Sample records for waste utilization systems

  1. Overview of waste heat utilization systems

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  2. Technical and economic feasibility of a solar-bio-powered waste utilization and treatment system in Central America.

    PubMed

    Aguilar Alvarez, Ronald Esteban; Bustamante Roman, Mauricio; Kirk, Dana; Miranda Chavarria, Jose Alberto; Baudrit, Daniel; Aguilar Pereira, Jose Francisco; Rodriguez Montero, Werner; Reinhold, Dawn; Liao, Wei

    2016-12-15

    The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILsmore » appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.« less

  4. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  5. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to

  6. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.

    PubMed

    Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan

    2010-03-01

    An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh. 2009 Elsevier Ltd. All rights reserved.

  7. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  8. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  9. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  10. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  11. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  12. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  13. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  16. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  18. Optimal utilization of waste-to-energy in an LCA perspective.

    PubMed

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System

  20. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    PubMed

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  2. Utilization of waste as biogas substrateby dominan microbes identified

    NASA Astrophysics Data System (ADS)

    Nurlina, E.; Sambasri, S.; Hartati, E.; Safitri, R.; Hodijat, A.

    2018-05-01

    Indonesia as the tropics have a source of biomass feedstock which is very large, so the waste biomass can be used optimally as an energy source in the form of biogas. This study was conducted to obtain alternative energy from domestic waste materials, given the limited availability of petroleum and natural gas sourced from fossil fuels. This methodology is an experimental method, the process conditions at room temperature 25-27 °C, pH adjusted to the growth of microbes to produce biogas, retention time 20-60 days, the bioreactor is operated with a batch system, the volume of waste in the bioreactor is made permanent, so that the production of biogas in large scale will increase the pressure inside the bioreactor. Biogas is formed accommodated then distributed to the stove. Factors that determine the formation of biogas is a microbial species capable methanogens convert acetate into biogas. From the results of microbial identification of the isolates in the bioreactor, has identified three types of bacteria methanogens namely Methanospirillum hungatei, Methanobacterium polustre and Methanolacinapoynteri. The results of this study, domestic waste can be utilized as a substrate in biogas production, with the highest methane composition reaches 50.79%. This result is expected to increase public knowledge to utilize the waste into biogas as a renewable energy to sufficient the energy needs of household, so it does not depend on the energy derived from fossil fuels.

  3. Waste Management Information System (WMIS) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  4. Comparative study on legislation of utilization of construction wastes as resources in china and abroad

    NASA Astrophysics Data System (ADS)

    Wenfeng, Liu; Zhaomeng, Wang; Hongmei, Hou

    2018-05-01

    The dilemma of the “Building wastes Besieged City” has gradually become a national problem. Historical experience in the world shows that establishing a systematic and complete legal system is an effective way and powerful weapon to ensure the comprehensive utilization of building wastes resources. Based on the domestic conditions, the state focuses on the problems and learns from the legislation experience of Chinese and foreign construction wastes recycling laws and regulations, to design the legal system form multiple fields, multiple angles, and multiple levels as much as possible to achieve maximum environmental, social, and economic benefits. This article mainly summarizes the characteristics and outstanding experience of the legislation of the comprehensive utilization of construction wastes as resources in foreign countries, as well as the existing problems of Chinese relevant legal regulations, and provides reference for future research and implementation of relevant legislation.

  5. Medical waste treatment and decontamination system

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  6. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  7. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  8. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  9. Optimal planning for the sustainable utilization of municipal solid waste.

    PubMed

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The public health significance of trace chemicals in waste water utilization

    PubMed Central

    Shuval, Hillel I.

    1962-01-01

    The practice of waste water utilization has grown considerably in recent years, owing to the growing demand for water for agricultural, industrial and domestic purposes. Such utilization presents certain problems in respect of the quality of the reclaimed water, on account of the presence of certain trace chemicals in the waste waters to be re-used. The presence of these trace chemicals may have important consequences in the agricultural or industrial utilization of waste waters, but from the public health point of view it is in the re-use of waste waters for domestic purposes that their presence has most importance, owing to their possible toxic effects. This paper discusses the public health significance of trace chemicals in water, with special reference to some of the newer complex synthetic organic compounds that are appearing in ever-increasing numbers in industrial wastes. Current information on the acute and chronic toxicity of these substances is reviewed and related to possible methods of treatment of waste waters. In conclusion, the author points out that the problem of trace chemicals is not confined only to direct waste-water reclamation projects, but arises in all cases where surface waters polluted with industrial wastes are used as a source of domestic supply. PMID:13988826

  11. Comprehensive Evaluation of Repowering Systems for Utilizing Waste Heat from Small Scale Garbage Incineration Plants

    NASA Astrophysics Data System (ADS)

    Pak, Pyong Sik

    This paper evaluates two proposed repowering systems together with a conventional repowering system. A power generation system utilizing waste heat produced by a garbage incineration plant (GIP), which treats 45 t/d of garbage, was taken as an objective power generation system to be repowered. As the conventional repowering system (Sys-C), a gas turbine system with waste heat boiler was adopted. In the proposed system 1 (Sys-P1), temperature of the low temperature steam generated at the GIP is raised in the gas combustor by burning fuel, and used to drive a gas turbine generator. Hence, required power for compressing the air becomes remarkably small and expected to be high efficient compared with Sys-C. In the proposed system 2 (Sys-P2), the low temperature steam generated at the GIP is superheated by using regenerative burner and used to drive a steam turbine generator, and hence making steam condition optimal becomes easy. Various basic characteristics of the three repowering systems were estimated through computer simulation, such as repowering efficiency, energy saving characteristics, and amount of CO2 reduction. It was shown that Sys-P1 and Sys-P2 were both superior to the conventional repowering system Sys-C in the all characteristics, and Sys-P1 to Sys-P2 in repowering efficiency, and that Sys-P2 to Sys-P1 in energy saving characteristics and CO2 reduction effect. It has also been estimated that all the repowering systems are economically feasible, and that the proposed systems Sys-P1 and Sys-P2 are both superior to the Sys-C in the three economical indices of unit cost of power, annual gross profit and depreciation year.

  12. Plastic solid waste utilization technologies: A Review

    NASA Astrophysics Data System (ADS)

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  13. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory R. Mockos; William A. Smith; Frank J. Loge

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensatemore » system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.« less

  14. Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review

    NASA Astrophysics Data System (ADS)

    Tambichik, M. A.; Mohamad, N.; Samad, A. A. A.; Bosro, M. Z. M.; Iman, M. A.

    2018-04-01

    Green Concrete (GC) is defined as a concrete that utilize a waste material for at least one of its component. The production of GC has been increasing due to the drawback of conventional concrete that create many environmental problems. In Malaysia, the amount of waste generates from agricultural and construction industries were increasing every year. Hence, one of the solutions to reduce the impact of conventional concrete and limited landfill spaces due to excessive waste is by utilizing it in concrete. This paper reviews the possible use of construction waste (Recycle Concrete Aggregate) and agricultural waste (Palm Oil Fuel Ash, Rice Husk Ash and Palm Oil Fibre) as partial replacement for the basic material in a concrete to produce an innovative Green Concrete. The optimum replacement level for each type of waste was also been review. Green Concrete also has the potential to reduce environmental pollution and solve the depletion of natural sources. The result from this review shows that the addition of agricultural waste or construction waste in concrete indicate positive and satisfactory strength when compared to normal concrete. Finally, a mass production of Green Concrete can fulfil the Construction Industry Transformation Plan (CITP) 2016-2020 made by CIDB that emphasizes on a construction system which is environmentally sustainable.

  15. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  16. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  17. [Environmental and occupational problems in the utilization of industrial and home waste].

    PubMed

    Rusakov, N V; Rakhmanin, Iu A

    2002-01-01

    One of the acute hygienic problems of today is handling industrial and consumer wastes stored in Russia in the amount of 30 milliard tons; 30 million of solid garbage and 120 million tons of industrial wastes being formed. There are 4 garbage-handling and 10 garbage disposal plants built in the country. A third of them don't operate now. An absence of the initial selection in garbage collection causes the situation when only 3% of solid garbage is being processed. There is no state unified wastes recycling and utilizing system, no training of personnel to work out special technologies and do this work. Special attention should be given to medical wastes dangerous for the epidemiological situation, since they contain pathogenic microorganisms and helminth eggs; they may as well be contaminated by toxic and radioactive chemicals. A complex solution of the problems of industrial and consumer wastes handling is of vital importance for human health protection and protection of environment.

  18. GIS based solid waste management information system for Nagpur, India.

    PubMed

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  19. Prospects of banana waste utilization in wastewater treatment: A review.

    PubMed

    Ahmad, Tanweer; Danish, Mohammed

    2018-01-15

    This review article explores utilization of banana waste (fruit peels, pseudo-stem, trunks, and leaves) as precursor materials to produce an adsorbent, and its application against environmental pollutants such as heavy metals, dyes, organic pollutants, pesticides, and various other gaseous pollutants. In recent past, quite a good number of research articles have been published on the utilization of low-cost adsorbents derived from biomass wastes. The literature survey on banana waste derived adsorbents shown that due to the abundance of banana waste worldwide, it also considered as low-cost adsorbents with promising future application against various environmental pollutants. Furthermore, raw banana biomass can be chemically modified to prepare efficient adsorbent as per requirement; chemical surface functional group modification may enhance the multiple uses of the adsorbent with industrial standard. It was evident from a literature survey that banana waste derived adsorbents have significant removal efficiency against various pollutants. Most of the published articles on banana waste derived adsorbents have been discussed critically, and the conclusion is drawn based on the results reported. Some results with poorly performed experiments were also discussed and pointed out their lacking in reporting. Based on literature survey, the future research prospect on banana wastes has a significant impact on upcoming research strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-01-10

    Describes the hardware and software for the AZ-101 Mixer Pump Data Acquisition System. The purpose of the tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste (NCAW), and eventual disposal as glass via the Hanford Waste Vitrification Plant.

  1. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  2. Current trends of tropical fruit waste utilization.

    PubMed

    Cheok, Choon Yoong; Mohd Adzahan, Noranizan; Abdul Rahman, Russly; Zainal Abedin, Nur Hanani; Hussain, Norhayati; Sulaiman, Rabiha; Chong, Gun Hean

    2018-02-11

    Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.

  3. Method for utilizing decay heat from radioactive nuclear wastes

    DOEpatents

    Busey, H.M.

    1974-10-14

    Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

  4. Utilization of waste heat from aluminium electrolytic cell

    NASA Astrophysics Data System (ADS)

    Nosek, Radovan; Gavlas, Stanislav; Lenhard, Richard; Malcho, Milan; Sedlak, Veroslav; Teie, Sebastian

    2017-12-01

    During the aluminium production, 50% of the supplied energy is consumed by the chemical process, and 50% of the supplied energy is lost in form of heat. Heat losses are necessary to maintain a frozen side ledge to protect the side walls, so extra heat has to be wasted. In order to increase the energy efficiency of the process, it is necessary to significantly lower the heat losses dissipated by the furnace's external surface. Goodtech Recovery Technology (GRT) has developed a technology based on the use of heat pipes for utilization energy from the waste heat produced in the electrolytic process. Construction of condenser plays important role for efficient operation of energy systems. The condensation part of the heat pipe is situated on top of the heating zone. The thermal oil is used as cooling medium in the condenser. This paper analyses the effect of different operation condition of thermal oil to thermal performance. From the collected results it is obvious that the larger mass flow and higher temperature cause better thermal performance and lower pressure drop.

  5. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    NASA Astrophysics Data System (ADS)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  6. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    NASA Astrophysics Data System (ADS)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  7. Management and utilization of poultry wastes.

    PubMed

    Williams, C M; Barker, J C; Sims, J T

    1999-01-01

    Waste by-products such as excreta or bedding material that are generated by the worldwide annual production of more than 40 million metric tons (t) of poultry meat and 600 billion eggs are generally land applied as the final step of a producer's waste management strategy. Under proper land application conditions, the nutrients and organisms in poultry wastes pose little environmental threat. Environmental contamination occurs when land application of poultry wastes is in excess of crop utilization potential, or is done under poor management conditions causing nutrient loss from environmental factors such as soil erosion or surface runoff during rainfall. Environmental parameters of concern are N, P, and certain metals (Cu and Zn in particular), as well as pathogenic microorganisms that may be contained in poultry waste. The biochemical cycle of N is very dynamic, and N contained in poultry waste may either be removed by crop harvest, leave the animal production facility, waste treatment lagoon, or application field as a gas (NH3, NO, NO2, N2O, or N2), or, due to its mobility in soil, be transported in organic or inorganic N forms in the liquid state via surface runoff or leaching into groundwater. Elevated concentrations of NO3-N in groundwater used for human consumption is a health risk to infants that are susceptible to methemoglobinemia. An environmental impact resulting from elevated NO3-N is eutrophication of surface waters. Ammonia loss from poultry waste is an environmental concern because of volatilized wet and dry deposits of NH3 into nitrogen-sensitive ecosystems. Phosphorus in poultry wastes may contribute to environmental degradation by accelerating the process of eutrophication. Unlike N, P is very immobile in soil and must first be transported to a surface water environment to have an environmental impact. It is generally accepted, however, that this nutrient affects receiving waters via transport in eroding soil as sediment-bound P or in surface

  8. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    NASA Astrophysics Data System (ADS)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  9. The potential benefit of an advanced integrated utility system

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1975-01-01

    The applicability of an advanced integrated utility system based on 1980 technology was investigated. An example of such a system, which provides electricity, heating and air conditioning, solid waste disposal, and water treatment in a single integrated plant, is illustrated for a hypothetical apartment complex. The system requires approximately 50 percent of the energy and approximately 55 percent of the water that would be required by a typical current conventional system.

  10. Lifecycle assessment of a system for food waste disposers to tank - A full-scale system evaluation.

    PubMed

    Bernstad Saraiva, A; Davidsson, Å; Bissmont, M

    2016-08-01

    An increased interest for separate collection of household food waste in Sweden has led to development of a number of different collection-systems - each with their particular benefits and drawbacks. In the present study, two systems for collection of food waste in households were compared; (a) use of food waste disposers (FWD) in kitchen sinks and (b) collection of food waste in paper bags for further treatment. The comparison was made in relation to greenhouse gas emissions as well as primary energy utilization. In both cases, collected food waste was treated through anaerobic digestion and digestate was used as fertilizer on farmland. Systems emissions of greenhouse gases from collection and treatment of 1ton of food waste (dry matter), are according to the performed assessment lower from the FWD-system compared to the reference system (-990 and -770kgCO2-eq./ton food waste dry matter respectively). The main reasons are a higher substitution of mineral nitrogen fertilizer followed by a higher substitution of diesel. Performed uncertainty analyses state that results are robust, but that decreasing losses of organic matter in pre-treatment of food waste collected in paper bags, as well as increased losses of organic matter and nutrients from the FWD-system could change the hierarchy in relation to greenhouse gas emissions. Owing to a higher use of electricity in the FWD-system, the paper bag collection system was preferable in relation to primary energy utilization. Due to the many questions still remaining regarding the impacts of an increased amount of nutrients and organic matter to the sewage system through an increased use of FWD, the later treatment of effluent from the FWD-system, as well as treatment of wastewater from kitchen sinks in the reference system, was not included in the assessment. In future work, these aspects would be of relevance to monitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    NASA Astrophysics Data System (ADS)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  12. Utilization of the wastes of vital activity

    NASA Technical Reports Server (NTRS)

    Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.

    1979-01-01

    The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.

  13. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    Improvements in fuel economy for a broad spectrum of truck engines and waste heat utilization concepts are evaluated and compared. The engines considered are the diesel, spark ignition, gas turbine, and Stirling. The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions were based on fuel-air cycle analyses, computer simulation, and engine test data. The results reveal that diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either is approximately doubled if applied to an adiabatic diesel.

  14. Operating room waste: disposable supply utilization in neurosurgical procedures.

    PubMed

    Zygourakis, Corinna C; Yoon, Seungwon; Valencia, Victoria; Boscardin, Christy; Moriates, Christopher; Gonzales, Ralph; Lawton, Michael T

    2017-02-01

    OBJECTIVE Disposable supplies constitute a large portion of operating room (OR) costs and are often left over at the end of a surgical case. Despite financial and environmental implications of such waste, there has been little evaluation of OR supply utilization. The goal of this study was to quantify the utilization of disposable supplies and the costs associated with opened but unused items (i.e., "waste") in neurosurgical procedures. METHODS Every disposable supply that was unused at the end of surgery was quantified through direct observation of 58 neurosurgical cases at the University of California, San Francisco, in August 2015. Item costs (in US dollars) were determined from the authors' supply catalog, and statistical analyses were performed. RESULTS Across 58 procedures (36 cranial, 22 spinal), the average cost of unused supplies was $653 (range $89-$3640, median $448, interquartile range $230-$810), or 13.1% of total surgical supply cost. Univariate analyses revealed that case type (cranial versus spinal), case category (vascular, tumor, functional, instrumented, and noninstrumented spine), and surgeon were important predictors of the percentage of unused surgical supply cost. Case length and years of surgical training did not affect the percentage of unused supply cost. Accounting for the different case distribution in the 58 selected cases, the authors estimate approximately $968 of OR waste per case, $242,968 per month, and $2.9 million per year, for their neurosurgical department. CONCLUSIONS This study shows a large variation and significant magnitude of OR waste in neurosurgical procedures. At the authors' institution, they recommend price transparency, education about OR waste to surgeons and nurses, preference card reviews, and clarification of supplies that should be opened versus available as needed to reduce waste.

  15. Integrated waste management system costs in a MPC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supko, E.M.

    1995-12-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.

  16. Waste Information Management System-2012 - 12114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Shoffner, P.

    2012-07-01

    . It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less

  17. Low-head saltwater recirculating aquaculture systems utilized for juvenile red drum production

    USDA-ARS?s Scientific Manuscript database

    Recirculating aquaculture systems reuse water with mechanical and biological treatment between each use and thus require wastewater treatment techniques for continuous waste removal. However, the traditional techniques and equipment utilized in recirculating aquaculture systems are expensive. The d...

  18. Waste management system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Jorgensen, G. K.

    1975-01-01

    The function of the waste management system was to control the disposition of solid and liquid wastes and waste stowage gases. The waste management system consisting of a urine subsystem and a fecal subsystem is described in detail and its overall performance is evaluated. Recommendations for improvement are given.

  19. STUDY ON THE RECYCLING SYSTEM OF WASTE PLASTICS AND MIXED PAPER FROM A LONG-TERM PERSPECTIVE

    NASA Astrophysics Data System (ADS)

    Fujii, Minoru; Fujita, Tsuyoshi; Chen, Xudong; Ohnishi, Satoshi; Osako, Masahiro; Moriguchi, Yuichi; Yamaguchi, Naohisa

    Plastics and mixed paper in municipal solid waste are valuable resources with high calorific value. However, the recycling cost to utilize them tends to be expensive. In addition, recycling system has to be consistent with the reduce of wastes on which should be put higher-priority to lower carbon emission and save resources in the long term. In this paper, we proposed a recycling system (smart recycling system) which consists of a local center an d existing facilities in arterial industries. In the local center, collected waste plastics and mixed paper from household are processed on the same line into a form suitable for transportation and handling in a facility of arterial in dustry which can utilize those wastes effectively. At the same time, a part of plastics with high quality is processed into a recycled resin in the center. It was suggested that, by utilizing existing facilities in arterial industries which have enough and flexible capacity to accept those wastes, the system can be a robust system even if the amount of wastes generation fluctuates widely. The effect of CO2 reduction and cost by installing the system were calculated and it was estimated that 3.5 million ton of additional annual CO2 reduction could be brought in Tokyo and surrounding three prefectures without co nsiderable increase in cost.

  20. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be theirmore » ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.« less

  1. A comparison of costs associated with utility management options for dry active waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornibrook, C.

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, allmore » utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.« less

  2. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  3. Waste Collector System Technology Comparisons for Constellation Applications

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2006-01-01

    The Waste Collection Systems (WCS) for space vehicles have utilized a variety of hardware for collecting human metabolic wastes. It has typically required multiple missions to resolve crew usability and hardware performance issues that are difficult to duplicate on the ground. New space vehicles should leverage off past WCS systems. Past WCS hardware designs are substantially different and unique for each vehicle. However, each WCS can be analyzed and compared as a subset of technologies which encompass fecal collection, urine collection, air systems, pretreatment systems. Technology components from the WCS of various vehicles can then be combined to reduce hardware mass and volume while maximizing use of previous technology and proven human-equipment interfaces. Analysis of past US and Russian WCS are compared and extrapolated to Constellation missions.

  4. The MIST /MIUS Integration and Subsystems Test/ laboratory - A testbed for the MIUS /Modular Integrated Utility System/ program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Keune, F. A.

    1974-01-01

    The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.

