40 CFR 270.65 - Research, development, and demonstration permits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...
40 CFR 270.65 - Research, development, and demonstration permits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...
USEPA'S SITE PROGRAM IMPACT ON THE DEVELOPMENT AND USE OF INNOVATIVE HAZARDOUS WASTE TREATMENT
The USEPA's SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. The SITE Program has two components: The Demonstration Program and ...
Robotics for mixed waste operations, demonstration description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.R.
The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2013 CFR
2013-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2010 CFR
2010-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2014 CFR
2014-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2011 CFR
2011-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2012 CFR
2012-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT
EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...
40 CFR 35.917-5 - Public participation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... identification and evaluation of locations for waste water treatment facilities and of alternative treatment... treatment, reduce waste water volume, and encourage multiple use of facilities; (3) The evaluation of social... planning issues and decisions. (b) Basic Public Participation Program. Since waste water treatment...
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...
76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...) Land Disposal Restrictions Phase IV--Treatment Standards for Wood Preserving Wastes, Paperwork... the Carbamate Land Disposal Restrictions; (5) Clarification of Standards for Hazardous Waste LDR...) Emergency Revision of the Land Disposal Restrictions (LDR) Treatment Standards for Listed Hazardous Wastes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayberry, J.; Stelle, S.; O`Brien, M.
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).
Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16
This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...
Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading
This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Istanbul Water and Sewerage Administration (ISKI) was formed in 1982, and since that time a phased program of sewage collection and treatment has been implemented. Fifteen waste treatment plants, ranging from full scale biological treatment to pre-treatment, are in the design or planning stage, and over 2,000 km of collection lines have been installed. Concurrent with the program is an increasing emphasis on industrial waste treatment, which results in the production of both non-hazardous and hazardous sludges.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... program, to U.S. Ecology Nevada in Beatty, Nevada for the treatment of a hazardous selenium- bearing waste.... Ecology Nevada located in Beatty, Nevada. B. Table of Contents I. Background [[Page 50623
USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE
The SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. To accomplish this mission, the program seeks to advance the development, implementation and commercialization of innovative technologies for hazardous waste chara...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less
Secondary Waste Simulant Development for Cast Stone Formulation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.
Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Federal laws required in § 270.3. (e) Solid waste management unit information required by § 270.14(d). (f... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM RCRA Standardized Permits for Storage and Treatment Units...
Assessment of the state of food waste treatment in the United States and Canada.
Levis, J W; Barlaz, M A; Themelis, N J; Ulloa, P
2010-01-01
Currently in the US, over 97% of food waste is estimated to be buried in landfills. There is nonetheless interest in strategies to divert this waste from landfills as evidenced by a number of programs and policies at the local and state levels, including collection programs for source separated organic wastes (SSO). The objective of this study was to characterize the state-of-the-practice of food waste treatment alternatives in the US and Canada. Site visits were conducted to aerobic composting and two anaerobic digestion facilities, in addition to meetings with officials that are responsible for program implementation and financing. The technology to produce useful products from either aerobic or anaerobic treatment of SSO is in place. However, there are a number of implementation issues that must be addressed, principally project economics and feedstock purity. Project economics varied by region based on landfill disposal fees. Feedstock purity can be obtained by enforcement of contaminant standards and/or manual or mechanical sorting of the feedstock prior to and after treatment. Future SSO diversion will be governed by economics and policy incentives, including landfill organics bans and climate change mitigation policies. 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, D.E.
1996-09-01
This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY2000
The Superfund Innovative Technology Evaluation Program promotes the development, commercialization, and implementation of innovative hazardous waste treatment technologies. SITE offers a mechanism for conducting joint demonstration and evaluation projects at hazardous waste site...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.
2010-01-30
Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Metal Wastes and Mineral Processing Wastes (Checklist 167A), Hazardous Soils Treatment Standards and...)), 270.1, 270.14(a), and 270.28 are non-HSWA provisions. Hazardous Remediation Waste Management...
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
This document explains how to generate data which characterizes the performance of hazardous waste treatment systems in terms of the composition of treated hazardous waste streams plus treatment system operation and design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, S.B.
1994-05-25
This is a final report from Bend Research, Inc., (BRI) to the U.S. Department of Energy (DOE) for work performed under Contract No. DE-AC22-92MT92005, titled {open_quotes}Development of a Membrane-Based Process for the Treatment of Oily Waste Waters.{close_quotes} This report covers the period from March 4, 1992, to March 5, 1994. The overall goal of this program was to develop an economical oily-water treatment system based on reverse osmosis (RO). The RO system would be used to (1) reduce oil production costs by reducing the volume of waste water that must be disposed of, (2) form the basis of a genericmore » waste-water treatment system that can easily be integrated into oil-field operations, especially at production facilities that are small or in remote locations; and (3) produce water clean enough to meet existing and anticipated environmental regulations. The specific focus of this program was the development of a hollow-fiber membrane module capable of treating oily waste waters.« less
76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... Phase II--Universal Treatment Standards, and Treatment Standards for Organic Toxicity Characteristic... Disposal Facilities and Hazardous Waste Generators; Organic Air Emissions Standards for Tanks, Surface... Generators; Organic Air Emissions Standards for Tanks, Surface Impoundments, and Containers; Clarification...
March 13, 2013. The EPA's OIG plans to start preliminary research to evaluate the effectiveness of the EPA’s programs in preventing and addressing contamination of surface water from hazardous wastes passing through publicly owned treatment works.
EPA issues interim final waste minimization guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergeson, L.L.
1993-08-01
The U.S. Environmental Protection Agency (EPA) has released a new and detailed interim final guidance to assist hazardous waste generators in certifying they have a waste minimization program in place under the Resource Conservation and Recovery Act (RCRA). EPA's guidance identifies the basic elements of a waste minimization program in place that, if present, will allow people to certify they have implemented a program to reduce the volume and toxicity of hazardous waste to the extent economically practical. The guidance is directly applicable to generators of 1000 or more kilograms per month of hazardous waste, or large-quantity generators, and tomore » owners and operators of hazardous waste treatment, storage or disposal facilities who manage their own hazardous waste on site. Small-quantity generators that generate more than 100 kilograms, but less than 1,000 kilograms, per month of hazardous waste are not subject to the same program in place certification requirement. Rather, they must certify on their manifests that they have made a good faith effort to minimize their waste generation.« less
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM TECHNOLOGY PROFILES: SIXTH EDITION
The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment and monitoring and measurement technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment techn...
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM - TECHNOLOGY PROFILES - SEVENTH EDITION
The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment and monitoring and measurement technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment techn...
Waste reduction plan for The Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, R.M.
1990-04-01
The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less
The mixed low-level waste problem in BE/NWN capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.C.
1999-07-01
The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less
The SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION program - Technology Profiles
The Superfund Innovative Technology Evaluation (SITE) program was created to evaluate new and promising treatment technologies for cleanup at hazardous waste sites. The mission of the SITE program is to encourage the development and routine use of innovative treatment technologie...
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM - TECHNOLOGY PROFILES 4th Edition
The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment technologies. As a result, the SI...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module describes the following conventional treatment systems and evaluates their use as pretreatment steps for land application: preliminary, primary, secondary, disinfection, and advanced waste treatment. Effluent qualities are summarized, a brief discussion of application systems is given, and cost comparisons are discussed in some detail.…
Waste Minimization Program. Air Force Plant 6.
1986-02-01
coolant’s life, it can cause the formation of gummy residues on machines and parts and cause corrosion of the machine and work tools . i 3-91e 0 _ b-4 LA...2-9 3.0 Waste Minimization Program, AFP 6 3-1 3.1 Machine Coolant Waste 3-1 3.2 Engine Oil and Hydraulic Fluid Waste 3-12 3.3 Paint Sludge 3-14 3.4...Incineration 3-54 LIST OF FIGURES Figure Page 3-1 Annual Machine Coolant Use 3-5 n 3-2 oily Industrial Waste Treatment System 3-7 3-3 Schematic of Paint
40 CFR 265.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... includes an amended waste analysis plan, ground-water monitoring and response program, human exposure....113 Section 265.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
Region 9 NPDES Facilities - Waste Water Treatment Plants
Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.
The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less
USEPA Waste Disposal Shareware: Purdue University and USEPA (1988-1989).
ERIC Educational Resources Information Center
Rubleske, Joseph B.; Lindsey, Greg
1997-01-01
Describes and evaluates two USEPA shareware programs called Principles of On-Site Wastewater Treatment (ONSITE) and Residential Waste Treatment Evaluation (RWASTE). ONSITE, a tutorial, provides an overview of septic systems and their relationship to soils. RWASTE builds on ONSITE. Both are effective tools for persons interested in acquiring…
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhitonov, Y.; Kelley, D.
Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950's as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopinmore » Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer's effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE's 'Initiatives for Proliferation Prevention'(IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present details of U.S. DOE's IPP program, the project structure and its objectives both short and long-term, training programs for scientists, polymer tests and applications for LLW, ILW and HLW, and new product development initiatives. (authors)« less
Yu, Hao; Solvang, Wei Deng
2016-01-01
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293
Yu, Hao; Solvang, Wei Deng
2016-05-31
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.
Classification methodology for tritiated waste requiring interim storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cana, D.; Dall'ava, D.; Decanis, C.
2015-03-15
Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luey, J.; Brouns, T.M.; Elliott, M.L.
1990-11-01
The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable formore » the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.« less
1982-07-01
and waste treatment pilot plants . Developed odor control program which suc- cessfully reduced odor emissions and represented Union Carbide at a public...the runway where oil and grease has been detected as well as the discharge from the City of Goldsboro waste- water treatment plant which occurs within...There are no known threatened or en- dangered plant species on base. The only endangered animal species which may potentially inhabit the base is the Red
USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL
NASA Technical Reports Server (NTRS)
Venuto, Charles
1987-01-01
In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.
Waste Minimization Program. Air Force Plant 4.
1986-02-01
incinerator equipped with a secondary combustion chamber and venturi scrubber could serve AFP 4’s needs. As the wastes listed in Table 3-6 contain negligible... scrubber water treatment in the AFP 4eatment. waste treatment system. 2.3 ECONOMICS -Table 2-3 summarizes the projected economics of the recommendations for...control devices. These paint booths are equipped with water curtain air scrubbers which remove solids from the booth exhaust by providing - intimate
Corps of Engineers Land Treatment of Wastewater Research Program, An Annotated Bibliography.
1983-04-01
engineering) Waste treatment Waste water 4 20. ABST14ACT (Eacabsue an reverse oh It necwwey mad tdertlfy by block number) *This bibliography contains...1982) Distribution of phosphorus in soils irri ated with municipal waste- water effluent: A 5-year study. Journal of Environmental Quality, vol. 11...vol. 44, p. 383-394. The removal of seeded coliphage f2 and indigenous enteroviruses from primary and secondary wastewaters applied by spray
Region 9 NPDES Facilities 2012- Waste Water Treatment Plants
Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
...) Hazardous Soils Treatment Standards and Exclusions; (8) Administrative Stay for Zinc Micronutrient... Hazardous Wastes from Carbamate Production; (10) Extension of Compliance Date for Characteristic Slags; (11...
Land Application of Wastes: An Educational Program. Pathogens - Module 9.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module is intended to help engineers evaluate the relative health risks from pathogens at land treatment sites versus conventional waste treatment systems. Among the topics considered are the following: (1) the relationship between survival time of pathogens and the chance of disease transmission to humans; (2) the factors that favor survival…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.
Experimental digester facility modifications and digester gas upgrading research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, V.J.; Biljetina, R.; Akin, C.
1989-01-01
The Institute of Gas Technology (IGT) has been participating in an experimental program at the Community Waste Research Facility (CWRF) located at the Walt Disney World Resort Complex, Orlando, Florida. Four institutions have formed a team to provide solutions to community waste treatment and disposal programs. Of primary importance to this research effort is the implementation of low-cost, energy-efficient waste treatment and recovery technologies and the net production of energy (methane) from biomass and waste resources. The production of methane is being studied in a novel, high-rate digester. During 1988, we were responsible for modifying the Experimental Test Unit (ETU)more » to permit dry solids feeding of refuse-derived fuel (RDF) and for conducting bench-scale experiments to evaluate techniques for efficient removal of carbon dioxide produced during anaerobic digestion.« less
Assessment of medical waste management in seven hospitals in Lagos, Nigeria.
Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril
2016-03-15
Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental hazards except hospital B that treats its sharp with an incinerator. In order to enhance uniform and appropriate waste management practices in the entire State, there is need for capacity building at all levels and also policies and guidelines formulations.
Electromagnetic mixed waste processing system for asbestos decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.; Vaux, W.; Ulerich, N.
The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Kevin W.; Vandergaast, Gerald
2012-07-01
The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated intomore » the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)« less
JSC ECLSS R/T Program Overview
NASA Technical Reports Server (NTRS)
Behrend, A. F.
1990-01-01
Viewgraphs on Johnson Space Center Environmental Control and Life Support System (ECLSS) research and technology program overview are presented. Topics covered include: advancements in electrochemical CO2 removal; supercritical water waste oxidation; electrooxidation for post-treatment of reclaimed water; and photocatalytic post-treatment of reclaimed water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module presents an overview of the land disposal restrictions (LDR) program. It defines the basic terms and describes the structure of the LDR regulations. It identifies the statutory basis for LDR and describes the applicability of LDR. It explains how EPA sets treatment standards and identifies treatment standards for wastes subject to land disposal restrictions and cites the CFR section. It describes and identifies how exemptions and variances from treatment requirements are obtained, including federal register citations. It defines generator and Treatment, Storage, and Disposal Facility (TSDF) requirements under the LDR program. It summarizes the schedule of existing restrictionsmore » and the plan for restricting newly identified wastes.« less
Biomedical waste management: incineration vs. environmental safety.
Gautam, V; Thapar, R; Sharma, M
2010-01-01
Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.
Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A. A.; Peeler, D. K.; Kim, D. S.
2015-11-23
The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less
This booklet, ETV Program Case Studies: Demonstrating Program Outcomes, Volume III contains two case studies, addressing verified environmental technologies for decentalized wastewater treatment and converting animal waste to energy. Each case study contains a brief description ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissani, M; Fischer, R; Kidd, S
2006-04-03
The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less
This Applications Analysis Report evaluates the Soliditech, Inc., solidification/ stabilization process for the on-site treatment of waste materials. The Soliditech process mixes and chemically treats waste material with Urrichem (a proprietary reagent), additives, pozzolanic mat...
Waste characterization study for the Kemp's Ridley sea turtle. Technical memo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, R.F.; Guarisco, M.
