Sample records for waste treatment capacity

  1. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  2. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  3. Reductive capacity measurement of waste forms for secondary radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less

  4. Centralized waste treatment of industrial wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzberg, E.R.; Cushnie, G.C. Jr.

    1985-01-01

    Centralized waste treatment (CWT) for industrial wastewater is described in this book. With the CWT approach, industrial firms send their wastes to a common processing plant. The book addresses the engineering and business-related problems that are encountered by private CWT firms, local governments, and industry in creating sufficient CWT capacity to meet the growing demand for CWT services.

  5. Global capacity, potentials and trends of solid waste research and management.

    PubMed

    Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan

    2017-09-01

    In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.

  6. On-site or off-site treatment of medical waste: a challenge

    PubMed Central

    2014-01-01

    Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145

  7. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System

  8. Environmental and economic vision of plasma treatment of waste in Makkah

    NASA Astrophysics Data System (ADS)

    Galaly, Ahmed Rida; van Oost, Guido

    2017-10-01

    An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia (KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435H (2015), and is growing at a rate of 3%-5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project (PTP) encompasses the direct plasma treatment of all types of waste (from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasma-treatment process is estimated at 5000 kW (2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that: (1) the processing capacity of solid waste is 100 tons per day (2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh. (3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and (4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages: (1) study and treatment of waste streams, (2) slaughterhouse waste treatment, (3) treatment of refuse-derived fuel, (4) treatment of car tires and (5) treatment of slag (the fifth stage associated with each stage from the four previous stages).

  9. Current Capabilities and Capacity of Ebola Treatment Centers in the United States.

    PubMed

    Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Gibbs, Shawn G; Le, Aurora B; Smith, Philip W; Hewlett, Angela L; Lowe, John J

    2016-03-01

    To describe current Ebola treatment center (ETC) locations, their capacity to care for Ebola virus disease patients, and infection control infrastructure features. A 19-question survey was distributed electronically in April 2015. Responses were collected via email by June 2015 and analyzed in an electronic spreadsheet. The survey was sent to and completed by site representatives of each ETC. The survey was sent to all 55 ETCs; 47 (85%) responded. Of the 47 responding ETCs, there are 84 isolation beds available for adults and 91 for children; of these pediatric beds, 35 (38%) are in children's hospitals. In total, the simultaneous capacity of the 47 reporting ETCs is 121 beds. On the basis of the current US census, there are 0.38 beds per million population. Most ETCs have negative pressure isolation rooms, anterooms, and a process for category A waste sterilization, although only 11 facilities (23%) have the capability to sterilize infectious waste on site. Facilities developed ETCs on the basis of Centers for Disease Control and Prevention guidance, but specific capabilities are not mandated at this present time. Owing to the complex and costly nature of Ebola virus disease treatment and variability in capabilities from facility to facility, in conjunction with the lack of regulations, nationwide capacity in specialized facilities is limited. Further assessments should determine whether ETCs can adapt to safely manage other highly infectious disease threats.

  10. Capacity planning for waste management systems: an interval fuzzy robust dynamic programming approach.

    PubMed

    Nie, Xianghui; Huang, Guo H; Li, Yongping

    2009-11-01

    This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.

  11. FY 2018 Tribal Waste Management Capacity Building Training Grant

    EPA Pesticide Factsheets

    This notice announces the availability of funds and solicits proposals from eligible entities that will provide training and travel scholarships to federally-recognized tribes in support of waste management capacity building on tribal lands.

  12. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less

  13. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  14. The EPA-Wide Plan to Provide Solid Waste Management Capacity Assistance to Tribes

    EPA Pesticide Factsheets

    This Plan is a strategy for building tribal capacity to manage solid waste. The Plan promotes the development and implementation of integrated waste management plans and describes how EPA will prioritize its resources to maximize environmental benefits.

  15. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  16. Economic analysis of gradual "social exhaustion" of waste management capacity.

    PubMed

    Koide, Hideo; Nakayama, Hirofumi

    2013-12-01

    This article proposes to analyze the quantitative effects of a gradual physical and "social" exhaustion of a landfill site on an equilibrium waste management service. A gradual social exhaustion of a landfill is defined here as an upward shift of a "subjective factor" associated with the amount of waste, based on the plausible hypothesis that an individual will not accept excessive presence of landfilled waste. Physical exhaustion occurs when the absolute capacity of a landfill site decreases. The paper shows some numerical examples using specific functions and parameters, and proposes appropriate directions for three policy objectives: to decrease the equilibrium waste disposal, to increase the economic surplus of the individual and/or the waste management firm, and to lower the equilibrium collection fee. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  18. Influence of feedstock on the copper removal capacity of waste-derived biochars.

    PubMed

    Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe

    2016-07-01

    Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  20. Expanding primary care capacity by reducing waste and improving the efficiency of care.

    PubMed

    Shipman, Scott A; Sinsky, Christine A

    2013-11-01

    Most solutions proposed for the looming shortage of primary care physicians entail strategies that fall into one of three categories: train more, lose fewer, or find someone else. A fourth strategy deserves more attention: waste less. This article examines the remarkable inefficiency and waste in primary care today and highlights practices that have addressed these problems. For example, delegating certain administrative tasks such as managing task lists in the electronic health record can give physicians more time to see additional patients. Flow managers who guide physicians from task to task throughout the clinical day have been shown to improve physicians' efficiency and capacity. Even something as simple as placing a printer in every exam room can save each physician twenty minutes per day. Modest but systemwide improvements could yield dramatic gains in physician capacity while potentially reducing physician burnout and its implications for the quality of care. If widely adopted, small efforts to empower nonphysicians, reengineer workflows, exploit technology, and update policies to eliminate wasted effort could yield the capacity for millions of additional patient visits per year in the United States.

  1. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Wastemore » Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.« less

  2. Capacity Assurance - A Twenty Year Planning Tool for the Future Management of Hazardous Waste

    EPA Pesticide Factsheets

    This page contains information about the assessment of national capacity is intended to reflect the reality of waste flows and needs for future management capacity along with the 2015 report, previous reports, and supporting documents

  3. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  4. Performance of mechanical biological treatment of residual municipal waste in Poland

    NASA Astrophysics Data System (ADS)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  5. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Crawford, C.; Cozzi, A.

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  6. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    NASA Astrophysics Data System (ADS)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  7. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  8. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.

    PubMed

    Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan

    2014-03-01

    This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.

  9. Detection, composition and treatment of volatile organic compounds from waste treatment plants.

    PubMed

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  10. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  11. Capacity planning for electronic waste management facilities under uncertainty: multi-objective multi-time-step model development.

    PubMed

    Poonam Khanijo Ahluwalia; Nema, Arvind K

    2011-07-01

    Selection of optimum locations for locating new facilities and decision regarding capacities at the proposed facilities is a major concern for municipal authorities/managers. The decision as to whether a single facility is preferred over multiple facilities of smaller capacities would vary with varying priorities to cost and associated risks such as environmental or health risk or risk perceived by the society. Currently management of waste streams such as that of computer waste is being done using rudimentary practices and is flourishing as an unorganized sector, mainly as backyard workshops in many cities of developing nations such as India. Uncertainty in the quantification of computer waste generation is another major concern due to the informal setup of present computer waste management scenario. Hence, there is a need to simultaneously address uncertainty in waste generation quantities while analyzing the tradeoffs between cost and associated risks. The present study aimed to address the above-mentioned issues in a multi-time-step, multi-objective decision-support model, which can address multiple objectives of cost, environmental risk, socially perceived risk and health risk, while selecting the optimum configuration of existing and proposed facilities (location and capacities).

  12. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  13. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors

  14. Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, P. A.; Vaishnav, S.; Forder, S. D.

    2017-02-01

    The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2), with a highmore » goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less

  15. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2018-04-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  16. Technology for Waste Treatment at Remote Army Sites

    DTIC Science & Technology

    1986-09-01

    Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by

  17. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Hadiyanto

    2018-02-01

    Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  18. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.

    PubMed

    Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P

    2018-03-01

    The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.

  19. Contribution of wastes and biochar amendment to the sorption capacity of heavy metals by a minesoil

    NASA Astrophysics Data System (ADS)

    Forján, Rubén; Asensio, Verónica; Vega, Flora A.; Andrade, Luisa; Covelo, Emma F.

    2013-04-01

    The use of wastes as soil amendments is a technique applied to reduce the available concentration of heavy metals in polluted sites (Pérez-de-Mora et al., 2005). However, the used wastes sometimes have high concentration of metals such as Cu, Pb, and Zn. Therefore, the sorption capacity of the amendments is important to understand its behavior in soil. The settling pond soil in a mine (S) located at Touro (Spain) was amended with a mixture of sewage sludges, sludges from an aluminum plant, ash, food industry wastes, sands from a wastewater treatment plant and biochar (A). The present study was performed to determine the influence of the addition of the amendment (A) in the sorption capacity of Cu, Pb, and Zn of the studied soil (S). The amendment (A) and the soil (S) were mixed (SA) at 20, 40, 60% and then introduced into glass vessels. The amendment A and S the soil at 100% were also introduced in glass vials as control samples. Mixtures and controls were incubated to field capacity for one month. To evaluate the sorption capacity of the soil and the mixtures soil-amendment, sorption isotherms were constructed using multiple-metal solutions of Cu, Pb and Zn nitrates (0.03, 0.05, 0.08, 0.1 and 0.5 mmol L-1) containing 0.01 M NaNO3 as background electrolyte (Vega et al., 2009). The overall capacity of the soil to sorb Cu, Pb y Zn was evaluated as the slope Kr (Vega et al., 2008). The sorption capacity of the amendment (A) is higher than the soil (S) for the three studied elements, which reflects that this amendment has a binding capacity of Cu, Pb and Zn higher than soil (S) (P <0.05). The soil-amendment mixtures (SA) in all proportions used, except 20% for Zn, also showed higher sorption capacity than the soil (S). The amended soil has higher sorption capacity of Cu, Pb and Zn than the soil without amending (P < 0.05). The element preferably sorbed by SA in the proportions 20, 40 and 60% is Pb and the least sorbed is Zn. The amendment without mixing with the soil

  20. Using phytoremediation technologies to upgrade waste water treatment in Europe.

    PubMed

    Schröder, Peter; Navarro-Aviñó, Juan; Azaizeh, Hassan; Goldhirsh, Avi Golan; DiGregorio, Simona; Komives, Tamas; Langergraber, Günter; Lenz, Anton; Maestri, Elena; Memon, Abdul R; Ranalli, Alfonso; Sebastiani, Luca; Smrcek, Stanislav; Vanek, Tomas; Vuilleumier, Stephane; Wissing, Frieder

    2007-11-01

    One of the burning problems of our industrial society is the high consumption of water and the high demand for clean drinking water. Numerous approaches have been taken to reduce water consumption, but in the long run it seems only possible to recycle waste water into high quality water. It seems timely to discuss alternative water remediation technologies that are fit for industrial as well as less developed countries to ensure a high quality of drinking water throughout Europe. The present paper discusses a range of phytoremediation technologies to be applied in a modular approach to integrate and improve the performance of existing wastewater treatment, especially towards the emerging micro pollutants, i.e. organic chemicals and pharmaceuticals. This topic is of global relevance for the EU. Existing technologies for waste water treatment do not sufficiently address increasing pollution situation, especially with the growing use of organic pollutants in the private household and health sector. Although some crude chemical approaches exist, such as advanced oxidation steps, most waste water treatment plants will not be able to adopt them. The same is true for membrane technologies. Incredible progress has been made during recent years, thus providing us with membranes of longevity and stability and, at the same time, high filtration capacity. However, these systems are expensive and delicate in operation, so that the majority of communities will not be able to afford them. Combinations of different phytoremediation technologies seem to be most promising to solve this burning problem. To quantify the occurrence and the distribution of micropollutants, to evaluate their effects, and to prevent them from passing through wastewater collection and treatment systems into rivers, lakes and ground water bodies represents an urgent task for applied environmental sciences in the coming years. Public acceptance of green technologies is generally higher than that of

  1. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  2. Packaged Waste Treatment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This Jacksonville, Florida, apartment complex has a wastewater treatment system which clears the water, removes harmful microorganisms and reduces solid residue to ash. It is a spinoff from spacecraft waste management and environmental control technology.

  3. Life cycle assessment of electronic waste treatment.

    PubMed

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    DOE PAGES

    Bingham, Paul A.; Vaishnav, Shuchi; Forder, Sue D.; ...

    2016-11-10

    In this paper, the capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2),more » with a high goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Finally, results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less

  5. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department ofmore » Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document.« less

  6. National and State Treatment Need and Capacity for Opioid Agonist Medication-Assisted Treatment

    PubMed Central

    Campopiano, Melinda; Baldwin, Grant; McCance-Katz, Elinore

    2015-01-01

    Objectives. We estimated national and state trends in opioid agonist medication-assisted treatment (OA-MAT) need and capacity to identify gaps and inform policy decisions. Methods. We generated national and state rates of past-year opioid abuse or dependence, maximum potential buprenorphine treatment capacity, number of patients receiving methadone from opioid treatment programs (OTPs), and the percentage of OTPs operating at 80% capacity or more using Substance Abuse and Mental Health Services Administration data. Results. Nationally, in 2012, the rate of opioid abuse or dependence was 891.8 per 100 000 people aged 12 years or older compared with national rates of maximum potential buprenorphine treatment capacity and patients receiving methadone in OTPs of, respectively, 420.3 and 119.9. Among states and the District of Columbia, 96% had opioid abuse or dependence rates higher than their buprenorphine treatment capacity rates; 37% had a gap of at least 5 per 1000 people. Thirty-eight states (77.6%) reported at least 75% of their OTPs were operating at 80% capacity or more. Conclusions. Significant gaps between treatment need and capacity exist at the state and national levels. Strategies to increase the number of OA-MAT providers are needed. PMID:26066931

  7. Bulky waste quantities and treatment methods in Denmark.

    PubMed

    Larsen, Anna W; Petersen, Claus; Christensen, Thomas H

    2012-02-01

    Bulky waste is a significant and increasing waste stream in Denmark. However, only little research has been done on its composition and treatment. In the present study, data about collection methods, waste quantities and treatment methods for bulky waste were obtained from two municipalities. In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150-250 kg capita(-1) year(-1), and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions were identified of which ten were recyclable and constituted 50-60% of the total quantity. The others were combustible waste for incineration (30-40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled. The recyclable materials were in many cases exported to other countries which made it difficult to track their destination and further treatment.

  8. Extractable and Non-Extractable Phenolics and Antioxidant Capacity of Mandarin Waste Dried at Different Temperatures.

    PubMed

    Esparza-Martínez, Francisco J; Miranda-López, Rita; Mata-Sánchez, Sara M; Guzmán-Maldonado, Salvador H

    2016-09-01

    The mandarin industry is generating more waste due to the increasing demand for juice. In this study, extractable and non-extractable phenolics as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC) antioxidant activities in Satsuma mandarin waste dried at different temperatures were determined. The amounts of non-extractable total phenols, total flavonoids, and condensed tannins measured in mandarin waste dried at 120 °C were 39.4, 44.3, and 45.6 %, respectively, which were higher than those of fresh-mandarin waste. Dried mandarin waste is rich in extractable and non-extractable hesperidin (259.86 and 182.52 mg/g, respectively) and eriocitrin (85.12 and 197.24 mg/g, respectively), as well as non-extractable gallic acid (36.08 μg/g). The antioxidant capacities of extractable and non-extractable phenolics, from the highest to the lowest, were ABTS > ORAC > DPPH > FRAP and ORAC > ABTS > DPPH > FRAP, respectively. The information reported here may encourage mandarin industry operators to re-evaluate their by-products, extending the application of mandarin fruits and reducing waste.

  9. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  10. Life cycle assessment of electronic waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less

  11. The use of fly larvae for organic waste treatment.

    PubMed

    Čičková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

    2015-01-01

    The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and

  12. Vermicomposting as an advanced biological treatment for industrial waste from the leather industry.

    PubMed

    Nunes, Ramom R; Bontempi, Rhaissa M; Mendonça, Giovane; Galetti, Gustavo; Rezende, Maria Olímpia O

    2016-01-01

    The leather industry (tanneries) generates high amounts of toxic wastes, including solid and liquid effluents that are rich in organic matter and mineral content. Vermicomposting was studied as an alternative method of treating the wastes from tanneries. Vermicompost was produced from the following tannery residues: tanned chips of wet-blue leather, sludge from a liquid residue treatment station, and a mixture of both. Five hundred earthworms (Eisenia fetida) were added to each barrel. During the following 135 days the following parameters were evaluated: pH, total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), C:N ratio, and chromium content as Cr (III) and Cr (VI). The results for pH, TOC and OM contents showed decreases in their values during the composting process, whereas values for CEC and total nitrogen rose, indicating that the vermicompost reached maturity. For chromium, at 135 days, all values of Cr (VI) were below the detectable level. Therefore, the Cr (VI) content had probably been biologically transformed into Cr (III), confirming the use of this technique as an advanced biological treatment. The study reinforces the idea that vermicomposting could be introduced as an effective technology for the treatment of industrial tannery waste and the production of agricultural inputs.

  13. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  14. Quantifying capital goods for biological treatment of organic waste.

    PubMed

    Brogaard, Line K; Petersen, Per H; Nielsen, Peter D; Christensen, Thomas H

    2015-02-01

    Materials and energy used for construction of anaerobic digestion (AD) and windrow composting plants were quantified in detail. The two technologies were quantified in collaboration with consultants and producers of the parts used to construct the plants. The composting plants were quantified based on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest contribution to Global Warming. The total impact on Global Warming from the capital goods compared to the operation reported in the literature on the AD plant showed an insignificant contribution of 1-2%. For the composting plants, the capital goods accounted for 10-22% of the total impact on Global Warming from composting. © The Author(s) 2015.

  15. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  16. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  17. Solids, organic load and nutrient concentration reductions in swine waste slurry using a polyacrylamide (PAM)-aided solids flocculation treatment.

    PubMed

    Walker, Paul; Kelley, Tim

    2003-11-01

    Increased swine production results in concentration of wastes generated within a limited geographical area, which may lead to land application rates exceeding the local or regional assimilatory capacity. This may result in pollutant transfer through surface water or soil-groundwater systems, environmental degradation, and/or odor concerns. Existing swine waste pit storage and lagoon treatment technologies may be inadequate to store or treat waste prior to land application without these concerns resulting. Efficient swine waste solids separation may reduce environmental health concerns and generate a value-added bioresource (solids). This study evaluated the efficiency of a polyacrylamide (PAM) flocculant-aided solids separation treatment to reduce pollution indicator concentrations in raw (untreated) swine waste slurry. Swine waste slurry solids separation efficiency through gravity settling (sedimentation) was evaluated before and after the addition of a proprietary polymeric (PAM) flocculant. Results indicated that polymer amendments at concentrations of 62.5-750 mg/l improved slurry solids separation efficiency and significantly reduced concentrations of other associated aquatic pollution indicators in a majority of analyses conducted (33 of 50 total analyses conducted). Results also suggested that PAM-aided solids separation from swine waste slurry might facilitate further treatment and/or disposal and therefore reduce associated environmental degradation potential.

  18. Influences of operational practices on municipal solid waste landfill storage capacity.

    PubMed

    Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng

    2013-03-01

    The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.

  19. Secondary Waste Form Development and Optimization—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  20. Centralized treatment of industrial wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzberg, E.R.

    1982-08-01

    A low-cost and effective alternative to on-site treatment of industrial wastes which can be used by firms in many areas of the country is described. Under the CWT approach, firms send their wastes to a common processing plant. In the right situations and with the proper kind of inexpensive retrofitting measures, CWT can drastically reduce the cost of treating industrial wastewater because of economies of scale. As well as saving money, CWT has several environmental advantages. First, these facilities are operated by professional waste handlers who should be able to treat and manage the waste more effectively than the generatingmore » firms. Second, the CWT can dramatically increase the potential for recovery of chemicals, which not only reduces the firm's wastewater costs but also the burdens of sludge handling and disposal. EPA, consultants, and local communities have been working on this concept for the last three years. During that time, they have been studying the feasibility of several CWT alternatives already in use in foreign countries for treating electroplating wastewater. In addition to waste treatment, CWT can also provide cogeneration of power, common laboratory facilities and, probably a bulk purchasing cooperative. 3 figures. (JMT)« less

  1. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries.

    PubMed

    Aleluia, João; Ferrão, Paulo

    2017-11-01

    The management of municipal solid waste (MSW) is one of the main costs incurred by local authorities in developing countries. According to some estimates, these costs can account for up to 50% of city government budgets. It is therefore of importance that policymakers, urban planners and practitioners have an adequate understanding of what these costs consist of, from collection to final waste disposal. This article focuses on a specific stage of the MSW value chain, the treatment of waste, and it aims to identify cost patterns associated with the implementation and operation of waste treatment approaches in developing Asian countries. An analysis of the capital (CAPEX) and operational expenditures (OPEX) of a number of facilities located in countries of the region was conducted based on a database gathering nearly 100 projects and which served as basis for assessing four technology categories: composting, anaerobic digestion (AD), thermal treatment, and the production of refuse-derived fuel (RDF). Among these, it was found that the least costly to invest, asa function of the capacity to process waste, are composting facilities, with an average CAPEX per ton of 21,493 USD 2015 /ton. Conversely, at the upper end featured incineration plants, with an average CAPEX of 81,880 USD 2015 /ton, with this treatment approach ranking by and large as the most capital intensive of the four categories assessed. OPEX figures of the plants, normalized and analyzed in the form of OPEX/ton, were also found to be higher for incineration than for biological treatment methods, although on this component differences amongst the technology groups were less pronounced than those observed for CAPEX. While the results indicated the existence of distinct cost implications for available treatment approaches in the developing Asian context, the analysis also underscored the importance of understanding the local context asa means to properly identify the cost structure of each specific plant

  2. 40 CFR 268.43 - Treatment standards expressed as waste concentrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Treatment Standards § 268.43 Treatment standards expressed as waste concentrations. For the requirements previously found in this section and for treatment... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Treatment standards expressed as waste...

  3. Benchmarking of municipal waste water treatment plants (an Austrian project).

    PubMed

    Lindtner, S; Kroiss, H; Nowak, O

    2004-01-01

    An Austrian research project focused on the development of process indicators for treatment plants with different process and operation modes. The whole treatment scheme was subdivided into four processes, i.e. mechanical pretreatment (Process 1), mechanical-biological waste water treatment (Process 2), sludge thickening and stabilisation (Process 3) and further sludge treatment and disposal (Process 4). In order to get comparable process indicators it was necessary to subdivide the sample of 76 individual treatment plants all over Austria into five groups according to their mean organic load (COD) in the influent. The specific total yearly costs, the yearly operating costs and the yearly capital costs of the four processes have been related to the yearly average of the measured organic load expressed in COD (110 g COD/pe/d). The specific investment costs for the whole treatment plant and for Process 2 have been related to a calculated standard design capacity of the mechanical-biological part of the treatment plant expressed in COD. The capital costs of processes 1, 3 and 4 have been related to the design capacity of the treatment plant. For each group (related to the size of the plant) a benchmark band has been defined for the total yearly costs, the total yearly operational costs and the total yearly capital costs. For the operational costs of the Processes 1 to 4 one benchmark ([see symbol in text] per pe/year) has been defined for each group. In addition a theoretical cost reduction potential has been calculated. The cost efficiency in regard to water protection and some special sub-processes such as aeration and sludge dewatering has been analysed.