  5. Research on Recycling and Utilization of Solid Waste in Civil Airport

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Wen; Wang, Jianping; Yi, Wei

    2018-05-01

    The aviation industry is embracing unprecedented prosperity together with the economic development. Building green airports resource-saving, environment-friendly and sustainable has become the inevitability of the times. The operation of airport will generate the large amount of waste every day, which certainly exposes airports and surrounding regions to waste disposal and ecological environment pressure. Waste disposal directly affects the surrounding environment of airports, which can be effectively mitigated by disposing waste into resources, i.e., sorting and recycling them into renewable materials. The development of green airport can also be promoted in this process. The article elaborates on the current methods of waste disposal adopted by airports. According to the principle of waste reduction, harmlessness, and resource recycling, a set of solid waste recycling and utilization methods suitable for airports are proposed, which can reduce the costs of waste transported to other places and landfilled. Various environmental pollution caused by landfill and other disposal methods can also be contained effectively. At the same time, resources can be fully recycled, converting waste into useful resources in an efficient and environmental-friendly way.

  6. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong.

    PubMed

    Hossain, Md Uzzal; Wu, Zezhou; Poon, Chi Sun

    2017-11-01

    This study aimed to compare the environmental performance of building construction waste management (CWM) systems in Hong Kong. Life cycle assessment (LCA) approach was applied to evaluate the performance of CWM systems holistically based on primary data collected from two real building construction sites and secondary data obtained from the literature. Different waste recovery rates were applied based on compositions and material flow to assess the influence on the environmental performance of CWM systems. The system boundary includes all stages of the life cycle of building construction waste (including transportation, sorting, public fill or landfill disposal, recovery and reuse, and transformation and valorization into secondary products). A substitutional LCA approach was applied for capturing the environmental gains due to the utilizations of recovered materials. The results showed that the CWM system by using off-site sorting and direct landfilling resulted in significant environmental impacts. However, a considerable net environmental benefit was observed through an on-site sorting system. For example, about 18-30kg CO 2 eq. greenhouse gases (GHGs) emission were induced for managing 1 t of construction waste through off-site sorting and direct landfilling, whereas significant GHGs emission could be potentially avoided (considered as a credit -126 to -182kg CO 2 eq.) for an on-site sorting system due to the higher recycling potential. Although the environmental benefits mainly depend on the waste compositions and their sortability, the analysis conducted in this study can serve as guidelines to design an effective and resource-efficient building CWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Utilization of Sago Waste as Cattle Feed

    NASA Astrophysics Data System (ADS)

    Tiro, B. M. W.; Beding, P. A.; Baliadi, Y.

    2018-02-01

    This study aimed was to evaluate nutrition value of sago waste and its effect on cattle performance.The collected data were analyzed using analysis of variance. The results of the study showed that of the utilization of sago waste had a positive effect on average daily gain (ADG), where with 2% sago waste of body weight (P2 treatment) gave the highest ADG 0.43 ± 0.02 kg/h/day and cattle which consumed only forage without sago waste (P0) gave the lowest ADG 0.26 ± 0.04 kg/h/day. Statistical analysis showed that the addition of sago waste significantly affected the ADG (P<0.05). The consumption of dry matter (DM) and crude protein (CP) also increased with the supplementation of the sago waste, where the highest consumption of DM was on the treatment P2 (5.09 ± 1.27 kg/day), and the lowest on the treatment P0 (4.25 ± 1.69 kg/day), while consumption of CP was highest at treatment P2 (0.37 ± 0.09 kg/day), and the lowest on the treatment P3 (0.34 ± 0.06 kg/day), while the feed conversionshowed the lowest level on the treatment P2 (12.01 ± 3.35) and highest on the treatment P0 (18.10 ± 7.39). However, supplementation of sago waste were not affect CP consumption (P>0.05), but significant affect(P<0.05) DM consumption and feed conversion. Based on the results of this study it can be concluded that the sago waste as local resources have the potential to be used as a source of energy of feed supplement to beef cattle.

  8. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  9. Management in the system of waste utilization of production and consumption

    NASA Astrophysics Data System (ADS)

    Azimov, U. I.; Gilmanshin, I. R.; Krainova, D. R.; Galeev, I. A.

    2017-09-01

    The main problems of waste management in accordance with the legislation are considered in the article. The economic benefits of separate waste collection are listed. The necessity of transition to a new level of waste management in the Republic of Tatarstan is determined.

  10. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    EPA Science Inventory

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  11. Integrated software system for low level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worku, G.

    1995-12-31

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less

  12. Synthesis of Biomass and Utilization of Plant Wastes in a Physical Model of a Biological Life Support System

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu A.; Kovalev, V. S.; Gribovksaya, I. V.; Tirranen, L. S.; Zolotukkhin, I. G.; Gros, J. B.; Lasseur, Ch.

    Biological life support systems (LSS) with highly closed intrasystem mass ex change mass ex change hold much promise for long-term human life support at planetary stations (Moon, Mars, etc.). The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotroph block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas ex change in such a system consists of respiratory gas ex change of SLS and photosynthesis and respiration of plants. Specifics of gas ex change dynamics of high plants -SLS complex has been considered. Relationship between such a gas ex change and photosynthetic active radiation (PAR) and age of plants has been established. SLS fertility has been shown to depend on its thickness and phase of maturity. The biogenic elements (potassium, phosphorus, nitrogen) in Liebig minimum have been found to include nitrogen which is the first to impair plants' growth in disruption of the process conditions. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances -products of ex change of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. In multiple recycle of the mat ter (more than 5 cycles) under the irradiance intensity of 150 W/m2 PAR and the SLS mass (dry weight) of 17.7 -19.9 kg/m2 average total harvest of

  13. Industrial waste utilization for foam concrete

    NASA Astrophysics Data System (ADS)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  14. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  15. Infectious waste feed system

    DOEpatents

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  16. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  17. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    PubMed

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  18. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  19. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  20. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    PubMed

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  1. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  2. R and D plans for Broad Area Energy Utilization Network System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, Yozo; Ishida, Hiromi; Yanagishita, Hiroshi

    1995-12-31

    In Japan, approximately 60 percent of the primary energy supply is lost as waste heat due to low thermal energy conversion efficiency. A lot of effort has been made towards energy conservation in industry since 1973 when the oil crisis happened. However, waste heat is not recovered sufficiently at low temperature. Since most of energy in residential and commercial areas is used for air-conditioning and hot water, the temperature of heat for residential and commercial use is almost equal to that of waste heat discharged from industrial sources. Therefore, the Broad Area Energy Utilization Network System (Eco-Energy City) project, whichmore » started in 1993 and will continue over a period of 8 years, is a large-scale national energy conservation project of the Agency of Industrial Science and technology (AIST) of the Ministry of International Trade and Industry (MITI). The aim of this project is to accelerate the full scale utilization of industrial waste heat for residential and commercial use by technological breakthroughs. The concept of the project is as follows: (1) Waste and unutilized heat discharged from industrial sources at relatively high temperature is recovered very efficiently, in multiple stages and in various ways. (2) Recovered heat is transported with a small heat loss over a long distance to residential and commercial areas that have various patterns of consuming relatively low-temperature heat. (3) Transported heat is supplied at consumer sites in different ways depending on the individual consumption pattern. (4) Thermal energy is utilized in the following forms: Cascaded use, combined use and recycling. The key to success is to develop innovative technologies of heat recovery, heat transport, heat supply and systematization of energy supply and demand.« less

  3. TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC

    NASA Astrophysics Data System (ADS)

    Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi

    To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.

  4. Performance evaluation model of a pilot food waste collection system in Suzhou City, China.

    PubMed

    Wen, Zongguo; Wang, Yuanjia; De Clercq, Djavan

    2015-05-01

    This paper analyses the food waste collection and transportation (C&T) system in a pilot project in Suzhou by using a novel performance evaluation method. The method employed to conduct this analysis involves a unified performance evaluation index containing qualitative and quantitative indicators applied to data from Suzhou City. Two major inefficiencies were identified: a) low system efficiency due to insufficient processing capacity of commercial food waste facilities; and b) low waste resource utilization due to low efficiency of manual sorting. The performance evaluation indicated that the pilot project collection system's strong points included strong economics, low environmental impact and low social impact. This study also shows that Suzhou's integrated system has developed a comprehensive body of laws and clarified regulatory responsibilities for each of the various government departments to solve the problems of commercial food waste management. Based on Suzhou's experience, perspectives and lessons can be drawn for other cities and areas where food waste management systems are in the planning stage, or are encountering operational problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Energy recovery from waste glycerol by utilizing thermal water vapor plasma.

    PubMed

    Tamošiūnas, Andrius; Valatkevičius, Pranas; Gimžauskaitė, Dovilė; Jeguirim, Mejdi; Mėčius, Vladas; Aikas, Mindaugas

    2017-04-01

    Glycerol, considered as a waste feedstock resulting from biodiesel production, has received much attention in recent years due to its properties, which offer to recover energy. The aim of this study was to investigate the use of a thermal water vapor plasma for waste (crude) glycerol conversion to synthesis gas, or syngas (H 2  + CO). In parallel of crude glycerol, a pure glycerol (99.5%) was used as a reference material in order to compare the concentrations of the formed product gas. A direct current (DC) arc plasma torch stabilized by a mixture of argon/water vapor was utilized for the effective glycerol conversion to hydrogen-rich synthesis gas. It was found that after waste glycerol treatment, the main reaction products were gases with corresponding concentrations of H 2 50.7%, CO 23.53%, CO 2 11.45%, and CH 4 3.82%, and traces of C 2 H 2 and C 2 H 6 , which concentrations were below 0.5%. The comparable concentrations of the formed gas products were obtained after pure glycerol conversion-H 2 46.4%, CO 26.25%, CO 2 11.3%, and CH 4 4.7%. The use of thermal water vapor plasma producing synthesis gas is an effective method to recover energy from both crude and pure glycerol. The performance of the glycerol conversion system was defined in terms of the produced gas yield, the carbon conversion efficiency, the cold gas efficiency, and the specific energy requirements.

  6. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  7. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    PubMed

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.

  8. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review.

    PubMed

    Väisänen, Taneli; Haapala, Antti; Lappalainen, Reijo; Tomppo, Laura

    2016-08-01

    Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  10. Hazard ranking systems for chemical wastes and chemical waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be theirmore » ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.« less

  11. Utilization of Information Technology for Non Domestic Waste Management in Semarang City

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad; Hadi, Sudharto P.; Soemantri, Maman

    2018-02-01

    Garbage problem is often very complex in urban areas. The handling pattern of collecting, transporting and disposing that has been applied up to this day has not yet produced an appropriate solution. This is evident from the data of statistic centre institution in 2015 that 76.31% of the existing waste in the community has not been sorted, while 10.28% sorted to be used and 13.41% sorted to be discarded, showing the community amount of unsorted garbage large enough to necessitate managerial efforts at the waste sources. In designing a systematic and structured waste management system, the generations, compositions, and characteristics of the waste are indispensable. Therefore, a research is conducted on these three dimensions to the non-domestic waste in Semarang City, which involves commercial waste (from the markets, restaurants, and hotels), institutional waste (from the offices and schools). From the research result the average of 0,24kgs/person/day in weight unit of the City's non-domestical waste generation is derived. The waste composition is dominated by organic waste of around 61.95%, while the rest percentage is inorganic. The management policy is directed with the application of Management Information System model based on Information Technology because of the system's abilities to effectuate the waste management.

  12. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    PubMed Central

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  13. Waste information management system: a web-based system for DOE waste forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.

    2007-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less

  14. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMERO, S.G.

    2000-02-14

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoringmore » equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.« less

  15. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Utilization of household food waste for the production of ethanol at high dry material content.

    PubMed

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  17. Expert System for Building TRU Waste Payloads - 13554

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Heather; Slater, Bryant

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiativemore » intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)« less

  18. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy

  19. Utilizing a 'systems' approach to improve the management of waste from healthcare facilities: best practice case studies from England and Wales.

    PubMed

    Tudor, Terry L; Woolridge, Anne C; Bates, Margaret P; Phillips, Paul S; Butler, Sharon; Jones, Keith

    2008-06-01

    Changes in environmental legislation and standards governing healthcare waste, such as the Hazardous Waste Regulations are expected to have a significant impact on healthcare waste quantities and costs in England and Wales. This paper presents findings from two award winning case study organizations, the Cardiff and Vale NHS Trust and the Cornwall NHS Trust on 'systems' they have employed for minimizing waste. The results suggest the need for the development and implementation of a holistic range of systems in order to develop best practice, including waste minimization strategies, key performance indicators, and staff training and awareness. The implications for the sharing of best practice from the two case studies are also discussed.

  20. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs

  1. Waste Information Management System with 2012-13 Waste Streams - 13095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Lagos, L.

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less

  2. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    NASA Astrophysics Data System (ADS)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  3. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  4. Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing.

    PubMed

    Jiang, Yujia; Zhang, Ting; Lu, Jiasheng; Dürre, Peter; Zhang, Wenming; Dong, Weiliang; Zhou, Jie; Jiang, Min; Xin, Fengxue

    2018-05-07

    Biobutanol can be indigenously synthesized by solventogenic Clostridium species; however, these microorganisms possess inferior capability of utilizing abundant and renewable organic wastes, such as starch, lignocellulose, and even syngas. The common strategy to achieve direct butanol production from these organic wastes is through genetic modification of wild-type strains. However, due to the complex of butanol synthetic and hydrolytic enzymes expression systems, the recombinants show unsatisfactory results. Recently, setting up microbial co-culturing systems became more attractive, as they could not only perform more complicated tasks, but also endure changeable environments. Hence, this mini-review comprehensively summarized the state-of-the-art biobutanol production from different substrates by using microbial co-culturing systems. Furthermore, strategies regarding establishment principles of microbial co-culturing systems were also analyzed and compared.

  5. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  6. Fiber grating system used to measure strain in a 22-ft composite utility pole

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona, Kelli; Slattery, Kerry T.; Dorr, Donald J.

    1996-05-01

    Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity, light weight for ease of deployment, the ability to be recycled reducing hazardous waste associated with chemically treated wooden poles, and compatibility with embedded fiber optic sensors allowing structural loads to be monitored. This paper reports tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22 foot composite pole.

  7. TRADITIONAL CANISTER-BASED OPEN WASTE MANAGEMENT SYSTEM VERSUS CLOSED SYSTEM: HAZARDOUS EXPOSURE PREVENTION AND OPERATING THEATRE STAFF SATISFACTION.

    PubMed

    Horn, M; Patel, N; MacLellan, D M; Millard, N

    2016-06-01

    Exposure to blood and body fluids is a major concern to health care professionals working in operating rooms (ORs). Thus, it is essential that hospitals use fluid waste management systems that minimise risk to staff, while maximising efficiency. The current study compared the utility of a 'closed' system with a traditional canister-based 'open' system in the OR in a private hospital setting. A total of 30 arthroscopy, urology, and orthopaedic cases were observed. The closed system was used in five, four, and six cases, respectively and the open system was used in nine, two, and four cases, respectively. The average number of opportunities for staff to be exposed to hazardous fluids were fewer for the closed system when compared to the open during arthroscopy and urology procedures. The open system required nearly 3.5 times as much staff time for set-up, maintenance during procedures, and post-procedure disposal of waste. Theatre staff expressed greater satisfaction with the closed system than with the open. In conclusion, compared with the open system, the closed system offers a less hazardous and more efficient method of disposing of fluid waste generated in the OR.

  8. The effect of dynamic scheduling and routing in a solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, Ola M.

    2006-07-01

    Solid waste collection and hauling account for the greater part of the total cost in modern solid waste management systems. In a recent initiative, 3300 Swedish recycling containers have been fitted with level sensors and wireless communication equipment, thereby giving waste collection operators access to real-time information on the status of each container. In this study, analytical modeling and discrete-event simulation have been used to evaluate different scheduling and routing policies utilizing the real-time data. In addition to the general models developed, an empirical simulation study has been performed on the downtown recycling station system in Malmoe, Sweden. From themore » study, it can be concluded that dynamic scheduling and routing policies exist that have lower operating costs, shorter collection and hauling distances, and reduced labor hours compared to the static policy with fixed routes and pre-determined pick-up frequencies employed by many waste collection operators today. The results of the analytical model and the simulation models are coherent, and consistent with experiences of the waste collection operators.« less

  9. Utilization of household food waste for the production of ethanol at high dry material content

    PubMed Central

    2014-01-01

    Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could

  10. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    NASA Astrophysics Data System (ADS)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  11. Top-level modeling of an als system utilizing object-oriented techniques

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. F.; Kang, S.; Ting, K. C.

    The possible configuration of an Advanced Life Support (ALS) System capable of supporting human life for long-term space missions continues to evolve as researchers investigate potential technologies and configurations. To facilitate the decision process the development of acceptable, flexible, and dynamic mathematical computer modeling tools capable of system level analysis is desirable. Object-oriented techniques have been adopted to develop a dynamic top-level model of an ALS system.This approach has several advantages; among these, object-oriented abstractions of systems are inherently modular in architecture. Thus, models can initially be somewhat simplistic, while allowing for adjustments and improvements. In addition, by coding the model in Java, the model can be implemented via the World Wide Web, greatly encouraging the utilization of the model. Systems analysis is further enabled with the utilization of a readily available backend database containing information supporting the model. The subsystem models of the ALS system model include Crew, Biomass Production, Waste Processing and Resource Recovery, Food Processing and Nutrition, and the Interconnecting Space. Each subsystem model and an overall model have been developed. Presented here is the procedure utilized to develop the modeling tool, the vision of the modeling tool, and the current focus for each of the subsystem models.

  12. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis

    USDA-ARS?s Scientific Manuscript database

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  13. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  14. Reuse of coal mining wastes in civil engineering. Part 2: Utilization of minestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarzynska, K.M.

    1995-11-01

    The oldest method of minestone utilization is reclamation of spoil heaps by adapting them to the landscape by afforestation or agricultural management. The best method is, however, complete removal of the wastes. Hence, for many years research has been carried out to find new ways of minestone utilization to minimize disposal cost and harmful environmental effects. Earth structures offer the best possibilities of minestone utilization. Investigations conducted in recent years in Germany, the United Kingdom, France, Belgium, the Netherlands and also in Poland have led to the use of many tones of wastes in the construction of road and railroadmore » banks, river embankments, dykes and dams, filling of land depressions and open pits, as well as for sea wharfs and land reclamation. This paper presents descriptions of minestone applications to hydraulic, harbor and road engineering as well as to mine backfilling and restoration of derelict land. Effective management of minestone is still the principal problem with respect to safety, economics and environmental protection. Hence, the propagation of minestone utilization of known sources and the search for new methods of its management are essential. Two sections in this review have been devoted to the prevention of spontaneous heating and combustion of minestone and to the impact of minestone structures on the environment and its protection.« less

  15. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  16. Utilization of ethyl cellulose polymer and waste materials for roofing tile production

    NASA Astrophysics Data System (ADS)

    Sam, Suubitaa Spencer; Ng, ChoonAun; Chee, Swee Yong; Habib, NoorZainab; Nadeem, Humayon; Teoh, Wei Ping

    2017-05-01

    The aim of this study was to utilize ethyl cellulose, mixture of waste engine oil and waste vegetable oil as a binder in the environmental friendly roofing tile production. The waste engine-vegetable oil wasmix together with ethyl cellulose, fly ash, coarse aggregates, fine aggregatesand a catalyst. The Fourier Transform Infrared (FTIR) analysis showed that the oil mixture added with ethyl cellulose has the relatively high binding effect due to the presence of strong carbonyl group especially after being heat cured at 1900C for 24 hours. The mixed proportion of materials with different amount of ethyl cellulose used was studied in the production of tile specimen. The results showed that the ethyl cellulose composed roofing tile specimens passed the transverse breaking strength, durability, permeabilityand the ultraviolet accelerated test. The shrinkage on the tile can be overcome by adding temperature resistance polymer on the exterior of the tile.

  17. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  18. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  19. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR

  20. Implementation of spatial smart waste management system in malaysia

    NASA Astrophysics Data System (ADS)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  1. Utilization of biocatalysts in cellulose waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less

  2. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  3. Waste Resources Utilization Program. Progress report, period ending September 30, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1975-12-01

    The purpose of the Waste Resources Utilization Program is to develop a technology to constructively couple two major environmental problems, disposition of human and nuclear waste, in an attempt to provide a framework in which both will become useful resources. Sludge treated with thermoradiation offers considerable potential for use as a fertilizer in agriculture or a soil conditioner for land reclamation free of the serious potential health hazards associated with conventional methods of land disposal. In addition, the very real possibility exists that treated sludge may provide a low-cost substitute for high-nutritional components in ruminant diets. The liter size flow-throughmore » system is put into operation for the first time and provides sufficient quantities of treated sludge for good biological analysis and to start the animal feeding program at New Mexico State University. Approximately 3800 gal of sewage sludge were thermoradiation-treated with the system. The sludge was exposed to approximately 150 krads of gamma radiation at a temperature of 65$sup 0$C. The treated sludge was monitored for elimination of total coliforms and fecal strep. No fecal strep bacteria were found in 400 sample plates; three contained coliform growth. An intensive study of poliovirus inactivation in sewage sludge was completed this quarter. Source efficiencies were calculated for possible modification to the WESF capsule which would consist of inserting a hollow tube in the center of the capsule. This was proposed as a simple modification to the standard WESF capsule to reduce the self-shielding characteristic of the cesium. The calculations showed little or no advantage of adding the center tube. (TFD)« less

  4. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  5. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  6. Simultaneous utilization of soju industrial waste for silica production and its residue ash as effective cationic dye adsorbent

    USDA-ARS?s Scientific Manuscript database

    Soju industrial waste is an important biomass resource. The present study is aimed to utilize soju industrial waste for silica extraction, and residual ash as a low cost adsorbent for the removal of Methylene Blue (MB) from aqueous solution. High percentage of pure amorphous nanosilica was obtained ...

