are stagnant or declining. At the same time, population growth...

  10. Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.

    2015-12-01

    The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.

  11. Self-Organized Transport System

    DOT National Transportation Integrated Search

    2009-09-28

    This report presents the findings of the simulation model for a self-organized transport system where traffic lights communicate with neighboring traffic lights and make decisions locally to adapt to traffic conditions in real time. The model is insp...

  12. Earthquake damage to transportation systems

    USGS Publications Warehouse

    McCullough, Heather

    1994-01-01

    Earthquakes represent one of the most destructive natural hazards known to man. A large magnitude earthquake near a populated area can affect residents over thousands of square kilometers and cause billions of dollars in property damage. Such an event can kill or injure thousands of residents and disrupt the socioeconomic environment for months, sometimes years. A serious result of a large-magnitude earthquake is the disruption of transportation systems, which limits post-disaster emergency response. Movement of emergency vehicles, such as police cars, fire trucks and ambulances, is often severely restricted. Damage to transportation systems is categorized below by cause including: ground failure, faulting, vibration damage, and tsunamis.

  13. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  14. Generic waste management requirements for a controlled ecological life support system /CELSS/

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.; Hansen, B. D., III

    1981-01-01

    Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.

  15. Non-rocket Earth-Moon transport system

    NASA Astrophysics Data System (ADS)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  16. Systematic Development of Intelligent Systems for Public Road Transport

    PubMed Central

    García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  17. TSHIPS : Transportation shipping harmonization and integration planning system

    DOT National Transportation Integrated Search

    2001-03-01

    This report documents the development of the Transportation Shipping Harmonization and Integration Planning System (TSHIPS). The TSHIPS project was developed to advance the state of the art in transportation systems analysis. Existing approaches and ...

  18. 78 FR 57454 - Marine Transportation System National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... Transportation System National Advisory Council (MTSNAC). The Council advises and makes recommendations to the... DEPARTMENT OF TRANSPORTATION Maritime Administration Marine Transportation System National..., consults with, reports to, and makes recommendations to the Secretary on matters relating to the Marine...

  19. On the causal links between health indicator, output, combustible renewables and waste consumption, rail transport, and CO2 emissions: the case of Tunisia.

    PubMed

    Ben Jebli, Mehdi

    2016-08-01

    This study employs the autoregressive distributed lag (ARDL) approach and Granger causality test to investigate the short- and long-run relationships between health indicator, real GDP, combustible renewables and waste consumption, rail transport, and carbon dioxide (CO2) emissions for the case of Tunisia, spanning the period of 1990-2011. The empirical findings suggest that the Fisher statistic of the Wald test confirm the existence of a long-run relationship between the variables. Moreover, the long-run estimated elasticities of the ARDL model provide that output and combustible renewables and waste consumption have a positive and statistically significant impact on health situation, while CO2 emissions and rail transport both contribute to the decrease of health indicator. Granger causality results affirm that, in the short-run, there is a unidirectional causality running from real GDP to health, a unidirectional causality from health to combustible renewables and waste consumption, and a unidirectional causality from all variables to CO2 emissions. In the long-run, all the computed error correction terms are significant and confirm the existence of long-run association among the variables. Our recommendations for the Tunisian policymakers are as follows: (i) exploiting wastes and renewable fuels can be a good strategy to eliminate pollution caused by emissions and subsequently improve health quality, (ii) the use of renewable energy as a main source for national rail transport is an effective strategy for public health, (iii) renewable energy investment projects are beneficial plans for the country as this contributes to the growth of its own economy and reduce energy dependence, and (iii) more renewable energy consumption leads not only to decrease pollution but also to stimulate health situation because of the increase of doctors and nurses numbers.

  20. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less

  1. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  2. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS...

  3. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Guide to federal intelligent transportation system (ITS) research.

    DOT National Transportation Integrated Search

    2013-01-01

    The U.S. Department of Transportations (USDOT) Intelligent Transportation System (ITS) Program aims to bring connectivity to transportation through the use of advanced wireless technologies powerful technologies that enable transformative chan...

  5. ASSESSMENT AND RECOMMENDATIONS FOR IMPROVING THE PERFORMANCE OF WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This broad-based study addressed three categories of issues related to the design,
    construction, and performance of waste containment systems used at landfills, surface
    impoundments, and waste piles, and in the remediation of contaminated sites. Geosynthetic materials have...

  6. Radon as a natural tracer for gas transport within uranium waste rock piles.

    PubMed

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations ofmore » H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.« less

  8. Inertial waste separation system for zero G WMS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.

  9. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  10. Hemolysis associated with pneumatic tube system transport for blood samples

    PubMed Central

    Kara, Hasan; Bayir, Aysegul; Ak, Ahmet; Degirmenci, Selim; Akinci, Murat; Agacayak, Ahmet; Marcil, Emine; Azap, Melih

    2014-01-01

    Objective: The frequency of hemolysis of blood samples may be increased by transport in a pneumatic tube system. The purpose of this study was to evaluate the effect of pneumatic tube system transport on hemolysis of blood samples. Methods: Blood samples were transported from the emergency department to the hospital laboratory manually by hospital staff (49 patients) or with a pneumatic tube system (53 patients). The hemolysis index and serum chemistry studies were performed on the blood samples and compared between the different methods of transport. Results: The blood samples that were transported by the pneumatic tube system had a greater frequency of hemolysis and greater mean serum potassium and median creatinine, aspartate aminotransferase, and lactate dehydrogenase levels than samples transported manually. Conclusion: Blood samples transported from the emergency department to the hospital laboratory by a pneumatic tube system may have a greater frequency of hemolysis than samples transported manually. This may necessitate repeat phlebotomy and cause a delay in completing the laboratory analysis. PMID:24639830

  11. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  12. Engineering concepts for the placement of wastes on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Palowitch, Andrew W.; Young, David K.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management

  13. [Lipoproteins as a specific circulatory transport system].