  4. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less

  6. Treatment of batik waste using distillation method

    NASA Astrophysics Data System (ADS)

    Riyanto, Sidiq, Nurma Yunita; Hidayah, Nailil

    2017-12-01

    In this study has been the treatment of batik waste using distillation method. This study aims to the treatment of batik waste using distillation method. Batik is a world heritage that has an impact on economic improvement and environmental damage. Batik waste is a hazardous and toxic waste material. Batik waste in this research has been taken from Batik Industry in Yogyakarta, Indonesia. Batik waste of 5 L is included in the distillation apparatus, then the distillation run for 4 hours. The distillation product of solids and liquids is collected and analyzed. The solid produced at the distillation boiler was analyzed by FTIR. The distillation liquid was analyzed ammonia and COD concentration using UV-Vis Spectrophotometer. The result of the analysis showed that based on FTIR spectra obtained by dye with high purity. The analysis results shown are of ammonia, COD and pH were 0.652 mg/L, 238.31 mg/L, and 7.306, respectively. The compounds produced by boiler are the azo dye based on the spectrum at wave numbers 1554.07 cm-1. The conclusion of this research is that the distillation method is very suitable for the treatment of the batik waste at small batik industry. Advantages of distillation techniques that can be obtained two products are water and dye that can be used in batik industry.

  7. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  8. Individual treatment of hotel and restaurant waste water in rural areas.

    PubMed

    Van Hulle, S W H; Ghyselbrecht, N; Vermeiren, T J L; Depuydt, V; Boeckaert, C

    2012-01-01

    About 25 hotels, restaurants and pubs in the rural community Heuvelland are situated in the area designated for individual water treatment. In order to meet the legislation by the end of 2015, each business needs to install an individual waste water treatment system (IWTS). To study this situation, three catering businesses were selected for further research. The aim of the study was to quantify the effluent quality and to assess IWTS performance for these catering businesses. First of all, the influence of discharging untreated waste water on the receiving surface water was examined. The results showed a decrease in water quality after the discharge point at every business. With the collected data, simulations with the software WEST were performed. With this software two types of IWTSs with different (buffer) volumes were modelled and tested for each catering business. The first type is a completely mixed activated sludge reactor and the second type is a submerged aerobic fixed-bed reactor. The results of these simulations demonstrate that purification with an IWTS is possible if the capacity is large enough and if an adequate buffer volume is installed and if regular maintenance is performed.

  9. Universities in capacity building in sustainable development: focus on solid waste management and technology.

    PubMed

    Agamuthu, P; Hansen, Jens Aage

    2007-06-01

    This paper analyses some of the higher education and research capacity building experiences gained from 1998-2006 by Danish and Malaysian universities. The focus is on waste management, directly relating to both the environmental and socio-economic dimensions of sustainable development. Primary benefits, available as an educational legacy to universities, were obtained in terms of new and enhanced study curricula established on Problem-oriented Project-based Learning (POPBL) pedagogy, which strengthened academic environmental programmes at Malaysian and Danish universities. It involved more direct and mutually beneficial cooperation between academia and businesses in both countries. This kind of university reach-out is considered vital to development in all countries actively striving for global and sustainable development. Supplementary benefits were accrued for those involved directly in activities such as the 4 months of field studies, workshops, field courses and joint research projects. For students and academics, the gains have been new international dimensions in university curricula, enhanced career development and research collaboration based on realworld cases. It is suggested that the area of solid waste management offers opportunities for much needed capacity building in higher education and research, contributing to sustainable waste management on a global scale. Universities should be more actively involved in such educational, research and innovation programmes to make the necessary progress. ISWA can support capacity building activities by utilizing its resources--providing a lively platform for debate, securing dissemination of new knowledge, and furthering international networking beyond that which universities already do by themselves. A special challenge to ISWA may be to improve national and international professional networks between academia and business, thereby making education, research and innovation the key driving mechanisms in

  10. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.

    PubMed

    Helftewes, Markus; Flamme, Sabine; Nelles, Michael

    2012-04-01

    This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.

  11. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  12. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  13. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  14. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  15. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  16. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures andmore » are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The

  17. Formation of PCDD and PCDF in the thermal treatment of footwear leather wastes.

    PubMed

    Godinho, Marcelo; Marcilio, Nilson Romeu; Masotti, Leonardo; Martins, Celso Brisolara; Ritter, Diego Elias; Wenzel, Bruno München

    2009-08-15

    The leather waste generated by the footwear industry is considered dangerous due to the presence of trivalent chromium, derived from the salt utilized to tan hides. In Brazil, the majority of this waste is disposed on landfills and only about 3% are recycled. The thermal treatment is an alternative method for purification of such residues. By using this technique it is possible to generate energy and recover the chromium present in the ash for the production of basic chromium sulfate (tanning industry), high carbon ferrochromium or carbon-free ferrochromium (steel industry). In the last 10 years, the gasification and combustion of footwear leather waste have been intensively studied at the Federal University of Rio Grande do Sul. The research experiment for characterization of the emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) were carried out in a semi-pilot unit (350 kW(th)). From new investments the thermal capacity of the unit will increase to 600 kW(th). The unit will produce power from the heat generated in the combustion. The experimental results indicated that during the thermal treatment of footwear leather wastes, the formation mechanism of PCDD/F is the de novo synthesis. Most of PCDD/F were found in the particulate phase (>95%). A kinetic model was used for discussion of the achieved experimental results. The model is based in the carbon gasification, PCDD/F formation, desorption and degradation. From the conclusions obtained in this work will be possible minimize the PCDD/F formation in process of combustion of footwear leather wastes.

  18. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  19. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less

  20. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    PubMed

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy.

  1. Modeling of urban solid waste management system: The case of Dhaka city

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, M.A.; Bala, B.K.

    2007-07-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less

  2. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    PubMed

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  4. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Report: EPA Needs an Agency-Wide Plan to Provide Tribal Solid Waste Management Capacity Assistance

    EPA Pesticide Factsheets

    Report #11-P-0171, March 21, 2011. EPA cannot determine whether its efforts are assisting tribal governments in developing the capacity to manage solid waste or reduce the risks of open dumps in Indian country.

  6. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  7. Microbiology of Waste Treatment.

    ERIC Educational Resources Information Center

    Unz, Richard F.

    1978-01-01

    Presents a literature review of the microbiology of waste treatment, covering publications of 1976-77. This review includes topics such as: (1) sanitary microbiology; (2) wastewater disinfectant; (3) viruses in wastewater; and (4) wastewater microbial populations. A list of 142 references is also presented. (HM)

  8. Economic and environmental optimization of waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Münster, M.; Ravn, H.; Hedegaard, K.

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less

  9. Examination of food waste co-digestion to manage the peak in energy demand at wastewater treatment plants.

    PubMed

    Lensch, D; Schaum, C; Cornel, P

    2016-01-01

    Many digesters in Germany are not operated at full capacity; this offers the opportunity for co-digestion. Within this research the potentials and limits of a flexible and adapted sludge treatment are examined with a focus on the digestion process with added food waste as co-substrate. In parallel, energy data from a municipal wastewater treatment plant (WWTP) are analysed and lab-scale semi-continuous and batch digestion tests are conducted. Within the digestion tests, the ratio of sewage sludge to co-substrate was varied. The final methane yields show the high potential of food waste: the higher the amount of food waste the higher the final yield. However, the conversion rates directly after charging demonstrate better results by charging 10% food waste instead of 20%. Finally, these results are merged with the energy data from the WWTP. As an illustration, the load required to cover base loads as well as peak loads for typical daily variations of the plant's energy demand are calculated. It was found that 735 m³ raw sludge and 73 m³ of a mixture of raw sludge and food waste is required to cover 100% of the base load and 95% of the peak load.

  10. Treatment and disposal alternatives for health-care waste in developing countries--a case study in Istanbul, Turkey.

    PubMed

    Alagöz, B Aylin Zeren; Kocasoy, Günay

    2007-02-01

    Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.

  11. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Treatment of industrial wastes. 35.925... FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs...

  12. Adsorption of methylene blue on an agro-waste oiltea shell with and without fungal treatment

    NASA Astrophysics Data System (ADS)

    Liu, Jiayang; Li, Enzhong; You, Xiaojuan; Hu, Changwei; Huang, Qingguo

    2016-12-01

    A lignocellulosic waste oiltea shell (OTS) was evaluated as an inexpensive sorbent to remove methylene blue (MB) from aqueous solution. Fungal treatment of OTS increased the MB adsorption by modifying the physicochemical properties of OTS and simultaneously produced laccase as a beneficial co-product. Without fungal treatment, the maximum amount of adsorption (qm) of MB by OTS was 64.4 mg/g, whereas the treatment with fungus Pycnoporus sp. and Trametes versicolor increased qm up to 72.5 mg/g and 85.7 mg/g, respectively. This is because of the improved surface area and pore sizes as well as altered chemical compositions. The equilibrium sorption data for OTS both with and without treatment fitted to the Langmuir model, and the sorption rate data well fitted to the pseudo second-order kinetic model. The changes in free energy (ΔG°) and separation factor (RL) indicated that the sorption was spontaneous and favorable. Scanning electron microscopy and Fourier transform infrared spectroscopy showed the changes in the surface morphology and functional groups of OTS after fungal treatment. The agro-waste OTS could be utilized as a low-cost adsorbent for efficient dye removal, and fungal treatment can serve as a mild and clean technique to increase the adsorptive capacity of OTS.

  13. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs... sources or (b) costs allocable to the treatment for control or removal of pollutants in wastewater... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of industrial wastes. 35.925...

  14. Medical waste treatment and decontamination system

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  15. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.

    PubMed

    Savvilotidou, Vasiliki; Hahladakis, John N; Gidarakos, Evangelos

    2015-11-01

    The purpose of Directive 2012/19/EU which is related to WEEE (Waste Electrical and Electronic Equipment), also known as "e-waste", is to contribute to their sustainable production and consumption that would most possibly be achieved by their recovery, recycling and reuse. Under this perspective, the present study focused on the recovery of valuable materials, metals and metalloids from LCDs (Liquid Crystal Displays). Indium (In), arsenic (As) and stibium (Sb) were selected to be examined for their Leaching Capacity (R) from waste LCDs. Indium was selected mainly due to its rarity and preciousness, As due to its high toxicity and wide use in LCDs and Sb due to its recent application as arsenic's replacement to improve the optimal clarity of a LCD screen. The experimental procedure included disassembly of screens along with removal and recovery of polarizers via thermal shock, cutting, pulverization and digestion of the shredded material and finally leaching evaluation of the aforementioned elements. Leaching tests were conducted under various temperatures, using various solid:liquid (S/L) ratios and solvents (acid mixtures), to determine the optimal conditions for obtaining the maximum leaching capacities. The examined elements exhibited different leaching behaviors, mainly due to the considerable diversity in their inherent characteristic properties. Indium demonstrated the highest recovery percentages (approximately 60%), while the recovery of As and Sb was unsuccessful, obtaining poor leaching percentages (0.16% and 0.5%, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO 4 - in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O 4 -, which is very soluble. Consequently the rate of technetium oxidation front advancementmore » into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth

  17. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less

  18. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less

  19. Waste battery treatment options: comparing their environmental performance.

    PubMed

    Briffaerts, K; Spirinckx, C; Van der Linden, A; Vrancken, K

    2009-08-01

    Waste consumer batteries are recycled using different routes based on hydrometallurgical and pyrometallurgical processes. Two hydrometallurgical and two pyrometallurgical treatment scenarios are compared starting from an average composition of Belgian waste batteries. The environmental performance is compared using life cycle analysis (LCA). The recycling rate is studied through mass balance calculation. Each treatment scenario results in a specific recycling rate. The environmental impact and benefits also vary between the treatment options. There is no such thing as a typical hydrometallurgical or pyrometallurgical treatment. When applying a hydrometallurgical treatment scenario, the focus lies on zinc and iron recycling. When allowing manganese recycling, the energy demand of the hydrometallurgical process increases considerably. Both pyrometallurgical options recycle zinc, iron and manganese. According to the LCA, none of the treatment scenarios performs generally better or worse than the others. Each option has specific advantages and disadvantages. The Batteries Directive 2006/66/EC sets out a recycling rate of 50% for consumer waste batteries. Based on metal recycling alone, the mass balances show that the target is difficult to obtain.

  20. The status and developments of leather solid waste treatment: A mini-review.

    PubMed

    Jiang, Huiyan; Liu, Junsheng; Han, Wei

    2016-05-01

    Leather making is one of the most widespread industries in the world. The production of leather goods generates different types of solid wastes and wastewater. These wastes will pollute the environment and threat the health of human beings if they are not well treated. Consequently, the treatment of pollution caused by the wastes from leather tanning is really important. In comparison with the disposal of leather wastewater, the treatment of leather solid wastes is more intractable. Hence, the treatment of leather solid wastes needs more innovations. To keep up with the rapid development of the modern leather industry, various innovative techniques have been newly developed. In this mini-review article, the major achievements in the treatment of leather solid wastes are highlighted. Emphasis will be placed on the treatment of chromium-tanned solid wastes; some new approaches are also discussed. We hope that this mini-review can provide some valuable information to promote the broad understanding and effective treatment of leather solid wastes in the leather industry. © The Author(s) 2016.

  1. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  2. STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT

    EPA Science Inventory

    EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...

  3. 45 CFR 96.126 - Capacity of treatment for intravenous substance abusers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION BLOCK GRANTS Substance Abuse Prevention and Treatment Block Grant § 96.126 Capacity of treatment... programs that receive funding under the grant and that treat individuals for intravenous substance abuse to... 45 Public Welfare 1 2014-10-01 2014-10-01 false Capacity of treatment for intravenous substance...

  4. 45 CFR 96.126 - Capacity of treatment for intravenous substance abusers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION BLOCK GRANTS Substance Abuse Prevention and Treatment Block Grant § 96.126 Capacity of treatment... programs that receive funding under the grant and that treat individuals for intravenous substance abuse to... 45 Public Welfare 1 2013-10-01 2013-10-01 false Capacity of treatment for intravenous substance...

  5. 45 CFR 96.126 - Capacity of treatment for intravenous substance abusers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION BLOCK GRANTS Substance Abuse Prevention and Treatment Block Grant § 96.126 Capacity of treatment... programs that receive funding under the grant and that treat individuals for intravenous substance abuse to... 45 Public Welfare 1 2012-10-01 2012-10-01 false Capacity of treatment for intravenous substance...

  6. 45 CFR 96.126 - Capacity of treatment for intravenous substance abusers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION BLOCK GRANTS Substance Abuse Prevention and Treatment Block Grant § 96.126 Capacity of treatment... programs that receive funding under the grant and that treat individuals for intravenous substance abuse to... 45 Public Welfare 1 2011-10-01 2011-10-01 false Capacity of treatment for intravenous substance...

  7. 45 CFR 96.126 - Capacity of treatment for intravenous substance abusers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION BLOCK GRANTS Substance Abuse Prevention and Treatment Block Grant § 96.126 Capacity of treatment... programs that receive funding under the grant and that treat individuals for intravenous substance abuse to... 45 Public Welfare 1 2010-10-01 2010-10-01 false Capacity of treatment for intravenous substance...

  8. Decision-making Capacity for Treatment of Psychotic Patients on Long Acting Injectable Antipsychotic Treatment.

    PubMed

    Nystazaki, Maria; Pikouli, Katerina; Tsapakis, Eva-Maria; Karanikola, Maria; Ploumpidis, Dimitrios; Alevizopoulos, Giorgos

    2018-04-01

    Providing informed, consent requires patients' Decision-Making Capacity for treatment. We evaluated the Decision Making Capacity of outpatients diagnosed with schizophrenia and schizoaffective disorder on treatment with Long Acting Injectable Antipsychotic medication. This is a retrospective, cross-sectional, correlational study conducted at two Depot Clinics in Athens, Greece. Participants included 65 outpatients diagnosed with schizophrenia and schizoaffective disorder on treatment with Long Acting Injectable Antipsychotics. Over half of the participants showed poor understanding of the information given regarding their disease and treatment (Understanding subscale), however >70% seemed to comprehend the relevance of this information to their medical condition (Appreciation subscale). Moreover, half of the participants reported adequate reasoning ability (Reasoning subscale), whilst patients who gained >7% of their body weight scored statistically significantly higher in the subscales of Understanding and Appreciation. Our results suggest that there is a proportion of patients with significantly diminished Decision Making Capacity, hence a full assessment is recommended in order to track them down. Further research is needed to better interpret the association between antipsychotic induced weight gain and Decision Making Capacity in patients suffering from schizophrenia or schizoaffective disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrifymore » all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.« less

  10. An optimization model for collection, haul, transfer, treatment and disposal of infectious medical waste: Application to a Greek region.

    PubMed

    Mantzaras, Gerasimos; Voudrias, Evangelos A

    2017-11-01

    The objective of this work was to develop an optimization model to minimize the cost of a collection, haul, transfer, treatment and disposal system for infectious medical waste (IMW). The model calculates the optimum locations of the treatment facilities and transfer stations, their design capacities (t/d), the number and capacities of all waste collection, transport and transfer vehicles and their optimum transport path and the minimum IMW management system cost. Waste production nodes (hospitals, healthcare centers, peripheral health offices, private clinics and physicians in private practice) and their IMW production rates were specified and used as model inputs. The candidate locations of the treatment facilities, transfer stations and sanitary landfills were designated, using a GIS-based methodology. Specifically, Mapinfo software with exclusion criteria for non-appropriate areas was used for siting candidate locations for the construction of the treatment plant and calculating the distance and travel time of all possible vehicle routes. The objective function was a non-linear equation, which minimized the total collection, transport, treatment and disposal cost. Total cost comprised capital and operation costs for: (1) treatment plant, (2) waste transfer stations, (3) waste transport and transfer vehicles and (4) waste collection bins and hospital boxes. Binary variables were used to decide whether a treatment plant and/or a transfer station should be constructed and whether a collection route between two or more nodes should be followed. Microsoft excel software was used as installation platform of the optimization model. For the execution of the optimization routine, two completely different software were used and the results were compared, thus, resulting in higher reliability and validity of the results. The first software was Evolver, which is based on the use of genetic algorithms. The second one was Crystal Ball, which is based on Monte Carlo

  11. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.

    PubMed

    Atuanya, Ernest I; Aigbirior, Moses

    2002-07-01

    The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera.

  12. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolvanen, Outi K.; Haenninen, Kari I.

    2006-07-01

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxinsmore » and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment.« less

  13. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finucane, K.G.; Thompson, L.E.; Abuku, T.

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear

  14. Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards

    EPA Pesticide Factsheets

    examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.

  15. Biological treatment of hazardous aqueous wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opatken, E.J.; Howard, H.K.; Bond, J.J.

    1987-06-01

    Studies were conducted with a rotating biological conractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous-waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protection Agency's Testing and Evaluation Facility. A series of batches were run with primary effluent from Cincinnati's Mill Creek Sewage Treatment Facility. The paper reports on the results from these experiments and the effectiveness of an RBC to adequately treat leachates from Superfund sites.

  16. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  17. The mixed low-level waste problem in BE/NWN capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.C.

    1999-07-01

    The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less

  18. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, andmore » summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation.« less

  19. Radioactive waste management treatments: A selection for the Italian scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locatelli, G.; Mancini, M.; Sardini, M.

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less

  20. 40 CFR 268.41 - Treatment standards expressed as concentrations in waste extract.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentrations in waste extract. 268.41 Section 268.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Treatment Standards § 268.41 Treatment standards expressed as concentrations in waste extract. For the requirements previously found in this...

  1. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    PubMed

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  3. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions weremore » 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.« less

  4. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    PubMed

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  5. Technoeconomic aspects of alternative municipal solid wastes treatment methods.

    PubMed

    Economopoulos, Alexander P

    2010-04-01

    This paper considers selected treatment technologies for comingled domestic and similar wastes and provides technoeconomic data and information, useful for the development of strategic management plans. For this purpose, treatment technologies of interest are reviewed and representative flow diagrams, along with material and energy balances, are presented for the typical composition of wastes in Greece; possible difficulties in the use of treatment products, along with their management implications, are discussed, and; cost functions are developed, allowing assessment of the initial capital investment and annual operating costs. Based on the latter, cost functions are developed for predicting the normalized treatment costs of alternative methods (in euro/t of MSW treated), as function of the quantity of MSW processed by plants built and operated (a) by municipality associations, and (b) by private enterprises. Finally, the alternative technologies considered are evaluated on the basis of their cost aspects, product utilization and compatibility with the EU waste framework Directive 2008/98. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Utilization of Waste Materials for the Treatment of Waste Water Contaminated with Sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2014-01-01

    The activities were carried out to develop potential adsorbents from waste material and employ them for the removal of hazardous antibacterial, Sulphamethoxazole from the wastewater by adsorption technique. The selection of this method was done because of its economic viability. The method has the potency of eradicating the perilous chemicals which make their appearance in water and directly or indirectly into the whole biological system, through the ejection of effluents by the industries in flowing water. The adsorption technique was used to impound the precarious antibiotics from wastewater using Deoiled Soya an agricultural waste and Water Hyacinth a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10% to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents i.e. Deoiled Soya, Alkali treated Deoiled Soya, Water Hyacinth and Alkali treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. Deoiled Soya (DOS) showed sorption capacity of 0.0007 mol g(-1) while Alkali treated Deoiled Soya (ADOS) exhibited 0.0011 mol g(-1) of sorption capacity which reveals that the adsorption is higher in case of alkali treated adsorbent. The mean sorption energy (E) was obtained between 9 to 12 kJ/mol which shows that the reaction proceeds by ion exchange reaction. Various kinetic studies like order of reaction, mass transfer studies, mechanism of diffusion were also performed for the ongoing processes. The mass transfer coefficient obtained for alkali treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90% to 98%. Moreover the

  7. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  8. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  9. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  10. A bio-hybrid anaerobic treatment of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Chou, C.Y.

    1987-01-01

    Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

  11. Content and Formation Cause of VOCs in Medical Waste Non-incineration Treatment Project

    NASA Astrophysics Data System (ADS)

    Dengchao, Jin; Hongjun, Teng; Zhenbo, Bao; Yang, Li

    2018-02-01

    When medical waste is treated by non-incineration technology, volatile organic compounds in the waste will be volatile out and form odor pollution. This paper studied VOCs productions in medical waste steam treatment project, microwave treatment project and chemical dinifection project. Sampling and analysis were carried out on the waste gas from treatment equipment and the gas in treatment workshop. The contents of nine VOCs were determined. It was found that the VOCs content in the exhaust gas at the outlet of steam treatment unit was much higher than that of microwave and chemical treatment unit, while the content of VOCs in the chemical treatment workshop was higher than that in the steam and microwave treatment workshop. The formation causes of VOCs were also analyzed and discussed in this paper.

  12. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, Catherine L.; Funk, David John; Vigil-Holterman, Luciana R.

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide themore » basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.« less

  13. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  14. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE Smith; GF Piepel; GW Veazey

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durablemore » (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).« less

  15. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica

  16. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less

  17. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  18. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  19. Treatment of Radioactive Metallic Waste from Operation of Nuclear Power Plants by Melting - The German Way for a Consistent Recycling to Minimize the Quantity of Radioactive Waste from Operation and Dismantling for Disposal - 12016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegener, Dirk; Kluth, Thomas

    2012-07-01

    During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the currentmore » potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)« less

  20. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RT Hallen; SA Bryan; FV Hoopes

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000

  1. Waste treatment integration in space

    NASA Technical Reports Server (NTRS)

    Baresi, L.; Kern, R.

    1991-01-01

    The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space.

  2. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  3. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  4. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  5. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  6. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  7. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  8. Proposal of an environmental performance index to assess solid waste treatment technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulart Coelho, Hosmanny Mauro, E-mail: hosmanny@hotmail.com; Lange, Lisete Celina; Coelho, Lineker Max Goulart

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond wastemore » energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of

  9. Application of landfill treatment approaches for stabilization of municipal solid waste.

    PubMed

    Bolyard, Stephanie C; Reinhart, Debra R

    2016-09-01

    This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. MOBILITY AND DEGRADATION OF RESIDUES AT HAZARDOUS WASTE LAND TREATMENT SITES AT CLOSURE

    EPA Science Inventory

    Soil treatment systems that are designed and managed based on a knowledge of soil-waste interactions may represent a significant technology for simultaneous treatment and ultimate disposal of selected hazardous wastes in an environmentally acceptable manner. hese soil treatment s...

  11. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...

  12. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...

