Sample records for waste-derived thermite reaction

  1. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.

    PubMed

    Wang, Kuen-Sheng; Lin, Kae-Long; Lee, Ching-Hwa

    2009-02-15

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe.

  2. Well sealing via thermite reactions

    DOEpatents

    Lowry, William Edward; Dunn, Sandra Dalvit

    2016-11-15

    A platform is formed in a well below a target plug zone by lowering a thermite reaction charge into the well and igniting it, whereby the products of the reaction are allowed to cool and expand to form a platform or support in the well. A main thermite reaction charge is placed above the platform and ignited to form a main sealing plug for the well. In some embodiments an upper plug is formed by igniting an upper thermite reaction charge above the main thermite reaction charge. The upper plug confines the products of ignition of the main thermite reaction charge.

  3. Activation energy of tantalum-tungsten oxide thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Munir, Zuhair A.; Chemical Engineering and Materials Science, University of California, Davis, CA

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derivedmore » Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)« less

  4. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  5. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300more » C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.« less

  6. Effect of carbon nanotube addition on the thermite reaction in the Al/CuO energetic nanocomposite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2017-08-01

    In this work, the Al/CNT/CuO nano-thermite samples are prepared by ultrasonic mixing with variable CNT content. The morphology of nano-thermites analysed by electron microscopy revealed that the CNTs are dispersed and there are intimate contacts between fuels (Al and CNT) and oxidiser (CuO) constituents of the nano-thermite. Raman spectroscopy technique is used to analyse the structural integrity of the CNTs in the nano-thermite. The thermite reaction characteristics are evaluated by simultaneous thermogravimetric analysis/differential scanning calorimetry technique. The exothermic enthalpy of the Al/CNT/CuO nano-thermite samples increased with increasing CNT content. The effect of Al particle size and Al/Cu molar ratio variation on the thermite reaction enthalpy is also analysed. The ignition temperature of the thermite reaction is also lowered by 71 °C than that of Al/CuO nano-thermite. The activation energy for thermite reaction of Al/CNT/CuO nano-thermite is also lowered by 23% to that of pure Al/CuO. The residues of the nano-thermites after the thermite reaction at 1010 °C are collected and analysed by the X-ray diffraction.

  7. The Thermit Reaction: A Dazzling Thermochemical Demonstration.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1997-01-01

    Describes an outdoor scientific demonstration of metal reduction, a reaction known as the thermit process. Heat from an ignition mixture is required to initiate the reaction, which then becomes self-sustaining. The demonstration provides a dazzling introduction to such fundamental general chemistry topics as oxidation-reduction, metallurgy,…

  8. Thermite Reaction to Produce Artificial Reefs

    NASA Astrophysics Data System (ADS)

    Trevino, Alexandro; Martirosyan, Karen; Kline, Richard

    The degradation of coral reefs is an ecological issue that has prompted new collaboration by different scientific communities that would assist in the regeneration of the reefs. Unfortunately, these processes can be inefficient and extremely expensive prompting a new scientific approach by using solid-state combustion synthesis to regenerate the reefs. In this report we aimed to consolidate a multi-composite material to produce artificial reefs by initiating thermite reaction based on aluminum and polytetrafluoroethylene (PTFE) with natural reefs. By Thermodynamic analysis and experimentation it was established that a range between .03-.07 number of moles of PTFE was sufficient to reach an adiabatic temperature of over 1900 K, a sustained reaction and a physically stable product was achieved. Reefs are primarily composed of carbonates but their exact chemical composition can vary. X-ray diffraction analysis was used to determine the chemical composition of the reef and revealed presence of oxides, carbonates, silicates. The dominant chemical compounds that were identified are, SiO2 -17%, MgSiO3-14.5%, CaCO3- 11.4%, Ca(Si3O4). Using our thermite reaction we aimed to achieve optimal physical, chemical, and biological properties and maintain cost efficiency of the multi-composite material.

  9. Molecular dynamic simulation of thermite reaction of Al nanosphere/Fe2O3 nanotube

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Yang; Ma, Bo; Tang, Cui-Ming; Cheng, Xin-Lu

    2016-01-01

    The letter presents thermite reactions of Al/Fe2O3 nanothermites simulated by using molecular dynamic method in combination with ReaxFF. The variations in chemical bonds are measured to elaborate reaction process and characterize ignition performance. It is found that the longer interval is, the higher ignition temperature and the longer ignition delay system has. Additionally, the heating rate has much effect on ignition temperature. Under the temperature of 1450 K, oxygen is directly released from hematite nanotube, thermite reaction is deemed as a multiphase process. And, release energy of System2 is about 3.96 kJ/g. However, much energy rises from alloy reaction. Thermite reactions do not follow the theoretical equation, but are a complicated process.