  7. Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies.

    PubMed

    Li, Panyu; Chen, Xi; Zeng, Xiaotong; Zeng, Yu; Xie, Yi; Li, Xiang; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2018-02-02

    Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.

  8. Lean Six Sigma in Health Care: Improving Utilization and Reducing Waste.

    PubMed

    Almorsy, Lamia; Khalifa, Mohamed

    2016-01-01

    Healthcare costs have been increasing worldwide mainly due to over utilization of resources. The savings potentially achievable from systematic, comprehensive, and cooperative reduction in waste are far higher than from more direct and blunter cuts in care and coverage. At King Faisal Specialist Hospital and Research Center inappropriate and over utilization of the glucose test strips used for whole blood glucose determination using glucometers was observed. The hospital implemented a project to improve its utilization. Using the Six Sigma DMAIC approach (Define, Measure, Analyze, Improve and Control), an efficient practice was put in place including updating the related internal policies and procedures and the proper implementation of an effective users' training and competency check off program. That resulted in decreasing the unnecessary Quality Control (QC) runs from 13% to 4%, decreasing the failed QC runs from 14% to 7%, lowering the QC to patient testing ratio from 24/76 to 19/81.

  9. Multiple system modelling of waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less

  10. Factors affecting the sustainability of solid waste management system-the case of Palestine.

    PubMed

    Al-Khateeb, Ammar J; Al-Sari, Majed I; Al-Khatib, Issam A; Anayah, Fathi

    2017-02-01

    Understanding the predictors of sustainability in solid waste management (SWM) systems can significantly contribute to eliminate many waste management problems. In this paper, the sustainability elements of SWM systems of interest are (1) attitudes toward separation at the source, (2) behaviour regarding reuse and/or recycling and (3) willingness to pay for an improved service of SWM. The predictors affecting these three elements were studied in two Palestinian cities: Ramallah and Jericho. The data were collected via structured questionnaires and direct interviews with the respondents, and the analysis utilized a logistic regression model. The results showed that the place of residence and dwelling premises are the significant factors influencing attitudes toward separation at the source; the place of residence and age are the significant factors explaining behaviour regarding reuse and/or recycling; while the dwelling premises, gender, level of education and being received education on waste management are the significant factors affecting willingness to pay for an improved service of SWM.

  11. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    NASA Astrophysics Data System (ADS)

    Hidayah, Nurul; Syafrudin

    2018-02-01

    Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  12. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and

  13. Integrated waste and water management system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  14. Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry.

    PubMed

    Rao, Jonnalagadda Raghava; Thanikaivelan, Palanisamy; Sreeram, Kalarical Janardhanan; Nair, Balachandran Unni

    2002-03-15

    Chromium-containing wastes from various industrial sectors are under critical review. Leather processing is one such industrial activity that generates chromium-bearing wastes in different forms. One of them is chrome shavings, and this contributes to an extent of 10% of the quantum of raw skins/hides processed, amounting to 0.8 million ton globally. In this study, the high protein content of chrome shavings has been utilized for reduction of chromium(VI) in the preparation of chrome tanning agent. This approach has been exploited for the development of two products: one with chrome shavings alone as reducing agent and the other with equal proportion of chrome shavings and molasses. The developed products exhibit more masking due to the formation of intermediate organic oligopeptides. This has been corroborated through the spectral, hydrolysis, and species-wise distribution studies. The formation of these organic masking agents helps in chrome tanning by shifting the precipitation point of chromium to relatively higher pH levels. Hence, the developed products find use as chrome tanning agents for leather processing, thus providing a means for better utilization of chrome shaving wastes.

  15. ECLSS Universal Waste Management System (UWMS) Metal Materials Compatibility Study- Electrochemical and Crevice Corrosion Evaluation

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2017-01-01

    Electrochemical and crevice corrosion laboratory test results are presented for three noble metal candidates with possible application on the Universal Waste Management System (UWMS) in support of the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The three metal candidates, which included Inconel 625, Hastelloy C276 and Titanium 6Al-4V, were evaluated in two solutions representative of the acidic pretreatment formulations utilized during processing of waste liquids within the ECLSS. Final test results and data analysis indicated that the passive layer on all three metals provides excellent corrosion protection in both solutions under standard test conditions.

  16. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less

  17. Los Alamos Plutonium Facility Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Montoya, A.; Wieneke, R.

    1997-02-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facilitymore » on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.« less

  18. Analytical method of waste allocation in waste management systems: Concept, method and case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergeron, Francis C., E-mail: francis.b.c@videotron.ca

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. Themore » conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  19. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  20. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, John J; Christian, Jeff; Gehl, Anthony C

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In othermore » applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status

  1. A facility location model for municipal solid waste management system under uncertain environment.

    PubMed

    Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K

    2017-12-15

    In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Revolutionary advances in medical waste management. The Sanitec system.

    PubMed

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the

  3. Urban-rural mining: waste utilization in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Zhao, D. D.; Huhetaoli; Yuan, H. R.; Tang, Z. H.

    2018-05-01

    Attitudes towards waste have changed gradually in view of the environmental pollution created and the potential of waste as a resource. This has led to the city and countryside of China being viewed as a complete "urban-rural mine" resources are extracted from what was once considered waste. Guangdong is a developed province and annual waste generation has recently exceeded 300 million tons. The waste distribution characteristics are as follows: most industrial solid waste is produced in the Pearl River Delta and Mountainous Region, waste associated with domestic activities is concentrated in the Pearl River Delta, and agricultural waste is found throughout the province. The ratios of material recycling and energy recovery are 58% and 11%, respectively, of collected waste. Recycled products include construction material, artificial boards, fuel, plastic, metal, chemicals, oil, and fibers. Energy is recovered by generating electricity from domestic waste, landfill gas, and forest and crop residue.

  4. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection...

  5. Financial analysis of biogas utilization : input cattle, pig feces and coffee waste in Karo, Indonesia

    NASA Astrophysics Data System (ADS)

    Ginting, N.; Zuhri, F.; Hasnudi; Mirwandhono, E.; Sembiring, I.; Daulay, A. H.

    2018-02-01

    The community's need for renewable energy was very urgent. In addition, efforts to preserve the environment from waste caused biogas technology feasible to apply. This study aims to provide biogas technology with minimal cost and utilize agricultural waste that were coffee and livestock waste. The study was conducted from July to October 2016. The theoretical and empirical methods used in this study were included data from officials resources, field survey on 16 biogas locations, focus group discussion and interview with stake holders. Data were tabulated by Excel Program which then were analysed by SAS. Parameters were included Production Cost, Production Result, Profit Loss Analysis, Revenue Cost Ratio (R/C Ratio), Return On Investment (ROI), Net B/C, and IRR. The result of this research showed that the application of bioplastic gas with cow dung and coffee waste as bioplasticgas input cause the best results.

  6. A review on organic waste to energy systems in India.

    PubMed

    Dhar, Hiya; Kumar, Sunil; Kumar, Rakesh

    2017-12-01

    Waste generation is increasing day-by-day with the growth of population which directly affects the environment and economy. Organic municipal solid waste (MSW) and agriculture sectors contribute towards maximum waste generation in India. Thus, management of organic waste is very much essential with the increasing demand for energy. The present paper mainly focusses on reviewing waste to energy (WtE) potentials, its technologies, and the associated challenges. Different substrates are utilized through various technological options in India. Organic waste has good potential to attain sustainable energy yields with and without affecting the environment. A realistic scenario of WtE technologies and their challenges in line with the existing Indian condition is presented in this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  8. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 1: (Executive summary)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Integrated Utility Systems (IUS) have been suggested as a means of reducing the cost and conserving the nonrenewable energy resources required to supply utility services (energy, water, and waste disposal) to developments of limited size. The potential for further improving the performance and reducing the cost of IUS installations through the use of energy storage devices is examined and the results are summarized. Candidate energy storage concepts in the general areas of thermal, inertial, superconducting magnetic, electrochemical, chemical, and compressed air energy storage are assessed and the storage of thermal energy as the sensible heat of water is selected as the primary candidate for near term application to IUS.

  9. Accumulation and subsequent utilization of waste heat

    NASA Astrophysics Data System (ADS)

    Koloničný, Jan; Richter, Aleš; Pavloková, Petra

    2016-06-01

    This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.

  10. Nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less

  11. Developing a Novel, Sustainable and Beneficial System for the Systematic Management of Hospital Wastes

    PubMed Central

    Hinduja, Indira N.; Ahuja, Harish S.

    2016-01-01

    Introduction India is the 2nd most populated country in the world. Population of India is increasing at a tremendous rate. Proportionately, the numbers of people seeking health care are increasing. In that ratio the quantities of hospital wastes, in wider terms, healthcare wastes that are getting generated is also increasing. Current methods for the safe disposal of healthcare wastes are not able to cope up with the rate of generation of healthcare wastes and moreover are not eco-friendly at all. Due to this, the current rules and regulations regarding the safe disposal of healthcare wastes are getting violated, ultimately leading to improper management of healthcare wastes, posing a serious threat to the environment and to the community. Aim To develop a novel, sustainable and beneficial system for the systematic management of healthcare wastes utilizing the strategies of waste reduction, waste segregation and recycling of Non Hazardous Hospital Wastes (NHHWs). Materials and Methods Firstly a detailed study of the Healthcare Waste Management System (HCWMS) operational at the Jaslok Hospital and Research Centre was done. A pilot study was then performed. After that, data regarding the generation and management of healthcare wastes in the other healthcare settings was collected and analyzed. Considering all this, a novel, sustainable and beneficial template system for the systematic management of healthcare wastes was proposed. Lastly the possible positive impacts from the implementation of HCWMSs designed using proposed template HCWMS in significant numbers of healthcare establishments was gauged. Results The healthcare waste management system operational at the Jaslok Hospital and Research Centre was found to be very efficient and provided vital inputs about developing the novel HCWMS. The pilot study was successfully completed generating significant revenue from the hospital’s own NHHWs while managing them in an eco-friendly way. The total healthcare waste

  12. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    PubMed

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  13. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less

  14. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  15. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the

  16. Quantitative assessments of municipal waste management systems: using different indicators to compare and rank programs in New York State.

    PubMed

    Greene, Krista L; Tonjes, David J

    2014-04-01

    The primary objective of waste management technologies and policies in the United States is to reduce the harmful environmental impacts of waste, particularly those relating to energy consumption and climate change. Performance indicators are frequently used to evaluate the environmental quality of municipal waste systems, as well as to compare and rank programs relative to each other in terms of environmental performance. However, there currently is no consensus on the best indicator for performing these environmental evaluations. The purpose of this study is to examine the common performance indicators used to assess the environmental benefits of municipal waste systems to determine if there is agreement between them regarding which system performs best environmentally. Focus is placed on how indicator selection influences comparisons between municipal waste management programs and subsequent system rankings. The waste systems of ten municipalities in the state of New York, USA, were evaluated using each common performance indicator and Spearman correlations were calculated to see if there was a significant association between system rank orderings. Analyses showed that rank orders of waste systems differ substantially when different indicators are used. Therefore, comparative system assessments based on indicators should be considered carefully, especially those intended to gauge environmental quality. Insight was also gained into specific factors which may lead to one system achieving higher rankings than another. However, despite the insufficiencies of indicators for comparative quality assessments, they do provide important information for waste managers and they can assist in evaluating internal programmatic performance and progress. To enhance these types of assessments, a framework for scoring indicators based on criteria that evaluate their utility and value for system evaluations was developed. This framework was used to construct an improved model for

  17. Environmentally and economically efficient utilization of coal processing waste.

    PubMed

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2017-11-15

    High concentrations of hazardous anthropogenic emissions (sulfur, nitrogen and carbon oxides) from solid fuel combustion in coal burning plants cause environmental problems that have been especially pressing over the last 20-30 years. A promising solution to these problems is a switch from conventional pulverized coal combustion to coal-water slurry fuel. In this paper, we pay special attention to the environmental indicators characterizing the combustion of different coal ranks (gas, flame, coking, low-caking, and nonbaking coals) and coal-water slurry fuels based on the coal processing waste - filter cakes. There have been no consistent data so far on the acceptable intervals for the anthropogenic emissions of sulfur (SO x ), nitrogen (NO x ) and carbon (CO, CO 2 ) oxides. Using a specialized combustion chamber and gas analyzing system, we have measured the concentrations of typical coal and filter-cake-based CWS combustion products. We have also calculated the typical combustion heat of the fuels under study and measured the ratio between environmental and energy attributes. The research findings show that the use of filter cakes in the form of CWS is even better than coals in terms of environment and economy. Wide utilization of filter cakes solves many environmental problems: the areas of contaminated sites shrink, anthropogenic emissions decrease, and there is no need to develop new coal mines anymore. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Alternative bioenergy through the utilization of Kappaphycus alvarezii waste as a substitution of substrate for biogas products

    NASA Astrophysics Data System (ADS)

    Yulita, R.; Agustono; Pujiastuti, D. Y.; Alamsjah, M. A.

    2018-04-01

    Biogas is one of the renewable energy resources which are able to be developed by providing some sufficient renewable substances and manufactured from the fermentation process of organic substances metabolized by anaerobic bacteria. In this research, Kappaphycus alvarezii seaweed waste from carrageenan processing and contents of rumen were used. This research aims to comprehend the carrageenan processing waste of macroalga K. alvarezii can be used as alternative source generating biogas. The research method is P0 (100 % of the contents of rumen), P1 (75 % of the contents of rumen and 25 % of seaweed waste), P2 (50 % of the contents of rumen and 50 % of seaweed waste), and P3 (25 % of the contents of rumen and 75 % of seaweed waste), and P4 (100 % of seaweed waste). The result showed that according to the quality determination of biogas based on SNI (Indonesia National Standard) 8019:2014, the K. alvarezii seaweed waste from carrageenan processing can be utilized as the alternative source of manufacturing biogas and got the methane gas resulted from the comparison method is P2 (50 % of the contents of rumen and 50 % of seaweed waste), with value of 58.61 %.

  19. Biogas: Production and utilization

    NASA Astrophysics Data System (ADS)

    Price, E. C.; Cheremisinoff, P. N.

    Among the aspects of biogas production and utilization covered are: (1) the microbiology and biochemistry of the acid and methane production stages in the anaerobic process; (2) factors affecting the process, such as temperature, acidity and alkalinity, nutrients, and cations; (3) denitrification processes and systems; and (4) the process kinetics of suspended growth systems, packed columns, and fluidized beds. Also considered are such issues in the application of this technology as the digestion of municipal treatment plant sludges, animal wastes, food processing wastes and energy crops. Attention is in addition given to anaerobic digester design, offgas measurement of anaerobic digesters, and sludge treatment through soil conditioning and composting.

  20. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...

  1. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition

    NASA Astrophysics Data System (ADS)

    Gribovskaya, I. V.; Gladchenko, I. A.; Zinenko, G. K.

    Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO_3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed.

  2. Impact of RCRA (PL 94-580) on the use or disposal of solid wastes from Texas lignite-fired utility boilers: a literature survey. Final report. [Flue gas desulfurization sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.L.

    A literature survey was conducted in order to determine the amount of information available to the public concerning the impact of the Resource Conservation and Recovery Act of 1976 (RCRA) on the use or disposal of solid wastes from Texas lignite-fired utility boilers. The utility power plants of ALCOA, Big Brown, Martin Lake, Monticello and San Miguel are the only facilities currently using Texas lignite as fuel. RCRA is a comprehensive federal law which provides for the management of hazardous waste from generation to ultimate disposal. Utility solid wastes such as fly ash and flue gas desulfurization (FGD) sludge aremore » currently classified as excluded wastes (wastes exempt from hazardous classification) pending further information regarding these high-volume, low risk wastes. RCRA also provides for the increased need of recovered materials in Subtitle F - Federal Procurement. The lignite deposits of Texas occur in belts that stretch diagonally across the state from Laredo to Texarkana. The sulfur content and Btu value of Texas lignite combined requires that sulfur scrubbers be installed on new power plant units. The utility solid wastes occur in large quantities and leachate from some of these wastes contained detectable amounts of chromium and selenium. However, the concentration of these elements in the leachate was not sufficient to classify any of the utility wastes in this study as hazardous per current RCRA guidelines. In general, fly ash and FGD sludge are classified as Class II wastes and disposed of in an environmentally acceptable manner. Considerable amounts of bottom ash and fly ash are utilized but, thus far, FGD sludge has been landfilled, usually in combination with fly ash.« less

  3. Comparison of waste combustion and waste electrolysis - A systems analysis

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.

    1989-01-01

    A steady state model of a closed environmental system has been developed which includes higher plant growth for food production, and is designed to allow wastes to be combusted or electrolyzed. The stoichiometric equations have been developed to evaluate various trash compositions, food items (both stored and produced), metabolic rates, and crew sizes. The advantages of waste electrolysis versus combustion are: (1) oxygen is not required (which reduces the load on the oxygen producing system); (2) the CO2 and H2 products are produced in pure form (reducing the load on the separators); and (3) nitrogen is converted to nitrate (which is directly usable by plants). Weight tradeoff studies performed using this model have shown that waste electrolysis reduces the life support weight of a 4-person crew by 1000 to 2000 kg.

  4. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.

  5. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    PubMed

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  6. Evaluation of recycling programmes in household waste collection systems.

    PubMed

    Dahlén, Lisa; Lagerkvist, Anders

    2010-07-01

    A case study and a literature review have been carried out to address the two questions: how can waste flow data from collection systems be interpreted and compared? and which factors are decisive in the results of recycling programmes in household waste collection systems? The aim is to contribute to the understanding of how recycling programmes affect the quantity of waste and sorting activities. It is shown how the results from various waste sorting systems can be interpreted and made comparable. A set of waste flow indicators is proposed, which together with generic system descriptions can facilitate comparisons of different collections systems. The evaluation of collection systems depends on the system boundaries and will always be site-specific to some degree. Various factors are relevant, e.g. environmental objectives, technical function, operating costs, types of recyclable materials collected separately, property-close collection or drop-off systems, economic incentives, information strategies, residential structure, social codes, etc. Kerbside collection of recyclables and weight-based billing led to increased waste sorting activities in the case study. Forty-three decisive factors are listed and discussed.

  7. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...

  8. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  9. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  10. Hidden flows and waste processing--an analysis of illustrative futures.

    PubMed

    Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T

    2010-12-14

    An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.

  11. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    PubMed

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  12. Greening Industrial Production through Waste Recovery: "Comprehensive Utilization of Resources" in China.

    PubMed

    Zhu, Junming; Chertow, Marian R

    2016-03-01

    Using nonhazardous wastes as inputs to production creates environmental benefits by avoiding disposal impacts, mitigating manufacturing impacts, and conserving virgin resources. China has incentivized reuse since the 1980s through the "Comprehensive Utilization of Resources (CUR)" policy. To test whether and to what extent environmental benefits are generated, 862 instances in Jiangsu, China are analyzed, representing eight industrial sectors and 25 products that qualified for tax relief through CUR. Benefits are determined by comparing life cycle inventories for the same product from baseline and CUR-certified production, adjusted for any difference in the use phase. More than 50 million tonnes of solid wastes were reused, equivalent to 51% of the provincial industrial total. Benefits included reduction of 161 petajoules of energy, 23 million tonnes of CO2 equivalent, 75 000 tonnes of SO2 equivalent, 33 000 tonnes of NOX, and 28 000 tonnes of PM10 equivalent, which were 2.5%-7.3% of the provincial industrial consumption and emissions. The benefits vary substantially across industries, among products within the same industry, and when comparing alternative reuse processes for the same waste. This first assessment of CUR results shows that CUR has established a firm foundation for a circular economy, but also suggest additional opportunities to refine incentives under CUR to increase environmental gain.

  13. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less

  14. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  15. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    NASA Astrophysics Data System (ADS)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  16. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  17. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    PubMed

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  19. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...-R05-RCRA-2010-0843; SW-FRL-9221-2] Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... hazardous wastes. The Agency has tentatively decided to grant the petition based on an evaluation of waste...