  13. Prospects of effective microorganisms technology in wastes treatment in Egypt

    PubMed Central

    Shalaby, Emad A

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767

  14. Prospects of effective microorganisms technology in wastes treatment in Egypt.

    PubMed

    Shalaby, Emad A

    2011-06-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  15. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less

  16. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  18. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  19. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  20. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...

  1. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...

  2. Application of analytic hierarchy process in a waste treatment technology assessment in Mexico.

    PubMed

    Taboada-González, Paul; Aguilar-Virgen, Quetzalli; Ojeda-Benítez, Sara; Cruz-Sotelo, Samantha

    2014-09-01

    The high per capita generation of solid waste and the environmental problems in major rural communities of Ensenada, Baja California, have prompted authorities to seek alternatives for waste treatment. In the absence of a selection methodology, three technologies of waste treatment with energy recovery (an anaerobic digester, a downdraft gasifier, and a plasma gasifier) were evaluated, taking the broader social, political, economic, and environmental issues into considerations. Using the scientific literature as a baseline, interviews with experts, decision makers and the community, and waste stream studies were used to construct a hierarchy that was evaluated by the analytic hierarchy process. In terms of the criteria, judgments, and assumptions made in the model, the anaerobic digester was found to have the highest rating and should consequently be selected as the waste treatment technology for this area. The study results showed low sensitivity, so alternative scenarios were not considered. The methodology developed in this study may be useful for other governments who wish to assess technologies to select waste treatment.

  3. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  4. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  5. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  6. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  7. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  8. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  9. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data.

    PubMed

    Poulsen, Tjalfe G; Hansen, Jens Aage

    2009-11-01

    Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.

  10. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as

  11. Biosorption of Pb2+ and Cu2+ in aqueous solutions using agricultural wastes

    NASA Astrophysics Data System (ADS)

    Nieva, Aileen D.; Doma, Bonifacio T.; Chao, Huan-Ping; Siang Leng, Lai

    2017-11-01

    This study aimed to determine and compare the adsorptive capacity of Pb2+ and Cu2+ in simulated wastewater onto three agricultural wastes The adsorption capacities of Pb2+ onto the agricultural wastes can be arranged as Litchi chinensis (4.30 mg of sorbate per g of sorbent (mg g-1), 85.68% adsorption) > Bambusa vulgaris (3.83 mg g-1, 76.19% adsorption) > Annona squamosa (2.70 mg g-1, 53.66% adsorption) while the adsorption capacities of Cu2+ onto the same agricultural wastes can be arranged in the order: Bambusa vulgaris (3.86 mg g-1, 77.17% adsorption) > Annona squamosal (3.58 mg g-1, 71.58% adsorption) > Litchi chinensis (3.42 mg g-1, 68.32% adsorption). The biosorbents had relatively higher adsorptive capacities with Cu2+ as compared to that of Pb2+ except for Litchi chinensis. Although the results show lower adsorptive capacity as compared to a number of treated agricultural wastes showing 80% up to almost 100% adsorption of Pb2+ and Cu2+, the results show that Annona squamosa, Bamubusa vulgaris, and Litchi chinensis are potential biosorbents and promote sustainable treatment process.

  12. GUIDE TO TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES AT SUPERFUND SITES

    EPA Science Inventory

    Over the past fewyears, it has become increasinsly evident that land disposal of hazardous wastes is at least only a temporary solution for much of the wastes present at Superfund sites. The need for more Iong-term, permanent "treatment solutions as alternatives to land disposal ...

  13. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2006-09-01

    Liquid radioactive waste has been generated from the use of radioactive materials in industrial applications, research and medicine in Turkey. Natural zeolites (clinoptilolite) have been studied for the removal of several key radionuclides ((137)Cs, (60)Co, (90)Sr and (110m)Ag) from liquid radioactive waste. The aim of the present study is to investigate effectiveness of zeolite treatment on decontamination factor (DF) in a combined process (chemical precipitation and adsorption) at the laboratory tests and scale up to the waste treatment plant. In this study, sorption and precipitation techniques were adapted to decontamination of liquid low level waste (LLW). Effective decontamination was achieved when sorbents are used during the chemical precipitation. Natural zeolite samples were taken from different zeolite formations in Turkey. Comparison of the ion-exchange properties of zeolite minerals from different formations shows that Gordes clinoptilolite was the most suitable natural sorbent for radionuclides under dynamic treatment conditions and as an additive for chemical precipitation process. Clinoptilolite were shown to have a high selectivity for (137)Cs and (110m)Ag as sorbent. In the absence of potassium ions, native clinoptilolite removed (60)Co and (90)Sr very effectively from the liquid waste. In the end of this liquid waste treatment, decontamination factor was provided as 430 by using 0.5 mm clinoptilolite at 30 degrees C.

  14. A system dynamics approach for healthcare waste management: a case study in Istanbul Metropolitan City, Turkey.

    PubMed

    Ciplak, Nesli; Barton, John R

    2012-06-01

    Healthcare waste consists of various types of waste materials generated at hospitals, medical research centres, clinics and laboratories. Although 75-90% of this waste is classified as 'domestic' in nature, 20-25% is deemed to be hazardous, which if not disposed of appropriately, poses a risk to healthcare workers, patients, the environment and even the whole community. As long as healthcare waste is mixed with municipal waste and not segregated prior to disposal, costs will increase substantially. In this study, healthcare waste increases along with the potential to decrease the amounts by implementing effective segregation at healthcare facilities are projected to 2040. Our long-term aim is to develop a system to support selection and planning of the future treatment capacity. Istanbul in Turkey was used as the case study area. In order to identify the factors affecting healthcare waste generation in Istanbul, observations were made and interviews conducted in Istanbul over a 3 month period. A system dynamics approach was adopted to build a healthcare waste management model using a software package, Vensim Ple Plus. Based on reported analysis, the non-hazardous municipal fraction co-disposed with healthcare waste is around 65%. Using the projected waste generation flows, reducing a municipal fraction to 30% has the potential to avoid some 8000 t year(-1) of healthcare waste by 2025 and almost 10 000 t year(-1) by 2035. Furthermore, if segregation practices ensured healthcare waste requiring incineration was also selectively managed, 77% of healthcare waste could be diverted to alternative treatment technologies. As the throughput capacity of the only existing healthcare waste treatment facility in Istanbul, Kemerburgaz Incinerator, has already been exceeded, it is evident that improved management could not only reduce overall flows and costs but also permit alternative and cheaper treatment systems (e.g. autoclaving) to be adopted for the healthcare waste.

  15. Analysis of Blended Learning Implementation on Waste Treatment Subjects in Agricultural Vocational School

    NASA Astrophysics Data System (ADS)

    Sugiarti, Y.; Nurmayani, S.; Mujdalipah, S.

    2018-02-01

    Waste treatment is one of the productive subjects in vocational high school in programs of Agricultural Processing Technology which is one of the objectives learning has been assigned in graduate competency standards (SKL) of Vocational High School. Based on case studies that have been conducted in SMK Pertanian Pembangunan Negeri Lembang, waste treatment subjects had still use the lecture method or conventional method, and students are less enthusiastic in learning process. Therefore, the implementation of more interactive learning models such as blended learning with Edmodo is one of alternative models to resolve the issue. So, the purpose of this study is to formulate the appropriate learning syntax for the implementation of blended learning with Edmodo to agree the requirement characteristics of students and waste treatment subject and explain the learning outcome obtained by students in the cognitive aspects on the subjects of waste treatment. This research was conducted by the method of classroom action research (CAR) with a Mc. Tagart model. The result from this research is the implementation of blended learning with Edmodo on the subjects of waste treatment can improve student learning outcomes in the cognitive aspects with the maximum increase in the value of N-gain 0.82, as well as student learning completeness criteria reaching 100% on cycle 2. Based on the condition of subject research the formulation of appropriate learning syntax for implementation of blended learning model with Edmodo on waste treatment subject are 1) Self-paced learning, 2) Group networking, 3) Live Event- collaboration, 4) Association - communication, 5) Assessment - Performance material support. In summary, implementation of blended learning model with Edmodo on waste treatment subject can improve improve student learning outcomes in the cognitive aspects and conducted in five steps on syntax.

  16. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    NASA Astrophysics Data System (ADS)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  17. Genetic engineering approach to toxic waste management: case study for organophosphate waste treatment.

    PubMed

    Coppella, S J; DelaCruz, N; Payne, G F; Pogell, B M; Speedie, M K; Karns, J S; Sybert, E M; Connor, M A

    1990-01-01

    Currently, there has been limited use of genetic engineering for waste treatment. In this work, we are developing a procedure for the in situ treatment of toxic organophosphate wastes using the enzyme parathion hydrolase. Since this strategy is based on the use of an enzyme and not viable microorganisms, recombinant DNA technology could be used without the problems associated with releasing genetically altered microorganisms into the environment. The gene coding for parathion hydrolase was cloned into a Streptomyces lividans, and this transformed bacterium was observed to express and excrete this enzyme. Subsequently, fermentation conditions were developed to enhance enzyme production, and this fermentation was scaled-up to the pilot scale. The cell-free culture fluid (i.e., a nonpurified enzyme solution) was observed to be capable of effectively hydrolyzing organophosphate compounds under laboratory and simulated in situ conditions.

  18. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    PubMed

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  19. Mental capacity in patients involuntarily or voluntarily receiving psychiatric treatment for an acute mental disorder.

    PubMed

    Mandarelli, Gabriele; Tarsitani, Lorenzo; Parmigiani, Giovanna; Polselli, Gian M; Frati, Paola; Biondi, Massimo; Ferracuti, Stefano

    2014-07-01

    Despite the growing amount of data, much information is needed on patients' mental capacity to consent to psychiatric treatment for acute mental disorders. The present study was undertaken to compare differences in capacity to consent to psychiatric treatment in patients treated voluntarily and involuntarily and to investigate the role of psychiatric symptoms, competency, and cognitive functioning in determining voluntariness of hospital admission. Involuntary patients were interviewed with the MacArthur Competence Assessment Tool for Treatment (MacCAT-T), the 24-item Brief Psychiatric Rating Scale (BPRS), the Mini Mental State Examination (MMSE) and the Raven's Colored Progressive Matrices, and their data were compared with those for age- and sex-matched voluntary patients. Involuntary patients performed worse in all MacCAT-T subscales. Capacity to consent to treatment varied widely within each group. Overall, involuntary patients have worse consent-related mental capacity than those treated voluntarily, despite capacity to consent to treatment showing a significant variability in both groups. © 2014 American Academy of Forensic Sciences.

  20. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  1. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  2. Antimicrobial Use and Resistance in Swine Waste Treatment Systems▿

    PubMed Central

    Jindal, Archana; Kocherginskaya, Svetlana; Mehboob, Asma; Robert, Matthew; Mackie, Roderick I.; Raskin, Lutgarde; Zilles, Julie L.

    2006-01-01

    Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLSB), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLSB resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLSB resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further. PMID:17041160

  3. Long-term changes in physical capacity after colorectal cancer treatment.

    PubMed

    Hamaker, Marije E; Prins, Meike C; Schiphorst, Anandi H; van Tuyl, Sebastiaan A C; Pronk, Apollo; van den Bos, Frederiek

    2015-03-01

    Older patients with colorectal cancer are faced with the dilemma of choosing between the short-term risks of treatment and the long-term risks of insufficiently treated disease. In addition to treatment-related morbidity and mortality, patients may suffer from loss of physical capacity. The purpose of this review was to gather all available evidence regarding long-term changes in physical functioning and role functioning after colorectal cancer treatment, by performing a systematic Medline and Embase search. This search yielded 27 publications from 23 studies. In 16 studies addressing physical functioning after rectal cancer treatment, a median drop of 10% (range -26% to -5%) in the mean score for this item at three months. At six months, mean score was still 7% lower than baseline (range -18% to 0%) and at twelve months 5% lower (range -13% to +5%). For role functioning (i.e. ability to perform daily activities) after rectal cancer treatment, scores were -18% (range -39% to -2%), -8% (range -23% to +6%) and -5% (range -17% to +10%) respectively. Elderly patients experience the greatest and most persistent decline in self-care capacity (up to 61% at one year). This systematic review demonstrates that both physical functioning and role functioning are significantly affected by colorectal cancer surgery. Although initial losses are recovered partially during follow-up, there is a permanent loss in both aspects of physical capacity, in patients of all ages but especially in the elderly. This aspect should be included in patient counselling regarding surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Treatment of waste printed wire boards in electronic waste for safe disposal.

    PubMed

    Niu, Xiaojun; Li, Yadong

    2007-07-16

    The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications.

  5. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  6. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  7. Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes.

    PubMed

    Edelmann, W; Baier, U; Engeli, H

    2005-01-01

    In order to obtain more detailed information for better decision making in future biogenic waste treatment, different processes to treat biogenic wastes in plants with a treatment capacity of 10,000 tons of organic household wastes per year as well as agricultural codigestion plants were compared by life cycle assessments (LCA). With the tool EcoIndicator, anaerobic digestion is shown to be advantageous as compared to composting, incineration or a combination of digestion and composting, mainly because of a better energy balance. The management of the liquid manure in agricultural codigestion of organic solid wastes causes increased gaseous emissions, which have negative effects on the LCA, however. It is recommended to cover the slurry pit and to use an improved manure management in order to compensate for the additional gaseous emissions. In the LCAs, the quality of the digester output could only be taken into account to a small extent; the reasons are discussed.

  8. Proposal of an environmental performance index to assess solid waste treatment technologies.

    PubMed

    Coelho, Hosmanny Mauro Goulart; Lange, Liséte Celina; Coelho, Lineker Max Goulart

    2012-07-01

    Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.

    PubMed

    Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay

    2018-03-06

    Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

  10. Mixed-waste treatment -- What about the residuals?. A compartive analysis of MSO and incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, T.; Carpenter, C.; Cummins, L.

    1993-11-01

    Incineration currently is the best demonstrated available technology for the large inventory of U.S. Department of Energy (DOE) mixed waste. However, molten salt oxidation (MSO) is an alternative thermal treatment technology with the potential to treat a number of these wastes. Of concern for both technologies is the final waste forms, or residuals, that are generated by the treatment process. An evaluation of the two technologies focuses on 10 existing DOE waste streams and current hazardous-waste regulations, specifically for the delisting of ``derived-from`` residuals. Major findings include that final disposal options are more significantly impacted by the type of wastemore » treated and existing regulations than by the type of treatment technology; typical DOE waste streams are not good candidates for delisting; and mass balance calculations indicate that MSO and incineration generate similar quantities (dry) and types of residuals.« less

  11. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Treatment of industrial wastes. 35.925-15 Section 35.925-15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act...

  12. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  13. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    PubMed

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  14. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    PubMed

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.

  15. The influence of the precursor and synthesis method on the CO2 capture capacity of carpet waste-based sorbents.

    PubMed

    Olivares-Marín, M; García, S; Pevida, C; Wong, M S; Maroto-Valer, M

    2011-10-01

    Adsorption is one of the most promising technologies for reducing CO(2) emissions and at present several different types of sorbents are being investigated. The use of sorbents obtained from low-cost and abundant precursors (i.e. solid wastes) appears an attractive strategy to adopt because it will contribute to a reduction not only in operational costs but also in the amount of waste that is dumped and burned in landfills every year. Following on from previous studies by the authors, in this work several carbon-based adsorbents were developed from different carpet wastes (pre-consumer and post-consumer wastes) by chemical activation with KOH at various activation temperatures (600-900 °C) and KOH:char impregnation ratios (0.5:1 to 4:1). The prepared materials were characterised by chemical analysis and gas adsorption (N(2), -196 °C; CO(2), 0 °C), and tested for CO(2) adsorption at temperatures of 25 and 100 °C. It was found that both the type of precursor and the conditions of activation (i.e. impregnation ratios, and activation temperatures), had a huge influence on the microporosity of the resultant samples and their CO(2) capture capacities. The carbon-based adsorbent that presented the maximum CO(2) capture capacities at 25 and 100 °C (13.8 wt.% and 3.1 wt.%, respectively), was prepared from a pre-consumer carpet waste and was activated at 700 °C using a KOH:char impregnation ratio of 1:1. This sample showed the highest narrow microporosity volume (0.47 cm(3) g(-1)), thus confirming that only pores of less than 1 nm are effective for CO(2) adsorption at atmospheric pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Cleaner production: Minimizing hazardous waste in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratasida, D.L.

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmentalmore » management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.« less

  17. Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste.

    PubMed

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-01-01

    In the present study, novel pre-treatment for spent coffee waste (SCW) has been proposed which utilises the superior oxidising capacity of alkaline KMnO 4 assisted by ultra-sonication. The pre-treatment was conducted for different exposure times (10, 20, 30 and 40min) using different concentrations of KMnO 4 (1, 2, 3, 4, 5%w/v) at room temperature with solid/liquid ratio of 1:10. Pretreating SCW with 4% KMnO 4 and exposing it to ultrasound for 20min resulted in 98% cellulose recovery and a maximum lignin removal of 46%. 1.7 fold increase in reducing sugar yield was obtained after enzymatic hydrolysis of KMnO 4 pretreated SCW as compared to raw. SEM, XRD and FTIR analysis of the pretreated SCW revealed the various effects of pretreatment. Thermal behaviour of the pretreated substrate against the native biomass was also studied using DSC. Ultrasound-assisted potassium permanganate oxidation was found to be an effective pretreatment for SCW, and can be a used as a potential feedstock pretreatment strategy for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Medical waste treatment and disposal methods used by hospitals in Oregon, Washington, and Idaho.

    PubMed

    Klangsin, P; Harding, A K

    1998-06-01

    This study investigated medical waste practices used by hospitals in Oregon, Washington, and Idaho, which includes the majority of hospitals in the U.S. Environmental Protection Agency's (EPA) Region 10. During the fall of 1993, 225 hospitals were surveyed with a response rate of 72.5%. The results reported here focus on infectious waste segregation practices, medical waste treatment and disposal practices, and the operating status of hospital incinerators in these three states. Hospitals were provided a definition of medical waste in the survey, but were queried about how they define infectious waste. The results implied that there was no consensus about which agency or organization's definition of infectious waste should be used in their waste management programs. Confusion around the definition of infectious waste may also have contributed to the finding that almost half of the hospitals are not segregating infectious waste from other medical waste. The most frequently used practice of treating and disposing of medical waste was the use of private haulers that transport medical waste to treatment facilities (61.5%). The next most frequently reported techniques were pouring into municipal sewage (46.6%), depositing in landfills (41.6%), and autoclaving (32.3%). Other methods adopted by hospitals included Electro-Thermal-Deactivation (ETD), hydropulping, microwaving, and grinding before pouring into the municipal sewer. Hospitals were asked to identify all methods they used in the treatment and disposal of medical waste. Percentages, therefore, add up to greater than 100% because the majority chose more than one method. Hospitals in Oregon and Washington used microwaving and ETD methods to treat medical waste, while those in Idaho did not. No hospitals in any of the states reported using irradiation as a treatment technique. Most hospitals in Oregon and Washington no longer operate their incinerators due to more stringent regulations regarding air pollution

  19. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water.

    PubMed

    Salama, Ahmed

    2018-01-01

    A novel superadsorbent anionic hydrogel was synthesized by grafting of poly (3-sulfopropyl methacrylate), P(SPMA), onto carboxymethyl cellulose (CMC). CMC-g-P(SPMA) superadsorbent hydrogel was applied as an efficient and sustainable adsorbent to remove methylene blue (MB) from waste water. Batch adsorption experiments showed that the solution pH had an obvious effect on the adsorption capacity with an optimal sorption pH at 6. The CMC-g-P(SPMA) hydrogel had rapid adsorption kinetics for MB and the adsorption equilibrium reached within 40min. The adsorption kinetics were more accurately described by pseudo second-order model and the Langmuir-fitted adsorption isotherms revealed a maximum capacity of 1675mg/g. The current anionic hydrogel is reusable as the adsorption capacity remained at 89% level after five adsorption-desorption cycles. CMC-g-P(SPMA) hydrogel was presented as a sustainable promising adsorbent with high adsorption capacity and good regenerability for effective cationic dyes removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Economic evaluation of radiation processing in urban solid wastes treatment

    NASA Astrophysics Data System (ADS)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  1. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  2. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  3. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.

    PubMed

    ThiKimOanh, Le; Bloemhof-Ruwaard, Jacqueline M; van Buuren, Joost Cl; van der Vorst, Jack Gaj; Rulkens, Wim H

    2015-04-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional municipal solid waste treatment technologies are needed. The objective of this article is to support decision-making towards more sustainable and cost-effective municipal solid waste strategies in developing countries, in particular Vietnam. A quantitative decision support model is developed to optimise the distribution of municipal solid waste from population areas to treatment plants, the treatment technologies and their capacities for the near future given available infrastructure and cost factors. © The Author(s) 2015.

  4. Waste Treatment in the Undergraduate Laboratory: Let the Students Do It!

    ERIC Educational Resources Information Center

    Nash, John J.; And Others

    1996-01-01

    Presents the details of a waste treatment experiment that enables students to employ much of the chemistry they have learned in class to solve a real chemical problem. Heightens students' awareness of the potential environmental impact associated with the waste they have generated. Contains 21 references. (JRH)

  5. The Mental Capacity Act 2005: Considerations for obtaining consent for dental treatment.

    PubMed

    Modgill, O; Bryant, C; Moosajee, S

    2017-06-23

    The Mental Capacity Act 2005 provides a legal framework within which specific decisions must be made when an individual lacks the mental capacity to make such decisions for themselves. With an increasingly aged, medically complex and in some cases socially isolated population presenting for dental care, dentists need to have a sound understanding of the appropriate management of patients who lack capacity to consent to treatment when they present in the dental setting. Patients with acute symptoms requiring urgent care and un-befriended patients present additional complexities. In these situations a lack of familiarity with how best to proceed and confusion in the interpretation of relevant guidance, combined with the working time pressures experienced in dental practice may further delay the timely dental management of vulnerable patients. We will present and discuss the treatment of three patients who were found to lack the mental capacity necessary to make decisions about their dental care and illustrate how their differing situations determined the appropriate management for each.

  6. Industrial waste treatment and application in rubber production

    NASA Astrophysics Data System (ADS)

    Pugacheva, I. N.; Popova, L. V.; Repin, P. S.; Molokanova, L. V.

    2018-03-01

    The paper provides for the relevance of various industrial waste treatment and application, as well as their secondary commercialization. It considers treatment of secondary polymer materials turning to additives applied in rubber production, in particular, in production of conveyor and V-type belts used in mechanical engineering. It is found that oligomers obtained from petroleum by-products can be used as an impregnating compound for fiber materials. Such adhesive treatment prior to introduction of impregnating compounds into elastomeric materials improves adhesion and complements performance of obtained composites.

  7. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  8. Thermal properties of simulated Hanford waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Chun, Jaehun; Crum, Jarrod V.

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flashmore » diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.« less

  9. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    NASA Astrophysics Data System (ADS)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  10. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  11. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needsmore » to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.« less

  12. The occurrence of cyanobacteria in pulp and paper waste-treatment systems.

    PubMed

    Kirkwood, A E; Nalewajko, C; Fulthorpe, R R

    2001-08-01

    Pulp and paper secondary waste-treatment systems in Brazil, Canada, New Zealand, and the U.S.A. contained dynamic cyanobacterial communities, some of which exceeded heterotrophic bacterial biomass. No other viable photoautotrophic populations were detected in the ponds. Regardless of geographical location, Oscillatoriales including Phormidium, Geitlerinema, and Pseudanabaena were the dominant taxa. As well, Chroococcus (Chroococcales) was an important genus in Brazil and New Zealand. The possible impact of cyanobacteria on waste-treatment efficiency deserves further study given their large biomass and diverse metabolic characteristics.

  13. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes.