  10. Modeling and simulation of pressure waves generated by nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; (Yuki) Horie, Yasuyuki

    2012-11-01

    This paper reports the modeling of pressure waves from the explosive reaction of nano-thermites consisting of mixtures of nanosized aluminum and oxidizer granules. Such nanostructured thermites have higher energy density (up to 26 kJ/cm3) and can generate a transient pressure pulse four times larger than that from trinitrotoluene (TNT) based on volume equivalence. A plausible explanation for the high pressure generation is that the reaction times are much shorter than the time for a shock wave to propagate away from the reagents region so that all the reaction energy is dumped into the gaseous products almost instantaneously and thereby a strong shock wave is generated. The goal of the modeling is to characterize the gas dynamic behavior for thermite reactions in a cylindrical reaction chamber and to model the experimentally measured pressure histories. To simplify the details of the initial stage of the explosive reaction, it is assumed that the reaction generates a one dimensional shock wave into an air-filled cylinder and propagates down the tube in a self-similar mode. Experimental data for Al/Bi2O3 mixtures were used to validate the model with attention focused on the ratio of specific heats and the drag coefficient. Model predictions are in good agreement with the measured pressure histories.

  11. Low profile thermite igniter

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  12. Low profile thermite igniter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halcomb, D.L.; Mohler, J.H.

    1991-03-05

    This patent describes a thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  13. Sporicidal effects of iodine-oxide thermite reaction products

    NASA Astrophysics Data System (ADS)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany

    2012-03-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. This reaction releases iodine gas that is known to be a sporicide. To test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure rather than the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin.

  14. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  15. Sporicidal Effects of Iodine-oxide Thermite Reaction Products

    NASA Astrophysics Data System (ADS)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany; InstituteAdvanced Tehnology Collaboration; Dept of Molecular Genetics; Microbiology-UT Austin Collaboration; Chemistry; Biochemistry-UT Austin Collaboration

    2011-06-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. The activation energy of this material reaction is 197 J/g. The reactivity is increased by reducing grain size. This reaction releases iodine gas that is known to be a sporicide. In order to test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure and not the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin. The sporicidal effect is very dependent on exposure time, ranging from about 90% kill for times on the order of a second to 99.99% for one-hour times.

  16. Ab initio molecular dynamics study of thermite reaction at Al and CuO nano-interfaces at different temperatures

    NASA Astrophysics Data System (ADS)

    Tang, Cui-Ming; Chen, Xiao-Xu; Cheng, Xin-Lu; Zhang, Chao-Yang; Lu, Zhi-Peng

    2018-05-01

    The thermite reaction at Al/CuO nano-interfaces is investigated with ab initio molecular dynamics calculations in canonical ensemble at 500 K, 800 K, 1200 K and 1500 K, respectively. The reaction process and reaction products are analyzed in terms of chemical bonds, average charge, time constants and total potential energy. The activity of the reactants enhances with increasing temperature, which induces a faster thermite reaction. The alloy reaction obviously expands outward at Cu-rich interface of Al/CuO system, and the reaction between Al and O atoms obviously expands outward at O-rich interface as temperature increases. Different reaction products are found at the outermost layer of different interfaces in the Al/CuO system. In generally, the average charge of the outer layer aluminum atoms (i.e., Al1, Al2, Al5 and Al6) increases with temperature. The potential energy of Al/CuO system decreases significantly, which indicates that drastic exothermic reaction occurs at the Al/CuO system. This research enhances fundamental understanding in temperature effect on the thermite reaction at atomic level, which can potentially open new possibilities for its industrial application.

  17. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method

    PubMed Central

    Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A.

    2015-01-01

    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite. PMID:26641651

  18. Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method.

    PubMed

    Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A

    2015-01-01

    A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite.

  19. Deflagration of thermite - ammonium nitrate based propellant mixture

    NASA Astrophysics Data System (ADS)

    Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose

    2001-06-01

    Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.

  20. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect

    NASA Astrophysics Data System (ADS)

    Meir, Yehuda; Jerby, Eli

    2015-08-01

    Highly energetic thermite reactions could be useful for a variety of combustion and material-processing applications, but their usability is yet limited by their hard ignition conditions. Furthermore, in virtue of their zero-oxygen balance, exothermic thermite reactions may also occur underwater. However, this feature is also hard to utilize because of the hydrophobic properties of the thermite powder, and its tendency to agglomerate on the water surface rather than to sink into the water. The recently discovered bubble-marble (BM) effect enables the insertion and confinement of a thermite-powder batch into water by a magnetic field. Here, we present a phenomenon of underwater ignition of a thermite-BM by localized microwaves. The thermite combustion underwater is observed in-situ, and its microwave absorption and optical spectral emission are detected. The vapour pressure generated by the thermite reaction is measured and compared to theory. The combustion products are examined ex-situ by X-ray photo-electron spectroscopy which verifies the thermite reaction. Potential applications of this underwater combustion effect are considered, e.g., for detonation, wet welding, thermal drilling, material processing, thrust generation, and composite-material production, also for other oxygen-free environments.