1988-02-01
The Kemp's Ridley sea turtle, Lepidochelys kempi, is an endangered species. The National Marine Fisheries Service's Head Start program is part of an international operation to save the turtles from extinction. Under the Head Start program, eggs from the Ridley's only known wild nesting beach at Rancho Nuevo in Mexico are transported to Padre Island on the Texas coast to be hatched. The head start enables the turtles to develop a survival advantage. The principal objective was to develop baseline waste-characterization data required to design a waste-water treatment scheme for the Galveston Head Start facility. As a secondary objective, preliminarymore » testing of some filtration components was undertaken to determine which units were most appropriate for inclusion in a wastewater treatment scheme.« less
NABS Program: (Native Americans in Biological Science).
ERIC Educational Resources Information Center
Gettys, Nancy, Comp.
1994-01-01
Describes the four-week summer program of the Native Americans in Biological Sciences Program that engages Native American eighth- and ninth-grade students in studying the problems related to the waste water treatment plant in Cushing, Oklahoma. (MDH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.
Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less
Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.
2017-03-16
Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: PROGRESS AND ACCOMPLISHMENTS - FISCAL YEAR 1991
The Superfund Innovative Technology Evaluation (SITE) program was the first major program for demonstrating and evaluating full-scale innovative treatment technologies at hazardous waste sites. Having concluded its fifth year, the SITE program is recognized as a leading advocate ...
Morris, Liz; Petch, David; May, David; Steele, William K
2017-05-01
Intertidal invertebrates are often used in environmental monitoring programs as they are good indicators of water quality and an important food source for many species of fish and birds. We present data from a monitoring program where the primary aim is to report on the condition of the potential invertebrate prey abundance, biomass and diversity for migrating shorebirds on mudflats adjacent to a waste water treatment plant in a Ramsar listed wetland in Victoria, Australia. A key threat to the foraging habitat at this site has been assessed as a reduction in potential prey items as a result of the changes to the waste water treatment processes. We use control charts, which summarise data from intertidal mudflats across the whole shoreline of the adjacent waste water treatment plant, to elicit a management response when trigger levels are reached. We then examine data from replicate discharge and control sites to determine the most appropriate management response. The monitoring program sits within an adaptive management framework where management decisions are reviewed and the data is examined at different scales to evaluate and modify our models of the likely outcomes of management actions. This study provides a demonstration of the process undertaken in a year when trigger levels were reached and a management decision was required. This highlights the importance of monitoring data from a range of scales in reducing uncertainty and improving decision making in complex systems.
1999-01-05
used in each chapter to define the techniques of waste minimization are: improved operation management , material substitution, process substitution...1994 – Reduce Quantity & Toxicity of Waste • Improved Operation Management • Material & Process Substitution • Recycling • Treatment Advantages
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY 1995
The Superfund Innovative Technology Evaluation (SITE) Program was established more than nine years ago to encourage the development and implementation of innovative treatment technologies for hazardous waste site remediation. Development of this program was in direct response to ...
A Plate Waste Evaluation of the Farm to School Program.
Kropp, Jaclyn D; Abarca-Orozco, Saul J; Israel, Glenn D; Diehl, David C; Galindo-Gonzalez, Sebastian; Headrick, Lauren B; Shelnutt, Karla P
2018-04-01
To investigate the impacts of the Farm to School (FTS) Program on the selection and consumption of fruits and vegetables. Plate waste data were recorded using the visual inspection method before and after implementation of the program. Six elementary schools in Florida: 3 treatment and 3 control schools. A total of 11,262 meal observations of National School Lunch Program (NSLP) participants in grades 1-5. The FTS Program, specifically local procurement of NSLP offerings, began in treatment schools in November, 2015 after the researchers collected preintervention data. The NSLP participants' selection and consumption of fruits and vegetables. Data were analyzed using Mann-Whitney U and proportions tests and difference-in-difference regressions. The NSLP participants at the treatment schools consumed, on average, 0.061 (P = .002) more servings of vegetables and 0.055 (P = .05) more servings of fruit after implementation of the FTS Program. When school-level fixed effects are included, ordinary least squares and tobit regression results indicated that NSLP participants at the treatment schools respectively consumed 0.107 (P < .001) and 0.086 (P < .001) more servings of vegetables, on average, after implementation of the FTS Program. Local procurement positively affected healthy eating. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
A cost-benefit analysis of a deposit-refund program for beverage containers in Israel.
Lavee, Doron
2010-02-01
The paper presents a full cost-benefit analysis of a deposit-refund program for beverage containers in Israel. We examine all cost elements of the program--storage, collection, and treatment costs of empty containers, and all potential benefits--savings in alternative treatment costs (waste collection and landfill disposal), cleaner public spaces, reduction of landfill volumes, energy-savings externalities associated with use of recycled materials, and creation of new workplaces. A wide variety of data resources is employed, and some of the critical issues are examined via several approaches. The main finding of the paper is that the deposit-refund program is clearly economically worthwhile. The paper contributes to the growing body of literature on deposit-refund programs by its complete and detailed analysis of all relevant factors of such a program, and also specifically in its analysis of the savings in alternative waste management costs. This analysis reveals greater savings than are usually assumed, and thus shows the deposit-refund program to be highly efficient.
Waste information management system: a web-based system for DOE waste forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.
2007-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.
This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less
The SITE Program was the first major program for demonstrating and evaluating fullscale innovative treatment technologies at hazardous waste sites. Having concluded its fourth year, the SITE Program is recognized as a leading advocate of innovative technology development and comm...
NASA Astrophysics Data System (ADS)
Sugiarti, Y.; Nurmayani, S.; Mujdalipah, S.
2018-02-01
Waste treatment is one of the productive subjects in vocational high school in programs of Agricultural Processing Technology which is one of the objectives learning has been assigned in graduate competency standards (SKL) of Vocational High School. Based on case studies that have been conducted in SMK Pertanian Pembangunan Negeri Lembang, waste treatment subjects had still use the lecture method or conventional method, and students are less enthusiastic in learning process. Therefore, the implementation of more interactive learning models such as blended learning with Edmodo is one of alternative models to resolve the issue. So, the purpose of this study is to formulate the appropriate learning syntax for the implementation of blended learning with Edmodo to agree the requirement characteristics of students and waste treatment subject and explain the learning outcome obtained by students in the cognitive aspects on the subjects of waste treatment. This research was conducted by the method of classroom action research (CAR) with a Mc. Tagart model. The result from this research is the implementation of blended learning with Edmodo on the subjects of waste treatment can improve student learning outcomes in the cognitive aspects with the maximum increase in the value of N-gain 0.82, as well as student learning completeness criteria reaching 100% on cycle 2. Based on the condition of subject research the formulation of appropriate learning syntax for implementation of blended learning model with Edmodo on waste treatment subject are 1) Self-paced learning, 2) Group networking, 3) Live Event- collaboration, 4) Association - communication, 5) Assessment - Performance material support. In summary, implementation of blended learning model with Edmodo on waste treatment subject can improve improve student learning outcomes in the cognitive aspects and conducted in five steps on syntax.
The Superfund Innovative Technology Evaluation Program SUMMARY AND CLOSURE REPORT
The Superfund Innovative Technology Evaluation (SITE) Program promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 20 years. SITE offered a mechanism for conducting joint technology demonstration and evaluation ...
Medical waste treatment and disposal methods used by hospitals in Oregon, Washington, and Idaho.
Klangsin, P; Harding, A K
1998-06-01
This study investigated medical waste practices used by hospitals in Oregon, Washington, and Idaho, which includes the majority of hospitals in the U.S. Environmental Protection Agency's (EPA) Region 10. During the fall of 1993, 225 hospitals were surveyed with a response rate of 72.5%. The results reported here focus on infectious waste segregation practices, medical waste treatment and disposal practices, and the operating status of hospital incinerators in these three states. Hospitals were provided a definition of medical waste in the survey, but were queried about how they define infectious waste. The results implied that there was no consensus about which agency or organization's definition of infectious waste should be used in their waste management programs. Confusion around the definition of infectious waste may also have contributed to the finding that almost half of the hospitals are not segregating infectious waste from other medical waste. The most frequently used practice of treating and disposing of medical waste was the use of private haulers that transport medical waste to treatment facilities (61.5%). The next most frequently reported techniques were pouring into municipal sewage (46.6%), depositing in landfills (41.6%), and autoclaving (32.3%). Other methods adopted by hospitals included Electro-Thermal-Deactivation (ETD), hydropulping, microwaving, and grinding before pouring into the municipal sewer. Hospitals were asked to identify all methods they used in the treatment and disposal of medical waste. Percentages, therefore, add up to greater than 100% because the majority chose more than one method. Hospitals in Oregon and Washington used microwaving and ETD methods to treat medical waste, while those in Idaho did not. No hospitals in any of the states reported using irradiation as a treatment technique. Most hospitals in Oregon and Washington no longer operate their incinerators due to more stringent regulations regarding air pollution emissions. Hospitals in Idaho, however, were still operating incinerators in the absence of state regulations specific to these types of facilities.
Waste Information Management System with 2012-13 Waste Streams - 13095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Lagos, L.
2013-07-01
The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less
Research and development plan for the Slagging Pyrolysis Incinerator. [For TRU waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedahl, T.G.; McCormack, M.D.
1979-01-01
Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance. (DLC)
Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castiglioni, Andrew J.; Gelis, Artem V.
This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.
1993 UPDATE OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM
The Emerging Technology Program (ETP), part of the U.S. EPA`s Superfund Innovative Technology Evaluation (SITE) Program, is continuing to create an environment where technical innovation can accelerate into field and commercial applications for treatment of hazardous waste sites....
THE ETV P2 INNOVATIVE COATINGS AND COATING EQUIPMENT PROGRAM--AN UPDATE
The paper focuses on the Pollution Prevention (P2), Recycling, and Waste Treatment Systems Center of the EPA's Environmental Technology Verification (ETV) Program and, specifically, the P2 Innovating Coatings and Coating Equipment Program (CCEP) housed within the Center. The focu...
Analysis of an algae-based CELSS. I - Model development
NASA Technical Reports Server (NTRS)
Holtzapple, Mark T.; Little, Frank E.; Makela, Merry E.; Patterson, C. O.
1989-01-01
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food, O2, the recycle of human waste and trash, H2O, N2, and food production/supply. A simple noniterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.
Analysis of an algae-based CELSS. Part 1: model development
NASA Technical Reports Server (NTRS)
Holtzapple, M. T.; Little, F. E.; Makela, M. E.; Patterson, C. O.
1989-01-01
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food. O2, the recycle of human waste and trash, H2O, N2, and food production supply. A simple non-iterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.
Transuranic solid waste management programs. Progress report, July--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less
APPLICATION, PERFORMANCE, AND COSTS OF ...
A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or field-scale. Some of the data were generated by the U.S. Environmental Protection Agency's (EPA's) Bioremediation in the Field Program, jointly supported by EPA's Office of Research and Development, EPA's Office of Solid Waste and Emergency Waste, and the EPA Regions through the Superfund Innovative Technology Evaluation Program (SITE) Program. Military sites proved to be another fertile data source. Technologies reviewed in this report include both ex-situ processes, (land treatment, biopile/biocell treatment, composting, and bioslurry reactor treatment) and in-situ alternatives (conventional bioventing, enhanced or cometabolic bioventing, anaerobic bioventing, bioslurping, phytoremediation, and natural attenuation). Targeted soil contaminants at the documented sites were primarily organic chemicals, including BTEX, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorinated aliphatic hydrocarbons (CAHs), organic solvents, polychlorinated biphenyls (PCBs), pesticides, dioxin, and energetics. The advantages, limitations, and major cost drivers for each technology are discussed. Box and whisker plots are used to summarize before and after concentrations of important contaminant groups for those technologies consider
This document provides assistance to those seeking to submit a variance request for LDR treatability variances and determinations of equivalent treatment regarding the hazardous waste land disposal restrictions program.
National economic models of industrial water use and waste treatment. [technology transfer
NASA Technical Reports Server (NTRS)
Thompson, R. G.; Calloway, J. A.
1974-01-01
The effects of air emission and solid waste restrictions on production costs and resource use by industry is investigated. A linear program is developed to analyze how resource use, production cost, and waste discharges in different types of production may be affected by resource limiting policies of the government. The method is applied to modeling ethylene and ammonia plants at the design stage. Results show that the effects of increasingly restrictive wastewater effluent standards on increased energy use were small in both plants. Plant models were developed for other industries and the program estimated effects of wastewater discharge policies on production costs of industry.
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) PROGRAM ANNUAL REPORT TO CONGRESS 2003
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 17 years. SITE offers a mechanism for conducting joint technology demonstration a...
The Superfund Innovative Technology Evaluation Program Annual Report to Congress FY2004
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration ...
A multi-objective model for sustainable recycling of municipal solid waste.
Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz
2017-04-01
The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.
Installation Restoration Program. Phase 1. Records Search. Air Force Plant Number 3, Tulsa, Oklahoma
1983-12-01
treatment plant was designed for cyanide and chromium treat- ment. Wastes are collected in two separate sewer systems; acid-chrome, and alkali cyanide...reduction of hexavalent chrome to trivalent chrome with sulfur dioxide. After the oxidation and reduction are accomplished separately, the wastes are...uses of the water. CCNVEPSI N COATING WASTE: Acidic solution containinq chromium . 0COOLANT: An oil-water mixture used for coolina metal parts durirq
The Workshop is designed to achieve three goals:
1. Convey public and private sector perspectives on the management of mercury in products, processes, and wastes;
2. Present ongoing efforts that address mercury prevention, elimination, noncombustion treatment and disposal; ...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module introduces the physical, biological, and chemical constituents of wastewaters and sludges which are of concern in land treatment systems. The characteristics of typical municipal wastewater are tabulated for strong, medium, and weak sewages. Some of the factors affecting pollutant concentrations are listed. Flow, distribution and…
DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM
The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY 1996
The Superfund Innovative Technology Evaluation (SITE) Program has been successfully promoting the development, commercialization and implementation of innovative hazardous waste treatment technologies for more than 10 years. SITE offers a mechanism for conducting joint technology...
SUPERFUND INNOVTIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY 1997
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for more than 12 years. SITE offers a mechanism for conducting joint technology demon...
THE SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ANNUAL REPORT TO CONGRESS FY1999
The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for more than 14 years. SITE offers a mechanism for conducting joint technology demon...
USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE
The USEPA's SITE program was created to meet the demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. These sites often have multiple contaminants in soil and groundwater, and few...