    PubMed

    Sasaki, Takeshi; Iizuka, Atsushi; Watanabe, Masayuki; Hongo, Teruhisa; Yamasaki, Akihiro

    2014-10-01

    Solid adsorbent materials, prepared from waste cement powder and concrete sludge were assessed for removal of arsenic in the form of arsenic (As(V)) from water. All the materials exhibited arsenic removal capacity when added to distilled water containing 10-700 mg/L arsenic. The arsenic removal isotherms were expressed by the Langmuir type equations, and the highest removal capacity was observed for the adsorbent prepared from concrete sludge with heat treatment at 105°C, the maximum removal capacity being 175 mg-As(V)/g. Based on changes in arsenic and calcium ion concentrations, and solution pH, the removal mechanism for arsenic was considered to involve the precipitation of calcium arsenate, Ca3(AsO4)2. The enhanced removal of arsenic for the adsorbent prepared from concrete sludge with heat treatment was thought to reflect ion exchange by ettringite. The prepared adsorbents, derived from waste cement and concrete using simple procedures, may offer a cost effective approach for arsenic removal and clean-up of contaminated waters, especially in developing countries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  16. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  17. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  18. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelisti, Sara; Tagliaferri, Carla; Advanced Plasma Power

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially formore » biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  19. Co-digestion of organic solid waste and sludge from sewage treatment.

    PubMed

    Edelmann, W; Engeli, H; Gradenecker, M

    2000-01-01

    Solid organic wastes were codigested together with sludge of a sewage treatment plant (STP). In the practical part of the study, a plant to pretreat the organic solid wastes provided by local super markets was constructed at the STP of Frutigen, Switzerland. Up to more than 1 cubic metre of wastes was added to the fermenter of the STP every day. Data collected during 14 months of practical works, showed that for raw fruit and vegetable wastes a two step pretreatment is necessary: First the wastes were chopped and afterwards reduced to a size of 1-2 millimetres, in order to get a homogeneous suspension together with the primary sludge. The vegetable wastes showed excellent digestibility: They seemed to accelerate the digestion process as well as to increase the degree of the anaerobic degradation of the sludge. The energy demand for both, pretreatment and digestion, was 85 kWh/ton of fresh wastes. 20% of the energy was used for the hygienization, a step which does not seem to be necessary for this kind of waste in most of the cases, however. After using the gas for energy conversion, a net yield of 65 kWh/ton of electricity and 166 kWh/ton of heat was measured. Treating cooked kitchen wastes, the net energy production will be higher, because in this case a one step pretreatment will be sufficient. The pretreatment and treatment costs for codigestion on STP's were calculated to be in the range of 55 US$/ton treating half a ton per day and 39 US$/ton treating one ton, respectively. A theoretical feasibility study showed that in Switzerland there is a short term potential on STP's for the codigestion of about 120,000 tons of biogenic wastes per year without big investments. Economic studies about codigestion on agricultural biogas plants showed that the codigestion is a must at the current energy prices, which are far too low for agricultural AD without an additional income by treating solid wastes for third parties.

  20. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  1. Total anti-oxidant capacity of saliva in chronic periodontitis patients before and after periodontal treatment.

    PubMed

    Shirzaiy, M; Ansari, S M; Dehghan, J H; Ghaeni, S H

    2014-01-01

    Periodontal disease is among the most common inflammatory conditions which is associated with many different factors. One of the contributing factors to the pathogenesis of this condition may compromise the defensive mechanism of antioxidants. The present study evaluates the antioxidant capacity of saliva in periodontal patients before and after periodontal treatment. In this cross sectional study, 31 patients systemically healthy non smokers with chronic periodontitis were recruited. The antioxidant capacity of saliva was measured before the initial phase of periodontal therapy and after completion of the treatment. Data were analyzed using SPSS 19 software. Paired T-Test, Independent sample T-test and ANOVA tests were used as appropriated. The mean and standard deviation antioxidant capacity of the saliva after the treatment.(0.962± 0.287µM)was significantly higher than before the treatment (0.655 ± 0.281 µM ,p<0.001). The mean difference of antioxidant capacity of the saliva before and after periodontal treatment was higher among men than among women; however, the difference was not significant (P=0.07). The mean difference of salivary antioxidant capacity was not significantly differed among different ages (P=0.772). The antioxidant capacity of saliva was higher after periodontal therapy among patients with periodontal disease, however the change was not varied across the ages and gender. Therefore, the alterations in the defensive mechanism of antioxidants could be the key factors contribute to the pathogenesis of periodontal diseases.

  2. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  3. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  4. Chemical hazards associated with treatment of waste electrical and electronic equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsydenova, Oyuna; Bengtsson, Magnus, E-mail: bengtsson@iges.or.jp

    2011-01-15

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associatedmore » with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.« less

  5. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    NASA Astrophysics Data System (ADS)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  6. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less

  7. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  8. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  9. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  10. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  11. The situation of generation, treatment and supervision of common industrial solid wastes in China

    NASA Astrophysics Data System (ADS)

    Xu, Shumin

    2018-02-01

    From the point of view of location and sources, an analysis is done for the generation, utilization, treatment and storage of common industrial solid wastes in China. Based on the current situations, suggestions are given to the treatment and supervision polices in China for the utilization of common industrial solid wastes.

  12. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    PubMed

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  13. Hazardous Waste Management System: Land Disposal Restrictions - Federal Register Notice, May 15, 1992

    EPA Pesticide Factsheets

    In response to the Proposed Rule on Land Disposal Restrictions (LDR) for Newly Listed Wastes and Hazardous Debris, EPA received numerous comments regarding the availability of treatment capacity for hazardous debris. EPA agrees with these comments.

  14. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    PubMed

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric-alum water treatment residues.

    PubMed

    Wang, Ying; Yu, Yange; Li, Haiyan; Shen, Chanchan

    2016-12-01

    The adsorption of phosphorus (P) onto three industrial solid wastes (fly ash, red mud and ferric-alum water treatment residual (FAR)) and their modified materials was studied systematically via batch experiments. Compared with two natural adsorbents (zeolite and diatomite), three solid wastes possessed a higher adsorption capacity for P because of the higher Fe, Al and Ca contents. After modification (i.e., the fly ash and red mud modified by FeCl 3 and FARs modified by HCl), the adsorption capacity increased, especially for the modified red mud, where more Fe bonded P was observed. The P adsorption kinetics can be satisfactorily fitted using the pseudo-second-order model. The Langmuir model can describe well the P adsorption on all of the samples in our study. pH and dissolved organic matter (DOM) are two important factors for P adsorption. Under neutral conditions, the maximum adsorption amount on the modified materials was observed. With the deviation from pH7, the adsorption amount decreased, which resulted from the change of P species in water and surface charges of the adsorbents. The DOM in water can promote P adsorption, which may be due to the promotion effects of humic-Fe(Al) complexes and the pH buffer function exceeds the depression of competitive adsorption. Copyright © 2016. Published by Elsevier B.V.

  16. 76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... 2050-AG65 Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes AGENCY... concentration limits before the wastes can be land disposed. The lack of readily available analytical standards.... List of Subjects 40 CFR Part 268 Environmental protection, Hazardous waste, Land disposal restrictions...

  17. The potential role of aerobic biological waste treatment in regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Shuler, M. L.; Nafis, D.; Sze, E.

    1981-01-01

    The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.

  18. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J [Walnut Creek, CA; Scheibner, Karl F [Tracy, CA; Ault, Earl R [Livermore, CA

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  19. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    PubMed

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  20. Comparison of steam sterilization conditions efficiency in the treatment of Infectious Health Care Waste.

    PubMed

    Maamari, Olivia; Mouaffak, Lara; Kamel, Ramza; Brandam, Cedric; Lteif, Roger; Salameh, Dominique

    2016-03-01

    Many studies show that the treatment of Infectious Health Care Waste (IHCW) in steam sterilization devices at usual operating standards does not allow for proper treatment of Infectious Health Care Waste (IHCW). Including a grinding component before sterilization allows better waste sterilization, but any hard metal object in the waste can damage the shredder. The first objective of the study is to verify that efficient IHCW treatment can occur at standard operating parameters defined by the contact time-temperature couple in steam treatment systems without a pre-mixing/fragmenting or pre-shredding step. The second objective is to establish scientifically whether the standard operation conditions for a steam treatment system including a step of pre-mixing/fragmenting were sufficient to destroy the bacterial spores in IHCW known to be the most difficult to treat. Results show that for efficient sterilization of dialysis cartridges in a pilot 60L steam treatment system, the process would require more than 20 min at 144°C without a pre-mixing/fragmenting step. In a 720L steam treatment system including pre-mixing/fragmenting paddles, only 10 min at 144°C are required to sterilize IHCW proved to be sterilization challenges such as dialysis cartridges and diapers in normal conditions of rolling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Treatment of waste water by coagulation and flocculation using biomaterials

    NASA Astrophysics Data System (ADS)

    Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh

    2017-11-01

    The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.

  2. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    PubMed

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Destructive treatment of waste gas by catalytic afterburning and adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppel, S.A.; Kochetkova, R.P.; Kolisnyk, G.P.

    1983-07-01

    Because of the considerable energy costs involved in the use of catalytic afterburning to clean up waste gases, an alternative method is suggested: adsorption with the use of low-cost adsorbents that are regenerated by destruction of the substances that has been taken up. Activated semicoke (ASK) is proposed as an adsorbent and tested. On the basis of the results, ASK is recommended for the treatment of waste gases to remove oxygen-containing, sulfurcontaining, and tarry compounds.

  4. Analysis of waste-load assimilative capacity of the Yampa River, Steamboat Springs to Hayden, Routt County, Colorado

    USGS Publications Warehouse

    Bauer, Daniel P.; Steele, Timothy Doak; Anderson, Richard D.

    1978-01-01

    An analysis of the waste-load assimilative capacity of the Yampa River from Steamboat Springs to Hayden, Colo., a distance of 38 miles, was made during September 1975 to obtain information on the effects of projected waste loadings on this stream reach. Simulations of effects of waste loadings on streamflow quality were made using a steady-state water-quality model. The simulations were based on 7-day low-flow values with a 10-year recurrence interval and population projections for 2010. Model results for December and September streamflow conditions indicated that the recommended 1978 Colorado and 1976 U.S. Environmental Protection Agency water-quality standard of 0.02 milligram per liter for nonionized ammonia concentration would be exceeded. Model simulations also included the effect of a flow augmentation of 20 cubic feet per second from a proposed upstream reservoir. The permissible ammonia loading in the study reach could be increased approximately 25 percent with this amount of flow augmentation. Simulations of concentrations of dissolved oxygen, fecal-coliform bacteria, and nitrate nitrogen indicated that the State 's water-quality goals proposed for 1978, 1983, or 1985 would not be exceeded. (Woodard-USGS)

  5. Assessing patient capacity to consent to treatment: an integrative review of instruments and tools.

    PubMed

    Lamont, Scott; Jeon, Yun-Hee; Chiarella, Mary

    2013-09-01

    To provide a narrative synthesis of research findings on instruments or tools designed to aid assessment of patient capacity to consent to treatment. Capacity assessment is of significant priority within health care as a finding of incapacity is a vehicle for the removal of many of an individual's fundamental rights. Despite there being many instruments and tools available to aid health professionals in the assessment of patient capacity, there are no standardised guidelines from professional bodies that inform the assessment of mental capacity. Integrative review. Primary studies of instruments or tools concerning assessment of patient capacity to consent to treatment, published in English in peer-reviewed journals between January 2005-December 2010, were included in the review. Review papers of capacity assessment instruments were included for years including and prior to 2006. Nineteen instruments were found which assess patient capacity to consent. Key themes were identified in terms of capacity domains assessed, psychometric properties, instrument implementation, patient populations studied and instrument versus clinician judgement. Despite a plethora of capacity assessment instruments and tools available, only a small number of instruments were found to have demonstrated both reliability and validity. Further research is required to improve the validity of existing capacity assessment instruments. Increased attention to patient rights and autonomy arguably places a considerable burden on healthcare professionals to facilitate capacity assessments across a continuum of health care. Despite a plethora of capacity assessment instruments and tools being available to healthcare professionals, a comprehensive assessment requires time and is often difficult in the acute care setting. A strictly formulaic approach to the assessment of capacity is unlikely to capture specific individual nuances; therefore, capacity assessment instruments should support, but not

  6. Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil.

    PubMed

    Kaushik, Rajni; Parshetti, Ganesh K; Liu, Zhengang; Balasubramanian, Rajasekhar

    2014-09-01

    Food waste was subjected to enzymatic hydrolysis prior to hydrothermal treatment to produce hydrochars and bio-oil. Pre-treatment of food waste with an enzyme ratio of 1:2:1 (carbohydrase:protease:lipase) proved to be effective in converting food waste to the two products with improved yields. The carbon contents and calorific values ranged from 43.7% to 65.4% and 17.4 to 26.9 MJ/kg for the hydrochars obtained with the enzyme-assisted pre-treatment, respectively while they varied from 38.2% to 53.5% and 15.0 to 21.7 MJ/kg, respectively for the hydrochars obtained with no pre-treatment. Moreover, the formation of carbonaceous microspheres with low concentrations of inorganic elements and diverse surface functional groups was observed in the case of enzyme-assisted food waste hydrochars. The enzymatic pre-treatment also facilitated the formation of the bio-oil with a narrow distribution of organic compounds and with the highest yield obtained at 350 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without

  8. 77 FR 50622 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... program, to U.S. Ecology Nevada in Beatty, Nevada for the treatment of a hazardous selenium- bearing waste.... Ecology Nevada located in Beatty, Nevada. B. Table of Contents I. Background [[Page 50623

  9. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sha, Yunfei; Lou, Jiaying; Bai, Shizhe

    2015-04-15

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO{sub 2} sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) bymore » a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m{sup 2} g{sup −1} and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g{sup −1} electrocapacitivity at a current density of 0.5 A g{sup −1} (in 6 M KOH), and a CO{sub 2} capacity of 3.6 mmol g{sup −1} at 0 °C and 1 bar, and a selectivity of ca. 32 for CO{sub 2} over N{sub 2} at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application.« less

  10. Two Stage Anaerobic Reactor Design and Treatment To Produce Biogas From Mixed Liquor of Vegetable Waste

    NASA Astrophysics Data System (ADS)

    Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.

    2018-01-01

    Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.

  11. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions.

    PubMed

    Gupta, Vinod Kumar; Nayak, Arunima; Agarwal, Shilpi; Tyagi, Inderjeet

    2014-03-01

    Rubber tire activated carbon modification (RTACMC) and rubber tire activated carbon (RTAC) were prepared from waste rubber tire by microwave assisted chemical treatment and physical heating respectively. A greater improvement in porosity and total pore volume was achieved in RTACMC as compared to that of RTAC. But both have a predominantly mesoporous structure. Under identical operating conditions, an irradiation time of 10 min, chemical impregnation ratio of 1.50 and a microwave power of 600 W resulted in maximizing the efficiency of RTACMC for p-cresol (250 mg/g) at a contact time of 90 min while RTAC showed a 71.43 mg/g adsorption capacity at 150 min. Phenol, due to its higher solubility was adsorbed to a lesser extent by both adsorbents. Physical nature of interactions, pore diffusion mechanism and exothermicity of the adsorption process was operative in both adsorbents. The outcomes support the feasibility of preparing high quality activated carbon from waste rubber tire by microwave assisted chemical activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. NEUROPSYCHOLOGICAL PERFORMANCE WITHIN-PERSON VARIABILITY IS ASSOCIATED WITH REDUCED TREATMENT CONSENT CAPACITY

    PubMed Central

    Gurrera, Ronald J.; Karel, Michele J.; Azar, Armin R.; Moye, Jennifer

    2013-01-01

    OBJECTIVES The capacity of older adults to make health care decisions is often impaired in dementia and has been linked to performance on specific neuropsychological tasks. Within-person across-test neuropsychological performance variability has been shown to predict future dementia. This study examined the relationship of within-person across-test neuropsychological performance variability to a current construct of treatment decision (consent) capacity. DESIGN Participants completed a neuropsychological test battery and a standardized capacity assessment. Standard scores were used to compute mean neuropsychological performance and within-person across-test variability. SETTING Assessments were performed in the participant’s preferred location (e.g., outpatient clinic office, senior center, or home). PARTICIPANTS Participants were recruited from the community with fliers and advertisements, and consisted of men (N=79) and women (N=80) with (N=83) or without (N=76) significant cognitive impairment. MEASUREMENTS Participants completed the MacArthur Competence Assessment Tool - Treatment (MacCAT-T) and 11 neuropsychological tests commonly used in the cognitive assessment of older individuals. RESULTS Neuropsychological performance and within-person variability were independently associated with continuous and dichotomous measures of capacity, and within-person neuropsychological variability was significantly associated with within-person decisional ability variability. Prevalence of incapacity was greater than expected in participants with and without significant cognitive impairment when decisional abilities were considered separately. CONCLUSIONS These findings are consistent with an emerging construct of consent capacity in which discrete decisional abilities are differentially associated with cognitive processes, and indicate that the sensitivity and accuracy of consent capacity assessments can be improved by evaluating decisional abilities separately. PMID

  13. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline.more » These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.« less

  14. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  15. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass

    NASA Astrophysics Data System (ADS)

    Steinberg, Lisa M.; Kronyak, Rachel E.; House, Christopher H.

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design

  16. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    PubMed

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Analysis of solid waste from ships and modeling of its generation on the river Danube in Serbia.

    PubMed

    Ulniković, Vladanka Presburger; Vukić, Marija; Milutinović-Nikolić, Aleksandra

    2013-06-01

    This study focuses on the issues related to the waste management in river ports in general and, particularly, in ports on the river Danube's flow through Serbia. The ports of Apatin, Bezdan, Backa Palanka, Novi Sad, Belgrade, Smederevo, Veliko Gradiste, Prahovo and Kladovo were analyzed. The input data (number of watercrafts, passengers and crew members) were obtained from harbor authorities for the period 2005-2009. The quantities of solid waste generated on both cruise and cargo ships are considered in this article. As there is no strategy for waste treatment in the ports in Serbia, these data are extremely valuable for further design of equipment for waste treatment and collection. Trends in data were analyzed and regression models were used to predict the waste quantities in each port in next 3 years. The obtained trends could be utilized as the basis for the calculation of the equipment capacities for waste selection, collection, storage and treatment. The results presented in this study establish the need for an organized management system for this type of waste, as well as suggest where the terminals for collection, storage and treatment of solid waste from ships should be located.

  18. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA)more » led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)« less

  20. Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery.

    PubMed

    Hansen, Trine Lund; Jansen, Jes la Cour; Davidsson, Asa; Christensen, Thomas Højlund

    2007-01-01

    Source-sorted municipal organic waste collected from different dwelling types in five Danish cities and pre-treated at three different plants was sampled and characterized several times during one year to investigate the origin of any differences in composition of the pre-treated waste introduced by city, pre-treatment technology, dwelling type or annual season. The investigated pre-treatment technologies were screw press, disc screen and shredder+magnet. The average quantity of pre-treated organic waste (biomass) produced from the incoming waste varied between the investigated pre-treatment technologies: 59%, 66% and 98% wet weight, respectively (41%, 34% and 2% reject, respectively). The pre-treatment technologies showed differences with respect to distribution of the chemical components in the waste between the biomass and the rejected material (reject), especially for dry matter, ash, collection bag material (plastic or paper) and easily degradable organic matter. Furthermore, the particle size of the biomass was related to the pre-treatment technology. The content of plastic in the biomass depended both on the actual collection bag material used in the system and the pre-treatment technology. The sampled reject consisted mostly of organic matter. For cities using plastic bags for the source-separated organic waste, the expected content of plastic in the reject was up to 10% wet weight (in some cases up to 20%). Batch tests for methane potential of the biomass samples showed only minor variations caused by the factors city, pre-treatment technology, dwelling type and season when based on the VS content of the waste (overall average 459STPm(3)/tVS). The amount of methane generated from 1t of collected waste was therefore mainly determined by the efficiency of the chosen pre-treatment technology described by the mass distribution of the incoming waste between biomass and reject.

  1. 300 Area waste acid treatment system closure plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  2. BIOLOGICAL WASTE AIR TREATMENT IN BIOTRICKLING FILTERS. (R825392)

    EPA Science Inventory

    Abstract

    Recent studies in the area of biological waste air treatment in biotrickling filters have addressed fundamental key issues, such as biofilm architecture, microbiology of the process culture and means to control accumulation of biomass. The results from these s...

  3. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the

  4. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    NASA Astrophysics Data System (ADS)

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  5. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran

    PubMed Central

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative. PMID:27766238

  6. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran.

    PubMed

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.

  7. Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry

    NASA Astrophysics Data System (ADS)

    Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.

    2017-05-01

    The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.

  8. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  9. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  10. Application countermeasures of non-incineration technologies for medical waste treatment in China.

    PubMed

    Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong

    2013-12-01

    By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.

  11. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  12. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.

    PubMed

    Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  13. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  14. Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazumichi, E-mail: kazumichisuzuki@gmail.c

    Purpose: To determine the patient throughput and the overall efficiency of the spot scanning system by analyzing treatment time, equipment availability, and maximum daily capacity for the current spot scanning port at Proton Therapy Center Houston and to assess the daily throughput capacity for a hypothetical spot scanning proton therapy center. Methods: At their proton therapy center, the authors have been recording in an electronic medical record system all treatment data, including disease site, number of fields, number of fractions, delivered dose, energy, range, number of spots, and number of layers for every treatment field. The authors analyzed delivery systemmore » downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the patient census, patient distribution as a function of the number of fields and total target volume, and equipment clinical availability. The duration of each treatment session from patient walk-in to patient walk-out of the spot scanning treatment room was measured for 64 patients with head and neck, central nervous system, thoracic, and genitourinary cancers. The authors retrieved data for total target volume and the numbers of layers and spots for all fields from treatment plans for a total of 271 patients (including the above 64 patients). A sensitivity analysis of daily throughput capacity was performed by varying seven parameters in a throughput capacity model. Results: The mean monthly equipment clinical availability for the spot scanning port in April 2012–March 2015 was 98.5%. Approximately 1500 patients had received spot scanning proton therapy as of March 2015. The major disease sites treated in September 2012–August 2014 were the genitourinary system (34%), head and neck (30%), central nervous system (21%), and thorax (14%), with other sites accounting for the remaining 1%. Spot scanning beam delivery time increased with total target volume and accounted for

  15. Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy.

    PubMed

    Suzuki, Kazumichi; Palmer, Matthew B; Sahoo, Narayan; Zhang, Xiaodong; Poenisch, Falk; Mackin, Dennis S; Liu, Amy Y; Wu, Richard; Zhu, X Ronald; Frank, Steven J; Gillin, Michael T; Lee, Andrew K

    2016-07-01

    To determine the patient throughput and the overall efficiency of the spot scanning system by analyzing treatment time, equipment availability, and maximum daily capacity for the current spot scanning port at Proton Therapy Center Houston and to assess the daily throughput capacity for a hypothetical spot scanning proton therapy center. At their proton therapy center, the authors have been recording in an electronic medical record system all treatment data, including disease site, number of fields, number of fractions, delivered dose, energy, range, number of spots, and number of layers for every treatment field. The authors analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the patient census, patient distribution as a function of the number of fields and total target volume, and equipment clinical availability. The duration of each treatment session from patient walk-in to patient walk-out of the spot scanning treatment room was measured for 64 patients with head and neck, central nervous system, thoracic, and genitourinary cancers. The authors retrieved data for total target volume and the numbers of layers and spots for all fields from treatment plans for a total of 271 patients (including the above 64 patients). A sensitivity analysis of daily throughput capacity was performed by varying seven parameters in a throughput capacity model. The mean monthly equipment clinical availability for the spot scanning port in April 2012-March 2015 was 98.5%. Approximately 1500 patients had received spot scanning proton therapy as of March 2015. The major disease sites treated in September 2012-August 2014 were the genitourinary system (34%), head and neck (30%), central nervous system (21%), and thorax (14%), with other sites accounting for the remaining 1%. Spot scanning beam delivery time increased with total target volume and accounted for approximately 30%-40% of total

  16. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  17. A&M. Hot liquid waste treatment building (TAN616). Camera facing southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing southwest. Oblique view of east and north walls. Note three corrugated pipes at lower left indicating location of underground hot waste storage tanks. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  20. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Funk, David John; Stevens, Patrice Ann

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options,more » ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.« less

  1. Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage.