  20. System for Odorless Disposal of Human Waste

    NASA Technical Reports Server (NTRS)

    Jennings, Dave; Lewis, Tod

    1987-01-01

    Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.

  1. Environmental-benefit analysis of two urban waste collection systems.

    PubMed

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All

  2. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    PubMed Central

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  3. Hazardous waste management system design under population and environmental impact considerations.

    PubMed

    Yilmaz, Ozge; Kara, Bahar Y; Yetis, Ulku

    2017-12-01

    This paper presents a multi objective mixed integer location/routing model that aims to minimize transportation cost and risks for large-scale hazardous waste management systems (HWMSs). Risks induced by hazardous wastes (HWs) on both public and the environment are addressed. For this purpose, a new environmental impact definition is proposed that considers the environmentally vulnerable elements including water bodies, agricultural areas, coastal regions and forestlands located within a certain bandwidth around transportation routes. The solution procedure yields to Pareto optimal curve for two conflicting objectives. The conceptual model developed prior to mathematical formulation addresses waste-to-technology compatibility and HW processing residues to assure applicability of the model to real-life HWMSs. The suggested model was used in a case study targeting HWMS in Turkey. Based on the proposed solution, it was possible to identify not only the transportation routes but also a set of information on HW handling facilities including the types, locations, capacities, and investment/operational cost. The HWMS of this study can be utilized both by public authorities and private sector investors for planning purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of PCB Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

    EPA Pesticide Factsheets

    Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl (PCB) Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

  5. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  6. General survey of solid-waste management

    NASA Technical Reports Server (NTRS)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  7. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  8. Municipal Solid Waste Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  9. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  10. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less

  11. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    PubMed

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  12. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  13. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S.

    PubMed

    Mu, Dongyan; Horowitz, Naomi; Casey, Maeve; Jones, Kimmera

    2017-01-01

    A composting system provides many benefits towards achieving sustainability such as, replacing fertilizer use, increasing the quantity of produce sold, and diverting organic wastes from landfills. This study delves into the many benefits a composting system provided by utilizing an established composting system at Kean University (KU) in New Jersey, as a scale project to examine the composters' environmental and economic impacts. The results from the study showed that composting food wastes in an in-vessel composter when compared to typical disposal means by landfilling, had lower impacts in the categories of fossil fuel, GHG emissions, eutrophication, smog formation and respiratory effects; whereas, its had higher impacts in ozone depletion, acidification human health impacts, and ecotoxicity. The environmental impacts were mainly raised from the manufacturing of the composter and the electricity use for operation. Applying compost to the garden can replace fertilizers and also lock carbon and nutrients in soil, which reduced all of the environmental impact categories examined. In particular, the plant growth and use stage reduced up to 80% of respiratory effects in the life cycle of food waste composting. A cost-benefit analysis showed that the composting system could generate a profit of $13,200 a year by selling vegetables grown with compost to the student cafeteria at Kean and to local communities. When educational and environmental benefits were included in the analysis, the revenue increased to $23,550. The results suggest that in-vessel composting and the subsequent usage of a vegetable garden should be utilized by Universities or food markets that generate intensive food wastes across the U.S. Published by Elsevier Ltd.

  14. A Literature Review and Compilation of Nuclear Waste Management System Attributes for Use in Multi-Objective System Evaluations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Samsa, Michael

    The purpose of this work was to compile a comprehensive initial set of potential nuclear waste management system attributes. This initial set of attributes is intended to serve as a starting point for additional consideration by system analysts and planners to facilitate the development of a waste management system multi-objective evaluation framework based on the principles and methodology of multi-attribute utility analysis. The compilation is primarily based on a review of reports issued by the Canadian Nuclear Waste Management Organization (NWMO) and the Blue Ribbon Commission on America's Nuclear Future (BRC), but also an extensive review of the available literaturemore » for similar and past efforts as well. Numerous system attributes found in different sources were combined into a single objectives-oriented hierarchical structure. This study provides a discussion of the data sources and the descriptions of the hierarchical structure. A particular focus of this study was on collecting and compiling inputs from past studies that involved the participation of various external stakeholders. However, while the important role of stakeholder input in a country's waste management decision process is recognized in the referenced sources, there are only a limited number of in-depth studies of the stakeholders' differing perspectives. Compiling a comprehensive hierarchical listing of attributes is a complex task since stakeholders have multiple and often conflicting interests. The BRC worked for two years (January 2010 to January 2012) to "ensure it has heard from as many points of view as possible." The Canadian NWMO study took four years and ample resources, involving national and regional stakeholders' dialogs, internet-based dialogs, information and discussion sessions, open houses, workshops, round tables, public attitude research, website, and topic reports. The current compilation effort benefited from the distillation of these many varied inputs conducted by

  15. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  16. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel.

  17. Does performance evaluation help public managers? A Balanced Scorecard approach in urban waste services.

    PubMed

    Guimarães, Bernardo; Simões, Pedro; Marques, Rui Cunha

    2010-12-01

    The urban waste market has evolved significantly in the past decades, which among other changes, has led to the creation of new utilities and new business models. However, very few things have changed for the users. Urban waste collection remains mainly under the responsibility of local authorities and the charges paid by the users in most countries are very low compared to the provision costs. This situation forces the injection of public money into the system, encouraging the 'quiet-life' within the utilities and, therefore, inefficiency. The present study intends to analyze the potential for the application of the Balanced Scorecard (BSc) methodology into the waste utilities. After a comprehensive revision of the urban waste sector in Portugal, the methodology of BSc and its application in local public services is described and discussed. Focusing on implementation rather than on strategy, a set of performance indicators is proposed to be utilized in the different management models of waste utilities in Portugal: the municipalities, semi-autonomous utilities, municipal companies and mixed companies. This implementation is then exemplified through four case studies, one for each type of utility. This paper provides a flexible framework proposal to be applied to waste utilities operating both in Portugal and abroad. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Waste printed circuit board recycling techniques and product utilization.

    PubMed

    Hadi, Pejman; Xu, Meng; Lin, Carol S K; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly "recycling" has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  20. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system.

    PubMed

    Punkkinen, Henna; Merta, Elina; Teerioja, Nea; Moliis, Katja; Kuvaja, Eveliina

    2012-10-01

    Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO(2) and NO(x). The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Oisik; Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz; Bhattacharyya, Debes

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted bymore » manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.« less

  2. CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System

    NASA Astrophysics Data System (ADS)

    Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi

    We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.

  3. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes

    NASA Astrophysics Data System (ADS)

    Clauwaert, Peter; Muys, Maarten; Alloul, Abbas; De Paepe, Jolien; Luther, Amanda; Sun, Xiaoyan; Ilgrande, Chiara; Christiaens, Marlies E. R.; Hu, Xiaona; Zhang, Dongdong; Lindeboom, Ralph E. F.; Sas, Benedikt; Rabaey, Korneel; Boon, Nico; Ronsse, Frederik; Geelen, Danny; Vlaeminck, Siegfried E.

    2017-05-01

    In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.

  4. Design for waste-management system

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R.

    1973-01-01

    Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.

  5. Expression and characterization of Pantoea CO dehydrogenase to utilize CO-containing industrial waste gas for expanding the versatility of CO dehydrogenase

    NASA Astrophysics Data System (ADS)

    Choi, Eun Sil; Min, Kyoungseon; Kim, Geun-Joong; Kwon, Inchan; Kim, Yong Hwan

    2017-03-01

    Although aerobic CO dehydrogenases (CODHs) might be applicable in various fields, their practical applications have been hampered by low activity and no heterologous expression. We, for the first time, could functionally express recombinant PsCODH in E. coli and obtained a highly concentrated recombinant enzyme using an easy and convenient method. Its electron acceptor spectra, optimum conditions (pH 6.5 and 30 °C), and kinetic parameters (kcat of 12.97 s-1, Km of 0.065 mM, and specific activity of 0.86 Umg-1) were examined. Blast furnace gas (BFG) containing 20% CO, which is a waste gas from the steel-making process, was tested as a substrate for PsCODH. Even with BFG, the recombinant PsCODH retained 88.2% and 108.4% activity compared with those of pure CO and 20% CO, respectively. The results provide not only a promising strategy to utilize CO-containing industrial waste gases as cheap, abundant, and renewable resources but also significant information for further studies about cascade reactions producing value-added chemicals via CO2 as an intermediate produced by a CODH-based CO-utilization system, which would ultimately expand the versatility of CODH.

  6. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    NASA Astrophysics Data System (ADS)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  7. Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting.

    PubMed

    Adi, A J; Noor, Z M

    2009-01-01

    Vermicomposting using Lumbricus rubellus for 49 days was conducted after 21 days of pre-composting. Three different combination of treatments were prepared with eight replicates for each treatment namely cow dung: kitchen waste in 30:70 ratio (T(1)), cow dung: coffee grounds in 30:70 ratio (T(2)), and cow dung: kitchen waste: coffee grounds in 30:35:35 ratio (T(3)). The multiplication of earthworms in terms of numbers and weight were measured at the end of vermicomposting. Consequently, only T(2) showed significant increase (from it initial stage) compared to other treatments. The presence of coffee grounds in T(2) and T(3) showed higher percentage of nutrient elements in vermicompost produced. The data reveal that coffee grounds can be decomposed through vermicomposting and help to enhance the quality of vermicompost produced rather than sole use of kitchen waste in vermicomposting.

  8. Support for designing waste sorting systems: A mini review.

    PubMed

    Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa

    2017-11-01

    This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.

  9. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat

  10. Military wastes-to-energy applications

    NASA Astrophysics Data System (ADS)

    Kawaoka, K. E.

    1980-11-01

    This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.

  11. Utilization of Activated Carbon Prepared from Aceh Coffee Grounds as Bio-sorbent for Treatment of Fertilizer Industrial Waste Water

    NASA Astrophysics Data System (ADS)

    Mariana, M.; Mahidin, M.; Mulana, F.; Aman, F.

    2018-05-01

    The people of Aceh are well known as coffee drinkers. Therefore, a lot of coffee shops have been established in Aceh in the past decade. The growing of coffee shops resulting to large amounts of coffee waste produced in Aceh Province that will become solid waste if not wisely utilized. The high carbon content in coffee underlined as background of this research to be utilized those used coffee grounds as bio-sorbent. The preparation of activated carbon from coffee grounds by using carbonization method that was initially activated with HCl was expected to increase the absorption capacity. The prepared activated carbon with high reactivity was applied to adsorb nitrite, nitrate and ammonia in wastewater outlet of PT. PIM wastewater pond. Morphological structure of coffee waste was analyzed by using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The result showed that the adsorption capacity of iodine was equal to 856.578 mg/g. From the characterization results, it was concluded that the activated carbon from coffee waste complied to the permitted quality standards in accordance with the quality requirements of activated carbon SNI No. 06-3730-1995. Observed from the adsorption efficiency, the bio-sorbent showed a tendency of adsorbing more ammonia than nitrite and nitrate of PT. PIM wastewater with ammonia absorption efficiency of 56%.

  12. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  13. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is tomore » provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria.« less

  14. Active waste-injection systems in Florida, 1976

    USGS Publications Warehouse

    Vecchioli, John; McKenzie, D.J.; Pascale, C.A.; Wilson, W.E.

    1979-01-01

    As of the end of 1976, seven systems were injecting liquid wastes into Florida 's subsurface environment at a combined average rate of 15 million gallons per day. This report presents for each of these systems information on the kind and amount of waste injected and type of pretreatment, construction characteristics of the injection and monitor wells, type of test and monitoring data available, and brief discussion of any operational problems experienced. (Kosco-USGS)

  15. Potential of utilizing asphalt dust waste as filler material in the production of sustainable self compacting concrete (SCC)

    NASA Astrophysics Data System (ADS)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.

  16. Integration of SPS with utility system networks

    NASA Technical Reports Server (NTRS)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  17. Waste in the U.S. Health Care System: A Conceptual Framework

    PubMed Central

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-01-01

    Context Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. Methods This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Findings Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Conclusions Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that—by improving the market for health insurance and health care—will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system. PMID:19120983

  18. Waste in the U.S. Health care system: a conceptual framework.

    PubMed

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-12-01

    Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that-by improving the market for health insurance and health care-will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system.

  19. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  20. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    PubMed

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-11-01

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Measuring household consumption and waste in unmetered, intermittent piped water systems

    NASA Astrophysics Data System (ADS)

    Kumpel, Emily; Woelfle-Erskine, Cleo; Ray, Isha; Nelson, Kara L.

    2017-01-01

    Measurements of household water consumption are extremely difficult in intermittent water supply (IWS) regimes in low- and middle-income countries, where water is delivered for short durations, taps are shared, metering is limited, and household storage infrastructure varies widely. Nonetheless, consumption estimates are necessary for utilities to improve water delivery. We estimated household water use in Hubli-Dharwad, India, with a mixed-methods approach combining (limited) metered data, storage container inventories, and structured observations. We developed a typology of household water access according to infrastructure conditions based on the presence of an overhead storage tank and a shared tap. For households with overhead tanks, container measurements and metered data produced statistically similar consumption volumes; for households without overhead tanks, stored volumes underestimated consumption because of significant water use directly from the tap during delivery periods. Households that shared taps consumed much less water than those that did not. We used our water use calculations to estimate waste at the household level and in the distribution system. Very few households used 135 L/person/d, the Government of India design standard for urban systems. Most wasted little water even when unmetered, however, unaccounted-for water in the neighborhood distribution systems was around 50%. Thus, conservation efforts should target loss reduction in the network rather than at households.

  2. Utilization of immobilized urease for waste water treatment

    NASA Technical Reports Server (NTRS)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  3. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  4. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    NASA Astrophysics Data System (ADS)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  5. Techno-Economic Assessment of Recycling BOF Offgas Cleaning System Solid Wastes by Using Zinc-Free Scrap

    NASA Astrophysics Data System (ADS)

    Ma, Naiyang

    High zinc concentration in basic oxygen furnace (BOF) steelmaking offgas (OG) cleaning system solid wastes is one of the main barriers for recycling of the solid wastes in sintering — blast furnace ironmaking process. One of the possible solutions is to utilize zinc-free scrap in BOF steelmaking so that the BOF OG solid wastes will not be contaminated with zinc and can be recycled through sintering — blast furnace ironmaking. This paper describes a model for helping to decide whether to use zinc-free scrap in a BOF process. A model computing marginal price increment of zinc-free scrap is developed. The marginal price increment is proportional to value change of the BOF OG solid wastes after and before using zinc-free scrap, to ratio of BOF solid waste rate to purchased galvanized scrap rate, and to price of galvanized scrap. Due to the variations of consumption rate of purchased galvanized scrap and home galvanized scrap, iron ore price, landfill cost, and price of purchased galvanized scrap, using zinc-free scrap in a BOF process might be economically feasible for some ironmaking and steelmaking plants or in some particular market circumstances.

  6. Packaging waste prevention activities: A life cycle assessment of the effects on a regional waste management system.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2015-09-01

    A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories. © The Author(s) 2015.

  7. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  8. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  9. Environmental Factor{trademark} system: RCRA hazardous waste handler information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  10. Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.

  11. Comparing Waste-to-Energy technologies by applying energy system analysis.

    PubMed

    Münster, Marie; Lund, Henrik

    2010-07-01

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO(2) reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Swami Nathan

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less

  13. The Effect of the SCAMPER Technique in Raising Awareness Regarding the Collection and Utilization of Solid Waste

    ERIC Educational Resources Information Center

    Çelikler, Dilek; Harman, Gonca

    2015-01-01

    The aim of this study was to determine the effect of the SCAMPER technique in raising awareness among science students regarding the collection and utilization of solid waste. The participants included a total of 65 third-year students. According to the study results, the science students described schools and visual media as their main source of…

  14. Why do multi-attribute utility instruments produce different utilities: the relative importance of the descriptive systems, scale and 'micro-utility' effects.

    PubMed

    Richardson, Jeff; Iezzi, Angelo; Khan, Munir A

    2015-08-01

    Health state utilities measured by the major multi-attribute utility instruments differ. Understanding the reasons for this is important for the choice of instrument and for research designed to reconcile these differences. This paper investigates these reasons by explaining pairwise differences between utilities derived from six multi-attribute utility instruments in terms of (1) their implicit measurement scales; (2) the structure of their descriptive systems; and (3) 'micro-utility effects', scale-adjusted differences attributable to their utility formula. The EQ-5D-5L, SF-6D, HUI 3, 15D and AQoL-8D were administered to 8,019 individuals. Utilities and unweighted values were calculated using each instrument. Scale effects were determined by the linear relationship between utilities, the effect of the descriptive system by comparison of scale-adjusted values and 'micro-utility effects' by the unexplained difference between utilities and values. Overall, 66 % of the differences between utilities was attributable to the descriptive systems, 30.3 % to scale effects and 3.7 % to micro-utility effects. Results imply that the revision of utility algorithms will not reconcile differences between instruments. The dominating importance of the descriptive system highlights the need for researchers to select the instrument most capable of describing the health states relevant for a study. Reconciliation of inconsistent utilities produced by different instruments must focus primarily upon the content of the descriptive system. Utility weights primarily determine the measurement scale. Other differences, attributable to utility formula, are comparatively unimportant.

  15. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  16. Use of theoretical waste inventories in planning and monitoring of hazardous waste management systems.

    PubMed

    Yilmaz, Ozge; Can, Zehra S; Toroz, Ismail; Dogan, Ozgur; Oncel, Salim; Alp, Emre; Dilek, Filiz B; Karanfil, Tanju; Yetis, Ulku

    2014-08-01

    Hazardous waste (HW) generation information is an absolute necessity for ensuring the proper planning, implementation, and monitoring of any waste management system. Unfortunately, environmental agencies in developing countries face difficulties in gathering data directly from the creators of such wastes. It is possible, however, to construct theoretical HW inventories using the waste generation factors (WGFs). The objective of this study was to develop a complete nationwide HW inventory of Turkey that relies on nation-specific WGFs to support management activities of the Turkish Ministry of Environment and Urbanization (MoEU). Inventory studies relied on WGFs from: (a) the literature and (b) field studies and analysis of waste declarations reflecting country-specific industrial practices. Moreover, new tools were introduced to the monitoring infrastructure of MoEU to obtain a comprehensive waste generation data set. Through field studies and a consideration of country specific conditions, it was possible to more thoroughly elucidate HW generation trends in Turkey, a method that was deemed superior to other alternatives. Declaration and literature based WGFs also proved most helpful in supplementing field observations that could not always be conducted. It was determined that these theoretical inventories could become valuable assets in supporting regulating agencies in developing countries for a more thorough implementation of HW management systems. © The Author(s) 2014.

  17. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    NASA Technical Reports Server (NTRS)

    Lunn, Griffin Michael; Spencer, LaShelle E.; Ruby, Anna Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  18. Nuclear waste disposal utilizing a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  19. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  20. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  1. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  2. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  3. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  4. An expert system for municipal solid waste management simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M.C.; Chang, N.B.

    1996-12-31

    Optimization techniques were usually used to model the complicated metropolitan solid waste management system to search for the best dynamic combination of waste recycling, facility siting, and system operation, where sophisticated and well-defined interrelationship are required in the modeling process. But this paper applied the Concurrent Object-Oriented Simulation (COOS), a new simulation software construction method, to bridge the gap between the physical system and its computer representation. The case study of Kaohsiung solid waste management system in Taiwan is prepared for the illustration of the analytical methodology of COOS and its implementation in the creation of an expert system.

  5. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    PubMed

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. © The Author(s) 2016.

  6. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  7. An improved waste collection system for space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry

    1986-01-01

    Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.

  8. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  9. Functional specifications for a radioactive waste decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.

    1989-09-01

    It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less

  10. Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS)

    NASA Astrophysics Data System (ADS)

    Zainun, Noor Yasmin; Rahman, Ismail Abdul; Azwana Rothman, Rosfazreen

    2016-11-01

    Illegal dumping of solid waste not only affecting the environment but also social life of communities, hence authorities should have an effective system to cater this problem. Malaysia is experiencing extensive physical developments and this has led to an increase of construction waste illegal dumping. However, due to the lack of proper data collection, the actual figure for construction waste illegal dumping in Malaysia are not available. This paper presents a mapping of construction waste illegal dumping in Kluang district, Johor using Geographic Information System (GIS) software. Information of the dumped waste such as coordinate, photos, types of material and quantity of waste were gathered manually through site observation for three months period. For quantifying the dumped waste, two methods were used which are the first method is based on shape of the waste (pyramids or squares) while the second method is based weighing approach. All information regarding the waste was assigned to the GIS for the mapping process. Results indicated a total of 12 types of construction waste which are concrete, tiles, wood, gypsum board, mixed construction waste, brick and concrete, bricks, sand, iron, glass, pavement and tiles, and concrete at 64 points locations of illegal dumping on construction waste in Kluang. These wastes were accounted to an estimated volume of 427.2636 m3. Hopefully, this established map will assist Kluang authority to improve their solid waste management system in Kluang.