Sapkota, Binaya; Gupta, Gopal Kumar; Mainali, Dhiraj
2014-09-26
Healthcare waste is produced from various therapeutic procedures performed in hospitals, such as chemotherapy, dialysis, surgery, delivery, resection of gangrenous organs, autopsy, biopsy, injections, etc. These result in the production of non-hazardous waste (75-95%) and hazardous waste (10-25%), such as sharps, infectious, chemical, pharmaceutical, radioactive waste, and pressurized containers (e.g., inhaler cans). Improper healthcare waste management may lead to the transmission of hepatitis B, Staphylococcus aureus and Pseudomonas aeruginosa. This evaluation of waste management practices was carried out at gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards at Government of Nepal Civil Service Hospital, Kathmandu from February 12 to October 15, 2013, with the permission from healthcare waste management committee at the hospital. The Individualized Rapid Assessment tool (IRAT), developed by the United Nations Development Program Global Environment Facility project, was used to collect pre-interventional and post-interventional performance scores concerning waste management. The healthcare waste management committee was formed of representing various departments. The study included responses from focal nurses and physicians from the gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards, and waste handlers during the study period. Data included average scores from 40 responders. Scores were based on compliance with the IRAT. The waste management policy and standard operating procedure were developed after interventions, and they were consistent with the national and international laws and regulations. The committee developed a plan for recycling or waste minimization. Health professionals, such as doctors, nurses and waste handlers, were trained on waste management practices. The programs included segregation, collection, handling, transportation, treatment and disposal of waste, as well as occupational health and safety issues. The committee developed a plan for treatment and disposal of chemical and pharmaceutical waste. Pretest and posttest evaluation scores were 26% and 86% respectively. During the pre-intervention period, the hospital had no HCWM Committee, policy, standard operating procedure or proper color coding system for waste segregation, collection, transportation and storage and the specific well-trained waste handlers. Doctors, nurses and waste handlers were trained on HCWM practices, after interventions. Significant improvements were observed between the pre- and post-intervention periods.
A cost-benefit analysis of a deposit-refund program for beverage containers in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavee, Doron, E-mail: doron@pareto.co.i
2010-02-15
The paper presents a full cost-benefit analysis of a deposit-refund program for beverage containers in Israel. We examine all cost elements of the program - storage, collection, and treatment costs of empty containers, and all potential benefits - savings in alternative treatment costs (waste collection and landfill disposal), cleaner public spaces, reduction of landfill volumes, energy-savings externalities associated with use of recycled materials, and creation of new workplaces. A wide variety of data resources is employed, and some of the critical issues are examined via several approaches. The main finding of the paper is that the deposit-refund program is clearlymore » economically worthwhile. The paper contributes to the growing body of literature on deposit-refund programs by its complete and detailed analysis of all relevant factors of such a program, and also specifically in its analysis of the savings in alternative waste management costs. This analysis reveals greater savings than are usually assumed, and thus shows the deposit-refund program to be highly efficient.« less
Radioactive Liquid Waste Treatment Facility: Environmental Information Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.
1993-11-01
At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less
GUIDE TO SEPTAGE TREATMENT AND DISPOSAL
This guide presents information on the handling, treatment, and disposal of septage in a format easily used by administrators of waste management programs, septage haulers, and managers or operators of septage handling facilities. The guide does not provide detailed engineering d...
Operational Lessons Leaned During bioreactor Demonstrations for Acid Rock Drainage Treatment
The U.S. Environmental Protection Agency's Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sulf...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less
NASA Technical Reports Server (NTRS)
Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.
1981-01-01
The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.
Edgil, Dianna; Stankard, Petra; Forsythe, Steven; Rech, Dino; Chrouser, Kristin; Adamu, Tigistu; Sakallah, Sameer; Thomas, Anne Goldzier; Albertini, Jennifer; Stanton, David; Dickson, Kim Eva; Njeuhmeli, Emmanuel
2011-11-01
The global HIV prevention community is implementing voluntary medical male circumcision (VMMC) programs across eastern and southern Africa, with a goal of reaching 80% coverage in adult males by 2015. Successful implementation will depend on the accessibility of commodities essential for VMMC programming and the appropriate allocation of resources to support the VMMC supply chain. For this, the United States President's Emergency Plan for AIDS Relief, in collaboration with the World Health Organization and the Joint United Nations Programme on HIV/AIDS, has developed a standard list of commodities for VMMC programs. This list of commodities was used to inform program planning for a 1-y program to circumcise 152,000 adult men in Swaziland. During this process, additional key commodities were identified, expanding the standard list to include commodities for waste management, HIV counseling and testing, and the treatment of sexually transmitted infections. The approximate costs for the procurement of commodities, management of a supply chain, and waste disposal, were determined for the VMMC program in Swaziland using current market prices of goods and services. Previous costing studies of VMMC programs did not capture supply chain costs, nor the full range of commodities needed for VMMC program implementation or waste management. Our calculations indicate that depending upon the volume of services provided, supply chain and waste management, including commodities and associated labor, contribute between US$58.92 and US$73.57 to the cost of performing one adult male circumcision in Swaziland. Experience with the VMMC program in Swaziland indicates that supply chain and waste management add approximately US$60 per circumcision, nearly doubling the total per procedure cost estimated previously; these additional costs are used to inform the estimate of per procedure costs modeled by Njeuhmeli et al. in "Voluntary Medical Male Circumcision: Modeling the Impact and Cost of Expanding Male Circumcision for HIV Prevention in Eastern and Southern Africa." Program planners and policy makers should consider the significant contribution of supply chain and waste management to VMMC program costs as they determine future resource needs for VMMC programs.
Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, M.A.
1992-08-01
The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.
Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, M.A.
1992-08-01
The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.
WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. E.; Newell, J. D.; Johnson, F. C.
The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less
Solid wastes from nuclear power production.
Soule, H F
1978-01-01
Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244
40 CFR 148.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for treatment. 148.3 Section 148.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.3 Dilution prohibited as a substitute for treatment. The prohibition of § 268.3 shall apply to owners or operators of...
40 CFR 148.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for treatment. 148.3 Section 148.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.3 Dilution prohibited as a substitute for treatment. The prohibition of § 268.3 shall apply to owners or operators of...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module expands on the introductory discussion of nitrogen in other modules. The various chemical forms of nitrogen found in land treatment systems are defined. Inputs from waste application as well as natural sources are quantified for typical situations. A discussion of nitrogen transformations in the soil includes mineralization and…
The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module describes important criteria to use in evaluating land for waste treatment sites and tells where the necessary information for such evaluation can be obtained. Among the important criteria for evaluation are climate, land use of potential site and surrounding areas, topography, drainage characteristics, soil properties, and geology.…
Nineteenth annual actinide separations conference: Conference program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, M.
This report contains the abstracts from the conference presentations. Sessions were divided into the following topics: Waste treatment; Spent fuel treatment; Issues and responses to Defense Nuclear Facility Safety Board 94-1; Pyrochemical technologies; Disposition technologies; and Aqueous separation technologies.
Operational Lessons Learned During Bioreactor Demonstrations for Acid Rock Drainage Treatment
The U.S. Environmental Protection Agency’s Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sul...
1990 UPDATE OF THE US ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM
The Superfund Amendments and Reauthorization Act of 1986 (SARA) directed the U.S. Environmental Protection AGency (EPA) to establish an Alternative/Innovative Treatment Technology Research and Demonstration Program. The EPA's Office of Solid Waste and Emergency Response and the ...
Hanford Waste Physical and Rheological Properties: Data and Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.
2011-08-01
The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less
River Protection Project (RPP) Dangerous Waste Training Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
POHTO, R.E.
2000-03-09
This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Titlemore » 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.« less
Gilden, D
1995-05-01
The human growth hormone (HGH) expanded access program for people with AIDS wasting syndrome is now in its fourth month. Enrollment has been slow, largely due to cost. Since HGH falls under the Food and Drug Administration's (FDA) Treatment Investigational New Drug (TIND) regulations, patients are required to pay for the drug--at a cost of about $150 per day, or more than $1,000 per week. Few insurance companies will compensate for the cost of HGH, and no state Medicaid or AIDS Drug Assistance Programs have agreed to cover the compound. Serono Laboratories, the manufacturer, is operating an indigent program that provides free or discount HGH for individuals who cannot purchase the drug any other way. There are only 25 slots available in this program. Lack of available data on how and when to use the drug creates obstacles for physicians. Most of the public data available comes from a single, twelve-week, placebo-controlled study involving 178 participants. However, there are alternative treatments for wasting syndrome. A regimen of testosterone and synthetic anabolic steroids, given to men, has provided positive results on an anecdotal basis. Wasting syndrome comes from a metabolic change which occurs with chronic HIV infection. Rather than first using stores of fat, the body breaks down protein to meet its energy requirements.
TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS
Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...
DEMONSTRATION OF AN INTEGRATED, PASSIVE BIOLOGICAL TREATMENT PROCESS FOR AMD
An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...
PERMEABLE TREATMENT WALL EFFECTIVENESS MONITORING PROJECT, NEVADA STEWART MINE
This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 39, Permeable Treatment Wall Effectiveness Monitoring Project, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. De...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module discusses the characteristics of alternate sites and management schemes and attempts to evaluate the efficiency of each alternative in terms of waste treatment. Three types of non-crop land application are discussed: (1) forest lands; (2) park and recreational application; and (3) land reclamation in surface or strip mined areas. (BB)
Secondary Waste Cast Stone Waste Form Qualification Testing Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westsik, Joseph H.; Serne, R. Jeffrey
2012-09-26
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less
Behavior of radioactive iodine and technetium in the spray calcination of high-level waste
NASA Astrophysics Data System (ADS)
Knox, C. A.; Farnsworth, R. K.
1981-08-01
The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Technology Catalogue. First edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, asmore » well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).« less
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hanford's Simulated Low Activity Waste Cast Stone Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young
2013-08-20
Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less
Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A
2004-10-01
After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.
Reengineering of waste management at the Oak Ridge National Laboratory. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrick, T.E.
1997-08-01
A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Sitemore » Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Benchmarking of a commercial nuclear facility, a commercial research facility, and a DOE research facility was conducted to both validate the efficacy of these findings and seek additional ideas for improvement. The outcome of this evaluation is represented by the 15 final recommendations that are described in this report.« less
Edgil, Dianna; Stankard, Petra; Forsythe, Steven; Rech, Dino; Chrouser, Kristin; Adamu, Tigistu; Sakallah, Sameer; Thomas, Anne Goldzier; Albertini, Jennifer; Stanton, David; Dickson, Kim Eva; Njeuhmeli, Emmanuel
2011-01-01
Background The global HIV prevention community is implementing voluntary medical male circumcision (VMMC) programs across eastern and southern Africa, with a goal of reaching 80% coverage in adult males by 2015. Successful implementation will depend on the accessibility of commodities essential for VMMC programming and the appropriate allocation of resources to support the VMMC supply chain. For this, the United States President’s Emergency Plan for AIDS Relief, in collaboration with the World Health Organization and the Joint United Nations Programme on HIV/AIDS, has developed a standard list of commodities for VMMC programs. Methods and Findings This list of commodities was used to inform program planning for a 1-y program to circumcise 152,000 adult men in Swaziland. During this process, additional key commodities were identified, expanding the standard list to include commodities for waste management, HIV counseling and testing, and the treatment of sexually transmitted infections. The approximate costs for the procurement of commodities, management of a supply chain, and waste disposal, were determined for the VMMC program in Swaziland using current market prices of goods and services. Previous costing studies of VMMC programs did not capture supply chain costs, nor the full range of commodities needed for VMMC program implementation or waste management. Our calculations indicate that depending upon the volume of services provided, supply chain and waste management, including commodities and associated labor, contribute between US$58.92 and US$73.57 to the cost of performing one adult male circumcision in Swaziland. Conclusions Experience with the VMMC program in Swaziland indicates that supply chain and waste management add approximately US$60 per circumcision, nearly doubling the total per procedure cost estimated previously; these additional costs are used to inform the estimate of per procedure costs modeled by Njeuhmeli et al. in “Voluntary Medical Male Circumcision: Modeling the Impact and Cost of Expanding Male Circumcision for HIV Prevention in Eastern and Southern Africa.” Program planners and policy makers should consider the significant contribution of supply chain and waste management to VMMC program costs as they determine future resource needs for VMMC programs. Please see later in the article for the Editors' Summary PMID:22140363
Ortiz, O; Pasqualino, J C; Castells, F
2010-04-01
The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in terms of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, O., E-mail: oscarortiz@unipamplona.edu.c; University of Pamplona, Department of Industrial Engineering, Km 1 Via Bucaramanga, Pamplona, N de S; Pasqualino, J.C.
2010-04-15
The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in termsmore » of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts.« less
ETV Program Report: Big Fish Septage and High Strength Waste Water Treatment System
Verification testing of the Big Fish Environmental Septage and High Strength Wastewater Processing System for treatment of high-strength wastewater was conducted at the Big Fish facility in Charlevoix, Michigan. Testing was conducted over a 13-month period to address different c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-01
The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less
Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less
Installation Restoration Program. Phase 1. Records Search, England AFB, Louisiana
1983-05-01
compound shown on Figure 4.3. No herbicides, expired DDT or other pesticides were stored at this site. Some battery acid was stored in plastic boxes...Union Carbide Corporation, Chemicals and Plastics Divi- sion, Environomental Engineering Department. As a pro- cess/project engineer performed...paper mill waste treatment facility. Project Manager on Solid and Hazardous Waste study for a diverse chemicals and plastics production facility
7 CFR 1942.4 - Borrower contracts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM... contracts for the purchase of water or treatment of waste. State Directors are expected to work closely with...
7 CFR 1942.4 - Borrower contracts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM... contracts for the purchase of water or treatment of waste. State Directors are expected to work closely with...
Advanced High-Level Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, David K.; Vienna, John D.; Schweiger, Michael J.
2015-07-01
The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less
ERIC Educational Resources Information Center
Gearheart, Robert A.; And Others
This document is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationship and functions of the process units in a wastewater treatment plant. The modules are arranged in order appropriate for teaching students with no experience. The modules can also be rearranged and…
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
Advanced Waste Treatment. A Field Study Training Program.
ERIC Educational Resources Information Center
California State Univ., Sacramento. Dept. of Civil Engineering.
This operations manual represents a continuation of operator training manuals developed for the United States Environmental Protection Agency (USEPA) in response to the technological advancements of wastewater treatment and the changing needs of the operations profession. It is intended to be used as a home-study course manual (using the concepts…
Industrial Waste Treatment. A Field Study Training Program.
ERIC Educational Resources Information Center
California State Univ., Sacramento. Dept. of Civil Engineering.
This operations manual represents a continuation of operator training manuals developed for the United States Environmental Protection Agency (USEPA) in response to the technological advancements of wastewater treatment and the changing needs of the operations profession. It is intended to be used as a home-study course manual (using the concepts…
Hospital waste management in El-Beheira Governorate, Egypt.