    PubMed

    Yeoh, Wei Keat; Ali, Asgar

    2017-02-01

    Ultrasound treatment at different power output (0, 25 and 29W) and exposure time (10 and 15min) was used to investigate its effect on the phenolic metabolism enzymes, total phenolic content and antioxidant capacity of fresh-cut pineapple. Following ultrasound treatment at 25 and 29W, the activity of phenylalanine ammonia lyase (PAL) was increased significantly (P<0.05) by 2.0 and 1.9-fold, when compared to control. Meanwhile, both the activity of polyphenol oxidase (PPO) and polyphenol peroxidase (POD) in fresh-cut pineapple was significantly (P<0.05) lower than control upon subjected to ultrasound treatment. In the present study, induction of PAL was found to significantly (P<0.001) correlate with higher total phenolic content and thus higher antioxidant capacity in fresh-cut pineapple. Results suggest that hormetic dosage of ultrasound treatment can enhance the activity of PAL and total phenolic content and hence the total antioxidant capacity to encounter with oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  2. Effects of deodorants on treatment of boat holding-tank waste

    NASA Astrophysics Data System (ADS)

    Walker, William R.; Haley, Carol J.; Bridgeman, Phyllis; Goldstein, Stephen H.

    1991-05-01

    A literature search and survey of Virginia, USA, campgrounds with RV pump-out stations were used to determine whether boat holding-tank deodorant chemicals would have deleterious effects on marina septic systems or package treatment plants. Laboratory studies reported in the literature indicate that these chemical additives could affect septic system function in three ways: (1) active ingredients in the additives can impair sewage degradation in septic tanks, causing sludge buildup and overflow of solids into the drainfield, (2) additive chemicals might enter the drainfield and, in high enough concentrations, reduce the drainfield's ability to degrade waste, or (3) toxic additive chemicals might migrate from the drainfield to ground or surface water. Laboratory studies also show that some ingredients added to holding tanks interfere with functioning of activated sludge treatment process. Experience in the field and in other laboratory studies suggests that factors such as dilution of treated waste with untreated waste and the characteristics of the sewage to be treated can reduce the possibility of damage to septic and activated sludge systems. The campground owners surveyed indicated that they have few problems with their septic systems in spite of the presence of chemical additives in the RV waste. However, most of them practice good septic system maintenance and have devised other means of ensuring that their systems function efficiently. In addition, the survey indicates that most Virginia campgrounds get only seasonal use (as would marinas in Virginia), allowing their systems to recover between peak seasons.

  3. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    PubMed

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  4. An assessment of anti-schistosomal treatment on physical work capacity.

    PubMed

    Awad El Karim, M A; Collins, K J; Sukkar, M Y; Omer, A H; Amin, M A; Doré, C

    1981-04-01

    Acting as their own controls, village subjects from the Gezira are of the Sudan with relatively high levels of schistosomiasis infection were first tested in an exercise laboratory in Khartoum and the tests were then repeated after a period of about 1 yr during which time the subjects were treated with hycanthone and periodically monitored to ensure that they had remained free of the disease. In the meantime they were also given anti-malarial prophylaxis. Laboratory tests showed a significant improvement in physiological work capacity of up to 20% after treatment compared with untreated controls. An overall improvement in pulmonary function, particularly forced vital capacity, was observed as well as a significant increase in mean haemoglobin concentration by 1.1 g/100 ml of blood in the treated group. Apart from these improvements in physical working capacity, the treated subjects subjectively felt better after the exercise tests, as expressed by the disappearance of fatiguability.

  5. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    PubMed

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of ultrasound pre-treatment on the amount of dissolved organic matter extracted from food waste.

    PubMed

    Jiang, Jianguo; Gong, Changxiu; Wang, Jiaming; Tian, Sicong; Zhang, Yujing

    2014-03-01

    This paper describes a series of studies on the effects of food waste disintegration using an ultrasonic generator and the production of volatile fatty acids (VFAs) by anaerobic hydrolysis. The results suggest that ultrasound treatment can significantly increase COD [chemical oxygen demand], proteins and reducing sugars, but decrease that of lipids in food waste supernatant. Ultrasound pre-treatment boosted the production of VFAs dramatically during the fermentation of food waste. At an ultrasonic energy density of 480W/L, we treated two kinds of food waste (total solids (TS): 40 and 100g/L, respectively) with ultrasound for 15min. The amount of COD dissolved from the waste increased by 1.6-1.7-fold, proteins increased by 3.8-4.3-fold, and reducing sugars increased by 4.4-3.6-fold, whereas the lipid content decreased from 2 to 0.1g/L. Additionally, a higher VFA yield was observed following ultrasonic pre-treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Development potential of e-waste recycling industry in China.

    PubMed

    Li, Jinhui; Yang, Jie; Liu, Lili

    2015-06-01

    Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173 km to 239 km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013. © The Author(s) 2015.

  8. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to processmore » high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.« less

  9. 51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. 2, ELECTRIC POWERHOUSE No. 2, AND OUTDOOR ELECTRICAL SUBSTATION IN BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. Site specific risk assessment of an energy-from-waste/thermal treatment facility in Durham Region, Ontario, Canada. Part B: Ecological risk assessment.

    PubMed

    Ollson, Christopher A; Whitfield Aslund, Melissa L; Knopper, Loren D; Dan, Tereza

    2014-01-01

    The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste (EFW) thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. In this paper we present the results of a comprehensive ecological risk assessment (ERA) for this planned facility, based on baseline sampling and site specific modeling to predict facility-related emissions, which was subsequently accepted by regulatory authorities. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and the maximum design capacity (400,000 tonnes per year). In general, calculated ecological hazard quotients (EHQs) and screening ratios (SRs) for receptors did not exceed the benchmark value (1.0). The only exceedances noted were generally due to existing baseline media concentrations, which did not differ from those expected for similar unimpacted sites in Ontario. This suggests that these exceedances reflect conservative assumptions applied in the risk assessment rather than actual potential risk. However, under predicted upset conditions at 400,000 tonnes per year (i.e., facility start-up, shutdown, and loss of air pollution control), a potential unacceptable risk was estimated for freshwater receptors with respect to benzo(g,h,i)perylene (SR=1.1), which could not be attributed to baseline conditions. Although this slight exceedance reflects a conservative worst-case scenario (upset conditions coinciding with worst-case meteorological conditions), further investigation of potential ecological risk should be performed if this facility is expanded to the maximum operating capacity in the future. © 2013.

  11. Marrying Step Feed with Secondary Clarifier Improvements to Significantly Increase Peak Wet Weather Treatment Capacity: An Integrated Methodology.

    PubMed

    Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A

    2017-08-01

      The need to increase the peak wet weather secondary treatment capacity of the City of Akron, Ohio, Water Reclamation Facility (WRF) provided the opportunity to test an integrated methodology for maximizing the peak wet weather secondary treatment capacity of activated sludge systems. An initial investigation, consisting of process modeling of the secondary treatment system and computational fluid dynamics (CFD) analysis of the existing relatively shallow secondary clarifiers (3.3 and 3.7 m sidewater depth in 30.5 m diameter units), indicated that a significant increase in capacity from 416 000 to 684 000 m3/d or more was possible by adding step feed capabilities to the existing bioreactors and upgrading the existing secondary clarifiers. One of the six treatment units at the WRF was modified, and an extensive 2-year testing program was conducted to determine the total peak wet weather secondary treatment capacity achievable. The results demonstrated that a peak wet weather secondary treatment capacity approaching 974 000 m3/d is possible as long as secondary clarifier solids and hydraulic loadings could be separately controlled using the step feed capability provided. Excellent sludge settling characteristics are routinely experienced at the City of Akron WRF, raising concerns that the identified peak wet weather secondary treatment capacity could not be maintained should sludge settling characteristics deteriorate for some reason. Computational fluid dynamics analysis indicated that the impact of the deterioration of sludge settling characteristics could be mitigated and the identified peak wet weather secondary treatment capacity maintained by further use of the step feed capability provided to further reduce secondary clarifier solids loading rates at the identified high surface overflow rates. The results also demonstrated that effluent limits not only for total suspended solids (TSS) and five-day carbonaceous biochemical oxygen demand (cBOD5) could be

  12. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass.

    PubMed

    Steinberg, Lisa M; Kronyak, Rachel E; House, Christopher H

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d -1  m -3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact

  13. Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics.

    PubMed

    Cagnetta, Giovanni; Zhang, Kunlun; Zhang, Qiwu; Huang, Jun; Yu, Gang

    2018-05-01

    Chemical recycling technologies are the most promising for a waste-to-energy/material recovery of plastic waste. However, 30% of such waste cannot be treated in this way due to the presence of halogenated organic compounds, which are often utilized as flame retardants. In fact, high quantities of hydrogen halides and dioxin would form. In order to enabling such huge amount of plastic waste as viable feedstock for recycling, an investigation on mechanochemical pre-treatment by high energy ball milling is carried out on polypropylene containing decabromodiphenyl ether. Results demonstrate that co-milling with zero valent iron and quartz sand ensures complete debromination and mineralization of the flame retardant. Furthermore, a comparative experiment demonstrates that the mechanochemical debromination kinetics is roughly proportional to the polymer-to-haloorganics mass ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Municipal solid waste management in Beijing City.

    PubMed

    Li, Zhen-shan; Yang, Lei; Qu, Xiao-Yan; Sui, Yu-mei

    2009-09-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km(2) with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  15. Study of agricultural waste treatment in China and Russia-based on the agriculture environment sustainable development

    NASA Astrophysics Data System (ADS)

    Chernyaeva, Victoria A.; Teng, Xiuyi; Sergio

    2017-06-01

    China and Russia are both agriculture countries, agricultural environment sustainable development is very important for them. The paper studies three main agricultural wastes: straw, organic waste and plastic waste, and analyzes their treatments with the view of agricultural sustainable development.

  16. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Liquid secondary waste. Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less

  18. Constraints to healthcare waste treatment in low-income countries - a case study from Somaliland.

    PubMed

    Di Bella, Veronica; Ali, Mansoor; Vaccari, Mentore

    2012-06-01

    In low-income countries, healthcare waste is mixed with the municipal waste stream and rarely receives special attention. This paper presents the lessons learned from a pilot project targeted to improve healthcare waste management in Hargeisa (Somaliland). The interventions were carried out in three of the main hospitals in the city. Consideration was also given to improve the overall situation regarding the management of healthcare waste. Three De Montfort incinerators were built and training was provided to operators, waste workers and healthcare personnel. Although the incinerators were constructed in accordance with the required standards, major constraints were identified in the operational phase: irregular de-ashing procedures, misuse of safety equipment, and ineffective separation of healthcare waste were seen in this phase. The paper concludes that in other small hospitals in the developing world, such as those in Hargeisa, on-site incineration by use of low-cost, small-scale incinerators could be successfully applied as an interim solution, provided that an agreed and acceptable plan of operation and maintenance is in place and responsibilities for the management of the facility are clearly identified. Moreover, when replicating this experience in other settings even greater importance should be given to the technical capacity building of operators and pressure should be exercised on local administrations in order to control and supervise the whole management system.

  19. Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry.

    PubMed

    Busto, Y; Cabrera, X; Tack, F M G; Verloo, M G

    2011-02-15

    Old dumps of mercury waste sludges from chlor-alkaline industry are an environmental threat if not properly secured. Thermal retortion can be used to remove mercury from such wastes. This treatment reduces the total mercury content, and also may reduce the leachability of the residual mercury. The effects of treatment temperature and treatment time on both residual mercury levels and mercury leachability according to the US EPA TCLP leaching procedure, were investigated. Treatment for 1h at 800°C allowed to quantitatively remove the mercury. Treatment at 400°C and above allowed to decrease the leachable Hg contents to below the US EPA regulations. The ultimate choice of treatment conditions will depend on requirements of further handling options and cost considerations. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.

    PubMed

    Shaaban, A F

    2007-06-25

    Management of medical wastes generated at different hospitals in Egypt is considered a highly serious problem. The sources and quantities of regulated medical wastes have been thoroughly surveyed and estimated (75t/day from governmental hospitals in Cairo). From the collected data it was concluded that the most appropriate incinerator capacity is 150kg/h. The objective of this work is to develop the process engineering design of an integrated unit, which is technically and economically capable for incinerating medical wastes and treatment of combustion gases. Such unit consists of (i) an incineration unit (INC-1) having an operating temperature of 1100 degrees C at 300% excess air, (ii) combustion-gases cooler (HE-1) generating 35m(3)/h hot water at 75 degrees C, (iii) dust filter (DF-1) capable of reducing particulates to 10-20mg/Nm(3), (iv) gas scrubbers (GS-1,2) for removing acidic gases, (v) a multi-tube fixed bed catalytic converter (CC-1) to maintain the level of dioxins and furans below 0.1ng/Nm(3), and (vi) an induced-draft suction fan system (SF-1) that can handle 6500Nm(3)/h at 250 degrees C. The residence time of combustion gases in the ignition, mixing and combustion chambers was found to be 2s, 0.25s and 0.75s, respectively. This will ensure both thorough homogenization of combustion gases and complete destruction of harmful constituents of the refuse. The adequate engineering design of individual process equipment results in competitive fixed and operating investments. The incineration unit has proved its high operating efficiency through the measurements of different pollutant-levels vented to the open atmosphere, which was found to be in conformity with the maximum allowable limits as specified in the law number 4/1994 issued by the Egyptian Environmental Affairs Agency (EEAA) and the European standards.

  1. Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.

    2012-12-01

    The University of Colorado-Boulder is one of a few universities in the country that has a licensed Treatment, Storage, and Disposal Facility (TSDF) for hazardous waste on campus. This facility, located on the bottom floor of the Environmental Health and Safety (EH&S) building, allows CU to more economically treat hazardous waste by enabling treatment specialists on staff to safely collect and organize the hazardous waste generated on campus. Hazardous waste is anything that contains a regulated chemical or compound and most chemicals used in engineering labs (e.g., acids, solvents, metal solutions) fall into this category. The EH&S staff is able to treat close almost 33% of the waste from campus and the rest is packed for off-site treatment at various places all over the country for disposal (e.g., Sauget, IL, Port Aurthor, TX). The CU-Boulder campus produced over 50 tons of hazardous waste in 2010 costing over $300,000 in off-campus expenses. The EH&S staff assigns one of over 50 codes to the waste which will determine if the waste can be treated on campus of must be shipped off campus to be disposed of. If the waste can be treated on campus, it will undergo one of three processes: 1) neutralization, 2) UV-ozone oxidation, or 3) ion exchange. If the waste is acidic but contains no heavy metals, the acid is neutralized with sodium hydroxide (a base) and can be disposed "down the drain" to the Boulder Wastewater Treatment Plant. If the waste contains organic compounds and no metals, a UV-ozone oxidation system is used to break down the organic compounds. Silver from photography wastewater can be removed using ion exchange columns. Undergraduate and graduate students worked with the hazardous waste treatment facility at the Environmental Health and Safety (EH&S) building on the CU-Boulder campus during the fall of 2011 and fall of 2012. Early in the semester, students receive a tour of the three batch treatment processes the facility is equipped with. Later in the

  2. Designing an agricultural vegetative waste-management system under uncertain prices of treatment-technology output products.

    PubMed

    Broitman, D; Raviv, O; Ayalon, O; Kan, I

    2018-05-01

    Setting up a sustainable agricultural vegetative waste-management system is a challenging investment task, particularly when markets for output products of waste-treatment technologies are not well established. We conduct an economic analysis of possible investments in treatment technologies of agricultural vegetative waste, while accounting for fluctuating output prices. Under a risk-neutral approach, we find the range of output-product prices within which each considered technology becomes most profitable, using average final prices as the exclusive factor. Under a risk-averse perspective, we rank the treatment technologies based on their computed certainty-equivalent profits as functions of the coefficient of variation of the technologies' output prices. We find the ranking of treatment technologies based on average prices to be robust to output-price fluctuations provided that the coefficient of variation of the output prices is below about 0.4, that is, approximately twice as high as that of well-established recycled-material markets such as glass, paper and plastic. We discuss some policy implications that arise from our analysis regarding vegetative waste management and its associated risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Systematic review and meta-analysis of factors that help or hinder treatment decision-making capacity in psychosis.

    PubMed

    Larkin, Amanda; Hutton, Paul

    2017-10-01

    Background The evidence on factors that may influence treatment decisional capacity ('capacity') in psychosis has yet to be comprehensively synthesised, which limits the development of effective strategies to improve or support it. Aims To determine the direction, magnitude and reliability of the relationship between capacity in psychosis and a range of clinical, demographic and treatment-related factors, thus providing a thorough synthesis of current knowledge. Method We conducted a systematic review, meta-analytical and narrative synthesis of factors that help or hinder treatment decision-making capacity in psychosis, assessing the direction, magnitude, significance and reliability of reported associations. Results We identified 23 relevant studies ( n = l823). Psychotic symptoms had small, moderate and strong associations with appreciation, understanding and reasoning respectively. Both verbal cognitive functioning and duration of education had small to moderate correlations with understanding and reasoning. Better capacity was also associated with better insight, better metacognitive ability, higher anxiety and lower perceived coercion. No linear relationship with depression was observed. Interventions linked to improved capacity over time were in-patient care, information simplification, shared decision-making and metacognitive training. Conclusions Although much is known about the role of symptoms and other clinical variables, effective and acceptable psychological interventions to support capacity in this group are lacking. © The Royal College of Psychiatrists 2017.

  4. Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...

  5. 20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  6. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  7. Treatment Effect Heterogeneity in a Science Professional Development Initiative: The Case for School Capacity

    ERIC Educational Resources Information Center

    Bruch, Sarah; Grigg, Jeffrey; Hanselman, Paul

    2010-01-01

    This study focuses on how the treatment effects of a teacher professional development initiative in science differed by school capacity. In other words, the authors are primarily concerned with treatment effect heterogeneity. As such, this paper complements ongoing evaluation of the average treatment effects of the initiative over time. The…

  8. Economic analysis of effluent limitation guidelines and standards for the centralized waste treatment industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, W.

    1998-12-01

    This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmentalmore » justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.« less

  9. Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin

    USGS Publications Warehouse

    Grant, R. Stephen

    1976-01-01

    A waste-load-assimilation study of a reach of Koshkonong Creek below the Sun Prairie, Wisconsin, sewage-treatment-plant outfall indicated that a high level of treatment would be required to meet Wisconsin water-quality standards. To maintain a minimum dissolved-oxygen concentration of 5 mg/liter during the critical summer low-flow period, 5-day carbonaceous biochemical-oxygen demand in waste discharges should not exceed 5 mg/liter and ammonium nitrogen should not exceed 1.5 mg/liter. Advanced treatment with denitrification is required because stream-reaeration coefficients are not high enough to offset deoxygenation caused by an abundance of attached biological slimes. The slimes apparently consumed dissolved oxygen at a rate of about 110 mg/liter per day at the time of the stream survey. During the critical summer low-flow period, natural stream discharge is very small compared to waste-water discharge , so benefits of dilution are insignificant. An evaluation of two proposed alternative waste-water discharge sites indicated that the present discharge site is hydraulically superior to these sites. Stream-reaeration coefficients used in the study were based on measurements using the radioactive-tracer method. (Woodard-USGS)

  10. Assessment of the state of food waste treatment in the United States and Canada.

    PubMed

    Levis, J W; Barlaz, M A; Themelis, N J; Ulloa, P

    2010-01-01

    Currently in the US, over 97% of food waste is estimated to be buried in landfills. There is nonetheless interest in strategies to divert this waste from landfills as evidenced by a number of programs and policies at the local and state levels, including collection programs for source separated organic wastes (SSO). The objective of this study was to characterize the state-of-the-practice of food waste treatment alternatives in the US and Canada. Site visits were conducted to aerobic composting and two anaerobic digestion facilities, in addition to meetings with officials that are responsible for program implementation and financing. The technology to produce useful products from either aerobic or anaerobic treatment of SSO is in place. However, there are a number of implementation issues that must be addressed, principally project economics and feedstock purity. Project economics varied by region based on landfill disposal fees. Feedstock purity can be obtained by enforcement of contaminant standards and/or manual or mechanical sorting of the feedstock prior to and after treatment. Future SSO diversion will be governed by economics and policy incentives, including landfill organics bans and climate change mitigation policies. 2010 Elsevier Ltd. All rights reserved.

  11. REMEDIAL ACTION, TREATMENT AND DISPOSAL OF HAZARDOUS WASTE: PROCEEDINGS OF THE SIXTEENTH ANNUAL HAZARDOUS WASTE RESEARCH SYMPOSIUM

    EPA Science Inventory

    The Sixteenth Annual Research Symposium on Remedial Action, Treatment and Disposal of Hazardous Waste was held in Cincinnati, Ohio, April 3-5, 1990. he purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects f...

  12. Importance of biological systems in industrial waste treatment potential application to the space station

    NASA Technical Reports Server (NTRS)

    Revis, Nathaniel; Holdsworth, George

    1990-01-01

    In addition to having applications for waste management issues on planet Earth, microbial systems have application in reducing waste volumes aboard spacecraft. A candidate for such an application is the space station. Many of the planned experiments generate aqueous waste. To recycle air and water the contaminants from previous experiments must be removed before the air and water can be used for other experiments. This can be achieved using microorganisms in a bioreactor. Potential bioreactors (inorganics, organics, and etchants) are discussed. Current technologies that may be applied to waste treatment are described. Examples of how biological systems may be used in treating waste on the space station.

  13. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kevin W.; Vandergaast, Gerald

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated intomore » the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)« less

  14. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    PubMed Central

    Pittmann, Timo; Steinmetz, Heidrun

    2017-01-01

    This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants. PMID:28952533

  15. Fermentation for Disinfesting Fruit Waste From Drosophila Species (Diptera: Drosophilidae).

    PubMed

    Noble, R; Dobrovin-Pennington, A; Shaw, B; Buss, D S; Cross, J V; Fountain, M T

    2017-08-01

    Economic losses in a range of fruit crops due to the Drosophila suzukii (Matsumura) have become severe. Removal and treatment of fruit waste, which may harbor D. suzukii, is a key step in preventing reinfestation of fruit production. Natural fermentation for disinfesting fruit wastes from D. suzukii was examined at ambient air temperatures of 12-20 °C. Soft and stone fruit wastes infested with eggs, larvae, and pupae of Drosophila melanogaster (Meigen) or D. suzukii were placed in sealed vessels containing fruit wastes, and samples were retrieved at intervals and tested for the emergence of adults. Mean temperatures of the fruit waste in the sealed vessels during fermentation were 15-23 °C. Fermentation for 3 d was effective in disinfesting waste from different life stages of D. suzukii. Treatment for 4 d also ensured that the waste was free of viable life stages of D. melanogaster, which could be used as an indicator species for disinfestation of waste from D. suzukii owing to its greater tolerance of fermentation. The O2 concentration of the headspace air in the vessels became undetectable after 13-16 h, with a corresponding increase in CO2 concentration, which exceeded 80% vol/vol. The resulting hypoxia and hypercapnia may explain the efficacy of the fermentation treatment in disinfesting the waste. Fermented fruit remained attractive to D. suzukii and retained its capacity to rear a life cycle. Covering or mixing fermented fruit with a sufficient depth (0.1 m) or volume (×9) of soil or coir prevented the reinfestation of treated waste. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. 52. NORTHEASTERN EXTERIOR VIEW OF DOOROLIVER WAST WATER TREATMENT THICKENER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. NORTHEASTERN EXTERIOR VIEW OF DOOR-OLIVER WAST WATER TREATMENT THICKENER No. 1. ELECTRIC POWERHOUSE No. 2 AND BLOW ENGINE HOUSE No. 3 IS IN THE BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. N-SINK - reduction of waste water nitrogen load

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  18. Medical Patients’ Treatment Decision Making Capacity: A Report from a General Hospital in Greece

    PubMed Central

    Bilanakis, Nikolaos; Vratsista, Aikaterini; Athanasiou, Eleni; Niakas, Dimitris; Peritogiannis, Vaios

    2014-01-01

    This study aimed to assess the decision-making capacity for treatment of patients hospitalized in an internal medicine ward of a General Hospital in Greece, and to examine the views of treating physicians regarding patients’ capacity. All consecutive admissions to an internal medicine ward within a month were evaluated. A total of 134 patients were approached and 78 patients were interviewed with the MacArthur Competence Assessment Tool for Treatment (MacCAT-T) and the Mini Mental State Examination (MMSE) questionnaire. Sixty-eight out of 134 patients (50.7%) were incompetent to decide upon their treatment. The majority of them (n=56, 41.8%) were obviously incapable because they were unconscious, or had such marked impairment that they could not give their own names, and the rest (n=12, 8.9%) were rated as incompetent according to their performance in the MacCAT-T. Neurological disorders, old age and altered cognitive function according to MMSE were negatively correlated with decision making capacity. Physicians sometimes failed to recognize patients’ incapacity. Rates of decision-making incapacity for treatment in medical inpatients are high, and incapacity may go unrecognized by treating physicians. Combined patient evaluation with the use of the MacCAT-T and MMSE, could be useful for the determination of incapable patients. PMID:25505489

  19. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer.