  11. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawfik, Hazem

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as wellmore » as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.« less

  12. A BIM-based system for demolition and renovation waste estimation and planning.

    PubMed

    Cheng, Jack C P; Ma, Lauren Y H

    2013-06-01

    Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry

  13. Feasibility study of solar energy utilization in modular integrated utility systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility and benefits were evaluated of solar thermal energy systems on Integrated Utility Systems. The effort included the identification of potential system concepts, evaluation of hardware status, and performance of weighted system evaluations to select promising system concepts deserving of further study.

  14. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less

  15. Utilization of Palm Oil Clinker as Cement Replacement Material

    PubMed Central

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-01-01

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748

  16. Utilization of Palm Oil Clinker as Cement Replacement Material.

    PubMed

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-12-16

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  17. The influence of institutions and organizations on urban waste collection systems: an analysis of waste collection system in Accra, Ghana (1985-2000).

    PubMed

    Fobil, Julius N; Armah, Nathaniel A; Hogarh, Jonathan N; Carboo, Derick

    2008-01-01

    Urban waste collection system is a pivotal component of all waste management schemes around the world. Therefore, the efficient performance and the success of these schemes in urban pollution control rest on the ability of the collection systems to fully adapt to the prevailing cultural and social contexts within which they operate. Conceptually, institutions being the rules guiding the conduct of public service provision and routine social interactions, waste collection systems embedded in institutions can only realize their potentials if they fully evolve continuously to reflect evolving social and technical matrices underlying the cultures, organizations, institutions and social conditions they are designed to address. This paper is a product of an analysis of waste collection performance in Ghana under two different institutional and/or organizational regimes; from an initial entirely public sector dependence to a current mix of public-private sector participation drawing on actual planning data from 1985 to 2000. The analysis found that the overall performance of waste collection services in Ghana increased under the coupled system, with efficiency (in terms of total waste clearance and coverage of service provision) increasing rapidly with increased private-sector controls and levels of involvement, e.g. for solid waste, collection rate and disposal improved from 51% in 1998 to about 91% in the year 2000. However, such an increase in performance could not be sustained beyond 10 years of public-private partnerships. This analysis argues that the sustainability of improved waste collection efficiency is a function of the franchise and lease arrangements between private sector group on the one hand and public sector group (local authorities) on the other hand. The analysis therefore concludes that if such franchise and lease arrangements are not conceived out of an initial transparent process, such a provision could undermine the overall sustainability of

  18. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    EPA Pesticide Factsheets

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  19. Operating room waste: disposable supply utilization in neurointerventional procedures.

    PubMed

    Rigante, Luigi; Moudrous, Walid; de Vries, Joost; Grotenhuis, André J; Boogaarts, Hieronymus D

    2017-12-01

    Operating rooms account for 70% of hospital waste, increasing healthcare costs and creating environmental hazards. Endovascular treatment of cerebrovascular pathologies has become prominent, and associated products highly impact the total cost of care. We investigated the costs of endovascular surgical waste at our institution. Data from 53 consecutive endovascular procedures at the Radboud UMC Nijmegen from May to December 2016 were collected. "Unused disposable supply" was defined as one-time use items opened but not used during the procedure. Two observers cataloged the unused disposable supply for each case. The cost of each item was determined from the center supply catalog, and these costs were summed to determine the total cost of unused supply per case. Thirteen diagnostic cerebral digital subtraction angiographies (DSA) (24.5%) and 40 endovascular procedures (75.5%) were analyzed. Total interventional waste was 27,299.53 € (mean 515.09 € per procedure). While total costs of unused disposable supply were almost irrelevant for DSAs, they were consistent for interventional procedures (mean 676.49 € per case). Aneurysm standard coiling had the highest impact on total interventional waste (mean 1061.55 €). Disposable interventional products had a very high impact on the surgical waste costs in the series of the neurointerventional procedures (95% of total waste). This study shows the impact of neurointerventional waste on the total care costs for cerebrovascular patients. This might reflect the tendency to anticipate needs and emergencies in neurointervention. Responsible use of disposable material can be achieved by educating operators and nurses and creating operator preference cards.

  20. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  1. A prototype knowledge-based decision support system for industrial waste management. Part 1: The decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, C.A.; Baetz, B.W.

    1998-12-31

    Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less

  2. An innovative national health care waste management system in Kyrgyzstan.

    PubMed

    Toktobaev, Nurjan; Emmanuel, Jorge; Djumalieva, Gulmira; Kravtsov, Alexei; Schüth, Tobias

    2015-02-01

    A novel low-cost health care waste management system was implemented in all rural hospitals in Kyrgyzstan. The components of the Kyrgyz model include mechanical needle removers, segregation using autoclavable containers, safe transport and storage, autoclave treatment, documentation, recycling of sterilized plastic and metal parts, cement pits for anatomical waste, composting of garden wastes, training, equipment maintenance, and management by safety and quality committees. The gravity-displacement autoclaves were fitted with filters to remove pathogens from the air exhaust. Operating parameters for the autoclaves were determined by thermal and biological tests. A hospital survey showed an average 33% annual cost savings compared to previous costs for waste management. All general hospitals with >25 beds except in the capital Bishkek use the new system, corresponding to 67.3% of all hospital beds. The investment amounted to US$0.61 per capita covered. Acceptance of the new system by the staff, cost savings, revenues from recycled materials, documented improvements in occupational safety, capacity building, and institutionalization enhance the sustainability of the Kyrgyz health care waste management system. © The Author(s) 2015.

  3. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    PubMed

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets. Copyright © 2015. Published by Elsevier Ltd.

  4. Tank-connected food waste disposer systems--current status and potential improvements.

    PubMed

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Design and Economic Analysis of a Heating/Absorption Cooling System Operating with Municipal Solid Waste Digester: A Case Study of Gazi University

    NASA Astrophysics Data System (ADS)

    Coşar, Gökhan; Pooyanfar, Mirparham; Amirabedin, Ehsan; Topal, Hüseyin

    2013-12-01

    Recovering energy from municipal solid waste (MSW) is one of the most important issues of energy management in developed countries. This raises even more interest as world fossil fuel reserves diminish and fuel prices rise. Being one of main processes of waste disposal, anaerobic digestion can be used as a means to reduce fossil fuel and electricity consumption as well as reducing emissions. With growing demand for cooling in Turkey, especially during warm seasons and considering the energy costs, utilizing heat-driven absorption cooling systems coupled with an anaerobic digester for local cooling purposes is a potentially interesting alternative for electricity driven compression cooling. The aim of this article is to study the viability of utilizing biogas obtained from MSW anaerobic digestion as the main fuel for heating facilities of Gazi University, Turkey and also the energy source for an absorption cooling system designed for the central library of the aforementioned campus. The results prove that the suggested system is sustainably and financially appealing and has the potential to replace the conventional electricity driven cooling systems with a reasonable net present worth; moreover, it can notably reduce carbon dioxide emissions.

  6. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  7. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  8. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  9. Integrated technologies for solid waste bin monitoring system.

    PubMed

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  10. Development of a waste collection system for the space shuttle.

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Swider, J. E., Jr.

    1972-01-01

    The development of a waste collection system to accommodate both male and female crew members for the space shuttle is discussed. The waste collection system, with emphasis on the collection and transfer of urine, is described. Human-interface requirements, zero-gravity influences and effects, and operational considerations required for total system design are discussed.

  11. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  12. Waste in health information systems: a systematic review.

    PubMed

    Awang Kalong, Nadia; Yusof, Maryati

    2017-05-08

    Purpose The purpose of this paper is to discuss a systematic review on waste identification related to health information systems (HIS) in Lean transformation. Design/methodology/approach A systematic review was conducted on 19 studies to evaluate Lean transformation and tools used to remove waste related to HIS in clinical settings. Findings Ten waste categories were identified, along with their relationships and applications of Lean tool types related to HIS. Different Lean tools were used at the early and final stages of Lean transformation; the tool selection depended on the waste characteristic. Nine studies reported a positive impact from Lean transformation in improving daily work processes. The selection of Lean tools should be made based on the timing, purpose and characteristics of waste to be removed. Research limitations/implications Overview of waste and its category within HIS and its analysis from socio-technical perspectives enabled the identification of its root cause in a holistic and rigorous manner. Practical implications Understanding waste types, their root cause and review of Lean tools could subsequently lead to the identification of mitigation approach to prevent future error occurrence. Originality/value Specific waste models for HIS settings are yet to be developed. Hence, the identification of the waste categories could guide future implementation of Lean transformations in HIS settings.

  13. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  14. Plasma ARC/SCWO Sysems for Waste-to-Energy Applications Utilizing Milwaste Fuels

    DTIC Science & Technology

    2013-07-01

    configuration and physics 4. Gasification and pollution abatement systems 5. Slag chemistry, refractory design, and glass and metal pouring 6. Energy...Manganese (g/L) 0.07 Nickel (g/L) 0.05 Zinc (g/L) 0.49 GA successfully processed the simulated waste for 6 hours at steady state flow

  15. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    PubMed

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-08-01

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Review: Utilization of Waste From Coffee Production

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Sirotiak, Maroš; Bartošová, Alica; Soldán, Maroš

    2017-06-01

    Coffee is one of the most valuable primary products in the world trade, and also a central and popular part of our culture. However, coffees production generate a lot of coffee wastes and by-products, which, on the one hand, could be used for more applications (sorbent for the removal of heavy metals and dyes from aqueous solutions, production of fuel pellets or briquettes, substrate for biogas, bioethanol or biodiesel production, composting material, production of reusable cups, substrat for mushroom production, source of natural phenolic antioxidants etc.), but, on the other hand, it could be a source of severe contamination posing a serious environmental problem. In this paper, we present an overview of utilising the waste from coffee production.

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  18. Facilitating the improved management of waste in South Africa through a national waste information system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Linda

    2008-07-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such asmore » South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.« less

  19. Waste Management System overview for future spacecraft.

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1973-01-01

    Waste Management Systems (WMS) for post Apollo spacecraft will be significantly more sophisticated and earthlike in user procedures. Some of the features of the advanced WMS will be accommodation of both males and females, automatic operation, either tissue wipe or anal wash, measurement and sampling of urine, feces and vomitus for medical analysis, water recovery, and solids disposal. This paper presents an overview of the major problems of and approaches to waste management for future spacecraft. Some of the processes discussed are liquid/gas separation, the Dry-John, the Hydro-John, automated sampling, vapor compression distillation, vacuum distillation-catalytic oxidation, incineration, and the integration of the above into complete systems.

  20. Flight test of an improved solid waste collection system

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Brasseaux, H.; Whitmore, H.

    1991-01-01

    A system for human waste collection is described and evaluated on the basis of a prototype employed for the shuttle flight STS-35. The manually operated version of the unit is designed to collect, compact, and store human waste and cleaning material in replaceable volumes. The system is presented with illustrations and descriptions of the disposable pads that are used to clean the cylinder and occlusive air valves as well as seal the unit. Temporary retention and waste entrainment are provided by the variable airflow in the manual unit tested. The prototype testing indicates that sufficient airflow is achieved at 45 CFM and that the stowage volume (18.7 cu in.) is adequate for storing human waste with minimal logistical support. Higher compaction pressure and the use of a directed airstream are proposed for improving the packing efficiency of the unit.

  1. Life cycle assessment of a packaging waste recycling system in Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. Themore » operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.« less

  2. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  3. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    PubMed

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  4. Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sueiae, S.; Fabjan, M.; Hrastar, U.

    2008-07-01

    The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment ofmore » institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a

  5. Consolidation and Centralization of Waste Operations Business Systems - 12319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, D. Dean

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidationmore » into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate - unless however

  6. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    PubMed

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.

  7. Analysis of life cycle assessment of food/energy/waste systems and development and analysis of microalgae cultivation/wastewater treatment inclusive system

    NASA Astrophysics Data System (ADS)

    Armstrong, Kristina Ochsner

    Across the world, crises in food, energy, land and water resources, as well as waste and greenhouse gas accumulation are inspiring research into the interactions among these environmental pressures. In the food/energy/waste problem set, most of the research is focused on describing the antagonistic relationships between food, energy and waste; these relationships are often analyzed with life cycle assessment (LCA). These analyses often include reporting of metrics of environmental performance with few functional units, often focusing on energy use, productivity and environmental impact while neglecting water use, food nutrition and safety. Additionally, they are often attributional studies with small scope which report location-specific parameters only. This thesis puts forth a series of recommendations to amend the current practice of LCA to combat these limitations and then utilizes these suggestions to analyze a synergistic food/waste/energy system. As an example analysis, this thesis describes the effect of combining wastewater treatment and microalgae cultivation on the productivity and scalability of the synergistic system. To ameliorate the high nutrient and water demands of microalgae cultivation, many studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low environmental costs. While cultivation studies have found this to be true, none explore the viability of the substitution in terms of productivity and scale-up. The results of this study suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt water microalgae cultivation. This study shows that the integration could result in reduced lipid content, high wastewater requirements, no greenhouse gas emissions benefit and only a small energy benefit.

  8. Utilization of waste glycerin to fuelling of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Stelmasiak, Z.; Pietras, D.

    2016-09-01

    The paper discusses a possibilities of usage a simple alcohols to fuelling of spark ignition engines. Methanol and blends of methanol with glycerin, being a waste product from production of bio-components to fuels based on rapeseed oil, have been used in course of the investigations. The main objective of the research was to determine possibilities of utilization of glycerin to blending of engine fuels. The investigations have been performed using the Fiat 1100 MPI engine. Parameters obtained with the engine powered by pure methanol and by methanol- glycerin mixtures with 10÷30%vol content of glycerin were compared to parameters of the engine fuelled conventionally with the E95 gasoline. The investigations have shown increase of overall efficiency of the engine run on pure methanol with 2.5÷5.0%, and run on the mixture having 10% addition of glycerin with 2.0÷7.8%. Simultaneously, fuelling of the engine with the investigated alcohols results in reduced concentration of toxic components in exhaust gases like: CO, THC and NOx, as well as the greenhouse gas CO2.

  9. A roadmap for development of sustainable E-waste management system in India.

    PubMed

    Wath, Sushant B; Vaidya, Atul N; Dutt, P S; Chakrabarti, Tapan

    2010-12-01

    The problem of E-waste has forced Environmental agencies of many countries to innovate, develop and adopt environmentally sound options and strategies for E-waste management, with a view to mitigate and control the ever growing threat of E-waste to the environment and human health. E-waste management is given the top priority in many developed countries, but in rapid developing countries like India, it is difficult to completely adopt or replicate the E-waste management system in developed countries due to many country specific issues viz. socio-economic conditions, lack of infrastructure, absence of appropriate legislations for E-waste, approach and commitments of the concerned, etc. This paper presents a review and assessment of the E-waste management system of developed as well as developing countries with a special emphasis on Switzerland, which is the first country in the world to have established and implemented a formal E-waste management system and has recycled 11kg/capita of WEEE against the target of 4kg/capita set by EU. And based on the discussions of various approaches, laws, legislations, practices of different countries, a road map for the development of sustainable and effective E-waste management system in India for ensuring environment, as well as, occupational safety and health, is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. A multi-echelon supply chain model for municipal solid waste management system.

    PubMed

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A multi-echelon supply chain model for municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less

  12. An effective utilization of the slag from acid leaching of coal-waste: preparation of water glass with a low-temperature co-melting reaction.

    PubMed

    Fang, Li; Duan, Xiaofang; Chen, Rongming; Cheng, Fangqin

    2014-08-01

    This paper presents an effective utilization of slag from acid leaching of coal-waste with a novel approach, namely low-temperature co-melting method, for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock. It is very interesting that the co-melting reaction temperature of the mixture of Na2CO3 and the feedstock (50-100 microm) was as low as 850 degrees C, which was significantly lower than the temperature used in traditional sodium silicate production (1400 degrees C). The optimum SiO2/Na2O ratio was identified as 7:3 according to the results of thermogravimetry-differential scanning calorimetry (TGA-DSC), ICP-AES, and X-ray diffraction (XRD) analyses. In this condition, the main product was sodium disilicate (Na2O x 2SiO2), with water solubility of 85.0%. More importantly, the impurities such as aluminum in the feedstock, which had adverse effect on subsequent treatment, were concentrated almost completely in the filter residue as insoluble sodium alumunosilicates, i.e., Na(Si2Al)O6 x H2O. The lower co-melting temperature of this process demonstrates a significant energy-saving opportunity and thus a promising approach for highly effective utilization of coal-waste. Implications: Recently, alumina extraction from coal-waste has been extensively investigated and industrial applied in China. However, the slag-containing silica generated from the acid leaching process of coal-waste led to a secondary pollution, which hindered large-scale production. The proposed low-temperature co-melting method for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock indicated that it is an efficient approach for the recovery of silica from the acid-leached slag of coal-waste with minimal environmental impact.

  13. Beyond Widgets -- Systems Incentive Programs for Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Mathew, Paul; Robinson, Alastair

    Utility incentive programs remain one of the most significant means of deploying commercialized, but underutilized building technologies to scale. However, these programs have been largely limited to component-based products (e.g., lamps, RTUs). While some utilities do provide ‘custom’ incentive programs with whole building and system level technical assistance, these programs require deeper levels of analysis, resulting in higher program costs. This results in custom programs being restricted to utilities with greater resources, and are typically applied mainly to large or energy-intensive facilities, leaving much of the market without cost effective access and incentives for these solutions. In addition, with increasinglymore » stringent energy codes, cost effective component-based solutions that achieve significant savings are dwindling. Building systems (e.g., integrated façade, HVAC and/or lighting solutions) can deliver higher savings that translate into large sector-wide savings if deployed at the scale of these programs. However, systems application poses a number of challenges – baseline energy use must be defined and measured; the metrics for energy and performance must be defined and tested against; in addition, system savings must be validated under well understood conditions. This paper presents a sample of findings of a project to develop validated utility incentive program packages for three specific integrated building systems, in collaboration with Xcel Energy (CO, MN), ComEd, and a consortium of California Public Owned Utilities (CA POUs) (Northern California Power Agency(NCPA) and the Southern California Public Power Authority(SCPPA)). Furthermore, these program packages consist of system specifications, system performance, M&V protocols, streamlined assessment methods, market assessment and implementation guidance.« less

  14. Waste Management Using Request-Based Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Katriou, Stamatia Ann; Fragidis, Garyfallos; Ignatiadis, Ioannis; Tolias, Evangelos; Koumpis, Adamantios

    Waste management is on top of the political agenda globally as a high priority environmental issue, with billions spent on it each year. This paper proposes an approach for the disposal, transportation, recycling and reuse of waste. This approach incorporates the notion of Request Based Virtual Organizations (RBVOs) using a Service Oriented Architecture (SOA) and an ontology that serves the definition of waste management requirements. The populated ontology is utilized by a Multi-Agent System which performs negotiations and forms RBVOs. The proposed approach could be used by governments and companies searching for a means to perform such activities in an effective and efficient manner.

  15. Animal biocalorimeter and waste management system

    NASA Technical Reports Server (NTRS)

    Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)

    1995-01-01

    A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.

  16. High-Level Waste System Process Interface Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d'Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  17. Low Cost Dewatering of Waste Slurries

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Sharma, S. K.; Church, R. H.; Scheiner, B. J.

    1993-01-01

    The U.S. Bureau of Mines has developed a technique for dewatering mineral waste slurries which utilizes polymer and a static screen. A variety of waste slurries from placer gold mines and crushed stone operations have been successfully treated using the system. Depending on the waste, a number of polymers have been used successfully with polymer costs ranging from $0.05 to $0.15 per 1,000 gal treated. The dewatering is accomplished using screens made from either ordinary window screen or wedge wire. The screens used are 8 ft wide and 8 ft long. The capacity of the screens varies from 3 to 7 gpm/sq. ft. The water produced is acceptable for recycling to the plant or for discharge to the environment. For example, a fine grain dolomite waste slurry produced from a crushed stone operation was dewatered from a nominal 2.5 pct solids to greater than 50 pct solids using $0.10 to $0.15 worth of polymer per 1,000 gal of slurry. The resulting waste water had a turbidity of less than 50 NTU and could be discharged or recycled. The paper describes field tests conducted using the polymer-screen dewatering system.

  18. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    PubMed

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.

  19. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  20. Distributed photovoltaic systems - Addressing the utility interface issues

    NASA Astrophysics Data System (ADS)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  1. Potential utilization of guar gum industrial waste in vermicompost production.