Abd El-Salam, Magda Magdy
2010-01-01
This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and clear lines of responsibilities between the departments involved in hospital waste management. Effective medical waste management programs are multisectoral and require cooperation between all levels of implementation, from national and local governments to hospital staff and private businesses. 2009 Elsevier Ltd. All rights reserved.
Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less
LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W
2007-11-30
This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials havemore » been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires handling and evaporation of cesium eluates, disposal of spent organic resin, and handling of the various liquid wash and regenerate solutions used. In both cases, the DSS will be immobilized in a low activity waste form. It appears that both technologies are mature, well studied, and generally suitable for this application. Technology selection will likely be based on downstream impacts or preferences between the various processing options for the two materials rather than on some unacceptable performance property identified for one material. As a result, the following detailed technical review and summary of the two technologies should be useful to assist in technology selection for SCIX.« less
Purwestri, Ratna C; Scherbaum, Veronika; Inayati, Dyah A; Wirawan, Nia N; Suryantan, Julia; Bloem, Maurice A; Pangaribuan, Rosnani V; Stuetz, Wolfgang; Hoffmann, Volker; Qaim, Matin; Biesalski, Hans K; Bellows, Anne C
2012-01-01
Ready-to-Use Foods (RUFs) in the form of fortified cereal/nut/legume-based biscuits (±500 kcal and 8-10% protein per 100 g) were tested among mildly wasted children from October 2007 to June 2008, and were labelled as RUF-Nias biscuits. This study reports on a comparison of supplementary feeding program outcomes of mildly wasted children with weight-for-height z-score (WHZ) >=-2 to <-1.5 SD aged >=6 to <60 months old given locally produced RUF-Nias biscuits within daily (in semi-urban areas) and weekly (in rural remote regions) distribution and supervision program settings. In the Church World Service project area, all eligible children were recruited continuously from monthly community-based screening programs and admitted into existing nutrition centers managed by the community on Nias Island, Indonesia. Individual discharge criterion of the programs was WHZ >=-1.5 SD. Of the index children admitted in daily programs (n=51), 80.4% reached target WHZ, which was higher than in weekly programs (72.9%; n=48) by a similar length of stay of about 6 weeks. Weight gain of the children in daily programs was higher (3.1±3.6 g/kg body weight/day) than in weekly programs (2.0±2.1 g/kg body weight/day), and they achieved significantly higher WHZ at discharge. However, the majority of caretakers preferred weekly programs due to lower time constraints. Locally produced RUF in the form of biscuits for treatment of mild wasting among children demonstrated promising results both in daily and weekly community-based intervention programs.
Water Quality: Water Education for Teachers. A 4-H School Enrichment Program.
ERIC Educational Resources Information Center
Powell, G. Morgan; Kling, Emily B.
This looseleaf notebook is a teacher resource package that is designed for enrichment program use. It contains five units dealing with water quality: (1) The Water Cycle; (2) Our Water Supply; (3) Waste/Water Treatment; (4) Water Conservation; (5) Water Pollution. The units provide background information, experiments, stories, poems, plays, and…
2014-11-01
Industrial Waste Water Treatment Aircraft & Component Paint Removal (ABM & Chemical) Chrome Electroplating Corrosion Treatment Aircraft...Hex Chrome post treatment ) Energy Use; Electrical (& Steam) NDI- Florescent Penetrant Solvent Tank Cleaning Water (& Sanitary) Use...Engineer Corrosion Science & Engineering NAVAIR Jacksonville Phone: (904) 790-6405 Email: john.benfer@navy.mil ASETS Technical Workshop (NOV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Heather; Flach, Greg; Smith, Frank
2015-01-27
The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods andmore » data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfred J. Karns
This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U. S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during CY06. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (No. NEV HW0021) and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the DOE, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume andmore » toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year (CY) 2007. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (number NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process tomore » reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2009. This report was developed in accordance with the requirements of the Nevada Test Site Resource Conservation and Recovery Act Permit (No. NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volumemore » and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by NNSA/NSO.« less
Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.
1996-01-01
In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyacke, M.
1993-08-01
This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less
The EPA Region VII Superfund office and the EPA National Risk Management Research Laboratory (NRMRL) Mine Waste Technology Program (MWTP)have been conducting a field scale technology demonstration of an in situ treatment of the Anchor Hill Pit Lake at the Gilt Edge Mine Superfund...
ERIC Educational Resources Information Center
Cole, Charles A.
The rehabilitation of existing on-site wastewater treatment facilities is often the best approach to meeting waste disposal needs. Upon completing the learning session described in this instructor's guide, participants should understand the technology and treatment methods for low-volume wastewater flows. These materials are part of the Working…
Waste Water Plant Operators Manual.
ERIC Educational Resources Information Center
Washington State Coordinating Council for Occupational Education, Olympia.
This manual for sewage treatment plant operators was prepared by a committee of operators, educators, and engineers for use as a reference text and handbook and to serve as a training manual for short course and certification programs. Sewage treatment plant operators have a responsibility in water quality control; they are the principal actors in…
77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...
NASA Technical Reports Server (NTRS)
Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.
1986-01-01
Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.
78 FR 79615 - Vermont: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...); OECD Requirements; Export Shipments of Spent Lead-Acid Batteries [75 FR 1236, January 8, 2010... top crushing is regulated as treatment rather than being considered an exempt recycling activity (this...
Waste certification program plan for Oak Ridge National Laboratory. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrin, R.C.
1997-05-01
This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong
2017-03-01
As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.
NASA Astrophysics Data System (ADS)
Papers are presented in the areas of biomass production and procurement, biomass and waste combustion, gasification processes, liquefaction processes, environmental effects and government programs. Specific topics include a water hyacinth wastewater treatment system with biomass production, the procurement of wood as an industrial fuel, the cofiring of densified refuse-derived fuel and coal, the net energy production in anaerobic digestion, photosynthetic hydrogen production, the steam gasification of manure in a fluidized bed, and biomass hydroconversion to synthetic fuels. Attention is also given to the economics of deriving alcohol for power applications from grain, ethanol fermentation in a yeast-immobilized column fermenter, a solar-fired biomass flash pyrolysis reactor, particulate emissions from controlled-air modular incinerators, and the DOE program for energy recovery from urban wastes.
Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, M.W.
1991-02-01
Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)
Waste Minimization Program. Air Force Plant 3.
1986-02-01
8217 . PC - ((B’S % S SULFIDES A lHNLC * ., F SHIPPING INFORMATION CHARACTERISTICS DO T HAZARDOUS MATERIAL’ [,YES ONO REACTIVITY k NONE E] PYROPHORIC l...an iron catalyst to oxidize organics. Treated paint stripping V waste would then be discharged to the IWG system for further treatment. Through this...McDonnell Douglas using a Nsolution of sodium hydroxide, sodium sulfide and triethanolamine. When the milling bath becomes depleted, it is collected
Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo
2010-05-01
This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Garth M.; Saunders, Scott A.
2013-07-01
The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less
APPLICATIONS ANALYSIS REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS
In support of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Program, this report evaluates the Chemfix Technologies, Inc. (Chemfix), solidification/stabilization technology for on-site treatment of hazardous waste. The Chemfix ...
Issues and Potential Program on Denatured Fuel Utilization.
1978-12-01
HTGR fuel develop - ment program ; 4. coated particles of (U,Th)02 have been extensively tested as potential HTGR fuels . A detailed summary of the...current scrap and waste treatment requirements. dBase case for all HTGR (Prismatic Fuel Element) cases based on data in "Summary Program Plan...Alternate Program for HTGR Fuel Recycle," April 11, 1975, Draft. 19 a --- AC8NCi09 The principal factors that result in a nominally-higher cost for
77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module discusses some of the objectives of incorporating vegetative cover in land treatment systems. Specific crops and forest cover are mentioned in relation to benefits associated with each, and specific treatment alternatives (irrigation, overland flow, and rapid infiltration) are included in relation to vegetative cover considerations.…
ERIC Educational Resources Information Center
Cole, Charles A.
Innovative and alternative methods of wastewater treatment can improve the efficiency and lower the cost of waste treatment procedures. Described in this instructor's guide is a one-hour learning session for citizens interested in improving water quality planning and decision making. Among the topics covered are the need for alternative wastewater…
Waste certification program plan for Oak Ridge National Laboratory. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1997-09-01
This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous [including polychlorinated biphenyls (PCB)] waste. Program activities will be conducted according to ORNL Level 1 document requirements.
Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
Bioremediation of Pit Lakes - Gilt Edge Mine
The U.S. Environmental Protection Agency (EPA) Region 8 Superfund Office and the EPA National Risk Management Research Laboratory (NRMRL) Mine Waste Technology Program (MWTP) conducted a field-scale treatability study demonstrating an in situ bio/geochemical treatment technology ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmerkus, Felix; Rittmeyer, Cornelia
2012-07-01
The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binovi, R.D.; Ng, E.K.; Tetla, R.A.
1987-01-01
This is a report of a survey of the Victor Wastewater Reclamation Authority Sewerage system, the sewage treatment plant, and effluent from the various operations at George AFB, California. The scope of work included the characterization of the wastewater from George AFB, as well as characterization of effluents from 29 oil/water separators servicing industrial operations on base, flow measurements at three locations on base, a microbiological evaluation of aeration basin foam, bench-scale activated-sludge studies, and a review of results from previous surveys. Recommendations: (1) AFFF (Aqueous Film Forming Foam) should never be discharged to the sewer. (2) Programming for pretreatmentmore » should proceed at selected operations. (3) More waste and wastestream analysis be performed. (4) Upgrade waste accumulation points. (5) Implement an aggressive inspection program for oil/water separators. (6) Cut down on nonessential washing.« less
Characterization, monitoring, and sensor technology crosscutting program: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plumemore » Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.« less
A model to minimize joint total costs for industrial waste producers and waste management companies.
Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto
2004-12-01
The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.
Waste management technology development and demonstration programs at Brookhaven National Laboratory
NASA Technical Reports Server (NTRS)
Kalb, Paul D.; Colombo, Peter
1991-01-01
Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.
Technical assistance for hazardous-waste reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, F.M.; McComas, C.A.
1987-12-01
Minnesota's Waste Management Board has established, developed, and funded the Minnesota Technical Assistance Program (MnTAP). The MnTAP programs offers technical assistance to generators of hazardous waste by offering telephone and onsite consultation, a waste reduction resource bank, information dissemination, a student intern program, and research awards for waste reduction projects. The program has completed three years of successful operation. The increasing interest in and use of MnTAP's services by hazardous-waste generators has justified the belief that state technical assistance programs have an important role to play in helping generators to reduce their waste production.
Novel Americium Treatment Process for Surface Water and Dust Suppression Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiepel, E.W.; Pigeon, P.; Nesta, S.
2006-07-01
The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241more » in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)« less
DOE Chair of Excellence Professorship in Environmental Disciplines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoou-Yuh Chang
2013-01-31
The United States (US) nuclear weapons program during the Cold War left a legacy of radioactive, hazardous, chemical wastes and facilities that may seriously harm the environment and people even today. Widespread public concern about the environmental pollution has created an extraordinary demand for the treatment and disposal of wastes in a manner to protect the public health and safety. The pollution abatement and environmental protection require an understanding of technical, regulatory, economic, permitting, institutional, and public policy issues. Scientists and engineers have a major role in this national effort to clean our environment, especially in developing alternative solutions andmore » evaluation criteria and designing the necessary facilities to implement the solutions. The objective of the DOE Chair of Excellence project is to develop a high quality educational and research program in environmental engineering at North Carolina A&T State University (A&T). This project aims to increase the number of graduate and undergraduate students trained in environmental areas while developing a faculty concentrated in environmental education and research. Although A&T had a well developed environmental program prior to the Massie Chair grant, A&T's goal is to become a model of excellence in environmental engineering through the program's support. The program will provide a catalyst to enhance collaboration of faculty and students among various engineering departments to work together in a focus research area. The collaboration will be expanded to other programs at A&T. The past research focus areas include: hazardous and radioactive waste treatment and disposal fate and transport of hazardous chemicals in the environment innovative technologies for hazardous waste site remediation pollution prevention Starting from 2005, the new research focus was in the improvement of accuracy for radioactive contaminant transport models by ensemble based data assimilation. The specific objectives are to: 1). improve model accuracy for use in minimizing health and environmental risk, and 2). improve the decision making process in the selection and application of available technologies for long-term monitoring and safeguard operation at NNSA sites.« less
ERIC Educational Resources Information Center
Hindin, Ervin
1975-01-01
Describes the purpose, content, and relevancy of courses dealing with natural and artificial aquatic environments, including surface water and ground water systems as well as water and waste treatment processes. Describes existing programs which are offered at the graduate level in this subject area. (MLH)
Cellulosic Substrates and Challenges Ahead
USDA-ARS?s Scientific Manuscript database
The cost of production of butanol (acetone-butanol-ethanol; or ABE) is determined by feedstock prices, fermentation, recovery, by-product credits and the waste water treatment. Along these lines, we have an intensive research program on the use of various agricultural substrates, fermentation strate...
ERIC Educational Resources Information Center
South Dakota Dept. of Environmental Protection, Pierre.
This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems…
1981-04-01
are listed in Appendix B. There was a significant problem with the formal auditing of the NEPTUNE predictions since a complete manual checking effort...WRSE R. Z. ien BROKLY ! ACcA BSTON SATH CROTON SAT VALJLJO OUZ~A 5.3. NW AD AX A’s AMS AOFT AG! AZ AOSS AD "’s A AS& ASI AT! A’S AVM cc C"~ Cv DC OD963
WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Habashi
2000-06-22
The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less
78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...
40 CFR 272.1351 - Montana State-Administered Program: Final Authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Montana § 272.1351... its hazardous waste management program. However, EPA retains the authority to exercise its inspection... this section are incorporated by reference as part of the hazardous waste management program under...
77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...
Environmental Factor(tm) system: RCRA hazardous waste handler information (on cd-rom). Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
Environmental Factor(tm) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information - dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less
Environmental Factor{trademark} system: RCRA hazardous waste handler information
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less
77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...
40 CFR 272.2501 - Wisconsin State-administered program; final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2501... cited in this paragraph are incorporated by reference as part of the hazardous waste management program... Applicable to the Hazardous Waste Management Program, (dated August 9, 1993). (2) EPA Approved Wisconsin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedscheid, J.; Stahl, S.; Devarakonda, M.
2002-02-26
The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less
78 FR 15299 - New York: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... Solid Waste Amendments of 1984 (HSWA). New Federal requirements and prohibitions imposed by Federal...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental...