    PubMed

    Dalton, James T; Taylor, Ryan P; Mohler, Michael L; Steiner, Mitchell S

    2013-12-01

    This review highlights selective androgen receptor modulators (SARMs) as emerging agents in late-stage clinical development for the prevention and treatment of muscle wasting associated with cancer. Muscle wasting, including a loss of skeletal muscle, is a cancer-related symptom that begins early in the progression of cancer and affects a patient's quality of life, ability to tolerate chemotherapy, and survival. SARMs increase muscle mass and improve physical function in healthy and diseased individuals, and potentially may provide a new therapy for muscle wasting and cancer cachexia. SARMs modulate the same anabolic pathways targeted with classical steroidal androgens, but within the dose range in which expected effects on muscle mass and function are seen androgenic side-effects on prostate, skin, and hair have not been observed. Unlike testosterone, SARMs are orally active, nonaromatizable, nonvirilizing, and tissue-selective anabolic agents. Recent clinical efficacy data for LGD-4033, MK-0773, MK-3984, and enobosarm (GTx-024, ostarine, and S-22) are reviewed. Enobosarm, a nonsteroidal SARM, is the most well characterized clinically, and has consistently demonstrated increases in lean body mass and better physical function across several populations along with a lower hazard ratio for survival in cancer patients. Completed in May 2013, results for the Phase III clinical trials entitled Prevention and treatment Of muscle Wasting in patiEnts with Cancer1 (POWER1) and POWER2 evaluating enobosarm for the prevention and treatment of muscle wasting in patients with nonsmall cell lung cancer will be available soon, and will potentially establish a SARM, enobosarm, as the first drug for the prevention and treatment of muscle wasting in cancer patients.

  20. Waste treatment by bacterial additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, D.J.; Stigall, E.; Barth, E.

    1979-04-23

    Companies such as General Environmental Science Corp. and Polybac Corp., which market specialized bacterial cultures for treating industrial wastes, claim that the cultures improve the operation of activated-sludge, trickling-filter, and lagoon-treatment plants, and provide faster system response to startups, variable and shock loads, and cold weather. The effectiveness of the special cultures is difficult to verify and has been questioned by environmental experts, including R. L. Raymond (Suntech Inc.) and E. Barth (EPA), although E. Stigall (EPA) believes they may aid plant recovery after upsets. A study by Business Communications Co. has predicted that the market for such additives willmore » reach $50 million by 1987, from $5 million in 1979. The use of such cultures in Exxon Corp.'s 1 million gal/day activated sludge system at the Benicia, Calif., oil refinery improved the system's performance by 32Vertical Bar3<, resulted in faster unit startups and more stable operation, and reduced foaming. J. T. Baker Co. has used successfully two broad-spectrum dried additives for ammonia removal and hydrocarbon degradation at its 3 million gal/day secondary treatment plant at Phillipsburg, N.J.« less

  1. Effects of different animal waste treatment technologies on detection and viability of porcine enteric viruses.

    PubMed

    Costantini, Verónica P; Azevedo, Ana C; Li, Xin; Williams, Mike C; Michel, Frederick C; Saif, Linda J

    2007-08-01

    Enteric pathogens in animal waste that is not properly processed can contaminate the environment and food. The persistence of pathogens in animal waste depends upon the waste treatment technology, but little is known about persistence of porcine viruses. Our objectives were to characterize the porcine enteric viruses (porcine noroviruses [PoNoVs], porcine sapoviruses [PoSaVs], rotavirus A [RV-A], RV-B, and RV-C) in fresh feces or manure and to evaluate the effects of different candidate environmentally superior technologies (ESTs) for animal waste treatment on the detection of these viruses. Untreated manure and samples collected at different stages during and after treatment were obtained from swine farms that used conventional waste management (CWM) and five different candidate ESTs. The RNA from porcine enteric viruses was detected by reverse transcription-PCR and/or seminested PCR; PoSaV and RV-A were also detected by enzyme-linked immunosorbent assay. Cell culture immunofluorescence (CCIF) and experimental inoculation of gnotobiotic (Gn) pigs were used to determine RV-A/C infectivity in posttreatment samples. The PoSaV and RV-A were detected in pretreatment samples from each farm, whereas PoNoV and RV-C were detected in pretreatment feces from three of five and four of five farms using the candidate ESTs, respectively. After treatment, PoSaV RNA was detected only in the samples from the farm using CWM and not from the farms using the candidate ESTs. RV-A and RV-C RNAs were detected in four of five and three of four candidate ESTs, respectively, after treatment, but infectious particles were not detected by CCIF, nor were clinical signs or seroconversion detected in inoculated Gn pigs. These results indicate that only RV-A/C RNA, but no viral infectivity, was detected after treatment. Our findings address a public health concern regarding environmental quality surrounding swine production units.

  2. Energy and nutrient recovery from anaerobic treatment of organic wastes

    NASA Astrophysics Data System (ADS)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  3. Role of waste management with regard to climate protection: a case study.

    PubMed

    Hackl, Albert; Mauschitz, Gerd

    2008-02-01

    According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.

  4. Assessment of medical waste management in seven hospitals in Lagos, Nigeria.

    PubMed

    Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril

    2016-03-15

    Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental

  5. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  6. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei

    Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.

  7. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  8. Biofiltration - an innovative approach to vapor phase treatment at the Silvex hazardous waste site in Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartsfield, B.

    1995-12-31

    Biofiltration is an emerging technology that is being used for vapor phase treatment at the Silvex hazardous waste site. Biofiltration works by directing the off-gas from the groundwater treatment system through a bed of soil, compost or other medium that supports the growth of bacteria. Contaminants are absorbed into the water present in the medium, and are subsequently degraded by the microorganisms. The biofiltration system at the Silvex hazardous waste site has been effective in removing contaminants from the off-gas. The biofiltration system has also been effective in minimizing the odor problem resulting from mercaptans in the off-gas. Biofiltration hasmore » been used for many years at wastewater and industrial plants to control odor and remove organic contaminants. This technology has only recently been used for hazardous waste site cleanups. The hazardous waste literature is now listing biofiltration as a vapor phase treatment technology, along with carbon, thermal oxidation and others.« less

  9. LAND TREATMENT AND THE TOXICITY RESPONSE OF SOIL CONTAMINATED WITH WOOD PRESERVING WASTE

    EPA Science Inventory

    Soils contaminated with wood preserving wastes, including pentachlo-rophenol (PCP) and creosote, are treated at field-scale in an engineered prepared-bed system consisting of two one-acre land treatment units (LTUs). The concentration of selected indicator compounds of treatment ...

  10. Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.

    1997-12-01

    DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on themore » materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.« less

  11. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    NASA Astrophysics Data System (ADS)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  12. Environmental Factor{trademark} system: RCRA hazardous waste handler information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  13. Municipal solid waste management in Beijing City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhenshan; Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055; Yang Lei

    2009-09-15

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km{sup 2} with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted formore » less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.« less

  14. Current perspectives on biomedical waste management: Rules, conventions and treatment technologies.

    PubMed

    Capoor, Malini R; Bhowmik, Kumar Tapas

    2017-01-01

    Unregulated biomedical waste management (BMWM) is a public health problem. This has posed a grave threat to not only human health and safety but also to the environment for the current and future generations. Safe and reliable methods for handling of biomedical waste (BMW) are of paramount importance. Effective BMWM is not only a legal necessity but also a social responsibility. This article reviews the current perspectives on BMWM and rules, conventions and the treatment technologies used worldwide. BMWM should ideally be the subject of a national strategy with dedicated infrastructure, cradle-to-grave legislation, competent regulatory authority and trained personnel. Improving the management of biomedical waste begins with waste minimisation. These standards, norms and rules on BMWM in a country regulate the disposal of various categories of BMW to ensure the safety of the health-care workers, patients, public and environment. Furthermore, developing models for the monitoring of hospital health-care waste practices and research into non-burn eco-friendly sustainable technologies, recycling and polyvinyl chloride-free devices will go in long way for safe carbon environment. Globally, greater research in BMWM is warranted to understand its growing field of public health importance.

  15. The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions.

    PubMed

    Mikołajczyk-Bator, Katarzyna; Pawlak, Sylwia

    2016-01-01

    Increased consumption of fruits and vegetables significantly reduces the risk of cardio-vascular disease. This beneficial effect on the human organism is ascribed to the antioxidant compounds these foods contain. Unfortunately, many products, particularly vegetables, need to be subjected to thermal processing before consumption. The aim of this study was to determine the effect of such thermal treatment on the antioxidant capacity and pigment contents in separated fractions of violet pigments (betacyanins) and yellow pigments (betaxanthins and betacyanins). Fractions of violet and yellow pigments were obtained by separation of betalain pigments from fresh roots of 3 red beet cultivars using column chromatography and solid phase extraction (SPE). The betalain pigment content was determined in all samples before and after thermal treatment (90°C/30 min) by spectrophotometry, according to Nilsson's method [1970] and antioxidant capacity was assessed based on ABTS. Betalain pigments in the separated fractions were identified using HPLC-MS. After thermal treatment of betacyanin fractions a slight, but statistically significant degradation of pigments was observed, while the antioxidant capacity of these fractions did not change markedly. Losses of betacyanin content amounted to 13-15% depending on the cultivar, while losses of antioxidant capacity were approx. 7%. HPLC/MS analyses showed that before heating, betanin was the dominant pigment in the betacyanin fraction, while after heating it was additionally 15-decarboxy-betanin. Isolated fractions of yellow pigments in red beets are three times less heat-resistant than betacyanin fractions. At losses of yellow pigment contents in the course of thermal treatment reaching 47%, antioxidant capacity did not change markedly (a decrease by approx. 5%). In the yellow pigment fractions neobetanin was the dominant peak in the HPLC chromatogram, while vulgaxanthin was found in a much smaller area, whereas after heating

  16. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  17. Economic aspects of thermal treatment of solid waste in a sustainable WM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massarutto, Antonio

    2015-03-15

    Highlights: • Provides a comprehensive review of the applied economic literature dedicated to WtE. • Offers a detailed discussion of the main assumptions that characterize alternative positions. • Highlights the most robust achievements obtained by the applied economic research in this field. • Compares economic and non-economic valuation techniques. - Abstract: This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, withmore » particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.« less

  18. Electrochemical and Photochemical Treatment of Aqueous Waste Streams

    DTIC Science & Technology

    1996-01-01

    TREATMENT OF AQUEOUS WASTE STREAMS Joseph C. Farmer, Richard W. Pekala, Francis T. Wang, David V. Fix, Alan M. Volpe, Daniel D. Dietrich, William H...STREAMS Joseph C. Farmer, Richard W. Pekala, Francis T. Wang, David V. Fix, Alan M. Volpe, Daniel D. Dietrich, William H. Siegel and James F. Carley...1992). Wilbourne , C. M. Wong, , W. S. Gillam, S. Johnson, R. H. Horowitz, "Electrosorb Process for Desalting Water," Res. Dev. Prog. Rept. No. 516, 16. J

  19. TOXICITY APPROACHES TO ASSESSING MINING IMPACTS AND MINE WASTE TREATMENT EFFECTIVENESS

    EPA Science Inventory

    The USEPA Office of Research and Development's National Exposure Research Laboratory and National Risk Management Research Laboratory have been evaluating the impact of mining sites on receiving streams and the effectiveness of waste treatment technologies in removing toxicity fo...

  20. Waste reduction plan for The Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.M.

    1990-04-01

    The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less

  1. Valorisation of fish by-products against waste management treatments--Comparison of environmental impacts.

    PubMed

    Lopes, Carla; Antelo, Luis T; Franco-Uría, Amaya; Alonso, Antonio A; Pérez-Martín, Ricardo

    2015-12-01

    Reuse and valorisation of fish by-products is a key process for marine resources conservation. Usually, fishmeal and oil processing factories collect the by-products generated by fishing port and industry processing activities, producing an economical benefit to both parts. In the same way, different added-value products can be recovered by the valorisation industries whereas fishing companies save the costs associated with the management of those wastes. However, it is important to estimate the advantages of valorisation processes not only in terms of economic income, but also considering the environmental impacts. This would help to know if the valorisation of a residue provokes higher impact than other waste management options, which means that its advantages are probably not enough for guarantying a sustainable waste reuse. To that purpose, there are several methodologies to evaluate the environmental impacts of processes, including those of waste management, providing different indicators which give information on relevant environmental aspects. In the current study, a comparative environmental assessment between a valorisation process (fishmeal and oil production) and different waste management scenarios (composting, incineration and landfilling) was developed. This comparison is a necessary step for the development and industrial implementation of these processes as the best alternative treatment for fish by-products. The obtained results showed that both valorisation process and waste management treatments presented similar impacts. However, a significant benefit can be achieved through valorisation of fish by-products. Additionally, the implications of the possible presence of pollutants were discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...

  3. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste.

    PubMed

    He, Ruo; Yao, Xing-Zhi; Chen, Min; Ma, Ruo-Chan; Li, Hua-Jun; Wang, Chen; Ding, Shen-Hua

    2018-06-01

    Volatile sulfur compounds (VSCs) are not only the main source of malodor in anaerobic treatment of organic waste, but also pose a threat to human health. In this study, VSCs production and microbial community was investigated during the anaerobic degradation of fish and pork waste. The results showed that after the operation of 245 days, 94.5% and 76.2% of sulfur compounds in the fish and pork waste was converted into VSCs. Among the detected VSCs including H 2 S, carbon disulfide, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide, methanethiol was the major component with the maximum concentration of 4.54% and 3.28% in the fish and pork waste, respectively. The conversion of sulfur compounds including total sulfur, SO 4 2- -S, S 2- , methionine and cysteine followed the first-order kinetics. Miseq sequencing analysis showed that Acinetobacter, Clostridium, Proteus, Thiobacillus, Hyphomicrobium and Pseudomonas were the main known sulfur-metabolizing microorganisms in the fish and pork waste. The C/N value had most significant influence on the microbial community in the fish and pork waste. A main conversion of sulfur compounds with CH 3 SH as the key intermediate was firstly hypothesized during the anaerobic degradation of fish and pork waste. These findings are helpful to understand the conversion of sulfur compounds and to develop techniques to control ordor pollution in the anaerobic treatment of organic waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of

  5. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  6. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  7. Treatment of hospital waste water by ozone technology

    NASA Astrophysics Data System (ADS)

    Indah Dianawati, Rina; Endah Wahyuningsih, Nur; Nur, Muhammad

    2018-05-01

    Conventional treatment hospital wastewater need high cost, large area, long time and the final result leaves a new waste known as sludge. Alternative to more efficient and new technologies for treated hospital wastewaters was ozonation. Ozonation is able to oxidized pollutant materials in wastewater. This research is to know the decrease of COD and TDS levels with ozone. Waste water samples used by dr. Adhyatma, MPH Hospitals Semarang. Kruskal-Wallis test for COD and TDS with variation of concentration p-value = 0,029 and 0,001 (p≤0,05) or there is significantly difference between COD and TDS with level of concentration but there were no different between levels of COD, and TDS with reactions time variations p-value = 0,735, and 0,870 (p≥0.05). Ozone efficiently reduction of COD and TDS at a concentration of 100 mg/liter, the lowest mean value at COD 17.47 mg/liter and TDS 409.75 mg/liter.

  8. Use of Fenton reaction for the treatment of leachate from composting of different wastes.

    PubMed

    Trujillo, Daniel; Font, Xavier; Sánchez, Antoni

    2006-11-02

    The oxidation of leachate coming from the composting of two organic wastes (wastewater sludge and organic fraction of municipal solid wastes) using the Fenton's reagent was studied using different ratios [Fe(2+)]/[COD](0) and maintaining a ratio [H(2)O(2)]/[COD](0) equal to 1. The optimal conditions for Fenton reaction were found at a ratio [Fe(2+)]/[COD](0) equal to 0.1. Both leachates were significantly oxidized under these conditions in terms of COD removal (77 and 75% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively) and BOD(5) removal (90 and 98% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively). Fenton's reagent was found to oxidize preferably biodegradable organic matter of leachate. In consequence, a decrease in the biodegradability of leachates was observed after Fenton treatment for both leachates. Nevertheless, Fenton reaction proved to be a feasible technique for the oxidation of the leachate under study, and it can be considered a suitable treatment for this type of wastewaters.

  9. Coconut-based biosorbents for water treatment--a review of the recent literature.

    PubMed

    Bhatnagar, Amit; Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2010-10-15

    Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials (especially agricultural wastes). Among several agricultural wastes studied as biosorbents for water treatment, coconut has been of great importance as various parts of this tree (e.g. coir, shell, etc.) have been extensively studied as biosorbents for the removal of diverse type of pollutants from water. Coconut-based agricultural wastes have gained wide attention as effective biosorbents due to low-cost and significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of coconut-based biosorbents from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. Available abundantly, high biosorption capacity, cost-effectiveness and renewability are the important factors making these materials as economical alternatives for water treatment and waste remediation. This paper presents a state of the art review of coconut-based biosorbents used for water pollution control, highlighting and discussing key advancement on the preparation of novel adsorbents utilizing coconut wastes, its major challenges together with the future prospective. It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale, leading to the superior improvement of pollution control and environmental preservation. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  11. Site specific risk assessment of an energy-from-waste thermal treatment facility in Durham Region, Ontario, Canada. Part A: Human health risk assessment.

    PubMed

    Ollson, Christopher A; Knopper, Loren D; Whitfield Aslund, Melissa L; Jayasinghe, Ruwan

    2014-01-01

    The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. This paper presents the results of a comprehensive human health risk assessment for this facility. This assessment was based on extensive sampling of baseline environmental conditions (e.g., collection and analysis of air, soil, water, and biota samples) as well as detailed site specific modeling to predict facility-related emissions of 87 identified contaminants of potential concern. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and for the maximum design capacity (400,000 tonnes per year). For the 140,000 tonnes per year scenario, this assessment indicated that facility-related emissions are unlikely to cause adverse health risks to local residents, farmers, or other receptors (e.g., recreational users). For the 400,000 tonnes per year scenarios, slightly elevated risks were noted with respect to inhalation (hydrogen chloride) and infant consumption of breast milk (dioxins and furans), but only during predicted 'upset conditions' (i.e. facility start-up, shutdown, and loss of air pollution control) that represent unusual and/or transient occurrences. However, current provincial regulations require that additional environmental screening would be mandatory prior to expansion of the facility beyond the initial approved capacity (140,000 tonnes per year). Therefore, the potential risks due to upset conditions for the 400,000 tonnes per year scenario should be more closely investigated if future expansion is pursued. © 2013.

  12. [Measurement and analysis of micropore aeration system's oxygenating ability under operation condition in waste water treatment plant].

    PubMed

    Wu, Yuan-Yuan; Zhou, Xiao-Hong; Shi, Han-Chang; Qiu, Yong

    2013-01-01

    Using the aeration pool in the fourth-stage at Wuxi Lucun Waste Water Treatment Plant (WWTP) as experimental setup, off-gas method was selected to measure the oxygenating ability parameters of micropore aerators in a real WWTP operating condition and these values were compared with those in fresh water to evaluate the performance of the micropore aerators. Results showed that the micropore aerators which were distributed in different galleries of the aeration pool had significantly different oxygenating abilities under operation condition. The oxygenating ability of the micropore aerators distributed in the same gallery changed slightly during one day. Comparing with the oxygenating ability in fresh water, it decreased a lot in the real aeration pool, in more details, under the real WWTP operating condition, the values of oxygen transfer coefficient K(La) oxygenation capacity OC and oxygen utilization E(a) decreased by 43%, 57% and 76%, respectively.

  13. Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abitz, R.J.

    1996-12-31

    Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less

  14. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Utilization of Activated Carbon Prepared from Aceh Coffee Grounds as Bio-sorbent for Treatment of Fertilizer Industrial Waste Water

    NASA Astrophysics Data System (ADS)

    Mariana, M.; Mahidin, M.; Mulana, F.; Aman, F.

    2018-05-01

    The people of Aceh are well known as coffee drinkers. Therefore, a lot of coffee shops have been established in Aceh in the past decade. The growing of coffee shops resulting to large amounts of coffee waste produced in Aceh Province that will become solid waste if not wisely utilized. The high carbon content in coffee underlined as background of this research to be utilized those used coffee grounds as bio-sorbent. The preparation of activated carbon from coffee grounds by using carbonization method that was initially activated with HCl was expected to increase the absorption capacity. The prepared activated carbon with high reactivity was applied to adsorb nitrite, nitrate and ammonia in wastewater outlet of PT. PIM wastewater pond. Morphological structure of coffee waste was analyzed by using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The result showed that the adsorption capacity of iodine was equal to 856.578 mg/g. From the characterization results, it was concluded that the activated carbon from coffee waste complied to the permitted quality standards in accordance with the quality requirements of activated carbon SNI No. 06-3730-1995. Observed from the adsorption efficiency, the bio-sorbent showed a tendency of adsorbing more ammonia than nitrite and nitrate of PT. PIM wastewater with ammonia absorption efficiency of 56%.

  16. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  17. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  18. Effects of Different Animal Waste Treatment Technologies on Detection and Viability of Porcine Enteric Viruses▿

    PubMed Central

    Costantini, Verónica P.; Azevedo, Ana C.; Li, Xin; Williams, Mike C.; Michel, Frederick C.; Saif, Linda J.

    2007-01-01

    Enteric pathogens in animal waste that is not properly processed can contaminate the environment and food. The persistence of pathogens in animal waste depends upon the waste treatment technology, but little is known about persistence of porcine viruses. Our objectives were to characterize the porcine enteric viruses (porcine noroviruses [PoNoVs], porcine sapoviruses [PoSaVs], rotavirus A [RV-A], RV-B, and RV-C) in fresh feces or manure and to evaluate the effects of different candidate environmentally superior technologies (ESTs) for animal waste treatment on the detection of these viruses. Untreated manure and samples collected at different stages during and after treatment were obtained from swine farms that used conventional waste management (CWM) and five different candidate ESTs. The RNA from porcine enteric viruses was detected by reverse transcription-PCR and/or seminested PCR; PoSaV and RV-A were also detected by enzyme-linked immunosorbent assay. Cell culture immunofluorescence (CCIF) and experimental inoculation of gnotobiotic (Gn) pigs were used to determine RV-A/C infectivity in posttreatment samples. The PoSaV and RV-A were detected in pretreatment samples from each farm, whereas PoNoV and RV-C were detected in pretreatment feces from three of five and four of five farms using the candidate ESTs, respectively. After treatment, PoSaV RNA was detected only in the samples from the farm using CWM and not from the farms using the candidate ESTs. RV-A and RV-C RNAs were detected in four of five and three of four candidate ESTs, respectively, after treatment, but infectious particles were not detected by CCIF, nor were clinical signs or seroconversion detected in inoculated Gn pigs. These results indicate that only RV-A/C RNA, but no viral infectivity, was detected after treatment. Our findings address a public health concern regarding environmental quality surrounding swine production units. PMID:17601821

  19. Effect of average flow and capacity utilization on effluent water quality from US municipal wastewater treatment facilities.