    PubMed

    Suthar, Surendra

    2006-12-01

    Recycling of guar gum industrial waste through vermitechnology was studied under laboratory conditions by using composting earthworm Perionyx excavatus (Perrier). Three different combination of guar gum industrial waste namely guar gum industrial waste:cow dung:saw dust in 40:30:30 ratio (T1), guar gum industrial waste:cow dung:saw dust in 60:20:20 ratio (T2), and guar gum industrial waste:cow dung:saw dust in 75:15:10 ratio (T3) were used for vermicomposting experiments. Chemical changes during vermicomposting were measured and comparatively T2 showed great increase (from its initial level) for total N (25.4%), phosphorus (72.8%) and potassium (20.9%) than the other treatments. T2 also showed higher vermicomposting coefficient (VC), higher mean biomass for P. excavatus (146.68 mg) and higher cocoon production (about 21.9% and 645.5% more than the T1 and T3, respectively). Maximum earthworm mortality during vermicomposting was recorded with T3 treatment while zero mortality was recorded for T2 treatment after 150 days. Overall, T2 treatment appeared to be an ideal combination for enhancing maximum biopotential of earthworms to management guar gum industrial waste as well as for earthworm biomass and cocoon production.

  2. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  3. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  4. Understanding waste for lean health information systems: a preliminary review.

    PubMed

    Kalong, Nadia Awang; Yusof, Maryati Mohd

    2013-01-01

    Despite the rapid application of the Lean method in healthcare, its study in IT environments, particularly in Health Information Systems (HIS), is still limited primarily by a lack of waste identification. This paper aims to review the literature to provide an insight into the nature of waste in HIS from the perspective of Lean management. Eight waste frameworks within the context of healthcare and information technology were reviewed. Based on the review, it was found that all the seven waste categories from the manufacturing sector also exist in both the healthcare and IT domains. However, the nature of the waste varied depending on the processes of the domains. A number of additional waste categories were also identified. The findings reveal that the traditional waste model can be adapted to identify waste in both the healthcare and IT sectors.

  5. National information network and database system of hazardous waste management in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less

  6. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  7. Learn about the Hazardous Waste Electronic Manifest System (e-Manifest)

    EPA Pesticide Factsheets

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  8. Material Utilization of Organic Residues.

    PubMed

    Peinemann, Jan Christoph; Pleissner, Daniel

    2018-02-01

    Each year, 1.3 billion tons of food waste is generated globally. This waste traces back to industrial and agricultural producers, bakeries, restaurants, and households. Furthermore, lignocellulosic materials, including grass clippings, leaves, bushes, shrubs, and woods, appear in large amounts. Depending on the region, organic waste is either composted, burned directly, or converted into biogas. All of the options set aside the fact that organic residues are valuable resources containing carbohydrates, lipids, proteins, and phosphorus. Firstly, it is clear that avoidance of organic residues is imperative. However, the residues that accumulate nonetheless should be utilized by material means before energy production is targeted. This review presents different processes for the microbial utilization of organic residues towards compounds that are of great importance for the bioeconomy. The focus thereby is on the challenges coming along with downstream processing when the utilization of organic residues is carried out decentralized. Furthermore, a future process for producing lactic acid from organic residues is sketched.

  9. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  10. Utilization of on-site resources for regenerative life support systems at Lunar and Martian outposts

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.; Henninger, Donald L.

    1993-01-01

    Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transportng supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions. Natural materials on the Moon and/or Mars may be used for a variety of RLSS needs including (1) soils or solid-support substrate for plant growth, (2) sources for extraction of essential plant-growth nutrients, (3) sources of O2, H2, CO2, and water, (4) substrates for microbial populations in the degradation of wastes, and (5) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. In addition to the regolith, the martian atmosphere will provide additional resources at a Mars outpost, including water, CO2 and other atmospheric gases.

  11. Electrochemical incineration of wastes

    NASA Technical Reports Server (NTRS)

    Kaba, L.; Hitchens, G. D.; Bockris, J. OM.

    1989-01-01

    The disposal of domestic organic waste in its raw state is a matter of increasing public concern. Earlier, it was regarded as permissible to reject wastes into the apparently infinite sink of the sea but, during the last 20 years, it has become clear that this is environmentally unacceptable. On the other hand, sewage farms and drainage systems for cities and for new housing developments are cumbersome and expensive to build and operate. New technology whereby waste is converted to acceptable chemicals and pollution-free gases at site is desirable. The problems posed by wastes are particularly demanding in space vehicles where it is desirable to utilize treatments that will convert wastes into chemicals that can be recycled. In this situation, the combustion of waste is undesirable due to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. Here, in particular, electrochemical techniques offer several advantages including the low temperatures which may be used and the absence of any NO and CO in the evolved gases. Work done in this area was restricted to technological papers, and the present report is an attempt to give a more fundamental basis to the early stages of a potentially valuable technology.

  12. Tank waste remediation system configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less

  13. An evaluation of some special techniques for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  14. Nothing Goes to Waste in Arcata's Teeming Marshes.

    ERIC Educational Resources Information Center

    Stewart, Doug

    1990-01-01

    Describes a waste water management system in Arcata, California, that utilizes a series of human-made marshes to filter and clean the city's sewage water. Discusses the development of this project, adaptations of the idea for other cities, key constraints, and related projects. (MCO)

  15. FFTF disposable solid waste cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less

  16. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    NASA Astrophysics Data System (ADS)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  17. Healthcare Utilization Monitoring System in Korea

    PubMed Central

    Shin, Hyun Chul; Lee, Youn Tae; Jo, Emmanuel C.

    2015-01-01

    Objectives It is important to monitor the healthcare utilization of patients at the national level to make evidence-based policy decisions and manage the nation's healthcare sector. The Health Insurance Review & Assessment Service (HIRA) has run a Healthcare Utilization Monitoring System (HUMS) since 2008. The objective of this paper is to introduce HIRA's HUMS. Methods This study described the HUMS's system structure, capacity, functionalities, and output formats run by HIRA in the Republic of Korea. Regarding output formats, this study extracted diabetes related health insurance claims through the HUMS from August 1, 2014 to May 31, 2015. Results The HUMS has kept records of health insurance claim data for 4 years. It has a 14-terabyte hardware capacity and employs several easy-to-use programs for maintenance of the system, such as MSTR, SAS, etc. Regarding functionalities, users should input diseases codes, target periods, facility types, and types of attributes, such as the number of healthcare utilizations or healthcare costs. It also has a functionality to predict healthcare utilization and costs. When this study extracted diabetes related data, it was found that the trend of healthcare costs for the treatment of diabetes and the number of patients with diabetes were increasing. Conclusions HIRA's HUMS works well to monitor healthcare utilization of patients at the national level. The HUMS has a high-capacity hardware infrastructure and several operational programs that allows easy access to summaries as well as details to identify contributing factors for abnormality, but it has a limitation in that there is often a time lag between the provision of healthcare to patients and the filing of health claims. PMID:26279955

  18. Municipal solid waste system analysis through energy consumption and return approach.

    PubMed

    Tomić, Tihomir; Schneider, Daniel Rolph

    2017-12-01

    Inappropriate waste management and poor resource efficiency are two of the biggest problems which European Union is trying to solve through Landfill Directive, Waste Framework Directive and Circular Economy Package by increasing recycling and reuse and reducing waste disposal. In order to meet set goals, new European Union member states must quickly change national legislature and implement appropriate solutions. In the circumstances of strong EU resource and energy dependence, decision makers need to analyse which of the considered waste management systems leads to higher overall benefits ie. which is more sustainable. The main problem in this kind of analysis is a wide range of possible technologies and the difference in inputs and outputs. Sustainability of these systems is analysed through single-score LCA based assessment, using primary energy used to produce materials and energy vectors as a common measure. To ensure reliable results, interoperability between different data sources and material flows of waste and its components are monitored. Tracking external and internal material, and energy flows enable modelling of mutual interactions between different facilities. Resulting PERI, primary energy return based index, is used for comparison of different waste management scenarios. Results show that time and legislation dependent changes have great influence on decision making related to waste management and interconnected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    NASA Technical Reports Server (NTRS)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  20. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks

  1. Efficient use of shrimp waste: present and future trends.

    PubMed

    Kandra, Prameela; Challa, Murali Mohan; Jyothi, Hemalatha Kalangi Padma

    2012-01-01

    The production of shrimp waste from shrimp processing industries has undergone a dramatic increase in recent years. Continued production of this biomaterial without corresponding development of utilizing technology has resulted in waste collection, disposal, and pollution problems. Currently used chemical process releases toxic chemicals such as HCl, acetic acid, and NaOH into aquatic ecosystem as byproducts which will spoil the aquatic flora and fauna. Environmental protection regulations have become stricter. Now, there is a need to treat and utilize the waste in most efficient manner. The shrimp waste contains several bioactive compounds such as chitin, pigments, amino acids, and fatty acids. These bioactive compounds have a wide range of applications including medical, therapies, cosmetics, paper, pulp and textile industries, biotechnology, and food applications. This current review article present the utilization of shrimp waste as well as an alternative technology to replace hazardous chemical method that address the future trends in total utilization of shrimp waste for recovery of bioactive compounds.

  2. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less

  3. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... on- site in the pickle acid and low level radioactive wastewater treatment systems. Support... water production waste treatment system. Once- through non-contact cooling water does not require... production (deionized and make- up non-contact cooling water) treatment system and once through non- contact...

  4. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    PubMed

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  5. Tank waste remediation system systems engineering management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves.more » The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.« less

  6. Economic and environmental optimization of a multi-site utility network for an industrial complex.

    PubMed

    Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon

    2010-01-01

    Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.

  7. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  8. ANIMAL WASTE COMPOSTING WITH CARBONACEOUS MATERIAL

    EPA Science Inventory

    High rate thermophilic composting of animal wastes with added carbonaceous waste materials followed by land application has considerable potential as a means of treatment and useful final disposal of these wastes. The process described in this report utilizes a mechanically mixed...

  9. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2003-01-01

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance. Published by Elsevier Science Ltd on behalf of COSPAR.

  10. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index.

    PubMed

    Wheeler, Raymond M

    2003-01-01

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance. Published by Elsevier Science Ltd on behalf of COSPAR.

  11. Carbon balance in bioregenerative life support systems: Some effects of system closure, waste management, and crop harvest index

    NASA Astrophysics Data System (ADS)

    Wheeler, Raymond M.

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.

  12. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    PubMed

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  13. Solid waste information and tracking system server conversion project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  14. Waste Utilization and Biodiesel Production by the Green Microalga Scenedesmus obliquus▿

    PubMed Central

    Mandal, Shovon; Mallick, Nirupama

    2011-01-01

    Scenedesmus obliquus was cultivated in three types of waste discharges to couple waste treatment with biodiesel production. The lipid pool accumulation was boosted to 1.0 g liter−1 against 0.1 g liter−1 for the control. The waste-grown S. obliquus showed an increase in the content of the saturated fatty acid pool, which is desirable for good-quality biodiesel. PMID:21057012

  15. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  16. Sustainable solutions for solid waste management in Southeast Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less

  17. Use of a Knowledge Management System in Waste Management Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.

    2006-07-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspectmore » will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)« less

  18. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  19. Human Factor Investigation of Waste Processing System During the HI-SEAS 4 Month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Hintze, Paul; Miles, John D.

    2014-01-01

    NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  20. Human Factor Investigation of Waste Processing System During the HI-SEAS 4-month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Hintze, Paul E.; Miles, John D.

    2014-01-01

    NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  1. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  2. Utilization of waste cooking oil as an alternative fuel for Turkey.

    PubMed

    Arslan, Ridvan; Ulusoy, Yahya

    2017-04-03

    This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.

  3. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  4. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less

  5. Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.

    2012-01-01

    Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.

  6. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  7. Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.

    PubMed

    Allesch, Astrid; Brunner, Paul H

    2017-01-03

    This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.

  8. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    PubMed

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Birmele, Michele; Morford, Megan; Khodadad, Christina; Spencer, Lashelle; Richards, Jeffrey; Strayer, Richard; Caro, Janicce; Hummerick, Mary; Wheeler, Ray

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms.

  10. Modeling of Solid Waste Processing Options in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Rodriguez, Luis F.; Finn, Cory; Kang, Sukwon; Hogan, John; Luna, Bernadette (Technical Monitor)

    2000-01-01

    BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support

  11. Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohutskyi, Pavlo; Kucek, Leo A.; Hill, Eric

    Metabolic flexibility and robustness of phototroph- heterotroph co-cultures provide a flexible binary engineering platform for a variety of biotechnological and environmental applications. Here, we metabolically coupled a heterotrophic bacterium Bacillus subtilis with astaxanthin producing alga Haematococcus pluvialis and successfully applied this binary co-culture for conversion of the starch-rich waste stream into valuable astaxanthin-rich biomass. Importantly, the implemented system required less mass transfer of CO2 and O2 due to in-situ exchange between heterotroph and phototroph, which can contribute to reduction in energy consumption for wastewater treatment. In addition, the maximum reduction in chemical oxygen demand, total nitrogen and phosphorus reached 65%,more » 55% and 30%, respectively. The preliminary economic analysis indicated that realization of produced biomass with 0.8% astaxanthin content may generate annual revenues of $3.2M (baseline scenario) from treatment of wastewater (1,090 m3/day) from a potato processing plant. Moreover, the revenues may be increased up to $18.2M for optimized scenario with astaxanthin content in algae of 2%. This work demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into targeted value-added products through metabolic connection of heterotrophic and phototrophic organisms. Utilization of heterotrophic-algal binary cultures opens new perspectives for designing highly-efficient production processes for feedstock biomass production as well as allows utilization of variety of organic agricultural, chemical, or municipal wastes.« less

  12. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  13. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  14. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    PubMed

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Wet oxidation as a waste treatment in closed systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  16. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastesmore » for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four

  17. Modeling of urban solid waste management system: The case of Dhaka city

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, M.A.; Bala, B.K.

    2007-07-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less

  18. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  20. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  1. Chapter 9.5: Electromagnetic induction to manage cattle feedlot waste

    USDA-ARS?s Scientific Manuscript database

    This book chapter summarizes results of waste management research that utilized electromagnetic induction (EMI) tools for the purposes of: 1) collection of solid waste from feedlot surfaces to be utilized by crops 2) control and utilization of nutrient laden liquid runoff, and 3) feedlot surface man...

  2. Generic waste management requirements for a controlled ecological life support system /CELSS/

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.; Hansen, B. D., III

    1981-01-01

    Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.

  3. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Heat pipe radiator. [for spacecraft waste heat rejection

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  5. Thermal storage for electric utilities

    NASA Technical Reports Server (NTRS)

    Swet, C. J.; Masica, W. J.

    1977-01-01

    Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.

  6. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less

  7. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. ASSESSMENT AND RECOMMENDATIONS FOR IMPROVING THE PERFORMANCE OF WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This broad-based study addressed three categories of issues related to the design,
    construction, and performance of waste containment systems used at landfills, surface
    impoundments, and waste piles, and in the remediation of contaminated sites. Geosynthetic materials have...

  9. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations ofmore » H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.« less

  10. Inertial waste separation system for zero G WMS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.

  11. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  12. Climate Narratives: Combing multiple sources of information to develop risk management strategies for a municipal water utility

    NASA Astrophysics Data System (ADS)

    Yates, D. N.; Basdekas, L.; Rajagopalan, B.; Stewart, N.

    2013-12-01

    Municipal water utilities often develop Integrated Water Resource Plans (IWRP), with the goal of providing a reliable, sustainable water supply to customers in a cost-effective manner. Colorado Springs Utilities, a 5-service provider (potable and waste water, solid waste, natural gas and electricity) in Colorado USA, recently undertook an IWRP. where they incorporated water supply, water demand, water quality, infrastructure reliability, environmental protection, and other measures within the context of complex water rights, such as their critically important 'exchange potential'. The IWRP noted that an uncertain climate was one of the greatest sources of uncertainty to achieving a sustainable water supply to a growing community of users. We describe how historic drought, paleo-climate, and climate change projections were blended together into climate narratives that informed a suite of water resource systems models used by the utility to explore the vulnerabilities of their water systems.

  13. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2003-02-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Informationmore » and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.« less

  14. Utilizing waste activated sludge for animal feeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beszedits, S.

    1981-01-01

    Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.

  15. Space Mission Utility and Requirements for a Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Lee, Jeffrey M.

    2016-01-01

    Management of waste on long-duration space missions is both a problem and an opportunity. Uncontained or unprocessed waste is a crew health hazard and a habitat storage problem. A Heat Melt Compactor (HMC) such as NASA has been developing is capable of processing space mission trash and converting it to useful products. The HMC is intended to process space mission trash to achieve a number of objectives including: volume reduction, biological safening and stabilization, water recovery, radiation shielding, and planetary protection. This paper explores the utility of the HMC to future space missions and how this translates into HMC system requirements.

  16. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  17. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  18. Research on solid waste management system: to improve existing situation in Corlu Town of Turkey.

    PubMed

    Tinmaz, Esra; Demir, Ibrahim

    2006-01-01

    Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day. Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.

  19. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  20. The potential role of aerobic biological waste treatment in regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Shuler, M. L.; Nafis, D.; Sze, E.

    1981-01-01

    The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.

  1. THE FEASIBILITY OF UTILIZING SOLID WASTES FOR BUILDING MATERIALS. EXECUTIVE SUMMARY

    EPA Science Inventory

    This report focuses on two phases of a suggested four phase study to evaluate the technological and commercial possibilities of waste - derived composites. The first phase involved a joint and comprehensive literature search to identify wastes with potential as building materials...

  2. Integrated Baseline System (IBS) Version 2.0: Utilities Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, M.J.; Downing, T.R.; Williams, J.R.

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

  3. System analyses on advanced nuclear fuel cycle and waste management

    NASA Astrophysics Data System (ADS)

    Cheon, Myeongguk

    To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of

  4. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system.

    PubMed

    Kim, Sung Bong; Kim, Dong Sup; Yang, Ji Hyun; Lee, Junyoung; Kim, Seung Wook

    2016-04-01

    The waste hydrolysate after dilute acid pretreatment (DAP) of lignocellulosic biomass was utilized to generate electricity using an enzymatic fuel cell (EFC) system. During DAP, the components of biomass containing hemicellulose and other compounds are hydrolyzed, and glucose is solubilized into the dilute acid solution, called as the hydrolysate liquid. Glucose oxidase (GOD) and laccase (Lac) were assembled on the electrode of the anode and cathode, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured, and the maximum power density was found to be 1.254×10(3) μW/cm(2). The results indicate that the hydrolysate from DAP is a reliable electrolyte containing the fuel of EFC. Moreover, the impurities in the hydrolysate such as phenols and furans slightly affected the charge transfer on the surface of the electrode, but did not affect the power generation of the EFC system in principal. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Environmental Factor(tm) system: RCRA hazardous waste handler information (on cd-rom). Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    Environmental Factor(tm) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information - dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  6. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  7. Continuing Education/Training Needs of Water Utility & Wastewater Works Personnel in Wisconsin. Report of a Cooperative Statewide Survey.

    ERIC Educational Resources Information Center

    Wisconsin Univ. - Stout, Menomonie.

    A survey was conducted during January and February of 1984 to ascertain the continuing education/training needs of personnel working in water utility and wastewater systems in Wisconsin. From the estimated 4,000 certified operators in water utilities, waste water treatment plants, and plant superintendents surveyed, 723 (18 percent) completed…

  8. Utilization of Waste Materials for the Treatment of Waste Water Contaminated with Sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2014-01-01

    The activities were carried out to develop potential adsorbents from waste material and employ them for the removal of hazardous antibacterial, Sulphamethoxazole from the wastewater by adsorption technique. The selection of this method was done because of its economic viability. The method has the potency of eradicating the perilous chemicals which make their appearance in water and directly or indirectly into the whole biological system, through the ejection of effluents by the industries in flowing water. The adsorption technique was used to impound the precarious antibiotics from wastewater using Deoiled Soya an agricultural waste and Water Hyacinth a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10% to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents i.e. Deoiled Soya, Alkali treated Deoiled Soya, Water Hyacinth and Alkali treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. Deoiled Soya (DOS) showed sorption capacity of 0.0007 mol g(-1) while Alkali treated Deoiled Soya (ADOS) exhibited 0.0011 mol g(-1) of sorption capacity which reveals that the adsorption is higher in case of alkali treated adsorbent. The mean sorption energy (E) was obtained between 9 to 12 kJ/mol which shows that the reaction proceeds by ion exchange reaction. Various kinetic studies like order of reaction, mass transfer studies, mechanism of diffusion were also performed for the ongoing processes. The mass transfer coefficient obtained for alkali treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90% to 98%. Moreover the

  9. Papaya drying and waste conversion system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-02-12

    This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less

  10. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina Louise; Spencer, LaShelle E.; Richards, Jeffrey T.; Strayer, Richard F.; Caro, Janicce; Hummerick, Mary; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products.

  11. Importance of biological systems in industrial waste treatment potential application to the space station

    NASA Technical Reports Server (NTRS)

    Revis, Nathaniel; Holdsworth, George

    1990-01-01

    In addition to having applications for waste management issues on planet Earth, microbial systems have application in reducing waste volumes aboard spacecraft. A candidate for such an application is the space station. Many of the planned experiments generate aqueous waste. To recycle air and water the contaminants from previous experiments must be removed before the air and water can be used for other experiments. This can be achieved using microorganisms in a bioreactor. Potential bioreactors (inorganics, organics, and etchants) are discussed. Current technologies that may be applied to waste treatment are described. Examples of how biological systems may be used in treating waste on the space station.