DEMONSTRATION BULLETIN: CIRCULATING BED COMBUSTOR - OGDEN ENVIRONMENTAL SERVICES, INC.
An evaluation of the Ogden Environmental Services (OES) circulating bed combustor (CBC) technology was carried out under the superfund Innovative Technology Evaluation (SITE) Program to determine its applicabilitY as an on-site treatment method for waste site cleanups, and more s...
This asset includes hazardous waste information, which is mostly contained in the Resource Conservation and Recovery Act Information (RCRAInfo) System, a national program management and inventory system addressing hazardous waste handlers. In general, all entities that generate, transport, treat, store, and dispose of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies pass on that information to regional and national EPA offices. This regulation is governed by the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984. RCRAInfo Search can be used to determine identification and location data for specific hazardous waste handlers and to find a wide range of information on treatment, storage, and disposal facilities regarding permit/closure status, compliance with Federal and State regulations, and cleanup activities. Categories of information in this asset include:-- Handlers-- Permit Information-- GIS information on facility location-- Financial Assurance-- Corrective Action-- Compliance Monitoring and Enforcement (CM&E)
Environmental Sciences Division annual progress report for period ending September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, S.I.; Reichle, D.E.
1982-04-01
Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...
75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...
77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous waste program changes submitted by the...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.1801 - State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Ohio § 272.1801 State... regulations are incorporated by reference and codified as part of the hazardous waste management program under..., 1989, is codified as part of the authorized hazardous waste management program under Subtitle C of RCRA...
40 CFR 272.1201 - Minnesota State-administered program; Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1201... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C... the Hazardous Waste Management Program, dated April 5, 1994. (2) The following statutes and...
Installation Restoration Program, Phase II (Stage 2-1). Volume 2.
1985-05-01
Worthington OH PAGES: 89 SOURCE: Radian Library COMMENTS: General manual for well drilling, sample collection . Includes good elementary background. FIRST... Collected from the Base Industrial and Domestic Waste Water Treatment Plants and Field * Sampling Data PAGES: 75 p. SOURCE: Capt. Mario Ierarti * COMMENTS...Analytical results for samples collected from the * base industrial and domestic wastewater treatment plants have been included. RADIAN FIRST AUTHOR
76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... implement the RCRA hazardous waste management program. We granted authorization for changes to their program..., 06/ 62-730.185(1) F.A.C. Universal Waste Management. 29/07. State Initiated Changes to the 62-730.210...
40 CFR 272.1151 - State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Michigan § 272.1151 State... hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation, by... part of the authorized hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho... hazardous waste management program. However, the EPA retains the authority to exercise its inspection and... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C...
40 CFR 272.1151 - State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Michigan § 272.1151 State... hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation, by... part of the authorized hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho... hazardous waste management program. However, the EPA retains the authority to exercise its inspection and... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C...
40 CFR 272.1151 - State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Michigan § 272.1151 State... hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation, by... part of the authorized hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Isaacson, H.R.
1987-01-01
The Institute of Gas Technology has been operating a 1200-gallon, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida. This digester development work is part of a larger effort sponsored by the Gas Research Institute to provide an effective community waste treatment and energy recovery concept for smaller communities. As a result, an economically attractive, water hyacinth-based wastewater treatment system was developed that includes the digestion of water hyacinth and sludge to methane. A further extension of the community waste treatment concept is to include agricultural wastes in the energy recovery scheme. Therefore, duringmore » 1986 a test program was initiated to obtain data on the digestion of sorghum in the solids concentrating digester. Performance data was collected at both mesophilic and thermophilic operating conditions at total organic loading rates of 0.25 and 0.5 pounds per cubic foot of digester volume per day, respectively. Excellent methane yields were obtained during twelve months of stable and uninterrupted operation. This paper summarizes the performance data obtained on sorghum in this digester. 7 refs., 6 figs., 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, R.R.
1996-04-01
The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changesmore » to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.« less
ETV REPORT: AND STATEMENT: HYDROMATIX 786E ION EXCHANGE RINSEWATER RECYCLING SYSTEM
RPA's ETV Program, through the NRMRL, has partnered with the California Dept. of Toxic Substances Contol (DTSCO) under an ETV Pilot to verify pollution prevention, recycling, and waste treatment technologies. This report provides a verification of performance results for the Hydr...
Chemical Waste and Allied Products.
Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert
2016-10-01
This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.
Office of River Protection Integrated Safety Management System Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
CLARK, D.L.
Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting themore » waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.« less
FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templeton, K.J.
1996-05-23
For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year tomore » maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.« less
Australian Waste Wise Schools Program: Its Past, Present, and Future
ERIC Educational Resources Information Center
Cutter-Mackenzie, Amy
2010-01-01
The Waste Wise Schools program has a longstanding history in Australia. It is an action-based program that encourages schools to move toward zero waste through their curriculum and operating practices. This article provides a review of the program, finding that it has had notable success in reducing schools' waste through a "reduce, reuse,…
77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...
Tribal Waste Management Program
The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao
1997-03-01
The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less
Multi-objective reverse logistics model for integrated computer waste management.
Ahluwalia, Poonam Khanijo; Nema, Arvind K
2006-12-01
This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.
Sustainable Development Strategy Of Domestic Waste Infrastructure In The City Of Surakarta
NASA Astrophysics Data System (ADS)
Rezagama, Arya; Purwono; Damayanti, Verika
2018-02-01
Shifting from traditional system to large, centralised infrastructure domestic waste is widely complex challenge. Most of fhe sanitary system on household in Surakarta use on site septictank, 17% sewerage system reached and16,0% stll open defecations. Sanitation development sustained aims to develop policy and strategies waste management domestic Surakarta in the long term (20 years). The projection use quantitative method and institutional condition approach by SWOT analysis. Surakarta City get priority sanitation urban planning from Indonesian government in Presiden Joko Widodo era. The domestic waste management systems that is Surakarta divided into system on-site and system off site. Waste Water Treatment Plant (WWTP) mojosongo, WWTP pucangsawit and WWTP Semanggi will be developed to treat 30% domestic waste of Surakarta Residence. While on-site system will are served 70% residence by service programs Regular Cleaning Septictank. The toughest challenge is how to increase community participation in waste management and improve the company"s financial condition. Sanitation sustainable development is going to happen if supported by facility development also good, institutional development, the arrangement that oversees, and the public participation.
78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...
EPA'S WASTE MANAGEMENT AND SOIL TREATMENT RESEARCH
The mission of the EPA is to protect human health and to safeguard the natural environment - air, water, and land - upon which life depends. In order to accomplish this mission, the Agency is organized into a series of regional and program offices. The ORD supports the various co...
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
Properties important to mixing and simulant recommendations for WTP full-scale vessel testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M. R.; Martino, C. J.
2015-12-01
Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assignedmore » to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, H.E. Jr.
1979-01-01
A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to bettermore » evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.« less
Task 1.6 -- Mixed waste treatment. Semi-annual report, January 1--June 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rindt, J.R.
1997-08-01
Mixed-waste sites make up the majority of contaminated sites, yet remediation techniques used at such sites often target only the most prevalent contaminant. A better understanding of site situation (i.e., most common types of contamination), current remediation techniques, and combinations of techniques would provide insight into areas in which further research should be performed. The first half of this task program year consisted of a survey of common types of mixed-wastes sites and a detailed literature search of the remediation techniques and combinations of techniques that were currently available. From this information, an assessment of each of the techniques wasmore » made and combined into various ways appropriate to mixed-waste protocol. This activity provided insight into areas in which further research should be performed.« less
Total chemical management in photographic processing
Luden, Charles; Schultz, Ronald
1985-01-01
The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.
Waste treatability guidance program. User`s guide. Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, C.
1995-12-21
DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatabilitymore » groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.« less
Waste Information Management System-2012 - 12114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Shoffner, P.
2012-07-01
The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less
78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... prohibitions imposed by Federal regulations that EPA promulgates pursuant to the Hazardous and Solid Waste...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...
78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...
76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S...
77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, T.W.
1991-09-01
This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.
San Francisco Biofuel Program: Brown Grease to Biodiesel Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolis, Domènec; Martis, Mary; Jones, Bonnie
2013-03-01
Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a goodmore » example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... Department of Environmental Protection, (WVDEP), Division of Water and Waste Management, 601 57th Street SE...] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... for final authorization of revisions to its hazardous waste program under the Resource Conservation...
76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...
75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...
75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...
77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...
76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...
40 CFR 239.4 - Narrative description of state permit program.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-hazardous waste disposal units that receive CESQG hazardous waste, January 1, 1998. (e) A discussion of... WASTES REQUIREMENTS FOR STATE PERMIT PROGRAM DETERMINATION OF ADEQUACY State Program Application § 239.4...; (d) The number of facilities within the state's jurisdiction that received waste on or after the...
75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...
Decontamination systems information and research program. Quarterly report, April--June 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steammore » reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.« less
EPA's ETV Program, through the NRMRL has partnered with the California Department of Toxic Substances Control (DTSC) under an ETV Pilot Project to verify pollution prevention, recycling, and waste treatment technologies. This report and statement provides documentation of perfor...
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
40 CFR 105.5 - Who is eligible to win an award?
Code of Federal Regulations, 2010 CFR
2010-07-01
... organizations operate in an industrial capacity in the treatment of wastes or abatement of pollution may be... Section 105.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS RECOGNITION AWARDS UNDER THE CLEAN WATER ACT Eligibility Requirements § 105.5 Who is eligible to win an award...
RESULTS OF A METHOD VERIFICATION STUDY FOR ANALYSES OF PCP IN SOIL
As a prelude to a field demonstration of the fungal treatment technology by the SITE Program, a field treatability study was performed to select optimal fungal species and loading rates.using the site-specific soil matrix contaminated with Wood preserving wastes: PCP and PAHS. ur...
Technology Readiness Assessment of a Large DOE Waste Processing Facility
2007-09-12
Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters
Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei
2013-01-01
This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.
Blondin, Stacy A; Cash, Sean B; Goldberg, Jeanne P; Griffin, Timothy S; Economos, Christina D
2017-04-01
To measure fluid milk waste in a US School Breakfast in the Classroom Program and estimate its nutritional, economic, and environmental effects. Fluid milk waste was directly measured on 60 elementary school classroom days in a medium-sized, urban district. The US Department of Agriculture nutrition database, district cost data, and carbon dioxide equivalent (CO 2 e) emissions and water footprint estimates for fluid milk were used to calculate the associated nutritional, economic, and environmental costs. Of the total milk offered to School Breakfast Program participants, 45% was wasted. A considerably smaller portion of served milk was wasted (26%). The amount of milk wasted translated into 27% of vitamin D and 41% of calcium required of School Breakfast Program meals. The economic and environmental costs amounted to an estimated $274 782 (16% of the district's total annual School Breakfast Program food expenditures), 644 893 kilograms of CO 2 e, and 192 260 155 liters of water over the school year in the district. These substantial effects of milk waste undermine the School Breakfast Program's capacity to ensure short- and long-term food security and federal food waste reduction targets. Interventions that reduce waste are urgently needed.
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho..., 2008. (b) The State of Idaho has primary responsibility for enforcing its hazardous waste management... part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho..., 2008. (b) The State of Idaho has primary responsibility for enforcing its hazardous waste management... part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R02-RCRA-2013-0144; FRL-9693-3] New York: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...
75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... authorized and that EPA will enforce under the Solid Waste Disposal Act, as amended and commonly referred to...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... Waste Management Program AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... Hazardous Waste Management Programs'', Louisiana's authorized hazardous waste program. The EPA will...), 3006, and 7004(b) of the Solid Waste Disposal Act, as amended, 42 U.S.C. 6912(a), 6926, and 6974(b...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho..., 2008. (b) The State of Idaho has primary responsibility for enforcing its hazardous waste management... part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
JACKSON VL
2011-08-31
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less
Thermal plasma technology for the treatment of wastes: a critical review.
Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R
2009-01-30
This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.
Wasting and stunting--similarities and differences: policy and programmatic implications.
Briend, André; Khara, Tanya; Dolan, Carmel
2015-03-01
Wasting and stunting are often presented as two separate forms of malnutrition requiring different interventions for prevention and/or treatment. These two forms of malnutrition, however, are closely related and often occur together in the same populations and often in the same children. Wasting and stunting are both associated with increased mortality, especially when both are present in the same child. A better understanding of the pathophysiology of these two different forms of malnutrition is needed to design efficient programs. A greatly reduced muscle mass is characteristic of severe wasting, but there is indirect evidence that it also occurs in stunting. A reduced muscle mass increases the risk of death during infections and also in many other different pathological situations. Reduced muscle mass may represent a common mechanism linking wasting and stunting with increased mortality. This suggests that to decrease malnutrition-related mortality, interventions should aim at preventing both wasting and stunting, which often share common causes. Also, this suggests that treatment interventions should focus on children who are both wasted and stunted and therefore have the greatest deficits in muscle mass, instead of focusing on one or the other form of malnutrition. Interventions should also focus on young infants and children, who have a low muscle mass in relation to body weight to start with. Using mid-upper-arm circumference (MUAC) to select children in need of treatment may represent a simple way to target young wasted and stunted children efficiently in situations where these two conditions are present. Wasting is also associated with decreased fat mass. A decreased fat mass is frequent but inconsistent in stunting. Fat secretes multiple hormones, including leptin, which may have a stimulating effect on the immune system. Depressed immunity resulting from low fat stores may also contribute to the increased mortality observed in wasting. This may represent another common mechanism linking wasting and stunting with increased mortality in situations where stunting is associated with reduced fat mass. Leptin may also have an effect on bone growth. This may explain why wasted children with low fat stores have reduced linear growth when their weight-for-height remains low. It may also explain the frequent association of stunting with previous episodes of wasting. Stunting, however, can occur in the absence of wasting and even in overweight children. Thus, food supplementation should be used with caution in populations where stunting is not associated with wasting and low fat stores.
40 CFR 268.43 - Treatment standards expressed as waste concentrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Treatment Standards § 268.43 Treatment standards expressed as waste concentrations. For the requirements previously found in this section and for treatment... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Treatment standards expressed as waste...
40 CFR 270.15 - Specific part B information requirements for containers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... ignitable or reactive wastes) and § 264.177(c) (location of incompatible wastes), where applicable. (d...
Separation science and technology. Semiannual progress report, October 1993--March 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandegrift, G.F.; Aase, S.B.; Buchholz, B.
1997-12-01
This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less
Auditing an intensive care unit recycling program.
Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha
2015-06-01
The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated (primarily by other plastics), but there was less than 1% contamination of other recycling streams. The estimated cost of the recycling program was about an additional $1000/year. In our 11-bed ICU, we recycled 14% of the total waste produced over 7-days, which was nearly half of the potentially recyclable waste. There was no infectious contamination of recyclables and minimal contamination with other waste streams, except for the PVC plastic. The estimated annual cost of the recycling program was $1000, reflecting the greater cost of disposal of some recyclables (paper and cardboard v most plastic types).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S. Environmental Protection...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Arne; Lidar, Per; Bergh, Niklas
2013-07-01
Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Ralph L.; Seitz, Roger R.; Dixon, Kenneth L.
The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the informationmore » necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.« less
Regulatory control of low level radioactive waste in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.D.S.; Chiou, Syh-Tsong
1996-12-31
The commercial operation of Chinshan Nuclear Power Plant (NPP) Unit One marked the beginning of Taiwan`s nuclear power program. There are now three NPPs, each consisting of two units, in operation. This represents a generating capacity of 5,144 MWe. Nuclear power plants are sharing some 30 percent of electricity supplies in Taiwan. As far as low level radwaste (LLRW) is concerned, Taiwan Power Company (TPC) is the principal producer, contributing more than 90 percent of total volume of waste arising in Taiwan. Small producers, other than nuclear industries, medicine, research institutes, and universities, are responsible for the remaining 10 percent.more » In the paper, the LLRW management policy, organizational scheme, regulatory control over waste treatment, storage, transportation and disposal are addressed. Added to the paper in the last is how this country is managing its Naturally Occurring Radioactive Materials (NORM) waste.« less
NASA Astrophysics Data System (ADS)
Smith, R. K.; Ungers, L. J.
1984-07-01
A walk through survey of the integrated circuit fabrication operation revealed that engineering controls consisted of general and local ventilation, and isolation enclosure of the epitaxy and gas cylinder storage areas. The gas storage room was maintained at a slight negative pressure and gas monitoring was conducted. Liquid wastes were segregated according to type. Acidic wastes were pumped to a drain that carried them to a waste treatment system where they were neutralized with sodium hydroxide. Organic wastes were placed in containers which were taken to an outdoor area behind the facility where they were emptied into drums for disposal. The facility had no routine industrial hygiene program. Smocks, gloves, and safety glasses were required in all fabrication areas. Respirators were available in case of emergency. Preplacement medical examinations were not administered. Quarterly urinalyses for arsenic (7440382) exposure were conducted on all employees performing sawing operations.
40 CFR 270.300 - What container information must I keep at my facility?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... containers holding ignitable or reactive wastes) and 40 CFR 267.175(c) (location of incompatible wastes in...
Technology for Waste Treatment at Remote Army Sites
1986-09-01
Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, D.; Nash, C.; Howe, A.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF evaporator to aid in planning for their disposition, and (3) generate concentrated evaporator bottoms for use in immobilization testing.« less
10 CFR 850.32 - Waste disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal...-contaminated equipment and other items that are disposed of as waste, through the application of waste...
Nuclear waste management. Semiannual progress report, October 1982-March 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T.D.; Powell, J.A.
1983-06-01
This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less
Hung, Rachel; Wong, Bethany; Goldet, Gabrielle; Davenport, Andrew
2017-08-01
Muscle wasting is associated with increased risk for mortality. There is no agreed universal definition for muscle wasting (sarcopenia), and we wished to determine whether using different criteria altered the prevalence in patients treated by peritoneal dialysis. We measured lean body and appendicular lean mass indices in 325 outpatients by dual-energy x-ray absorptiometry, comparing muscle mass with that used to define muscle wasting (sarcopenia) by various clinical guideline publications. Lean body and appendicular lean mass indices did not differ by sex: female, 17.7 ± 4.6 kg/m 2 ; male, 17.4 ± 4.3; female, 6.9 (5.6-8.5) kg/m 2 ; male, 6.7 (5.3-8.3), respectively. Depending on the criteria, the prevalence of muscle wasting varied from 2.2%-31.3% for women and 25.1%-75.6% for men. Male patients were older (58.3 ± 16 vs 53.4 ± 15.7 years). Criteria based on cutoffs derived from young healthy patients gave the higher prevalence rates. The prevalence of muscle wasting was not associated with dialysis adequacy, estimated protein intake, duration of dialysis treatment, comorbidity, diabetes, or ethnicity. The prevalence of sarcopenic obesity was low (<5% females, 7% males). We found that the prevalence varied markedly depending on the cutoff criteria used to define muscle wasting. Very few patients had sarcopenic obesity. The higher prevalence for males requires further study but was not associated with dialysis treatment. Our study highlights the need for agreed criteria to define pathologic muscle wasting from that which is age associated to allow for interventional screening programs.
U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985
NASA Astrophysics Data System (ADS)
Ragone, Stephen E.
1986-09-01
In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program
Sandia National Laboratories California Waste Management Program Annual Report February 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brynildson, Mark E.
The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.
A pilot outreach program for small quantity generators of hazardous waste.
Brown, M S; Kelley, B G; Gutensohn, J
1988-01-01
The Massachusetts Department of Environmental Management initiated a pilot project to improve compliance with hazardous waste regulations and management of hazardous wastes with auto body shops around the state. The program consisted of mass mailings, a series of workshops throughout the state, a coordinated inspection program by the state regulatory agency, and technology transfer. At the start of the program in January 1986, approximately 650 of the estimated 2,350 auto body shops in the state had notified EPA of their waste generating activities; by January 1987, approximately 1,200 shops had done so. Suggestions for improving program efforts include tailoring the outreach effort to the industry, government-sponsored research and development directed at the needs of small firms, mandatory participation in hazardous waste transportation programs, and better coordination by EPA of its information collection and distribution program. PMID:3421393
Waste Information Management System: One Year After Web Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.
2008-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freihammer, Till; Chaput, Barb; Vandergaast, Gary
2013-07-01
The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be locatedmore » inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow and load scenarios. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.
2012-07-01
In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less
ERIC Educational Resources Information Center
Barker, James L.; And Others
This U.S. Environmental Protection Agency report presents estimates of the energy demand attributable to environmental control of pollution from stationary point sources. This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes mobile sources such as trucks, and…
NASA Astrophysics Data System (ADS)
Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.
2009-12-01
We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.
Land Application of Wastes: An Educational Program - Introduction and Script.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This is the introductory module to the Land Application of Wastes educational program. The module contains information on the content, structure, and dynamics of the program. Also included with the module is a script to accompany a slide presentation. The Land Application of Wastes program consists of twenty-five modules and audio-visual…
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Waste Program; the NPDES Permit Program; the Dredge and Fill Permit Program; and the Underground... programs. The requirements for public participation in State Hazardous Waste Programs, Dredge and Fill...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Waste Program; the NPDES Permit Program; the Dredge and Fill Permit Program; and the Underground... programs. The requirements for public participation in State Hazardous Waste Programs, Dredge and Fill...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, H.D.
1991-11-01
Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable tomore » other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, H.D.
1991-11-01
Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable tomore » other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.« less
Helftewes, Markus; Flamme, Sabine; Nelles, Michael
2012-04-01
This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.
Local Gov`t assistance in commercial waste reduction & recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannah, C.W.
This paper outlines programs and strategies for reducing the waste stream by targeting the commercial, industrial and institutional sectors. The programs described are implemented by the Wake County Solid Waste Management Division, North Carolina. Findings and recommendations of a task force focusing on the role of the private sector in meeting state waste reduction mandates are summarized. Commercial initiatives, educational initiatives, and a grant program are described. Several case studies are provided which overview the variety of businesses and waste materials addressed.
NASA Astrophysics Data System (ADS)
Solano Meza, Johanna; Romero Hernandez, Claudia; Rodrigo Ilarri, Javier
2017-04-01
One of the main environmental issues to address in the Capital City of Bogotá (Colombia) is the increasing production of solid waste. Despite significant efforts have been made to implement an integral solid waste system management, the current management methods do not provide a permanent alternative to minimize waste production. According to the most recent data, Bogotá is producing almost 2,7 Mt/year of solid waste and only 17,12% of this amount is reused. This means that 82,88% of the waste production has to be disposed on the municipal landfill which has an estimated life of 7,6 years [1]. Bogotá is nowadays running the so-called Zero Waste Program, which tries to run an adequate solid waste management scheme while updating the most recent Integral Solid Waste Management Plan (ISWMP). However, various strategies and methodologies are still needed to fulfill their objetives. The analysis of the solid waste production inside the city using geographic information systems (GIS) is one of the available strategies that may contribute to the environmental impacts minimization, acting at the same time as a decission support tool. These techniques have already been used to the analysis and optimization of the waste collection routes and the location of waste disposal sites. They allow to visualize the critical urban zones with increasing waste production so the next steps of the management process can be properly designed (collection, trasnport routes design, location of treatment facilities and final waste disposal sites). The estimation of the urban solid waste generation is done applying different mathematical and statistical methods, which are based on the relation between the total population of the city and the per capita waste production. GIS methods allow i) to determine the total amount of waste generated as a function of the population increasement and ii) provide a full view of the zones where priority actions are needed as they take into account both the geographical and spatial component. The behaviour of the waste generation is explained considering also the socieconomic stratiphication. Results show in this research are obtained using ArcGIS considering the official 2005 census population, the population estimation in 2020, the amount of waste recycled and disposed on the municipal landfill and the socioeconomical of the different urban areas following the local waste management plans and programs. [1]Technical Support document, Solid Waste Management Plan of Bogotá D.C. Alcaldía Mayor de Bogotá, November 2016.
Waste management strategy for cost effective and environmentally friendly NPP decommissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Per Lidar; Arne Larsson; Niklas Bergh
2013-07-01
Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)« less
Solid waste treatment processes for space station
NASA Technical Reports Server (NTRS)
Marrero, T. R.
1983-01-01
The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.
A Primer on Waste Water Treatment.
ERIC Educational Resources Information Center
Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.
This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…
40 CFR 35.928-1 - Approval of the industrial cost recovery system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...
40 CFR 35.928-1 - Approval of the industrial cost recovery system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...
40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...
40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasser, K.
1994-06-01
In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less
ERIC Educational Resources Information Center
Armstrong, Patricia; Sharpley, Brian; Malcolm, Stephen
2004-01-01
The Waste Wise Schools Program was established by EcoRecycle Victoria to implement waste and litter education in Victorian schools. It is now operating in over 900 schools in Victoria and 300 schools in other Australian states / territories. This paper provides detailed case studies of two active schools in the Waste Wise Schools Program and…
The status and developments of leather solid waste treatment: A mini-review.
Jiang, Huiyan; Liu, Junsheng; Han, Wei
2016-05-01
Leather making is one of the most widespread industries in the world. The production of leather goods generates different types of solid wastes and wastewater. These wastes will pollute the environment and threat the health of human beings if they are not well treated. Consequently, the treatment of pollution caused by the wastes from leather tanning is really important. In comparison with the disposal of leather wastewater, the treatment of leather solid wastes is more intractable. Hence, the treatment of leather solid wastes needs more innovations. To keep up with the rapid development of the modern leather industry, various innovative techniques have been newly developed. In this mini-review article, the major achievements in the treatment of leather solid wastes are highlighted. Emphasis will be placed on the treatment of chromium-tanned solid wastes; some new approaches are also discussed. We hope that this mini-review can provide some valuable information to promote the broad understanding and effective treatment of leather solid wastes in the leather industry. © The Author(s) 2016.
Motives as predictors of the public's attitudes toward solid waste issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebreo, A.; Vining, J.
2000-02-01
Surveys focusing on solid-waste-related issues, conducted over a period of several years, provided data from independent samples of residents of a Midwestern, USA, community. The collection of these data yielded useful information about the relationship between residents' recycling motives and their attitudes toward solid waste management in light of several changes in the solid waste infrastructure of the community over that time. The initial survey assessed baseline beliefs and attitudes, while later surveys were conducted after the implementation of a community educational program and a curbside recycling program. The findings indicated that for recyclers and nonrecyclers, different motives predicted endorsementmore » of solid waste programs and policies. Although a similar percentage of recyclers and nonrecyclers were in support of various proposed programs and policies, concern for the environment was found to be positively related to nonrecyclers' support of proposed programs, particularly before these programs were implemented. Prior to program implementation, motives other than environmental altruism were found to be related to recyclers' support of the programs. Additional findings support the idea that educational programs and increased accessibility to recycling opportunities affect the relationship between people's attitudes toward solid waste management and their recycling motives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazar, I.; Voicu, A.; Dobrota, S.
1995-12-31
In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submittedmore » to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.« less
Detection, composition and treatment of volatile organic compounds from waste treatment plants.
Font, Xavier; Artola, Adriana; Sánchez, Antoni
2011-01-01
Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.
Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants
Font, Xavier; Artola, Adriana; Sánchez, Antoni
2011-01-01
Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835
1997-12-01
State-of-The-Practice Treatment Technologies For Reducing Concentrations of O rganotin Compounds in Wastewater Executive Summary The purpose of this...study is to identify practical technology that can be used by shipyards to remove tributyltin (TBT) from large volumes of water to levels below 50 parts... water treatment technologies that may be effective in reducing TBT concentrations in waste streams, these technologies have not been applied to shipyard
2000-12-15
per trillion for tributyltin (“ TBT ”). This regulatory action lead to an intensive research effort to develop a treatment method for ship’s wash water...antifoulant coating systems, including tributyltin , copper and zinc. In 1997 The Commonwealth of Virginia established an effluent discharge limit of 50 parts...waste stream that could consistently remove TBT to levels below this discharge standard. This work is currently being performed by the Center for
U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985
Ragone, S.E.
1986-01-01
In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program ?? 1986 Springer-Verlag New York Inc.
Poulsen, Tjalfe G; Hansen, Jens Aage
2009-11-01
Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.
The University of Georgia Chemical Waste Disposal Program.
ERIC Educational Resources Information Center
Dreesen, David W.; Pohlman, Thomas J.
1980-01-01
Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)
Operative costs, reasons for operative waste, and vendor credit replacement in spinal surgery.