    PubMed

    Weirich, Scott R; Silverstein, Joann; Rajagopalan, Balaji

    2011-08-01

    There is increasing interest in decentralization of wastewater collection and treatment systems. However, there have been no systematic studies of the performance of small treatment facilities compared with larger plants. A statistical analysis of 4 years of discharge monthly report (DMR) data from 210 operating wastewater treatment facilities was conducted to determine the effect of average flow rate and capacity utilization on effluent biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia, and fecal coliforms relative to permitted values. Relationships were quantified using generalized linear models (GLMs). Small facilities (40 m³/d) had violation rates greater than 10 times that of the largest facilities (400,000 m³/d) for BOD, TSS, and ammonia. For facilities with average flows less than 40,000 m³/d, increasing capacity utilization was correlated with increased effluent levels of BOD and TSS. Larger facilities tended to operate at flows closer to their design capacity while maintaining treatment suggesting greater efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  1. Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths.

    PubMed

    Wang, Jian; Ben, Weiwei; Yang, Min; Zhang, Yu; Qiang, Zhimin

    2016-01-01

    Swine feedlots are an important pollution source of antibiotics and antibiotic resistance genes (ARGs) to the environment. This study investigated the dissemination of two classes of commonly-used veterinary antibiotics, namely, tetracyclines (TCs) and sulfonamides (SAs), and their corresponding ARGs along the waste treatment paths from a concentrated swine feedlot located in Beijing, China. The highest total TC and total SA concentrations detected were 166.7mgkg(-1) and 64.5μgkg(-1) in swine manure as well as 388.7 and 7.56μgL(-1) in swine wastewater, respectively. Fourteen tetracycline resistance genes (TRGs) encoding ribosomal protection proteins (RPP), efflux proteins (EFP) and enzymatic inactivation proteins, three sulfonamide resistance genes (SRGs), and two integrase genes were detected along the waste treatment paths with detection frequencies of 33.3-75.0%. The relative abundances of target ARGs ranged from 2.74×10(-6) to 1.19. The antibiotics and ARGs generally declined along both waste treatment paths, but their degree of reduction was more significant along the manure treatment path. The RPP TRGs dominated in the upstream samples and then decreased continuously along both waste treatment paths, whilst the EFP TRGs and SRGs maintained relatively stable. Strong correlations between antibiotic concentrations and ARGs were observed among both manure and wastewater samples. In addition, seasonal temperature, and integrase genes, moisture content and nutrient level of tested samples could all impact the relative abundances of ARGs along the swine waste treatment paths. This study helps understand the evolution and spread of ARGs from swine feedlots to the environment as well as assess the environmental risk arising from swine waste treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Economies of density for on-site waste water treatment.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-09-15

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised

  3. International E-Waste Management Network (IEMN)

    EPA Pesticide Factsheets

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  4. Summary Report of Comprehensive Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy; Funk, David John; Hargis, Kenneth Marshall

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively) at Los Alamos National Laboratory (LANL). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquidmore » fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of adding zeolite currently planned for implementation at LANL’s Waste Characterization, Reduction, and Repackaging Facility (WCRRF). The course of this work verified the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that WypAlls, cheesecloth, and Celotex absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). Sensitivity testing and an analysis were conducted to evaluate the waste form for reactivity. Tests included subjecting surrogate material to mechanical impact, friction, electrostatic discharge and thermal insults. The testing confirmed that the waste does not exhibit the characteristic

  5. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  6. Liquid secondary waste: Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic

  7. Optimised anaerobic treatment of house-sorted biodegradable waste and slaughterhouse waste in a high loaded half technical scale digester.

    PubMed

    Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R

    2006-01-01

    Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.

  8. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review.

    PubMed

    Rai, Suchita; Wasewar, K L; Agnihotri, A

    2017-06-01

    In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO 2 , sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.

  9. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  10. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  11. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  12. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  13. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  14. TREATMENT AND PRODUCT RECOVERY: SUPERCRITICAL WATER OXIDATION OF NYLON MONOMER MANUFACTURING WASTE

    EPA Science Inventory

    EPA GRANT NUMBER: R822721C569
    Title: Treatment and Product Recovery: Supercritical Water Oxidation of Nylon Monomer Manufacturing Waste
    Investigator: Earnest F. Gloyna
    Institution: University of Texas at Austin
    EPA Project Officer:<...

  15. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    PubMed

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  17. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca; Colturato, L.F.; Font, X.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSWmore » under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.« less

  18. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

    PubMed

    Martín-González, L; Colturato, L F; Font, X; Vicent, T

    2010-10-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.

  19. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    PubMed

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  20. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    PubMed

    Marathe, Nachiket P; Shetty, Sudarshan A; Shouche, Yogesh S; Larsson, D G Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  1. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production

    PubMed Central

    Shouche, Yogesh S.; Larsson, D. G. Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  2. Treatments of asbestos containing wastes.

    PubMed

    Spasiano, D; Pirozzi, F

    2017-12-15

    Since the second half of the twentieth century, many studies have indicated inhalation of asbestos fibers as the main cause of deadly diseases including fibrosis and cancer. Consequently, since the beginning of the 80s, many countries started banning production and use of asbestos containing products (ACP), although still present in private and public buildings. Due to some extraordinary catastrophic events and/or the aging of these products, people's health and environmental risk associated with the inhalation of asbestos fibers keeps being high even in those countries where it was banned. For these reasons, many communities are developing plans for an environmental and sanitary safe asbestos removal and management. Asbestos containing wastes (ACW) are usually disposed in controlled landfills, but this practice does not definitively eliminate the problems related with asbestos fiber release and conflicts with the ideas of sustainable land use, recycling, and closing material cycles. Consequently, many scientific papers and patents proposed physical, chemical, and biological treatments aimed to the detoxification of ACW (or the reduction of their health effects) and looking for the adoption of technologies, which allow the reuse of the end-products. By including recent relevant bibliography, this report summarizes the status of the most important and innovative treatments of ACW, providing main operating parameters, advantages, and disadvantages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Technical and economic feasibility of a solar-bio-powered waste utilization and treatment system in Central America.

    PubMed

    Aguilar Alvarez, Ronald Esteban; Bustamante Roman, Mauricio; Kirk, Dana; Miranda Chavarria, Jose Alberto; Baudrit, Daniel; Aguilar Pereira, Jose Francisco; Rodriguez Montero, Werner; Reinhold, Dawn; Liao, Wei

    2016-12-15

    The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An innovative national health care waste management system in Kyrgyzstan.

    PubMed

    Toktobaev, Nurjan; Emmanuel, Jorge; Djumalieva, Gulmira; Kravtsov, Alexei; Schüth, Tobias

    2015-02-01

    A novel low-cost health care waste management system was implemented in all rural hospitals in Kyrgyzstan. The components of the Kyrgyz model include mechanical needle removers, segregation using autoclavable containers, safe transport and storage, autoclave treatment, documentation, recycling of sterilized plastic and metal parts, cement pits for anatomical waste, composting of garden wastes, training, equipment maintenance, and management by safety and quality committees. The gravity-displacement autoclaves were fitted with filters to remove pathogens from the air exhaust. Operating parameters for the autoclaves were determined by thermal and biological tests. A hospital survey showed an average 33% annual cost savings compared to previous costs for waste management. All general hospitals with >25 beds except in the capital Bishkek use the new system, corresponding to 67.3% of all hospital beds. The investment amounted to US$0.61 per capita covered. Acceptance of the new system by the staff, cost savings, revenues from recycled materials, documented improvements in occupational safety, capacity building, and institutionalization enhance the sustainability of the Kyrgyz health care waste management system. © The Author(s) 2015.

  5. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment.

    PubMed

    Chen, Chun-Chi; Lee, Wen-Jhy; Shih, Shun-I; Mou, Jin-Luh

    2009-11-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  6. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.C.; Lee, W.J.; Shih, S.I.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energymore » release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.« less

  7. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    PubMed

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  8. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  9. Evaluation of healthcare waste treatment/disposal alternatives by using multi-criteria decision-making techniques.

    PubMed

    Özkan, Aysun

    2013-02-01

    Healthcare waste should be managed carefully because of infected, pathological, etc. content especially in developing countries. Applied management systems must be the most appropriate solution from a technical, environmental, economic and social point of view. The main objective of this study was to analyse the current status of healthcare waste management in Turkey, and to investigate the most appropriate treatment/disposal option by using different decision-making techniques. For this purpose, five different healthcare waste treatment/disposal alternatives including incineration, microwaving, on-site sterilization, off-site sterilization and landfill were evaluated according to two multi-criteria decision-making techniques: analytic network process (ANP) and ELECTRE. In this context, benefits, costs and risks for the alternatives were taken into consideration. Furthermore, the prioritization and ranking of the alternatives were determined and compared for both methods. According to the comparisons, the off-site sterilization technique was found to be the most appropriate solution in both cases.

  10. Healthcare waste management status in Lagos State, Nigeria: a case study from selected healthcare facilities in Ikorodu and Lagos metropolis.

    PubMed

    Longe, Ezechiel O

    2012-06-01

    A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.

  11. Regulatory control of low level radioactive waste in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.D.S.; Chiou, Syh-Tsong

    1996-12-31

    The commercial operation of Chinshan Nuclear Power Plant (NPP) Unit One marked the beginning of Taiwan`s nuclear power program. There are now three NPPs, each consisting of two units, in operation. This represents a generating capacity of 5,144 MWe. Nuclear power plants are sharing some 30 percent of electricity supplies in Taiwan. As far as low level radwaste (LLRW) is concerned, Taiwan Power Company (TPC) is the principal producer, contributing more than 90 percent of total volume of waste arising in Taiwan. Small producers, other than nuclear industries, medicine, research institutes, and universities, are responsible for the remaining 10 percent.more » In the paper, the LLRW management policy, organizational scheme, regulatory control over waste treatment, storage, transportation and disposal are addressed. Added to the paper in the last is how this country is managing its Naturally Occurring Radioactive Materials (NORM) waste.« less

  12. Nitrate Waste Treatment Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.; Martinez, Patrick Thomas; Garcia, Terrence Kerwin

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  13. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.

    PubMed

    Gammoun, A; Tahiri, S; Albizane, A; Azzi, M; Moros, J; Garrigues, S; de la Guardia, M

    2007-06-25

    In this paper, the ability of chrome shavings to remove motor oils, oily wastes and hydrocarbons from water has been studied. To determine amount of hydrocarbons sorbed on tanned wastes, a FT-NIR methodology was used and a multivariate calibration based on partial least squares (PLS) was employed for data treatment. The light density, porous tanned waste granules float on the surface of water and remove hydrocarbons and oil films. Wastes fibers from tannery industry have high sorption capacity. These tanned solid wastes are capable of absorbing many times their weight in oil or hydrocarbons (6.5-7.6g of oil and 6.3g of hydrocarbons per gram of chrome shavings). The removal efficiency of the pollutants from water is complete. The sorption of pollutants is a quasi-instantaneous process.

  14. Dental solid and hazardous waste management and safety practices in developing countries: Nablus district, Palestine.

    PubMed

    Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo

    2010-05-01

    This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.

  15. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.

    PubMed

    Mohan, S Venkata; Chandrasekhar, K

    2011-07-01

    Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    PubMed

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  17. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology.... Ecology Nevada in Beatty, Nevada and withdrew an existing site- specific treatment variance issued to... 268.44(o)) by granting a site-specific treatment variance to U.S. Ecology Nevada in Beatty, Nevada and...

  18. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without

  19. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potentialmore » issues associated with recycling.« less

  20. Environmental impact assessment of solid waste management in Beijing City, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yan; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Tsinghua University, 100084 Beijing; Christensen, Thomas H.

    2011-04-15

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significantmore » environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.« less

  1. Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies.

    PubMed

    Li, Panyu; Chen, Xi; Zeng, Xiaotong; Zeng, Yu; Xie, Yi; Li, Xiang; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2018-02-02

    Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.

  2. A&M. Hot liquid waste treatment building (TAN616). Camera facing east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing east. Showing west facades of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. RECYCLING OF WATER TREATMENT PLANT SLUDGE VIA LAND APPLICATION: ASSESSMENT OF RISK

    EPA Science Inventory

    Water treatment sludges (WTS) offer potential benefits when applied to soil and recycling of the waste stream via land application has been proposed as a management option. Recycling of WTS to the land helps conserve landfill disposal capacity and natural resources, but potential...

  4. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  5. Phytoavailability and extractability of copper and zinc in calcareous soil amended with composted urban wastes.

    PubMed

    Gallardo-Lara, F; Azcón, M; Quesada, J L; Polo, A

    1999-11-01

    A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.

  6. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation wasmore » observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.« less

  7. Cost-effective treatment of swine wastes through recovery of energy and nutrients.

    PubMed

    Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J

    2017-11-01

    Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract.

    PubMed

    Xu, Guihua; Ye, Xingqian; Chen, Jianchu; Liu, Donghong

    2007-01-24

    This paper reports the effects of heat treatment on huyou (Citrus paradisi Changshanhuyou) peel in terms of phenolic compounds and antioxidant capacity. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used in this study for the analysis of phenolic acids (divided into four fractions: free, ester, glycoside, and ester-bound) and flavanone glycosides (FGs) in huyou peel (HP) before and after heat treatment. The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined (P < 0.05). Furthermore, the antioxidant activity of methanol extract of HP increased (P < 0.05), which was evaluated by total phenolics contents (TPC) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS*+) method, and ferric reducing antioxidant power (FRAP) assay. The correlation coefficients among TPC, ABTS, FRAP assay, and total cinnamics and benzoics (TCB) in the free fraction were significantly high (P < 0.05), which meant that the increase of total antioxidant capacity (TAC) of HP extract was due at least in part to the increase of TCB in free fraction. In addition, FGs may be destroyed when heated at higher temperature for a long time (for example, 120 degrees C for 90 min or 150 degrees C for 30 min). Therefore, it is suggested that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel.

  9. BIOLOGICAL TREATMENT OF HAZARDOUS AQUEOUS WASTES

    EPA Science Inventory

    Studies have been conducted with a rotating biological contractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protect...

  10. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    PubMed

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  11. A Social Approach to Decision-Making Capacity: Exploratory Research with People with Experience of Mental Health Treatment

    ERIC Educational Resources Information Center

    McDaid, Shari; Delaney, Sarah

    2011-01-01

    This paper reports on exploratory, qualitative research conducted with eight people with experience of mental health treatment about their understanding of decision-making capacity. While acknowledging that there are times when mental or emotional distress can interfere with the capacity to make decisions, participants described how their capacity…

  12. Waste Information Management System with 2012-13 Waste Streams - 13095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Lagos, L.

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less

  13. Characterizing variable biogeochemical changes during the treatment of produced oilfield waste.

    PubMed

    Hildenbrand, Zacariah L; Santos, Inês C; Liden, Tiffany; Carlton, Doug D; Varona-Torres, Emmanuel; Martin, Misty S; Reyes, Michelle L; Mulla, Safwan R; Schug, Kevin A

    2018-09-01

    At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A&M. Hot liquid waste treatment building (TAN616). Camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing north. Detail of personnel entrance door, stoop, and stairway. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. Solid waste management in Kolkata, India: Practices and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Tumpa; Goel, Sudha

    2009-01-15

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920 ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less thanmore » 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes.« less

  16. Solid waste management in Kolkata, India: practices and challenges.

    PubMed

    Hazra, Tumpa; Goel, Sudha

    2009-01-01

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less than 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes.

  17. Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  19. Functional mental capacity, treatment as usual and time: magnitude of change in secure hospital patients with major mental illness.

    PubMed

    Dornan, Julieanne; Kennedy, Miriam; Garland, Jackie; Rutledge, Emer; Kennedy, Harry G

    2015-10-14

    Decision making ability can change with time, depending on mental or physical health. Little is known about the factors that determine this change and the relationship of capacity to time. As a pilot for studies using functional mental capacities as an outcome measure, we sought to quantify this relationship measuring change over time using competence assessment tools, and rating scales for symptoms and global function. We assessed 37 inpatients in a secure psychiatric hospital. All patients met the diagnostic and statistical manual of mental disorders-fourth edition and International classification of diseases, 10th edition criteria for an Axis 1 mental illness, all with psychosis. Patients were interviewed twice a mean of 323 days apart (median 176 days range 17-1221 days). The MacArthur competence assessment tools for consent to treatment (MacCAT-T) and fitness to plead (MacCAT-FP) were used to quantify functional capacity along with the Positive and Negative Syndrome Scale (PANSS) and global assessment of function (GAF) scale. A comparison was also made between those patients prescribed clozapine in comparison to other antipsychotics. The number judged by treating psychiatrists to lack capacity either to make a treatment choice or to plead in court fell from 35 to 8%. Change was greatest for those admitted within the previous 9 months. The measures of capacity improved between time 1 and time 2 for both consent to treatment and fitness to plead. The measures of capacity improved with positive symptoms within the PANSS and with GAF scores. Those with shorter lengths of stay at baseline had the greatest improvements in the MacCAT-FP scores. Effect sizes were medium or large (0.3-0.7+). As expected, patients prescribed clozapine had larger changes in functional mental capacities and larger effect sizes than those prescribed other psychotropics. The results show a strong relationship between the clinicians' assessment of capacity and structured rating scales. We

  20. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part II--Management and operating issues.

    PubMed

    Sweeney, D G; O'Brien, M J; Cromar, N J; Fallowfield, H J

    2005-01-01

    Bolivar Wastewater Treatment Plant (WWTP) was originally commissioned with trickling filter secondary treatment, followed by waste stabilisation pond (WSP) treatment and marine discharge. In 1999, a dissolved air flotation/filtration (DAFF) plant was commissioned to treat a portion of the WSP effluent for horticultural reuse. In 2001, the trickling filters were replaced with activated sludge treatment. A shift in WSP ecology became evident soon after this time, characterised by a statistically significant reduction in algal counts in the pond effluent, and increased variability in algal counts and occasional population crashes in the ponds. While the photosynthetic capacity of the WSPs has been reduced, the concomitant reduction in organic loading has meant that the WSPs have not become overloaded. As a result of the improvement in water quality leaving the ponds, significant cost savings and improved product water quality have been realised in the subsequent DAFF treatment stage. A number of operating issues have arisen from the change, however, including the re-emergence of a midge fly nuisance at the site. Control of midge flies using chemical spraying has negated the cost savings realised in the DAFF treatment stage. While biomanipulation of the WSP may provide a less aggressive method of midge control, this case demonstrates the difficulty of predicting in advance all ramifications of a retrospective process change.

  1. Projected treatment capacity needs in sierra leone.

    PubMed

    White, Richard A; MacDonald, Emily; de Blasio, Birgitte Freiesleben; Nygård, Karin; Vold, Line; Røttingen, John-Arne

    2015-01-30

    The ongoing outbreak of Ebola Virus Disease in West Africa requires immediate and sustained input from the international community in order to curb transmission. The CDC has produced a model that indicates that to end the outbreak by pushing the reproductive number below one, 25% of the patients must be placed in an Ebola Treatment Unit (ETC) and 45% must be isolated in community settings in which risk of disease transmission is reduced and safe burials are provided. In order to provide firmer targets for the international response in Sierra Leone, we estimated the national and international personnel and treatment capacity that may be required to reach these percentages. We developed a compartmental SEIR model that was fitted to WHO data and local data allowing the reproductive number to change every 8 weeks to forecast the progression of the EVD epidemic in Sierra Leone. We used the previously estimated 2.5x correction factor estimated by the CDC to correct for underreporting. Number of personnel required to provide treatment for the predicted number of cases was estimated using UNMEER and UN OCHA requests for resources required to meet the CDC target of 70% isolation. As of today (2014-12-04), we estimate that there are 810 (95% CI=646 to 973) EVD active cases in treatment, with an additional 3751 (95% CI=2778 to 4723) EVD cases unreported and untreated. To reach the CDC targets today, we need 1140 (95% CI=894 to 1387) cases in ETCs and 2052 (95% CI=1608 to 2496) at home or in a community setting with a reduced risk for disease transmission. In 28 days (2015-01-01), we will need 1309 (95% CI=804 to 1814) EVD cases in ETCs and 2356 (95% CI=1447 to 3266) EVD cases at reduced risk of transmission. If the current transmission rate is not reduced, up to 3183 personnel in total will be required in 56 days (2015-01-29) to operate ETCs according to our model. The current outbreak will require massive input from the international community in order to curb the

  2. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  3. Nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less

  4. Method and apparatus for treating gaseous effluents from waste treatment systems

    DOEpatents

    Flannery, Philip A.; Kujawa, Stephan T.

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  5. A&M. Hot liquid waste treatment building (TAN616). Camera facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing northeast. South wall with oblique views of west sides of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Notification: Preliminary Research to Evaluate Hazardous Waste Passing Through Publicly Owned Treatment Works

    EPA Pesticide Factsheets

    March 13, 2013. The EPA's OIG plans to start preliminary research to evaluate the effectiveness of the EPA’s programs in preventing and addressing contamination of surface water from hazardous wastes passing through publicly owned treatment works.

  7. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: Characterization and potential applications.

    PubMed

    Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin

    2018-09-01

    In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Working memory capacity and addiction treatment outcomes in adolescents.

    PubMed

    Houck, Jon M; Feldstein Ewing, Sarah W

    2018-01-01

    Brief addiction treatments including motivational interviewing (MI) have shown promise with adolescents, but the factors that influence treatment efficacy in this population remain unknown. One candidate is working memory, the ability to hold a fact or thought in mind. This is relevant, as in therapy, a client must maintain and manipulate ideas while working with a clinician. Working memory depends upon brain structures and functions that change markedly during neurodevelopment and that can be negatively impacted by substance use. In a secondary analysis of data from a clinical trial for adolescent substance use comparing alcohol/marijuana education and MI, we evaluated the relationship between working memory and three-month treatment-outcomes with the hypothesis that the relationship between intervention conditions and outcome would be moderated by working memory. With a diverse sample of adolescents currently using alcohol and/or marijuana (N = 153, 64.7% male, 70.6% Hispanic), we examined the relationship between baseline measures of working memory and alcohol and cannabis-related problem scores measured at the three-month follow-up. The results showed that lower working memory scores were associated with poorer treatment response only for alcohol use, and only within the education group. No relationship was found between working memory and treatment outcomes in the MI group. The results suggest that issues with working memory capacity may interfere with adolescents' ability to process and implement didactic alcohol and marijuana content in standard education interventions. These results also suggest that MI can be implemented equally effectively across the range of working memory functioning in youth.

  9. Mining marine shellfish wastes for bioactive molecules: chitin and chitosan--Part A: extraction methods.

    PubMed

    Hayes, Maria; Carney, Brian; Slater, John; Brück, Wolfram

    2008-07-01

    Legal restrictions, high costs and environmental problems regarding the disposal of marine processing wastes have led to amplified interest in biotechnology research concerning the identification and extraction of additional high grade, low-volume by-products produced from shellfish waste treatments. Shellfish waste consisting of crustacean exoskeletons is currently the main source of biomass for chitin production. Chitin is a polysaccharide composed of N-acetyl-D-glucosamine units and the multidimensional utilization of chitin derivatives including chitosan, a deacetylated derivative of chitin, is due to a number of characteristics including: their polyelectrolyte and cationic nature, the presence of reactive groups, high adsorption capacities, bacteriostatic and fungistatic influences, making them very versatile biomolecules. Part A of this review aims to consolidate useful information concerning the methods used to extract and characterize chitin, chitosan and glucosamine obtained through industrial, microbial and enzymatic hydrolysis of shellfish waste.

  10. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates.

    PubMed

    Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio

    2018-01-01

    Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2  h -1  kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Waste treatment: Beverage industry. January 1984-October 1989 (Citations from the Food Science and Technology Abstracts data base). Report for January 1984-October 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 223 citations, all of which are new entries to the previous edition.)