    PubMed

    Titov, V N

    1998-01-01

    In accordance with the systemic approach, each circulatory transport system is highly specific and transports an elementary substance from cell to cell in the hydrated medium. In the author's opinion, the lipoprotein system has also a functional specificity and carries the elementary substance fatty acid in the blood stream. A great variety of fatty acids, the individuality of their physicochemical properties, great stereochemic differences of saturated and polyenic fatty acids make their transport virtually impossible. The steric individuality of fatty acids can be reduced if the acids are covalently bonded by a matrix as complex lipids. For formation of complex lipids, nature prefers esterification of fatty acids with alcohols which have a varying hydrophoby, such as glycerol, sphingosine, cholesterol, cetyl alcohol. The steric differences of saturated and polyenic fatty acids form a basis for their being structurized in different lipids. Triacyl glycerides are a transport form of saturated, monounsaturated fatty acids and their transforms and give rise to a crystalline phase. Phospholipids and cholesterol esters are a transport form of mainly polyunsaturated fatty acids in the polar phase in the former case and in the crystalline phase in the latter one. The individual apolipoproteins structure complex lipids into individual lipoprotein particles and transport them in the hydrated medium of blood flow. Saturated fatty acids chiefly transport lipoprotein particles formed by apoB-48- and apoB-100-isoproteins. Polyenic acids transport mainly high-density apoA-1-lipoprotein particles, which makes up a main physiological function of the latter. Cholesterol is nothing more than a matrix; it reesterifies polyenic fatty acids from the polar transport form of phospholipids into the unpolar transport form of cholesterol esters. Cholesterol esterification of polyenic fatty acids may structure complex lipid in the unpolar phase and transport it to the cells via apoB-100

  14. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  15. Natural hazard impacts on transport systems: analyzing the data base of transport accidents in Russia

    NASA Astrophysics Data System (ADS)

    Petrova, Elena

    2015-04-01

    We consider a transport accident as any accident that occurs during transportation of people and goods. It comprises of accidents involving air, road, rail, water, and pipeline transport. With over 1.2 million people killed each year, road accidents are one of the world's leading causes of death; another 20-50 million people are injured each year on the world's roads while walking, cycling, or driving. Transport accidents of other types including air, rail, and water transport accidents are not as numerous as road crashes, but the relative risk of each accident is much higher because of the higher number of people killed and injured per accident. Pipeline ruptures cause large damages to the environment. That is why safety and security are of primary concern for any transport system. The transport system of the Russian Federation (RF) is one of the most extensive in the world. It includes 1,283,000 km of public roads, more than 600,000 km of airlines, more than 200,000 km of gas, oil, and product pipelines, 115,000 km of inland waterways, and 87,000 km of railways. The transport system, especially the transport infrastructure of the country is exposed to impacts of various natural hazards and weather extremes such as heavy rains, snowfalls, snowdrifts, floods, earthquakes, volcanic eruptions, landslides, snow avalanches, debris flows, rock falls, fog or icing roads, and other natural factors that additionally trigger many accidents. In June 2014, the Ministry of Transport of the RF has compiled a new version of the Transport Strategy of the RF up to 2030. Among of the key pillars of the Strategy are to increase the safety of the transport system and to reduce negative environmental impacts. Using the data base of technological accidents that was created by the author, the study investigates temporal variations and regional differences of the transport accidents' risk within the Russian federal regions and a contribution of natural factors to occurrences of different

  16. The Projected Impacts to Clark County and Local Governmental Public Safety Agencies Resulting from the Transportation of High-Level Nuclear Waste to Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushkatel, A.H.; Conway, S.; Navis, I.

    2006-07-01

    This paper focuses on the difficulties of projecting fiscal impacts to public safety agencies from the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The efforts made by Clark County Nevada, to develop a fiscal model of impacts for public safety agencies are described in this paper. Some of the difficulties in constructing a fiscal model of impacts for the entire 24 year high-level nuclear waste transportation shipping campaign are identified, and a refined methodology is provided to accomplish this task. Finally, a comparison of the fiscal impact projections for public safety agencies that Clark County developed in 2001,more » with those done in 2005 is discussed, and the fiscal impact cost projections for the entire 24 year transportation campaign are provided. (authors)« less

  17. A study of characteristics of intercity transportation systems. Phase 1: Definition of transportation comparison methodology

    NASA Technical Reports Server (NTRS)

    English, J. M.; Smith, J. L.; Lifson, M. W.

    1978-01-01

    The objectives of this study are: (1) to determine a unified methodological framework for the comparison of intercity passenger and freight transportation systems; (2) to review the attributes of existing and future transportation systems for the purpose of establishing measures of comparison. These objectives were made more specific to include: (1) development of a methodology for comparing long term transportation trends arising from implementation of various R&D programs; (2) definition of value functions and attribute weightings needed for further transportation goals.

  18. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  19. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  20. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    DOT National Transportation Integrated Search

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...