Epstein, Nancy E; Roberts, Rita; Collins, John
2015-01-01
In 2012, Epstein et al. documented that educating spinal surgeons reduced the cost of operative waste (explanted devices: placed but removed prior to closure) occurring during anterior cervical diskectomy/fusion from 20% to 5.8%.[5] This prompted the development of a two-pronged spine surgeon-education program (2012-2014) aimed at decreasing operative costs for waste, and reducing the nine reasons for operative waste. The spine surgeon-education program involved posting the data for operative costs of waste and the nine reasons for operative waste over the neurosurgery/orthopedic scrub sinks every quarter. These data were compared for 2012 (latter 10 months), 2013 (12 months), and 2014 (first 9 months) (e.g. data were normalized). Savings from a 2013 Vendor Credit Replacement program were also calculated. From 2012 to 2013 and 2014, spinal operative costs for waste were, respectively reduced by 64.7% and 61% for orthopedics, and 49.4% and 45.2% for neurosurgery. Although reduced by the program, the major reason for operative waste for all 3 years remained surgeon-related factors (e.g. 159.6, to 67, and 96, respectively). Alternatively, the eight other reasons for operative waste were reduced from 68.4 (2012) to 12 (2013) and finally to zero by 2014. Additionally, the Vendor Replacement program for 2013 netted $78,564. The spine surgeon-education program reduced the costs/reasons for operative waste for 2012 to lower levels by 2013 and 2014. Although the major cost/reasons for operative waste were attributed to surgeon-related factors, these declined while the other eight reasons for operative waste were reduced to zero by 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less
40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Sandia..., remote-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Sandia National Laboratory (SNL) in Albuquerque, New Mexico. This waste is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Bettis... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Bettis Atomic Power Laboratory (BAPL) in West Mifflin, Pennsylvania. This waste...
40 CFR 272.1851 - Oklahoma State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oklahoma § 272.1851...)(1)(i) of this section are incorporated by reference as part of the hazardous waste management... Approved Oklahoma Statutory and Regulatory Requirements Applicable to the Hazardous Waste Management...
IMPACT OF LEAD ACID BATTERIES AND CADMIUM STABILIZERS ON INCINERATOR EMISSIONS
The Waste Analysis Sampling, Testing and Evaluation (WASTE) Program is a multi-year, multi-disciplinary program designed to elicit the source and fate of environmentally significant trace materials as a solid waste progresses through management processes. s part of the WASTE Prog...
Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin
NASA Astrophysics Data System (ADS)
Riyanto; Ramadhan, B.; Wiyanti, D.
2018-04-01
Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at the...-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization... Criteria, EPA evaluated the characterization of RH TRU debris waste from SRS-CCP during an inspection on...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... authorization during the comment period, the decision to authorize North Carolina's changes to its hazardous...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... Activities; Proposed Collection; Comment Request; State Program Adequacy Determination: Municipal Solid Waste... States. Title: State Program Adequacy Determination: Municipal Solid Waste Landfills (MSWLFs) and Non... 4004(a) and Section 1008(a)(3). Section 4005(c) of RCRA, as amended by the Hazardous Solid Waste...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
Shared responsibility for managing electronic waste: a case study of Maine, USA.
Wagner, Travis P
2009-12-01
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste was collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.
NASA Astrophysics Data System (ADS)
Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong
2017-01-01
China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.
Repurposing Waste Streams: Lessons on Integrating Hospital Food Waste into a Community Garden.
Galvan, Adri M; Hanson, Ryan; George, Daniel R
2018-04-06
There have been increasing efforts in recent decades to divert institutional food waste into composting programs. As major producers of food waste who must increasingly demonstrate community benefit, hospitals have an incentive to develop such programs. In this article, we explain the emerging opportunity to link hospitals' food services to local community gardens in order to implement robust composting programs. We describe a partnership model at our hospital in central Pennsylvania, share preliminary outcomes establishing feasibility, and offer guidance for future efforts. We also demonstrate that the integration of medical students in such efforts can foster systems thinking in the development of programs to manage hospital waste streams in more ecologically-friendly ways.
NASA Technical Reports Server (NTRS)
1981-01-01
A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
The treatment of wastewater phosphorus via land application includes both chemical and biological mechanisms. Chemically, phosphorus reacts with iron, aluminum, and calcium compounds in the soil providing efficient removal over a wide range of pH values. Phosphorus is also absorbed by rooted plants which, upon harvest, constitute a further removal…
Department of Energy Technology Readiness Assessments - Process Guide and Training Plan
2008-09-12
Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives
Rivera-Vega, Loren J.; Krosse, Sebastian; de Graaf, Rob M.; Garvi, Josef; Garvi-Bode, Renate D.; van Dam, Nicole M.
2015-01-01
Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4–7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325
1982-05-07
The State of Florida has applied for interim Authorization Phase I. EPA has reviewed Florida's application for Phase I and has determined that Florida's hazardous waste program is substantially equivalent to the Federal program covered by Phase I. The State of Florida is, hereby, granted Interim Authorization for Phase I to operate the State 's hazardous waste program, in lieu of the Federal program.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Central Characterization Project's Transuranic Waste Characterization Program at the Hanford Site AGENCY...) waste characterization program implemented by the Central Characterization Project (CCP) at the Hanford... characterization of TRU debris waste from Hanford-CCP during an inspection conducted on April 27-29, 2010. Using...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.
ERIC Educational Resources Information Center
Richardson, John G.
The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…
INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Hnat; L.M. Bartone; M. Pineda
2001-07-13
This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLWmore » and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.« less
Pretreatment of Hanford medium-curie wastes by fractional crystallization.
Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W
2008-07-01
Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.
1975-01-01
This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.
Meat, Fish, and Poultry Processing Wastes.
ERIC Educational Resources Information Center
Litchfield, J. H.
1978-01-01
Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)
Examples of Disposition Alternatives for WTP Solid Secondary Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, R.
The Hanford Waste Treatment and Immobilization Plant is planned to produce a variety of solid secondary wastes that will require disposal at the Integrated Disposal Facility on the Hanford Site. Solid secondary wastes include a variety of waste streams that are a result of waste treatment and processing activities.
Optical Emission Studies of the NRL Plasma Torch for the Shipboard Waste Treatment Program
1999-02-26
Arc Heating of Molten Steel in a Tundish", Plasma Chemistry and Plasma Processing, Vol.14, pp.361-381,1994. [3] H. Herman, "Plasma-sprayed...Treatment", Plasma Chemistry and Plasma Processing, Vol.15, pp.677-692,1995. [5] S. Paik and H.D. Nguyen, "Numerical Modeling of Multiphase Plasma/Soil Row...Gleizes, S. Vacquie and P. Brunelot, "Modeling of the Cathode Jet of a High- Power Transferred Arc", Plasma Chemistry and Plasma Processing, Vol.13
40 CFR 268.41 - Treatment standards expressed as concentrations in waste extract.
Code of Federal Regulations, 2010 CFR
2010-07-01
... concentrations in waste extract. 268.41 Section 268.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Treatment Standards § 268.41 Treatment standards expressed as concentrations in waste extract. For the requirements previously found in this...
Compatibility Grab Sampling and Analysis Plan for FY 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
SASAKI, L.M.
1999-12-29
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. It is written in accordance with requirements identified in Data Quality Objectives for Tank Farms Waste Compatibility Program (Mulkey et al. 1999) and Tank Farm Waste Transfer Compatibility Program (Fowler 1999). In addition to analyses to support Compatibility, the Waste Feed Delivery program has requested that tank samples obtained for Compatibility also be analyzed to confirm the high-level waste and/or low-activity waste envelope(s) for the tank waste (Baldwin 1999). The analytical requirements tomore » confirm waste envelopes are identified in Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Nguyen 1999a) and Data Quality Objectives for RPP Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Nguyen 1999b).« less
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., stores, or disposes of hazardous waste in a State with a RCRA hazardous waste program authorized under... apply: (i) If the authorized State RCRA program does not cover disposal of hazardous waste by means of... them out include all Federal program requirements identified in § 271.1(j); (5) The owner or operator...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... No. 00-108-9] Chronic Wasting Disease Herd Certification Program and Interstate Movement of Farmed or... final rule that will establish a herd certification program to control chronic wasting disease (CWD) in..., elk, and moose that are otherwise eligible for interstate movement. This action will allow interested...
HAZ-ED Classroom Activities for Understanding Hazardous Waste.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
The Federal Superfund Program investigates and cleans up hazardous waste sites throughout the United States. Part of this program is devoted to informing the public and involving people in the process of cleaning up hazardous waste sites from beginning to end. The Haz-Ed program was developed to assist the Environmental Protection Agency's (EPA)…
Content and Formation Cause of VOCs in Medical Waste Non-incineration Treatment Project
NASA Astrophysics Data System (ADS)
Dengchao, Jin; Hongjun, Teng; Zhenbo, Bao; Yang, Li
2018-02-01
When medical waste is treated by non-incineration technology, volatile organic compounds in the waste will be volatile out and form odor pollution. This paper studied VOCs productions in medical waste steam treatment project, microwave treatment project and chemical dinifection project. Sampling and analysis were carried out on the waste gas from treatment equipment and the gas in treatment workshop. The contents of nine VOCs were determined. It was found that the VOCs content in the exhaust gas at the outlet of steam treatment unit was much higher than that of microwave and chemical treatment unit, while the content of VOCs in the chemical treatment workshop was higher than that in the steam and microwave treatment workshop. The formation causes of VOCs were also analyzed and discussed in this paper.
40 CFR 268.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...
40 CFR 268.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...
Household hazardous wastes as a potential source of pollution: a generation study.
Ojeda-Benítez, Sara; Aguilar-Virgen, Quetzalli; Taboada-González, Paul; Cruz-Sotelo, Samantha E
2013-12-01
Certain domestic wastes exhibit characteristics that render them dangerous, such as explosiveness, flammability, spontaneous combustion, reactivity, toxicity and corrosiveness. The lack of information about their generation and composition hinders the creation of special programs for their collection and treatment, making these wastes a potential threat to human health and the environment. We attempted to quantify the levels of hazardous household waste (HHW) generated in Mexicali, Mexico. The analysis considered three socioeconomic strata and eight categories. The sampling was undertaken on a house-by-house basis, and hypothesis testing was based on differences between two proportions for each of the eight categories. In this study, HHW comprised 3.49% of the total generated waste, which exceeded that reported in previous studies in Mexico. The greatest quantity of HHW was generated by the middle stratum; in the upper stratum, most packages were discarded with their contents remaining. Cleaning products represent 45.86% of the HHW generated. Statistical differences were not observed for only two categories among the three social strata. The scarcity of studies on HHW generation limits direct comparisons. Any decrease in waste generation within the middle social stratum will have a large effect on the total amount of waste generated, and decrease their impact on environmental and human health.
Secondary Waste Form Development and Optimization—Cast Stone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.
2011-07-14
Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The Resources Conservation and Recovery Act`s (RCRA) Subtitle C hazardous waste management program is a comprehensive and carefully constructed system to ensure wastes are managed safely and lawfully. This program begins with a very specific, formal process to categorize wastes accurately and appropriately called waste identification. The module explains each waste exclusion and its scope, so you can apply this knowledge in determining whether a given waste is or is not regulated under RCRA Subtitle C.
40 CFR 270.16 - Specific part B information requirements for tank systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... systems in which ignitable, reactive, or incompatible wastes are to be stored or treated, a description of...
FY 2017 Hazardous Waste Management Grant Program for Tribes
This notice announces the availability of funds and solicits proposals from federally-recognized tribes or intertribal consortia for the development and implementation of hazardous waste programs and for building capacity to address hazardous waste
Vapor compression distillation module
NASA Technical Reports Server (NTRS)
Nuccio, P. P.
1975-01-01
A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.
40 CFR 270.13 - Contents of part A of the permit application.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Permit..., and disposing of hazardous waste, and the design capacity of these items. (j) A specification of the hazardous wastes listed or designated under 40 CFR part 261 to be treated, stored, or disposed of at the...
40 CFR 270.13 - Contents of part A of the permit application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Permit..., and disposing of hazardous waste, and the design capacity of these items. (j) A specification of the hazardous wastes listed or designated under 40 CFR part 261 to be treated, stored, or disposed of at the...
77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... revised program application, subject to the limitations of the Hazardous and Solid Waste Amendments of... under the authority of sections 2002(a), 3006, and 7004(b) of the Solid Waste Disposal Act as amended 42...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly referred...: This action is issued under the authority of sections 2002(a), 3006 and 7004(b) of the Solid Waste and... of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA...
77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
....1. Such wastes are termed ``oil and gas wastes.'' The TCEQ has responsibility to administer the RCRA program, however, hazardous waste generated at natural gas or natural gas liquids processing plants or... with the exploration, development, or production of oil or gas or geothermal resources and other...
Tools to Reduce Waste in Schools
ERIC Educational Resources Information Center
US Environmental Protection Agency, 2007
2007-01-01
This guide was produced to help schools and school districts reduce the amount of waste they generate It shows how to start a waste reduction program or expand an existing one. The booklet shows how such programs can benefit schools, communities, and the environment by reducing, reusing, and recycling waste. Each section--schools, school…
Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders
Smith, Rosamund C.; Lin, Boris K.
2013-01-01
Purpose of review This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. Recent findings There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume. In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient. Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Summary Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders. PMID:24157714
Carbon bed mercury emissions control for mixed waste treatment.
Soelberg, Nick; Enneking, Joe
2010-11-01
Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.
Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders.
Smith, Rosamund C; Lin, Boris K
2013-12-01
This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.
Infectious waste surveys in a Saudi Arabian hospital: an important quality improvement tool.
Hagen, D L; Al-Humaidi, F; Blake, M A
2001-06-01
To analyze the composition by weight of the infectious waste stream, better segregate waste, reduce disposal costs, reduce the load on the hospital incinerator, identify inappropriate items having significant cost or safety implications, and provide a safer work environment for housekeepers. Four infectious waste surveys were conducted between 1991 and 1999 that involved opening a total of 7364 bags of infectious waste. The contents of each infectious waste bag were separated into 20 different components and weighed. Inappropriately discarded items were removed and tagged with the date and hospital unit of origin. Dhahran Health Center, a 410-bed hospital operated by the Saudi Arabian Oil Company (Saudi Aramco) in Dhahran, Saudi Arabia. The surveys show a continuing trend in a higher percentage of plastics and a decrease in paper due to increased use of disposables. Much of the infectious waste consisted of plastic intravenous bottles, intravenous lines, and paper wrappers for sterile instrument sets that were not infectious. Dhahran Health Center was producing a total of 1163 kg of infectious waste per day before the first survey. This was reduced to 407 kg per day after implementation of a waste segregation program in 1991 (a reduction of 65%). Incineration operation was reduced from daily to 3 days per week, with a corresponding reduction in incinerator emissions. Infectious waste from inpatient, surgical, and obstetric areas was reduced by a total of 70% between 1991 and 1999, from 2.8 kg (6.1 lb) to 0.85 kg (1.9 lb) per patient per day. This is in the range of 2 to 4 lb per patient per day that is generally reported. Numerous inappropriately discarded items were discovered during the surveys with cost or safety implications. Each survey, including the latest one of November-December 1999, has shown that further improvements are possible in the hospital's waste management program. Specific educational efforts and changes in procedures are described. We believe this is the first report of such an extensive analysis of a hospital's infectious waste. Many hospitals do not have the resources to conduct such detailed surveys of their waste streams. However, regardless of the method of treatment and disposal, such surveys are valuable quality improvement tools because all health care facilities want to reduce disposal costs, identify high-value items mistakenly discarded, and improve safety.