  12. Utilization of waste tire rubber in manufacture of oriented strandboard.

    PubMed

    Ayrilmis, Nadir; Buyuksari, Umit; Avci, Erkan

    2009-09-01

    Some physical and mechanical properties of oriented strandboards (OSBs) containing waste tire rubber at various addition levels based on the oven-dry strand weight, using the same method as that used in the manufacture of OSB. Two resin types, phenol-formaldehyde (PF) and polyisocyanate, were used in the experiments. The manufacturing parameters were: a specific gravity of 0.65 and waste tire rubber content (10/90, 20/80 and 30/70 by wt.% of waste tire rubber/wood strand). Average internal bond values of PF-bonded OSB panels with rubber chips were between 17.6% and 48.5% lower than the average of the control samples while polyisocyanate bonded OSBs were 16.5-50.6%. However, water resistance and mechanical properties of OSBs made using polyisocyanate resin were found to comply with general-purpose OSB minimum property requirements of EN 300 Type 1 (1997) values for use in dry conditions at the lowest tire rubber loading level (10%) based on the oven-dry panel weight. The tire rubber improved water resistance of the OSB panel due to its almost hydrophobic property. Based on the findings obtained from this study, we concluded that waste tire rubber could be used for general-purpose OSB manufacturing up to 10% ratio based on the oven-dry panel weight.

  13. Waste reduction possibilities for manufacturing systems in the industry 4.0

    NASA Astrophysics Data System (ADS)

    Tamás, P.; Illés, B.; Dobos, P.

    2016-11-01

    The industry 4.0 creates some new possibilities for the manufacturing companies’ waste reduction for example by appearance of the cyber physical systems and the big data concept and spreading the „Internet of things (IoT)”. This paper presents in details the fourth industrial revolutions’ more important achievements and tools. In addition there will be also numerous new research directions in connection with the waste reduction possibilities of the manufacturing systems outlined.

  14. Problems of Waste Management at Poultry Plants and Ways to Address Them

    NASA Astrophysics Data System (ADS)

    Lazareva, L. P.; Kostryakova, O. N.

    2017-11-01

    The paper analyzes scientific literature on manure recycling and systems of waste management at two poultry plants that use different technologies of poultry housing and manure disposal and calculates the volumes of waste generation for two plants. The authors suggest an economically and ecologically efficient manure utilization technology, consider the feasibility of replacing traditional fuel with the one produced by manure recycling and calculate expected profits and the payback time of equipment.

  15. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  16. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  17. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  18. Capacity utilization study for aviation security cargo inspection queuing system

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl

    2010-04-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  19. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number ofmore » cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.« less

  20. System dynamic modeling on construction waste management in Shenzhen, China.

    PubMed

    Tam, Vivian W Y; Li, Jingru; Cai, Hong

    2014-05-01

    This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.

  1. Modular life cycle assessment of municipal solid waste management.

    PubMed

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.

  2. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  3. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  4. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less

  5. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, J.D.; Fort, E. Joseph; Lorenz, William

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previouslymore » employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)« less

  6. Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deltete, D.; Fisher, S.; Kelly, J.J.

    1994-05-01

    EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less

  7. Low-Activity Waste Pretreatment System Additional Engineering-Scale Integrated Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, Matt R.; Wilson, Robert A.

    Washington River Protections Solutions, LLC’s (WRPS) Low Activity Waste Pretreatment System (LAWPS) Project provides for the early production of immobilized low-activity waste (ILAW) by feeding LAW directly from Tank Farms to the Waste Treatment and Immobilization Plant (WTP) LAW Facility, bypassing the WTP Pretreatment Facility. Prior to the transfer of feed to the WTP LAW Vitrification Facility, tank supernatant waste will be pretreated in the LAWPS to meet the WTP LAW waste acceptance criteria (WAC). Full-scale and engineering-scale testing of critical technology elements, as part of the technology maturation process, are components of the overall LAWPS Project. WRPS awarded themore » engineering-scale integrated testing scope to AECOM via WRPS Subcontract 58349. This report is deliverable MSR-008 of the subcontract.« less

  8. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    NASA Astrophysics Data System (ADS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  9. Waste receiving and processing facility module 1 data management system software project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  10. Wet Oxidation as a Waste Treatment Method in Closed Systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  11. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    PubMed

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  13. A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.

    PubMed

    Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay

    2018-03-06

    Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

  14. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    PubMed

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  15. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROOT, R.W.

    1999-05-18

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  16. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  17. An analysis of household waste management policy using system dynamics modelling.

    PubMed

    Inghels, Dirk; Dullaert, Wout

    2011-04-01

    This paper analyses the Flemish household waste management policy. Based on historical data from the period 1991-2006, literature reviews and interviews, both mathematical and descriptive relationships are derived that describe Flemish waste collection, reuse, recycling and disposal behaviour. This provides insights into how gross domestic product (GDP), population and selective collection behaviour have influenced household waste production and collection over time. These relationships are used to model the dynamic relationships underlying household waste management in Flanders by using a system dynamics (SD) modelling approach. Where most SD models in literature are conceptual and descriptive, in the present study a real-life case with both correlational and descriptive relationships was modelled for Flanders, a European region with an outstanding waste management track record. This model was used to evaluate the current Flemish household waste management policy based on the principles of the waste hierarchy, also referred as the Lansink ranking. The results show that Flemish household waste targets up to 2015 can be achieved by the current waste policy measures. It also shows the sensitivity of some key policy parameters such as prevention and reuse. Given the general nature of the model and its limited data requirements, the authors believe that the approach implemented in this model can also assist waste policy makers in other regions or countries to meet their policy targets by simulating the effect of their current and potential household waste policy measures.

  18. Utilization of composite membrane polyethyleneglycol-polystyrene-cellulose acetate from pineapple leaf fibers in lowering levels of methyl orange batik waste

    NASA Astrophysics Data System (ADS)

    Delsy, E. V. Y.; Irmanto; Kazanah, F. N.

    2017-02-01

    Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.

  19. Development of an integrated transuranic waste management system for a large research facility: NUCEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao

    1997-03-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less

  20. Concept of waste and its impact on human health.

    PubMed

    Pashkov, Vitalii M; Batyhina, Olena M; Trotska, Maryna V

    Impact of the environment on human health is increasingly being paid attention both at the international level and at the level of individual countries. Among the factors that anyhow can affect it negatively, various objects are distinguished and waste is not of the last consequence. It has different nature of origin, ways of further utilization and a degree of impact on human health and the environment. Its generation, utilization and neutralization are determined by the relevant processes; their research allows continuous improvement and reduction of their negative impact on human health and the environment. To analyze provisions of the international legislation concerning the concept of waste and its classification, as well as its potential impacts on human health and the environment. The study analyzes and uses international legal documents, data of international organizations and scientists' deductions. Furthermore, the study integrates information from scientific journals with scientific methods from the medical and legal point of view. Within the framework of the system approach, as well as analysis and synthesis, the concept of waste, its classification and impact on human health and the environment have been researched. In consequence of the conducted study, it has been found that at the European level, considerable attention is paid to waste in the context of its possible negative impact on human health and the environment. Solution of this problem is carried out with the integrated approach, which is expressed both in enacting statutory acts and amending existing ones, as well as elucidating various aspects at the scientific, methodological, statistical and other levels. Waste in itself has different nature of origin, negative impact, ways of its further utilization. Some kinds of it can be used further in order to achieve other goals and needs that are not related to their generation, others can no longer be used for human benefits taking into account

  1. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.

  2. Pyrolysis system evaluation study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of two different pyrolysis concepts which recover energy from solid waste was conducted in order to determine the merits of each concept for integration into a Integrated Utility System (IUS). The two concepts evaluated were a Lead Bath Furnace Pyrolysis System and a Slagging Vertical Shaft, Partial Air Oxidation Pyrolysis System. Both concepts will produce a fuel gas from the IUS waste and sewage sludge which can be used to offset primary fuel consumption in addition to the sanitary disposal of the waste. The study evaluated the thermal integration of each concept as well as the economic impact on the IUS resulting from integrating each pyrolysis concepts. For reference, the pyrolysis concepts were also compared to incineration which was considered the baseline IUS solid waste disposal system.

  3. Effects of an incinerator project on a healthcare-waste management system.

    PubMed

    Khammaneechan, Patthanasak; Okanurak, Kamolnetr; Sithisarankul, Pornchai; Tantrakarnapa, Kraichat; Norramit, Poonsup

    2011-10-01

    This evaluative research study aimed to assess the effects of the central healthcare incinerator project on waste management in Yala Province. The study data were collected twice: at baseline and during the operational phase. A combination of structured interview and observation were used during data collection. The study covered 127 healthcare facilities: government hospitals, healthcare centres, and private clinics. The results showed 63% of healthcare risk waste (HCRW) handlers attended the HCRW management training. Improvements in each stage of the HCRW management system were observed in all groups of facilities. The total cost of the HCRW management system did not change, however; the costs for hospitals decreased, whereas those for clinics increased significantly. It was concluded that the central healthcare waste incinerator project positively affected HCRW management in the area, although the costs of management might increase for a particular group. However, the benefits of changing to a more appropriately managed HCRW system will outweigh the increased costs.

  4. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    PubMed

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Biogasification of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Weitzenhoff, M.H.; Moy, J.H.

    1984-01-01

    Biogasification of papaya processing wastes for pollution control and energy utilization is feasible. The biogasification process with sludge recycling permits smaller reactor volume without any deterioration of CH4 production rate and CH4 content. Appropriate design and operational criteria for biogasification processing of papaya wastes were developed.

  6. Waste-to-Energy Systems

    DTIC Science & Technology

    2009-04-01

    at hospitals, at schools,” or wherever there are people creating masses of trash.5 Pyrolytic Gasification Pyrolytic gasification is not a new...prevalent with both. Gasification is . . . the chemical reaction and molecular breakdown or degradation of materials. The first pyrolytic gasification...dealing with about 2 tons of mixed solid waste per day, will destroy wood, paper card, food, plastics, and sanitary, clinical, and oil waste and

  7. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  8. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    PubMed

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A feasibility study on solar utility total energy system /SUTES/

    NASA Astrophysics Data System (ADS)

    Bilgen, E.

    1980-11-01

    A fully dedicated central receiver solar utility (CRSU) designed to meet domestic energy requirements for space heating and hot water has been synthesized and assessed at the conceptual level. The solar utility total energy system (SUTES) integrates (1) a central receiver solar utility (CRSU), (2) an electrical power generating system (EPGS), (3) a hydrogen production plant (HPP), (4) a water chilling system for cooling, heat pump system (HPS), (5) necessary thermal energy storage systems (TES), (6) a district heating and cooling system (DH&CS). All subsystems are close-coupled. Using consistent costing bases, it has been found that the SUTES concept provides energy costs which are lower than those provided by a CRSU. Representative costs are $3.14/GJ versus $8.56/GJ for 10 percent recovery factor and $12.55/GJ versus $13.47/GJ for 17.5 percent recovery factor.

  10. Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material.

    PubMed

    Li, Yuan-Cheng; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liu, De-Gang

    2018-02-15

    A new method in which Pb/Zn smelter waste containing arsenic and heavy metals (arsenic sludge), red mud and lime are utilized to prepare red mud-based cementitious material (RCM) is proposed in this study. XRD, SEM, FTIR and unconfined compressive strength (UCS) tests were employed to assess the physicochemical properties of RCM. In addition, ettringite and iron oxide-containing ettringite were used to study the hydration mechanism of RCM. The results show that the UCS of the RCM (red mud+arsenic sludge+lime) was higher than that of the binder (red mud+arsenic sludge). When the mass ratio of m (binder): m (lime) was 94:6 and then maintained 28days at ambient temperature, the UCS reached 12.05MPa. The red mud has potential cementitious characteristics, and the major source of those characteristics was the aluminium oxide. In the red mud-arsenic sludge-lime system, aluminium oxide was effectively activated by lime and gypsum to form complex hydration products. Some of the aluminium in ettringite was replaced by iron to form calcium sulfoferrite hydrate. The BCR and leaching toxicity results show that the leaching concentration was strongly dependent on the chemical speciation of arsenic and the hydration products. Therefore, the investigated red mud and arsenic sludge can be successfully utilized in cement composites to create a red mud-based cementitious material. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less

  12. The effects of unit pricing system upon household solid waste management: The Korean experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, S.

    1999-09-01

    Initial effects of adoption of a unit pricing system paired with aggressive recycling programs appear to be substantial. This paper explores the impact of price incentives under the unit pricing system on household solid waste generation and recycling in Korea. The author employs a simultaneous equation model considering the feedback effects between total waste generation and recycling. Estimation results using 3017 Korean household survey data indicate that a rise in waste collection fee induces households to recycle more wastes. However, this effect is partially offset by decreases in source-reduction efforts due to the feedback effects, resulting in relatively lower pricemore » elasticity of demand for solid waste collection services. This implies that household demand for solid waste collection services will not decrease much with additional increases in the collection fee, unless further recycling incentives such as more frequent recyclable pickup services are accompanied.« less

  13. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  14. Maximizing Resource Utilization in Video Streaming Systems

    ERIC Educational Resources Information Center

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  15. Development and Implementation of the Waste Management Information System to Support Hanford's River Corridor Cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, L. M.

    2006-07-01

    This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generationmore » to disposal. (authors)« less

  16. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 7 CFR 1780.62 - Utility purchase contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Utility purchase contracts. 1780.62 Section 1780.62 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting...

  18. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, Alexis, E-mail: alau@dtu.dk; Bakas, Ioannis; Clavreul, Julie

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute tomore » answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its

  19. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstad, A., E-mail: Anna.bernstad@chemeng.lth.se; Cour Jansen, J. la

    Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in papermore » bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating

  20. Utilization of waste materials, non-refined materials, and renewable energy in in situ remediation and their sustainability benefits.

    PubMed

    Favara, Paul; Gamlin, Jeff

    2017-12-15

    In the ramp-up to integrating sustainability into remediation, a key industry focus area has been to reduce the environmental footprint of treatment processes. The typical approach to integrating sustainability into remediation projects has been a top-down approach, which involves developing technology options and then applying sustainability thinking to the technology, after it has been conceptualized. A bottom-up approach allows for systems thinking to be included in remedy selection and could potentially result in new or different technologies being considered. When using a bottom-up approach, there is room to consider the utilization of waste materials, non-refined materials, and renewable energy in remediation technology-all of which generally have a smaller footprint than processed materials and traditional forms of energy. By integrating more systems thinking into remediation projects, practitioners can think beyond the traditional technologies typically used and how technologies are deployed. To compare top-down and bottom-up thinking, a traditional technology that is considered very sustainable-enhanced in situ bioremediation-is compared to a successful, but infrequently deployed technology-subgrade biogeochemical reactors. Life Cycle Assessment is used for the evaluation and shows the footprint of the subgrade biogeochemical reactor to be lower in all seven impact categories evaluated, sometimes to a significant degree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form evenmore » though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.« less

  2. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    PubMed

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  3. Waste receiving and processing plant control system; system design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed asmore » separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.« less

  4. A case study of packaging waste collection systems in Portugal - Part II: Environmental and economic analysis.

    PubMed

    Pires, Ana; Sargedas, João; Miguel, Mécia; Pina, Joaquim; Martinho, Graça

    2017-03-01

    An understanding of the environmental impacts and costs related to waste collection is needed to ensure that existing waste collection schemes are the most appropriate with regard to both environment and cost. This paper is Part II of a three-part study of a mixed packaging waste collection system (curbside plus bring collection). Here, the mixed collection system is compared to an exclusive curbside system and an exclusive bring system. The scenarios were assessed using life cycle assessment and an assessment of costs to the waste management company. The analysis focuses on the collection itself so as to be relevant to waste managers and decision-makers who are involved only in this step of the packaging life cycle. The results show that the bring system has lower environmental impacts and lower economic costs, and is capable of reducing the environmental impacts of the mixed system. However, a sensitivity analysis shows that these results could differ if the curbside collection were to be optimized. From economic and environmental perspectives, the mixed system has few advantages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  6. Assessment of economic instruments for countries with low municipal waste management performance: An approach based on the analytic hierarchy process.

    PubMed

    Kling, Maximilian; Seyring, Nicole; Tzanova, Polia

    2016-09-01

    Economic instruments provide significant potential for countries with low municipal waste management performance in decreasing landfill rates and increasing recycling rates for municipal waste. In this research, strengths and weaknesses of landfill tax, pay-as-you-throw charging systems, deposit-refund systems and extended producer responsibility schemes are compared, focusing on conditions in countries with low waste management performance. In order to prioritise instruments for implementation in these countries, the analytic hierarchy process is applied using results of a literature review as input for the comparison. The assessment reveals that pay-as-you-throw is the most preferable instrument when utility-related criteria are regarded (wb = 0.35; analytic hierarchy process distributive mode; absolute comparison) mainly owing to its waste prevention effect, closely followed by landfill tax (wb = 0.32). Deposit-refund systems (wb = 0.17) and extended producer responsibility (wb = 0.16) rank third and fourth, with marginal differences owing to their similar nature. When cost-related criteria are additionally included in the comparison, landfill tax seems to provide the highest utility-cost ratio. Data from literature concerning cost (contrary to utility-related criteria) is currently not sufficiently available for a robust ranking according to the utility-cost ratio. In general, the analytic hierarchy process is seen as a suitable method for assessing economic instruments in waste management. Independent from the chosen analytic hierarchy process mode, results provide valuable indications for policy-makers on the application of economic instruments, as well as on their specific strengths and weaknesses. Nevertheless, the instruments need to be put in the country-specific context along with the results of this analytic hierarchy process application before practical decisions are made. © The Author(s) 2016.

  7. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closestmore » to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.« less

  8. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, andmore » each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of

  9. Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review

    NASA Astrophysics Data System (ADS)

    Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.

    2017-05-01

    The quantity of plastics used throughout the world is increasing every year. Municipal solid wastes (MSW), manufacturing processes and service industries produce a lot of waste plastic materials. The increasing awareness among consumers about the environment has contributed to the concerns over disposal of generated wastes. The growing number of plastic materials every year and limited landfill conditions causes many alternatives exist for the disposal of plastic waste. This paper provides a summary of the study on the utilization of polyethylene terephthalate (PET) in road construction. Data from researcher show that PET can improve some properties of modified asphalt mixture. Having considered the economic and environmental prudent angles, utilization of PET as an additive to asphalt mixture is suitable to be used for road pavement.

  10. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    PubMed

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and

  11. Environmental modelling of use of treated organic waste on agricultural land: a comparison of existing models for life cycle assessment of waste systems.

    PubMed

    Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, Sonia

    2006-04-01

    Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.

  12. Nuclear system that burns its own wastes shows promise

    NASA Technical Reports Server (NTRS)

    Atchison, K.

    1975-01-01

    A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.

  13. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    PubMed

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Production and degradation of polyhydroxyalkanoates in waste environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the followingmore » aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.« less

  15. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive andmore » extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the

  16. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2003 [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2004-02-17

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collectmore » and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.« less

  17. ENVIRONMENTAL EFFECTS OF UTILIZING SOLID WASTE AS A SUPPLEMENTARY POWER PLANT FUEL

    EPA Science Inventory

    The results of 3 years of research on the utilization of shredded and magnetically separated municipal refuse to supplement high-sulfur coal as fuel in a stroker-fired boiler are presented. During the first half of the research, a refuse handling and furnace feed system consistin...

  18. Isolation transformers for utility-interactive photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kern, E. C., Jr.

    1982-12-01

    Isolation transformers are used in some photovoltaic systems to isolate the photovoltaic system common mode voltage from the utility distribution system. In early system experiments with grid connected photovoltaics, such transformers were the source of significant power losses. A project at the Lincoln Laboratory and at Allied Chemical Corporation developed an improved isolation transformer to minimize such power losses. Experimental results and an analytical model of conventional and improved transformers are presented, showing considerable reductions of losses associated with the improved transformer.

  19. Distributed photovoltaic systems: Utility interface issues and their present status

    NASA Technical Reports Server (NTRS)

    Hassan, M.; Klein, J.

    1981-01-01

    Major technical issues involving the integration of distributed photovoltaics (PV) into electric utility systems are defined and their impacts are described quantitatively. An extensive literature search, interviews, and analysis yielded information about the work in progress and highlighted problem areas in which additional work and research are needed. The findings from the literature search were used to determine whether satisfactory solutions to the problems exist or whether satisfactory approaches to a solution are underway. It was discovered that very few standards, specifications, or guidelines currently exist that will aid industry in integrating PV into the utility system. Specific areas of concern identified are: (1) protection, (2) stability, (3) system unbalance, (4) voltage regulation and reactive power requirements, (5) harmonics, (6) utility operations, (7) safety, (8) metering, and (9) distribution system planning and design.