  12. Waste treatment: Beverage industry. January 1972-December 1983 (Citations from the Food Science and Technology Abstracts data base). Report for January 1972-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 312 citations, none of which are new entries to the previous edition.)

  13. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  14. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste.

    PubMed

    Klein, J; Dorge, S; Trouvé, G; Venditti, D; Durécu, S

    2009-07-30

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 degrees C and 1100 degrees C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was approximately 64%, while a approximately 36% fraction remained in the residual bottom ashes. But interestingly, while at 850 degrees C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 degrees C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in

  15. Building clinical trial capacity to develop a new treatment for multidrug-resistant tuberculosis.

    PubMed

    Tupasi, Thelma; Gupta, Rajesh; Danilovits, Manfred; Cirule, Andra; Sanchez-Garavito, Epifanio; Xiao, Heping; Cabrera-Rivero, Jose L; Vargas-Vasquez, Dante E; Gao, Mengqiu; Awad, Mohamed; Gentry, Leesa M; Geiter, Lawrence J; Wells, Charles D

    2016-02-01

    New drugs for infectious diseases often need to be evaluated in low-resource settings. While people working in such settings often provide high-quality care and perform operational research activities, they generally have less experience in conducting clinical trials designed for drug approval by stringent regulatory authorities. We carried out a capacity-building programme during a multi-centre randomized controlled trial of delamanid, a new drug for the treatment of multidrug-resistant tuberculosis. The programme included: (i) site identification and needs assessment; (ii) achieving International Conference on Harmonization - Good Clinical Practice (ICH-GCP) standards; (iii) establishing trial management; and (iv) increasing knowledge of global and local regulatory issues. Trials were conducted at 17 sites in nine countries (China, Egypt, Estonia, Japan, Latvia, Peru, the Philippines, the Republic of Korea and the United States of America). Eight of the 10 sites in low-resource settings had no experience in conducting the requisite clinical trials. Extensive capacity-building was done in all 10 sites. The programme resulted in improved local capacity in key areas such as trial design, data safety and monitoring, trial conduct and laboratory services. Clinical trials designed to generate data for regulatory approval require additional efforts beyond traditional research-capacity strengthening. Such capacity-building approaches provide an opportunity for product development partnerships to improve health systems beyond the direct conduct of the specific trial.

  16. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  17. Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite

    PubMed Central

    Malenab, Roy Alvin J.; Ngo, Janne Pauline S.; Promentilla, Michael Angelo B.

    2017-01-01

    The use of natural fibers in reinforced composites to produce eco-friendly materials is gaining more attention due to their attractive features such as low cost, low density and good mechanical properties, among others. This work thus investigates the potential of waste abaca (Manila hemp) fiber as reinforcing agent in an inorganic aluminosilicate material known as geopolymer. In this study, the waste fibers were subjected to different chemical treatments to modify the surface characteristics and to improve the adhesion with the fly ash-based geopolymer matrix. Definitive screening design of experiment was used to investigate the effect of successive chemical treatment of the fiber on its tensile strength considering the following factors: (1) NaOH pretreatment; (2) soaking time in aluminum salt solution; and (3) final pH of the slurry. The results show that the abaca fiber without alkali pretreatment, soaked for 12 h in Al2(SO4)3 solution and adjusted to pH 6 exhibited the highest tensile strength among the treated fibers. Test results confirmed that the chemical treatment removes the lignin, pectin and hemicellulose, as well as makes the surface rougher with the deposition of aluminum compounds. This improves the interfacial bonding between geopolymer matrix and the abaca fiber, while the geopolymer protects the treated fiber from thermal degradation. PMID:28772936

  18. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  19. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  20. CONTROL OF CHELATOR-BASED UPSETS IN SURFACE FINISHING SHOP WASTE WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Actual surface finishing shop examples are used to illustrate the use of process chemistry understanding and analyses to identify immediate, interim and permanent response options for industrial waste water treatment plant (IWTP) upset problems caused by chelating agents. There i...

  1. Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste.

    PubMed

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2014-01-01

    Co-digestion and pre-treatment have been recognized as effective, low-cost and commercially viable approaches to reduce anaerobic digestion process limitations and improve biogas yields. In our previous batch-scale study, fat, oil, and grease (FOG) was investigated as a suitable potential co-substrate, and thermo-chemical pre-treatment (TCPT) at pH = 10 and 55 °C improved CH4 production from FOG co-digestions. In this project, co-digestions with FOG were studied in bench-scale two-stage thermophilic semi-continuous flow co-digesters with suitable TCPT (pH = 10, 55 °C). Overall, a 25.14 ± 2.14 L/d (70.2 ± 1.4% CH4) biogas production was obtained, which was higher than in the two-stage system without pre-treatment. The results could provide valuable fundamental information to support full-scale investigations of anaerobic co-digestion of municipal organic wastes.

  2. Should We Provide Life-Sustaining Treatments to Patients with Permanent Loss of Cognitive Capacities?

    PubMed Central

    Golan, Ofra G.; Marcus, Esther-Lee

    2012-01-01

    A very troubling issue for health care systems today is that of life-sustaining treatment for patients who have permanently lost their cognitive capacities. These include patients in persistent vegetative state (PVS), or minimally conscious state (MCS), as well as a growing population of patients at the very end stage of dementia. These patients are totally dependent on life-sustaining treatments and are, actually, kept alive “artificially.” This phenomenon raises doubts as to the ethics of sustaining the life of patients who have lost their consciousness and cognitive capacities, and whether there is a moral obligation to do so. The problem is that the main facts concerning the experiences and well-being of such patients and their wishes are unknown. Hence the framework of the four principles—beneficence, non-maleficence, autonomy, and justice—is not applicable in these cases; therefore we examined solidarity as another moral value to which we may resort in dealing with this dilemma. This article shows that the source of the dilemma is the social attitudes towards loss of cognitive capacities, and the perception of this state as loss of personhood. Consequently, it is suggested that the principle of solidarity—which both sets an obligation to care for the worst-off, and can be used to identify obligations that appeal to an ethos of behavior—can serve as a guiding principle for resolving the dilemma. The value of solidarity can lead society to care for these patients and not deny them basic care and life-sustaining treatment when appropriate. PMID:23908842

  3. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  4. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  5. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  6. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  7. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  8. Environmental Factor(tm) system: RCRA hazardous waste handler information (on cd-rom). Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    Environmental Factor(tm) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information - dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  9. Risk management in waste water treatment.

    PubMed

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  10. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  11. Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses.

    PubMed

    Díaz, Ana Isabel; Laca, Amanda; Laca, Adriana; Díaz, Mario

    2017-09-01

    Fruits and vegetables have the highest wastage rates at retail and consumer levels. These wastes have promising potential for being used as substrates in bioprocesses. However, an effective hydrolysis of carbohydrates that form these residues has to be developed before the biotransformation. In this work, vegetable wastes from supermarket (tomatoes, green peppers and potatoes) have been separately treated by acid, thermal and enzymatic hydrolysis processes in order to maximise the concentration of fermentable sugars in the final broth. For all substrates, thermal and enzymatic processes have shown to be the most effective. A new combined hydrolysis procedure including these both treatments was also assayed and the enzymatic step was successfully modelled. With this combined hydrolysis, the percentage of reducing sugars extracted was increased, in comparison with the amount extracted from non-hydrolysed samples, approximately by 30% in the case of tomato and green peeper wastes. For potato wastes this percentage increased from values lower than 1% to 77%. In addition, very low values of fermentation inhibitors were found in the final broth. Copyright © 2017. Published by Elsevier Ltd.

  12. Treatment of synthetic wastewater and hog waste with reduced sludge generation by the multi-environment BioCAST technology.

    PubMed

    Yerushalmi, L; Alimahmoodi, M; Mulligan, C N

    2013-01-01

    Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300-4,000 mg chemical oxygen demand (COD)/L, 42-115 mg total nitrogen (TN)/L, and 19-40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m(3) d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960-2,400, 143-235 and 25-57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.

  13. Projected Treatment Capacity Needs in Sierra Leone

    PubMed Central

    White, Richard A; MacDonald, Emily; de Blasio, Birgitte Freiesleben; Nygård, Karin; Vold, Line; Røttingen, John-Arne

    2015-01-01

    Background: The ongoing outbreak of Ebola Virus Disease in West Africa requires immediate and sustained input from the international community in order to curb transmission. The CDC has produced a model that indicates that to end the outbreak by pushing the reproductive number below one, 25% of the patients must be placed in an Ebola Treatment Unit (ETC) and 45% must be isolated in community settings in which risk of disease transmission is reduced and safe burials are provided. In order to provide firmer targets for the international response in Sierra Leone, we estimated the national and international personnel and treatment capacity that may be required to reach these percentages. Methods: We developed a compartmental SEIR model that was fitted to WHO data and local data allowing the reproductive number to change every 8 weeks to forecast the progression of the EVD epidemic in Sierra Leone. We used the previously estimated 2.5x correction factor estimated by the CDC to correct for underreporting. Number of personnel required to provide treatment for the predicted number of cases was estimated using UNMEER and UN OCHA requests for resources required to meet the CDC target of 70% isolation. Results: As of today (2014-12-04), we estimate that there are 810 (95% CI=646 to 973) EVD active cases in treatment, with an additional 3751 (95% CI=2778 to 4723) EVD cases unreported and untreated. To reach the CDC targets today, we need 1140 (95% CI=894 to 1387) cases in ETCs and 2052 (95% CI=1608 to 2496) at home or in a community setting with a reduced risk for disease transmission. In 28 days (2015-01-01), we will need 1309 (95% CI=804 to 1814) EVD cases in ETCs and 2356 (95% CI=1447 to 3266) EVD cases at reduced risk of transmission. If the current transmission rate is not reduced, up to 3183 personnel in total will be required in 56 days (2015-01-29) to operate ETCs according to our model. Conclusions: The current outbreak will require massive input from the

  14. Hospital waste sterilization: A technical and economic comparison between radiation and microwaves treatments

    NASA Astrophysics Data System (ADS)

    Tata, A.; Beone, F.

    1995-09-01

    Hospital waste (HW) disposal is becoming a problem of increasing importance in almost all industrially advanced countries. In Italy the yearly hospital waste production is about 250,000 tons and only 60,000 tons are treated by incineration at present time. As by a recent Italian law a meaningful percentage of HW (50 to 60%), corresponding to food residuals, plastics, paper, various organic materials, etc., could be landfilled as municipal refuses if preliminarily submitted to a suitable sterilization treatment. Under this perspective, sterilization/sanitation techniques represent now a technically and commercially viable alternative to HW thermal destruction that, besides, is more and more socially and politically less accepted. Electron Beam (EB) and Microwave (MW) treatments are two of the most interesting and emerging HW sterilization techniques, and, based on engineering real data, a technical and economic comparison is carried out, focusing vantages and limits of each process.

  15. Hazardous waste treatment for spent pot liner

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Ma, Lei

    2018-01-01

    The spent pot liner is the largest solid waste produced by the electrolytic aluminum industry, composed of a series of substances that accumulate in the containers with reduced aluminum during the process of bauxite purification and refining. More and more spent pot liner is accumulated and needs to be dealt with. This paper discusses the composition and harm of solid waste. This paper expounds the comprehensive utilization value and disposition of the waste pot liner.

  16. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  17. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste.

    PubMed

    Sheets, Johnathon P; Yang, Liangcheng; Ge, Xumeng; Wang, Zhiwu; Li, Yebo

    2015-10-01

    Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less

  19. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  20. [Outsourcing: theory and practice at a clinical hospital in Szczecin exemplified by medical waste transport and treatment service].

    PubMed

    Kotlega, Dariusz; Nowacki, Przemysław; Lewiński, Dariusz; Chmurowicz, Ryszard; Ciećwiez, Sylwester

    2011-01-01

    Outsourcing proves to be a useful tool in the difficult process of improving the financial result of hospitals. Outsourcing means separation of some functions and services in one entity and their transfer to another. The aim of this study was to analyze the use of outsourcing at the Second Independent Public University Hospital of the Pomeranian Medical University (SPSK 2 PUM) in Szczecin. We studied the transport and treatment of medical waste. Outsourcing of waste treatment services led to financial savings. The cost of treatment of one kilogram of waste by an external company was PLN 2.53. The same service provided by the hospital would cost approximately PLN 7 per kilogram. Appropriate attention should be paid to the quality of services. It seems useful to have appropriate tools for quality control and monitoring. SPSK 2 PUM can serve as a good example of effective use of outsourcing.

  1. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  2. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for themore » facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.« less

  3. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M.; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less

  4. Maintenance of CO2 level in a BLSS by controlling solid waste treatment unit

    NASA Astrophysics Data System (ADS)

    Dong, Yingying; Li, Leyuan; Liu, Hong; Fu, Yuming; Xie, Beizhen; Hu, Dawei; Liu, Dianlei; Dong, Chen; Liu, Guanghui

    A bioregenerative life support system (BLSS) is an artificial closed ecosystem for providing basic human life support for long-duration, far-distance space explorations such as lunar bases. In such a system, the circulation of gases is one of the main factor for realizing a higher closure degree. O2 produced by higher plants goes to humans, as well as microorganisms for the treatment of inedible plant biomass and human wastes; CO2 produced by the crew and microorganisms is provided for plant growth. During this process, an excessively high CO2 level will depress plant growth and may be harmful to human health; and if the CO2 level is too low, plant growth will also be affected. Thus, keeping the balance between CO2 and O2 levels is a crucial problem. In this study, a high-efficiency, controllable solid waste treatment unit is constructed, which adopts microbial fermentation of the mixture of inedible biomass and human wastes. CO2 production during the fermentation process is controlled by adjusting fermentation temperature, aeration rate, moisture, etc., so as to meet the CO2 requirement of plants

  5. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    NASA Astrophysics Data System (ADS)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  6. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield.

    PubMed

    Cuetos, M J; Gómez, X; Otero, M; Morán, A

    2010-10-01

    Mesophilic anaerobic digestion (34+/-1 degrees C) of pre-treated (for 20 min at 133 degrees C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VS(feed)/m(3)d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion. The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China.

    PubMed

    Wan, Weining; Zhang, Shuzhen; Huang, Honglin; Wu, Tong

    2016-07-01

    This study for the first time reported the occurrence, distribution and concentrations of organophosphate esters (OPEs) in soils caused by plastic waste treatment, as well as their influence on OPE accumulation in wheat (Triticum aestivum L.). Eight OPEs were detected with the total concentrations of 38-1250 ng/g dry weight in the soils from the treatment sites, and tributoxyethyl phosphate and tri(2-chloroethyl) phosphate present as the dominant OPEs. There were similar distribution patterns of OPEs and significant correlations between the total OPE concentrations in the soils from the plastic waste treatment sites with those in the nearby farmlands (P < 0.005), indicating that plastic waste treatment caused the OPE contamination of farmland soils. The uptake and translocation of OPEs by wheat were determined, with OPEs of high hydrophobicity more easily taken up from soils and OPEs with low hydrophobicity more liable to be translocated acropetally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Meat, Fish, and Poultry Processing Wastes.

    ERIC Educational Resources Information Center

    Litchfield, J. H.

    1978-01-01

    Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)

  9. Laboratory tests on heat treatment of ballast water using engine waste heat.

    PubMed

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B

    2018-05-01

    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  10. A Study of Ballast Water Treatment Using Engine Waste Heat

    NASA Astrophysics Data System (ADS)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  11. Hanford facility dangerous waste permit application, general information portion. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units

  12. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    NASA Astrophysics Data System (ADS)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  13. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  14. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations ofmore » H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.« less

  15. Investigation of bioaerosols released from swine farms using conventional and alternative waste treatment and management technologies

    USGS Publications Warehouse

    Ko, G.; Simmons, O. D.; Likirdopulos, C.A.; Worley-Davis, L.; Williams, M.; Sobsey, M.D.

    2008-01-01

    Microbial air pollution from concentrated animal feeding operations (CAFOs) has raised concerns about potential public health and environmental impacts. We investigated the levels of bioaerosols released from two swine farms using conventional lagoon-sprayfield technology and ten farms using alternative waste treatment and management technologies in the United States. In total, 424 microbial air samples taken at the 12 CAFOs were analyzed for several indicator and pathogenic microorganisms, including culturable bacteria and fungi, fecal coliform, Escherichia coli, Clostridium perfringens, bacteriophage, and Salmonella. At all of the investigated farms, bacterial concentrations at the downwind boundary were higher than those at the upwind boundary, suggesting that the farms are sources of microbial air contamination. In addition, fecal indicator microorganisms were found more frequently near barns and treatment technology sites than upwind or downwind of the farms. Approximately 4.5% (19/424), 1.2% (5/424), 22.2% (94/424), and 12.3% (53/424) of samples were positive for fecal coliform, E. coli, Clostridium, and total coliphage, respectively. Based on statistical comparison of airborne fecal indicator concentrations at alternative treatment technology farms compared to control farms with conventional technology, three alternative waste treatment technologies appear to perform better at reducing the airborne release of fecal indicator microorganisms during on-farm treatment and management processes. These results demonstrate that airborne microbial contaminants are released from swine farms and pose possible exposure risks to farm workers and nearby neighbors. However, the release of airborne microorganisms appears to decrease significantly through the use of certain alternative waste management and treatment technologies. ?? 2008 American Chemical Society.

  16. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.

    PubMed

    Oliver, Ian W; Grant, Cameron D; Murray, Robert S

    2011-03-01

    Water treatment residuals (WTRs) are the by-products of drinking water clarification processes, whereby chemical flocculants such as alum or ferric chloride are added to raw water to remove suspended clay particles, organic matter and other materials and impurities. Previous studies have identified a strong phosphorus (P) fixing capacity of WTRs which has led to experimentation with their use as P-sorbing materials for controlling P discharges from agricultural and forestry land. However, the P-fixing capacity of WTRs and its capacity to retain sorbed P under anaerobic conditions have yet to be fully demonstrated, which is an issue that must be addressed for WTR field applications. This study therefore examined the capacity of WTRs to retain sorbed P and sorb further additional P from aqueous solution under both aerobic and anaerobic conditions. An innovative, low cost apparatus was constructed and successfully used to rapidly establish anoxic conditions in anaerobic treatments. The results showed that even in treatments with initial solution P concentrations set at 100 mg l(-1), soluble reactive P concentrations rapidly fell to negligible levels (due to sorption by WTRs), while total P (i.e. dissolved + particulate and colloidal P) was less than 3 mg l(-1). This equated to an added P retention rate of >98% regardless of anaerobic or aerobic status, indicating that WTRs are able to sorb and retain P in both aerobic and anaerobic conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less

  18. Battery designs with high capacity anode materials and cathode materials

    DOEpatents

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  19. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  20. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    PubMed

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.

  1. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    PubMed

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  2. Inclusion of human mineralized exometabolites and fish wastes as a source of higher plant mineral nutrition in BTLSS mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Ushakova, Sofya; Anischenko, Olesya; Trifonov, Sergey V.

    Human exometabolites inclusion into an intrasystem mass exchange will allow increasing of a closure level of a biological-technical life support system (BTLSS). Previously at the IBP SB RAS it was shown that human mineralized exometabolites could be incorporated in the BTLSS mass exchange as a mineral nutrition source for higher plants. However, it is not known how that combined use of human mineralized exometabolites and fish wastes in the capacity of nutrient medium, being a part of the BTLSS consumer wastes, will affect the plant productivity. Several wheat vegetations were grown in an uneven-aged conveyor on a neutral substrate. A mixture of human mineralized exometabolites and fish wastes was used as a nutrient solution in the experiment treatment and human mineralized exometabolites were used in the control. Consequently, a high wheat yield in the experiment treatment practically equal to the control yield was obtained. Thus, mineralized fish wastes can be an additional source of macro-and micronutrients for plants, and use of such wastes for the plant mineral nutrition allows increasing of BTLSS closure level.

  3. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  4. Ca-doped LTO using waste eggshells as Ca source to improve the discharge capacity of anode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Setiawan, D.; Subhan, A.; Saptari, S. A.

    2017-07-01

    The necessity of high charge-discharge capacity lithium-ion battery becomes very urgent due to its applications demand. Several researches have been done to meet the demand including Ca doping on Li4Ti5O12 for anode material of lithium-ion batteries. Ca-doped Li4Ti5O12 (LTO) in the form of Li4-xCaxTi5O12 (x = 0, 0.05, 0.075, and 0.1) have been synthesized using simple solid state reaction. The materials preparation involved waste eggshells in the form of CaCO3 as Ca source. The structure and capacity of as-prepared samples were characterized using X-Ray Diffractometer and Cyclic Voltametry. X-Ray Diffractometer characterization revealed that all amount of dopant had entered the lattice structure of LTO successfully. The crystalline sizes were obtained by using Scherrer equation. No significant differences are detected in lattice parameters (˜8.35 Å) and crystalline sizes (˜27 nm) between all samples. Cyclic Voltametry characterization shows that Li4-xCaxTi5O12 (x = 0.05) has highest charge-discharge capacity of 177.14 mAh/g and 181.92 mAh/g, respectively. Redox-potentials of samples show no significant differences with the average of 1.589 V.

  5. A&M. Hot liquid waste treatment building (TAN616), south side. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616), south side. Camera facing north. Personnel door at left side of wall. Partial view of outdoor stairway to upper level platform. Note concrete construction. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. E-waste issues in Sri Lanka and the Basel Convention.

    PubMed

    Suraweera, Inoka

    2016-03-01

    E-waste is hazardous, complex and expensive to treat in an environmentally sound manner. The management of e-waste is considered a serious challenge in both developed and developing countries and Sri Lanka is no exception. Due to significant growth in the economy and investments and other reasons the consumption of electronic and electrical equipment in Sri Lanka has increased over the years resulting in significant generation of e-waste. Several initiatives such as introduction of hazardous waste management rules, ratification of the Basel Convention in 1992 and the introduction of a National Corporate E-waste Management Program have been undertaken in Sri Lanka to manage e-waste. Strengthening policy and legislation, introducing methods for upstream reduction of e-waste, building capacity of relevant officers, awareness raising among school children and the general public and development of an e-waste information system are vital. Research on e-waste needs to be developed in Sri Lanka. The health sector could play a leading role in the provision of occupational health and safety for e-waste workers, advocacy, capacity building of relevant staff and raising awareness among the general public about e-waste. Improper e-waste management practices carried out by informal sector workers need to be addressed urgently in Sri Lanka.

  7. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-ignitable...

  8. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-ignitable...

  9. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-ignitable...

  10. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-ignitable...

  11. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2015-10-01

    Literature published in 2014 and early 2015 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  12. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  13. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2016-10-01

    Literature published in 2015 and early 2016 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  14. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    PubMed

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. FY 2017 Hazardous Waste Management Grant Program for Tribes

    EPA Pesticide Factsheets

    This notice announces the availability of funds and solicits proposals from federally-recognized tribes or intertribal consortia for the development and implementation of hazardous waste programs and for building capacity to address hazardous waste

  16. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  17. Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments.

    PubMed

    Kataki, Sampriti; West, Helen; Clarke, Michèle; Baruah, D C

    2016-03-01

    Global population growth requires intensification of agriculture, for which a sustainable supply of phosphorus (P) is essential. Since natural P reserves are diminishing, recovering P from wastes and residues is an increasingly attractive prospect, particularly as technical and economic potential in the area is growing. In addition to providing phosphorus for agricultural use, precipitation of P from waste residues and effluents lessens their nutrient loading prior to disposal. This paper critically reviews published methods for P recovery from waste streams (municipal, farm and industrial) with emphasis on struvite (MgNH4PO4·6H2O) crystallisation, including pre-treatments to maximise recovery. Based on compositional parameters of a range of wastes, a Feedstock Suitability Index (FSI) was developed as a guide to inform researchers and operators of the relative potential for struvite production from each waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY TH; GEHNER PD; STEGEN GARY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in additionmore » to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.« less

  19. Thermal treatment of medical waste in a rotary kiln.

    PubMed

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less