Bulky waste quantities and treatment methods in Denmark.
Larsen, Anna W; Petersen, Claus; Christensen, Thomas H
2012-02-01
Bulky waste is a significant and increasing waste stream in Denmark. However, only little research has been done on its composition and treatment. In the present study, data about collection methods, waste quantities and treatment methods for bulky waste were obtained from two municipalities. In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150-250 kg capita(-1) year(-1), and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions were identified of which ten were recyclable and constituted 50-60% of the total quantity. The others were combustible waste for incineration (30-40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled. The recyclable materials were in many cases exported to other countries which made it difficult to track their destination and further treatment.
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.
The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less
NASA Astrophysics Data System (ADS)
Midor, Katarzyna; Jąderko, Karolina
2017-11-01
The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.
RCRA Sustainable Materials Management Information
This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROOT, R.W.
1999-05-18
This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.
Shared responsibility for managing electronic waste: A case study of Maine, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Travis P., E-mail: twagner@usm.maine.ed
2009-12-15
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste wasmore » collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.« less
40 CFR 270.305 - What tank information must I keep at my facility?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... 267.198. (j) For tank systems in which ignitable, reactive, or incompatible wastes are to be stored or...
FY 2018 Hazardous Waste Management Grant Program For Tribes
This notice announces the availability of funds and solicits proposals from federally-recognized tribes or intertribal consortia for the development and implementation of hazardous waste programs and for building capacity to address hazardous waste managem
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...
40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...
40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...
40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...
40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...
2013 Los Alamos National Laboratory Hazardous Waste Minimization Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzman, Sonja L.; English, Charles J.
2015-08-24
Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.A.; Baetz, B.W.
1998-09-01
A knowledge-based decision support system (KBDSS) has been developed to examine the potentials for reuse, co-treatment, recycling and disposal of wastes from different industrial facilities. Four plants on the Point Lisas Industrial Estate in Trinidad were selected to test this KBDSS; a gas processing plant, a methanol plant, a fertilizer/ammonia plant and a steel processing plant. A total of 77 wastes were produced by the plants (51,481,500 t year{sup {minus}1}) with the majority being released into the ocean or emitted into the air. Seventeen wastes were already being recycled off-site so were not included in the database. Using a knowledgemore » base of 25 possible treatment processes, the KBDSS generated over 4,600 treatment train options for managing the plant wastes. The developed system was able to determine treatment options for the wastes which would minimize the number of treatments and the amount of secondary wastes produced and maximize the potential for reuse, recycling and co-treatment of wastes.« less
Double shell tanks (DST) chemistry control data quality objectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING, D.L.
2001-10-09
One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less
Saeid, Nazemi; Roudbari, Aliakbar; Yaghmaeian, Kamyar
2014-01-14
The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems.
Optimisation of industrial wastes reuse as construction materials.
Collivignarelli, C; Sorlini, S
2001-12-01
This study concerns the reuse of two inorganic wastes, foundry residues and fly ashes from municipal solid waste incineration, as "recycled aggregate" in concrete production. This kind of reuse was optimised by waste treatment with the following steps: waste washing with water; waste stabilisation-solidification treatment with inorganic reagents; final grinding of the stabilised waste after curing for about 10-20 days. Both the treated wastes were reused in concrete production with different mix-designs. Concrete specimens were characterised by means of conventional physical-mechanical tests (compression, elasticity modulus, shrinkage) and different leaching tests. Experimental results showed that a good structural and environmental quality of "recycled concrete" is due both to a correct waste treatment and to a correct mix-design for concrete mixture.
NASA Astrophysics Data System (ADS)
Rahayu, Suparni Setyowati; Budiyono; Purwanto
2018-02-01
A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.
A Program on Hazardous Waste Management.
ERIC Educational Resources Information Center
Kummler, Ralph H.; And Others
1989-01-01
Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)
Research Priorities on the Relationship between Wasting and Stunting
Khara, Tanya; Dolan, Carmel; Berkley, James A.
2016-01-01
Background Wasting and stunting are global public health problems that frequently co-exist. However, they are usually separated in terms of policy, guidance, programming and financing. Though both wasting and stunting are manifestations of undernutrition caused by disease and poor diet, there are critical gaps in our understanding of the physiological relationship between them, and how interventions for one may affect the other. The aim of this exercise was to establish research priorities in the relationships between wasting and stunting to guide future research investments. Methods and Findings We used the CHNRI (Child Health and Nutrition Research Initiative) methodology for setting research priorities in health. We utilised a group of experts in nutrition, growth and child health to prioritise 30 research questions against three criteria (answerability, usefulness and impact) using an online survey. Eighteen of 25 (72%) experts took part and prioritised research directly related to programming, particularly at the public health level. The highest-rated questions were: “Can interventions outside of the 1000 days, e.g. pre-school, school age and adolescence, lead to catch-up in height and in other developmental markers?”; “What timely interventions work to mitigate seasonal peaks in both wasting and stunting?”; and “What is the optimal formulation of ready-to-use foods to promote optimal ponderal growth and also support linear growth during and after recovery from severe acute malnutrition?” There was a high level of agreement between experts, particularly for the highest ranking questions. Conclusions Increased commitment to rigorous evaluations of treatment and prevention interventions at the public health level, addressing questions of the timing of intervention, and the extent to which impacts for both wasting and stunting can be achieved, is needed to inform global efforts to tackle undernutrition and its consequences. PMID:27159235
Innovative vitrification for soil remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetta, N.W.; Patten, J.S.; Hart, J.G.
1995-12-01
The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at amore » specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.« less
MOBILITY AND DEGRADATION OF RESIDUES AT HAZARDOUS WASTE LAND TREATMENT SITES AT CLOSURE
Soil treatment systems that are designed and managed based on a knowledge of soil-waste interactions may represent a significant technology for simultaneous treatment and ultimate disposal of selected hazardous wastes in an environmentally acceptable manner. hese soil treatment s...
40 CFR 35.918 - Individual systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... localized treatment and disposal of wastewater with minimal or no conveyance of untreated waste water... plant. (5) Alternative waste water treatment works. A waste water conveyance and/or treatment system... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.918...
40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...
40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...
Land Application of Wastes: An Educational Program. Costing Land Application Systems - Module 10.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module expands on the concepts of cost estimation and comparison of costs among various treatment alternatives which were presented in a previous module. The need for useful published cost data is stressed. Criteria for selecting cost references are presented, and examples of charts and graphs from several of these are used in comparing land…
Land Application of Wastes: An Educational Program. Societal and Legal Constraints - Module 1.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module is an introduction to the legal and societal considerations which must be appraised when land application systems are being designed. It serves as an introduction to the federal legislation and state guidelines pertaining to land treatment. The main thrust of this module is to point out some of the concerns which a community is likely…
75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly...(b) of the Solid Waste and Disposal Act, as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: March...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection...
Li, Yongping; Huang, Guohe
2009-03-01
In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.4... hazardous waste programs which have received final authorization under this part. (a) Any aspect of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.4... hazardous waste programs which have received final authorization under this part. (a) Any aspect of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.4... hazardous waste programs which have received final authorization under this part. (a) Any aspect of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Burket, P.; Cozzi, A.
2014-08-01
The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less
NASA Astrophysics Data System (ADS)
Bates, E.
1992-12-01
The STC demonstration was conducted under EPA's Superfund Innovative Technology Evaluation (SITE) Program in November, 1990, at the Selma Pressure Treating (SPT) wood preserving site in Selma, California. The SPT site was contaminated with both organics, predominantly pentachlorophenol (PCP), inorganics, mainly arsenic, chromium, and copper. Extensive sampling and analyses were performed on the waste both before and after treatment to compare physical, chemical, and leaching characteristics of raw and treated wastes. STC's contaminated soil treatment process was evaluated based on contaminant mobility measured by numerous leaching tests, structural integrity of the solidified material, measured by physical and engineering tests and morphological examinations; and economic analysis, using cost information supplied by STC and the results of the SITE demonstration, the vendor's design and test data, and other laboratory and field applications of the technology. It discusses the advantages, disadvantages, and limitations, as well as estimated costs of the technology.
Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H
2007-01-01
A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Wang, C.; Gan, H.
2013-11-13
The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated meltersmore » with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of representative WTP HLW and LAW glasses over a wide range of temperatures, from the melter operating temperature to the glass transition.« less
40 CFR 262.104 - What are the minimum performance criteria?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste en route from a laboratory to an on-site hazardous waste accumulation area; or (2) To a treatment... hazardous waste and that it is prudent to transfer it directly to a treatment, storage, and disposal...) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE University Laboratories...
On-site or off-site treatment of medical waste: a challenge
2014-01-01
Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145
Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in themore » Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less
Transuranic Waste Test Facility Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looper, M.G.
1987-05-05
This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less
Public perception of hazardousness caused by current trends of municipal solid waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Khatib, Issam A., E-mail: ikhatib@birzeit.edu; Kontogianni, Stamatia; Abu Nabaa, Hendya
Highlights: • Contribution to the scientific literature by examining the relationship between concern for the environment and waste disposal in the frame of household waste treatment mechanism specifically in developing countries. • The awareness of the citizens satisfaction level and the local existing capacities in developing countries significantly contribute to decision making on MSW management sustainability in Palestine and other developing countries when applied. • Identification of the differences and similarities among DC resulting to failures or success in WM field. - Abstract: Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) asmore » a result of inequitable waste collection and treatment. Citizens’ collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent’s educational attainment and their awareness of hazardous waste (hazard perception); the results will indicate the measure taking required to avoid accidents occurred in those regions (burns from toxics, cuts from sharps, etc). National policy and legislation development based on the research outcomes will ensure equitable and accessible services are in place in order to move towards a healthier environment. Specialized health education and training programs on national scale are also needed to enhance awareness on hazardous waste.« less
WASTE REDUCTION OF TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM
The Waste Reduction Innovative Technology Evaluation (WRITE)Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial application. EPA's Risk Reduction Engineering Laborato...
40 CFR 272.1300 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1300 State authorization. (a) The State of Missouri is authorized to administer and enforce a hazardous waste management program in lieu of...
Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards
examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.
300 Area waste acid treatment system closure plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUKE, S.N.
1999-05-17
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less
Liquid secondary waste. Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less
Hazardous-waste analysis plan for LLNL operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R.S.
The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less
Massawe, Ephraim; Legleu, Tye; Vasut, Laura; Brandon, Kelly; Shelden, Greg
2014-06-01
An enormous amount of household hazardous waste (HHW) is generated as part of municipal solid waste. This scenario presents problems during disposal, including endangering human health and the environment if improperly disposed. This article examines current HHW recycling efforts in Hammond, Louisiana, with the following objectives: (a) analyze factors and attitudes that motivate residents to participate in the program; (b) quantify various types of HHW; and (c) analyze the e-waste stream in the HHW. Residents and city officials who were surveyed and interviewed cited that commitment shown by local authorities and passion to protect the environment and human health were part of their active participation in the program. An awareness program has played a key role in the success of the program. A legislation specific to e-waste is encouraged. While knowledge and information on laws and permit application processes and the promotion of greener products are encouraged, provision of storage or collection facilities and communal transportation will further motivate more residents to participate in the recycling program.
Life cycle assessment of electronic waste treatment.
Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi
2015-04-01
Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.
Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, V.
Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton,more » Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.« less
A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.
Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay
2018-03-06
Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.
Space disposal of nuclear wastes. Volume 1: Socio-political aspects
NASA Technical Reports Server (NTRS)
Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.
1976-01-01
The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeyiga, Adeyinka A.
2014-12-17
The establishment of the DOE-EM Dr. Samuel P. Massie Chair of Excellence provides an excellent opportunity for Hampton University to be involved in key environmental issues in the 21 st Century. The main areas of focus are on: 1. Coal gasification with respect to pollution prevention and reduction. 2. Solid waste treatment through bioremediation technology and 3. Industrial wastewater treatment Synthesizing ion catalysts suitable for use in slurry bubble column reaction was carried out. Construction of an autoclave continuous stirred tank reactor has been completed. At the initial stage of the development of this program, work was conducted in themore » area of formic acid recovery from waste streams, which yielded useful results. We also succeeded in the removal of priority metal ions such as cadmium, chromium, copper, lead, mercury, nickel, silver, thallium, zinc, etc., from industrial and municipal wastewater by using natural wastes. The process uses tree leaves to adsorb the metal ions in the wastewater. The ultimate goal is to develop inexpensive, highly available, effective metal ion adsorbents from natural wastes as an alternative to existing commercial adsorbents, and also to explain the possible adsorption mechanism that is taking place. This technology uses natural wastes to eliminate other wastes. Obviously, there are several advantages: (1) the negative impact on environment is eliminated, (2) the complicated regeneration step is not needed, and (3) the procedure saves money and energy. Twelve different types of leaves have been tested with lead, zinc, and nickel. The study mechanism showed that the leaf tannin is an active ingredient in the adsorption of metal ions. The ion-exchange mechanism controlled the adsorption process.« less
SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
UNTERREINER BJ
2008-07-18
More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less
40 CFR 272.700 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.700 State authorization. (a) The State of Illinois is authorized to administer and enforce a hazardous waste management program in lieu of the...
40 CFR 272.1800 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.1800 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Ohio § 272.1800 State authorization. (a) The State of Ohio is authorized to administer and enforce a hazardous waste management program in lieu of the...
40 CFR 272.400 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.400 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.400 State authorization. (a) The State of Delaware is authorized to administer and enforce a hazardous waste management program in lieu of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moak, Don J.; Grondin, Richard L.; Triner, Glen C.
CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less
I-WASTE: EPA's Suite of Homeland Security Decision Support ...
In the U.S., a single comprehensive approach to all-hazards domestic incident management has been established by the Department of Homeland Security through the National Response Framework. This helps prevent, prepare for, respond to, and recover from terrorist attacks, major disasters, and other emergencies. A significant component of responding to and recovering from wide-area or isolated events, whether natural, accidental, or intentional, is the management of waste resulting from the incident itself or from activities cleaning up after the incident. To facilitate the proper management of incident-derived waste, EPA developed the Incident Waste Assessment and Tonnage Estimator (I-WASTE). I-WASTE was developed by the U.S. EPA’s Homeland Security Research Program in partnership with EPA program and regional offices, other U.S. government agencies, industry, and state and local emergency response programs. Presenting the disaster waste tool at the ORD Tools Café held in EPA Region 7th on Dec 9th.