  20. In-plant management of hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, M.W.; Howell, W.L. Jr.

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interestsmore » within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.« less

  1. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercialmore » spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.« less

  2. Waste audit study: Research and educational institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-15

    This document reports on hazardous-waste reduction audits performed at three diverse research/educational institutions in southern California. Waste-reduction opportunities identified include: utilizing microscale experiments; chemical substitution; treating waste chemicals in the final step in experiments; and recycle, recovery, and treatment options. A generic self-audit was developed for use by educational and research institutions throughout the state.

  3. Military Hazardous Wastes: An Overview and Analysis.

    DTIC Science & Technology

    1981-12-01

    the soil as fertilizers or soil conditioners * Mining overburden returned to the mine site Utility wastes (fly ash, flue gas desulfurization sludge...19 3.3.2 What Is the Significance of Superfund to Military Wastes? ...... ............... 20 3.4 Toxic Substances Control Act...Hazardous Wastes From Current and Future Operations .... ......... 34 4.4 Organizational Responsibilities ... ............. .. 42 5. CONTROL TECHNOLOGY

  4. Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?

    PubMed

    Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend

    2011-10-11

    In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.

  5. Microorganism Utilization for Synthetic Milk

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  6. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  7. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  8. Biomedical waste disposal: A systems analysis

    PubMed Central

    Jindal, A.K.; Gupta, Arun; Grewal, V.S.; Mahen, Ajoy

    2012-01-01

    Background In view of the contemporary relevance of BMW Management, a system analysis of BMW management was conducted to ascertain the views of Service hospitals/HCE's on the current system in BMW management in-vogue; to know the composition and quantity of waste generated; to get information on equipment held & equipment required and to explore the possibility of outsourcing, its relevance and feasibility. Methods A qualitative study in which various stake holders in BMW management were studied using both primary (Observation, In-depth Interview of Key Personnel, Group Discussions: and user perspective survey) and secondary data. Results All the stake holders were of the opinion that where ever possible outsourcing should be explored as a viable method of BMW disposal. Waste generated in Colour code Yellow (Cat 1,2,3,5,6) ranged from 64.25 to 27.345 g/day/bed; in Colour code Red (Cat 7) from 19.37 to 10.97 g/day/bed and in Colour code Blue (Cat 4) from 3.295 to 3.82 g/day/bed in type 1 hospitals to type 5 hospitals respectively. Conclusion Outsourcing should be explored as a viable method of BMW disposal, were there are government approved local agencies. Facilities authorized by the Prescribed Authority should be continued and maintained where outsourcing is not feasible. PMID:24600142

  9. GIS-based planning system for managing the flow of construction and demolition waste in Brazil.

    PubMed

    Paz, Diogo Henrique Fernandes da; Lafayette, Kalinny Patrícia Vaz; Sobral, Maria do Carmo

    2018-05-01

    The objective of this article was to plan a network for municipal management of construction and demolition waste in Brazil with the assistance of a geographic information system, using the city of Recife as a case study. The methodology was carried out in three stages. The first was to map the illegal construction and demolition of waste disposal points across Recife and classify the waste according to its recyclability. In sequence, a method for indicating suitable areas for installation of voluntary delivery points, for small waste generators, are presented. Finally, a method for indicating suitable areas for the installation of trans-shipment and waste sorting areas, developed for large generators, is presented. The results show that a geographic information system is an essential tool in the planning of municipal construction and demolition waste management, in order to facilitate the spatial analysis and control the generation, sorting, collection, transportation, and final destination of construction and demolition waste, increasing the rate of recovery and recycling of materials.

  10. Development of a novel three-stage fermentation system converting food waste to hydrogen and methane.

    PubMed

    Kim, Dong-Hoon; Kim, Mi-Sun

    2013-01-01

    In this study, a novel three-stage (lactate-+photo-H(2)+CH(4)) fermentation system was developed, which converts food waste to H(2) and CH(4), with an emphasis on achieving high H(2) yield. The system begins by first fermenting food waste to lactate, rather than acetate and butyrate, using indigenous lactic acid bacteria. Lactate fermentation effluent was then centrifuged, and the supernatant was used for H(2) production by photo-fermentation, while the residue was used for CH(4) production by anaerobic digestion. Overall, via the three-stage fermentation system, 41% and 37% of the energy content in the food waste was converted to H(2) and CH(4), respectively, corresponding to the electrical energy yield of 1146 MJ/ton-food waste, which is 1.4 times higher value than that of previous two-stage dark (H(2)+CH(4)) fermentation system. The H(2) yield based on hexose input was 8.35 mol H(2)/mol hexose(added), the highest value ever reported from actual organic waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A system dynamics approach for healthcare waste management: a case study in Istanbul Metropolitan City, Turkey.

    PubMed

    Ciplak, Nesli; Barton, John R

    2012-06-01

    Healthcare waste consists of various types of waste materials generated at hospitals, medical research centres, clinics and laboratories. Although 75-90% of this waste is classified as 'domestic' in nature, 20-25% is deemed to be hazardous, which if not disposed of appropriately, poses a risk to healthcare workers, patients, the environment and even the whole community. As long as healthcare waste is mixed with municipal waste and not segregated prior to disposal, costs will increase substantially. In this study, healthcare waste increases along with the potential to decrease the amounts by implementing effective segregation at healthcare facilities are projected to 2040. Our long-term aim is to develop a system to support selection and planning of the future treatment capacity. Istanbul in Turkey was used as the case study area. In order to identify the factors affecting healthcare waste generation in Istanbul, observations were made and interviews conducted in Istanbul over a 3 month period. A system dynamics approach was adopted to build a healthcare waste management model using a software package, Vensim Ple Plus. Based on reported analysis, the non-hazardous municipal fraction co-disposed with healthcare waste is around 65%. Using the projected waste generation flows, reducing a municipal fraction to 30% has the potential to avoid some 8000 t year(-1) of healthcare waste by 2025 and almost 10 000 t year(-1) by 2035. Furthermore, if segregation practices ensured healthcare waste requiring incineration was also selectively managed, 77% of healthcare waste could be diverted to alternative treatment technologies. As the throughput capacity of the only existing healthcare waste treatment facility in Istanbul, Kemerburgaz Incinerator, has already been exceeded, it is evident that improved management could not only reduce overall flows and costs but also permit alternative and cheaper treatment systems (e.g. autoclaving) to be adopted for the healthcare waste.

  12. Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology.

    PubMed

    Kavitha, Ganapathy; Kurinjimalar, Chidambaram; Sivakumar, Krishnan; Kaarthik, Muthukumar; Aravind, Rajamani; Palani, Perumal; Rengasamy, Ramasamy

    2016-12-01

    Investigations have been made to optimize various factors including pH, temperature, and substrate for enhanced polyhydroxybutyrate (PHB) production in Botryococcus braunii which serves as a pioneer for production of bioplastic (PHB). Polyhydroxybutyrate is a natural, decomposable polymers accumulated by the microorganism under different nutritional condition. Strain selection was done by staining method using Sudan black and Nile red dye. Using response surface methodology (RSM), three level- three variables Box Behnken design (BBD), the best potential combination of pH (4-11), temperature (30-50°C) and sewage waste water as substrate fed at different concentrations at 20%-100% for maximum PHB production was investigated. Maximum yield (247±0.42mg/L) of PHB dry weight was achieved from the 60% concentration of sewage waste water as a growth medium at pH 7.5 at 40°C. It was well in close agreement with the value predicted by RSM model yield (246± 0.32mg/L). Thus the study shows the production of PHB by B. braunii along with the basic characterization of PHB by using FTIR and TEM analysis. These preliminary studies indicated that PHB can also be produced by B. braunii utilizing waste water. There is no report on the optimization of PHB production in this microalgae have been documented. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Plasma gasification of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, G.W.; Tsangaris, A.V.

    1995-12-31

    Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSWmore » was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.« less

  14. A synthesis of biomass utilization for bioenergy production in the Western United States.

    Treesearch

    David L. Nicholls; Robert A. Monserud; Dennis P. Dykstra

    2008-01-01

    We examine the use of woody residues, primarily from forest harvesting or wood products manufacturing operations (and to a limited degree from urban wood wastes), as a feedstock for direct-combustion bioenergy systems for electrical or thermal power applications. We examine opportunities for utilizing biomass for energy at several scales, with an emphasis on larger...

  15. Application of material flow analysis to estimate the efficiency of e-waste management systems: the case of Lithuania.

    PubMed

    Gurauskiene, Inga; Stasiskiene, Zaneta

    2011-07-01

    Electrical and electronic equipment (EEE) has penetrated everyday life. The EEE industry is characterized by a rapid technological change which in turn prompts consumers to replace EEE in order to keep in step with innovations. These factors reduce an EEE life span and determine the exponential growth of the amount of obsolete EEE as well as EEE waste (e-waste). E-waste management systems implemented in countries of the European Union (EU) are not able to cope with the e-waste problem properly, especially in the new EU member countries. The analysis of particular e-waste management systems is essential in evaluation of the complexity of these systems, describing and quantifying the flows of goods throughout the system, and all the actors involved in it. The aim of this paper is to present the research on the regional agent based material flow analysis in e-waste management systems, as a measure to reveal the potential points for improvement. Material flow analysis has been performed as a flow of goods (EEE). The study has shown that agent-based EEE flow analysis incorporating a holistic and life cycle thinking approach in national e-waste management systems gives a broader view to the system than a common administrative one used to cover. It helps to evaluate the real efficiency of e-waste management systems and to identify relevant impact factors determining the current operation of the system.

  16. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    PubMed

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Improvement of the material and transport component of the system of construction waste management

    NASA Astrophysics Data System (ADS)

    Kostyshak, Mikhail; Lunyakov, Mikhail

    2017-10-01

    Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.

  18. From Solid Waste to Energy.

    ERIC Educational Resources Information Center

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  19. Is bigger better? An empirical analysis of waste management in New South Wales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Pedro, E-mail: pedrotcc@gmail.com; CESUR – Center for Urban and Regional Systems, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon; Marques, Rui Cunha, E-mail: rui.marques@tecnico.ulisboa.pt

    Highlights: • We search for the most efficient cost structure for NSW household waste services. • We found that larger services are no longer efficient. • We found an optimal size for the range 12,000–20,000 inhabitants. • We found significant economies of output density for household waste collection. • We found economies of scope in joint provision of unsorted and recycling services. - Abstract: Across the world, rising demand for municipal solid waste services has seen an ongoing increase in the costs of providing these services. Moreover, municipal waste services have typically been provided through natural or legal monopolies, wheremore » few incentives exist to reduce costs. It is thus vital to examine empirically the cost structure of these services in order to develop effective public policies which can make these services more cost efficient. Accordingly, this paper considers economies of size and economies of output density in the municipal waste collection sector in the New South Wales (NSW) local government system in an effort to identify the optimal size of utilities from the perspective of cost efficiency. Our results show that – as presently constituted – NSW municipal waste services are not efficient in terms of costs, thereby demonstrating that ‘bigger is not better.’ The optimal size of waste utilities is estimated to fall in the range 12,000–20,000 inhabitants. However, significant economies of output density for unsorted (residual) municipal waste collection and recycling waste collection were found, which means it is advantageous to increase the amount of waste collected, but maintaining constant the number of customers and the intervention area.« less

  20. Improved Orbiter Waste Collection System Study, Appendix D

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Basic requirements for a space shuttle orbiter waste collection system are established. They are intended to be an aid in the development and procurement of a representative flight test article. Orbiter interface requirements, performance requirements, flight crew operational requirements, flight environmental requirements, and ground operational and environmental requirements are considered.

  1. Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2018-07-01

    This study reports biosurfactant production by Pseudomonas azotoformans AJ15 under submerged fermentation via utilizing the agro-industrial wastes (bagasse and potato peels). The extracted biosurfactant was characterized for its classification (nature, group, and class) and stability against environmental stresses. Further, the biosurfactant was employed to explore its oil recovery efficiency from the sand matrix with 2000 ppm salt concentration. Results revealed that substrates developed by mixing both the agro-industrial wastes account for high yield of biosurfactant. The subsequent experimental studies demonstrated that the biosurfactant might belong to glycolipid group and rhamnolipid class. Moreover, the biosurfactant was stable at a high temperature of 90 °C and enable to persist its activity in the high salt concentration of 6% and varying pH. The biosurfactant was found to be effective in recovering up to 36.56% of trapped oil under saline condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Utilization of Bagasse Fly Ash to Remove the Unpleasant Odor of Stevia Extract and Soy Milk

    NASA Astrophysics Data System (ADS)

    Ashadi; Masykuri, M.; Haryono

    2017-04-01

    Stevia is a safe natural sweetener that, but has a slightly unpleasant odor. Soy milk is undoubtedly high nutritional value, soy milk slightly unpleasant odor. Bagasse Fly Ash (BFA) is a sugar factory waste which is abundant, not widely used yet, and allowed to accumulate around the sugar factory. BFA can be activated with a solution of NaOH become adsorbent. Utilization of activated BFA to remove the odor of stevia extract and soy milk means the utilization of a waste to reduce other waste. Deodorizing done by batch system. Before being used as adsorbent, BFA characterized using SEM, XRD, FTIR, and AAS. Odor and color analysis conducted by organoleptic. The results shown activation increases the cavity, BFA containing SiO2 and Al2O3, does not contain Pb, Cr, Cd. The results shown that the BFA can reduce odor of stevia from a scale of 4 to 2, the color becomes more clear, unpleasant odor of soy milk is also reduced.

  3. Extended Duration Orbiter (EDO) Improved Waste Collection System (IWCS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This overall front view shows the Extended Duration Orbiter (EDO) Waste Collection System (WCS) scheduled to fly aboard NASA's Endeavour, Orbiter Vehicle (OV) 105, for the STS-54 mission. Detailed Test Objective 662, Extended duration orbiter WCS evaluation, will verify the design of the new EDO WCS under microgravity conditions for a prolonged period. OV-105 has been modified with additional structures in the waste management compartment (WMC) and additional avionics to support/restrain the EDO WCS. Among the advantages the new IWCS is hoped to have over the currect WCS are greater dependability, better hygiene, virtually unlimited capacity, and more efficient preparation between shuttle missions. Unlike the previous WCS, the improved version will not have to be removed from the spacecraft to be readied for the next flight. The WCS was documented in JSC's Crew Systems Laboratory Bldg 7.

  4. ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, David C., E-mail: waste@davidcwilson.com; Rodic, Ljiljana; Cowing, Michael J.

    Highlights: • Solid waste management (SWM) is a key utility service, but data is often lacking. • Measuring their SWM performance helps a city establish priorities for action. • The Wasteaware benchmark indicators: measure both technical and governance aspects. • Have been developed over 5 years and tested in more than 50 cities on 6 continents. • Enable consistent comparison between cities and countries and monitoring progress. - Abstract: This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The papermore » presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city’s performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat’s solid waste management in the World’s cities. The comprehensive analytical framework of a city’s solid waste management system is divided into two overlapping ‘triangles’ – one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised ‘Wasteaware’ set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both ‘hard’ physical components and ‘soft’ governance aspects; and in prioritising ‘next steps’ in developing a city’s solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM

  5. Environmental impact of PV cell waste scenario.

    PubMed

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The impact of municipal refuse utilization on energy and our environment

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The incinerator/boiler configuration is stressed as the most reliable method of waste utilization. It is also pointed out that the high cost of refuse disposal and the ever increasing cost of energy, have made this method attractive. A plan is outlined for operating a waste utilization plant. Community participation is encouraged in investigating the feasibility of refuse to energy facilities in their area.

  7. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR AN ELECTRICAL UTILITY TRANSMISSION SYSTEM MONITORING AND MAINTENANCE FACILITY

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...

  8. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR AN ELECTRICAL UTILITY TRANSMISSION SYSTEM MONITORING AND MAINTENANCE FACILITY.

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...

  9. Functional analysis, a resilience improvement tool applied to a waste management system - application to the "household waste management chain"

    NASA Astrophysics Data System (ADS)

    Beraud, H.; Barroca, B.; Hubert, G.

    2012-12-01

    A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site. 1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.). These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005).

  10. Flow analysis of metals in a municipal solid waste management system.

    PubMed

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  11. Flow analysis of metals in a municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-07-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria formore » landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.« less

  12. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    PubMed

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  13. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixedmore » waste.« less

  14. The use of information systems to transform utilities and regulatory commissions: The application of geographic information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirick, D.W.; Montgomery, G.E.; Wagman, D.C.

    1995-09-01

    One technology that can assist utilities remain financially viable in competitive markets and help utilities and regulators to better serve the public is information technology. Because geography is an important part of an electric, natural gas, telecommunications, or water utility, computer-based Geographic Information Systems (GIS) and related Automated Mapping/Facilities Management systems are emerging as core technologies for managing an ever-expanding variety of formerly manual or paper-based tasks. This report focuses on GIS as an example of the types of information systems that can be used by utilities and regulatory commissions. Chapter 2 provides general information about information systems and effectsmore » of information on organizations; Chapter 3 explores the conversion of an organization to an information-based one; Chapters 4 and 5 set out GIS as an example of the use of information technologies to transform the operations of utilities and commissions; Chapter 6 describes the use of GIS and other information systems for organizational reengineering efforts; and Chapter 7 examines the regulatory treatment of information systems.« less

  15. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    PubMed

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  16. In itinere strategic environmental assessment of an integrated provincial waste system.

    PubMed

    Federico, Giovanna; Rizzo, Gianfranco; Traverso, Marzia

    2009-06-01

    In the paper, the practical problem of analysing in an integrated way the performance of provincial waste systems is approached, in the framework of the Strategic Environmental Assessment (SEA). In particular, the in itinere phase of SEA is analysed herein. After separating out a proper group of ambits, to which the waste system is supposed to determine relevant impacts, pertinent sets of single indicators are proposed. Through the adoption of such indicators the time trend of the system is investigated, and the suitability of each indicator is critically revised. The structure of the evaluation scheme, which is essentially based on the use of ambit issues and analytical indicators, calls for the application of the method of the Dashboard of Sustainability for the integrated evaluation of the whole system. The suitability of this method is shown through the paper, together with the possibility of a comparative analysis of different scenarios of interventions. Of course, the reliability of the proposed method strongly relies on the availability of a detailed set of territorial data. The method appears to represent a useful tool for public administration in the process of optimizing the policy actions aimed at minimizing the increasing problem represented by waste production in urban areas.

  17. Environmental performance of household waste management in Europe - An example of 7 countries.

    PubMed

    Andreasi Bassi, Susanna; Christensen, Thomas H; Damgaard, Anders

    2017-11-01

    An attributional life cycle assessment (LCA) of the management of 1ton of household waste was conducted in accordance with ISO 14044:2006 and the ILCD Handbook for seven European countries, namely Germany, Denmark, France, UK, Italy, Poland and Greece, representing different household waste compositions, waste management practices, technologies, and energy systems. National data were collected from a range of sources regarding household waste composition, household sorting efficiency, collection, waste treatments, recycling, electricity and heat composition, and technological efficiencies. The objective was to quantify the environmental performance in the different countries, in order to analyze the sources of the main environmental impacts and national differences which affect the results. In most of the seven countries, household waste management provides environmental benefits when considering the benefits of recycling of materials and recovering and utilization of energy. Environmental benefits come from paper recycling and, to a lesser extent, the recycling of metals and glass. Waste-to-energy plants can lead to an environmental load (as in France) or a saving (Germany and Denmark), depending mainly on the composition of the energy being substituted. Sensitivity analysis and a data quality assessment identified a range of critical parameters, suggesting from where better data should be obtained. The study concluded that household waste management is environmentally the best in European countries with a minimum reliance on landfilling, also induced by the implementation of the Waste Hierarchy, though environmental performance does not correlate clearly with the rate of material recycling. From an environmental point of view, this calls for a change in the waste management paradigm, with less focus on where the waste is routed and more of a focus on the quality and utilization of recovered materials and energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Waste Information Record Keeping System (WIRKS) in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dogaru, D.M.; Raducea, D.; Dogaru, G.

    2006-07-01

    In Romania there is no common national WIRKS used by all waste management organizations. Each waste management organization uses an own WIRKS. The regulatory authority approves the WIRKS of each radioactive waste facility and checks the recordings during the process of authorization. This paper summarizes the regulatory requirements regarding to WIRKS, the types of the waste generators, facilities and their waste classification of radioactive waste. Also the paper summarizes the WIRKS applied to the most important waste generators. (authors)

  19. Expert Systems for United States Navy Shore Facilities Utility Operations.

    DTIC Science & Technology

    1988-03-01

    of expertise when assessing the applicability of an expert system. Each of the tasks as similarly ranked to reflect subjective judgement on the...United States Navy Shore Facilities Utility Operations ABSTRACT A technology assessment of expert systems as they might be used in Navy utility...of these applications include design, fault diagnoses, training, data base management, and real-time monitoring. An assessment is given of each

  20. Land Use Management for Solid Waste Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)