  1. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meir, Yehuda; Jerby, Eli, E-mail: jerby@eng.tau.ac.il

    Highly energetic thermite reactions could be useful for a variety of combustion and material-processing applications, but their usability is yet limited by their hard ignition conditions. Furthermore, in virtue of their zero-oxygen balance, exothermic thermite reactions may also occur underwater. However, this feature is also hard to utilize because of the hydrophobic properties of the thermite powder, and its tendency to agglomerate on the water surface rather than to sink into the water. The recently discovered bubble-marble (BM) effect enables the insertion and confinement of a thermite-powder batch into water by a magnetic field. Here, we present a phenomenon ofmore » underwater ignition of a thermite-BM by localized microwaves. The thermite combustion underwater is observed in-situ, and its microwave absorption and optical spectral emission are detected. The vapour pressure generated by the thermite reaction is measured and compared to theory. The combustion products are examined ex-situ by X-ray photo-electron spectroscopy which verifies the thermite reaction. Potential applications of this underwater combustion effect are considered, e.g., for detonation, wet welding, thermal drilling, material processing, thrust generation, and composite-material production, also for other oxygen-free environments.« less

  2. Thermite at the Nano-Scale

    NASA Astrophysics Data System (ADS)

    Mily, Edward Joseph, Jr.

    Physical vapor deposition of thin film thermites allow for a clean avenue for probing fundamental properties of nanoenergetic materials that prove difficult for traditional powder processing. Precise control over diffusion dimensions, microstructure, and total amount of material are able to be realized with this fabrication technique and the testing of such materials provide valuable insight into how oxidation occurs. This thesis provides several examples of how existing PVD techniques can be coupled with thermite constituents to further the energetic community's understanding of how oxidation occurs in the solid state with the variation of geometric and chemical alterations. The goal of these investigations was to elucidate which material properties and mechanisms drive exothermic activity. The thermite thin films of Al/CuO, Zr/CuO, and Mg/Cuo with varied reducing metal constituents were tested under slow heating conditions. The trend of the metal variation demonstrated the importance of terminal oxide diffusion properties in either impeding or enhancing oxygen exchange. When the reducing metal forms a terminal oxide with limited oxygen diffusivity, exothermicity requires elevated activation energies to commence self-sustaining reaction. In addition to the effects of chemical variation, bilayer thicknesses were varied and found to decrease exothermic peak temperatures similar to the trends found in intermetallic thin film energetics and powder energetic materials. The thin film thermites were also subjected to extreme initiation methods via laser driven flyer plate impact ignition and high heating rate heat treatment (105 K/s). General insight into nano thermite behavior at environments characteristic of applications was sought, and similar trends discovered among slow vs rapid testing. Decreasing reaction dimensions yielded higher reactivity and diffusion barrier properties role in impacting exothermic behavior persist to into the microsecond regime. Ultimately

  3. A DFT study on the enthalpies of thermite reactions and enthalpies of formation of metal composite oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ying; Wang, Meng-jie; Chang, Chun-ran; Xu, Kang-zhen; Ma, Hai-xia; Zhao, Feng-qi

    2018-05-01

    The standard thermite reaction enthalpies (ΔrHmθ) for seven metal oxides were theoretically analyzed using density functional theory (DFT) under five different functional levels, and the results were compared with experimental values. Through the comparison of the linear fitting constants, mean error and root mean square error, the Perdew-Wang functional within the framework of local density approximation (LDA-PWC) and Perdew-Burke-Ernzerhof exchange-correlation functional within the framework of generalized gradient approximation (GGA-PBE) were selected to further calculate the thermite reaction enthalpies for metal composite oxides (MCOs). According to the Kirchhoff formula, the standard molar reaction enthalpies for these MCOs were obtained and their standard molar enthalpies of formation (ΔfHmθ) were finally calculated. The results indicated that GGA-PBE is the most suitable one out of the total five methods to calculate these oxides. Tungstate crystals present the maximum deviation of the enthalpies of thermite reactions for MCOs and these of their physical metal oxide mixtures, but ferrite crystals are the minimum. The correlation coefficients are all above 0.95, meaning linear fitting results are very precise. And the molar enthalpies of formation for NiMoO4, CuMoO4, PbZrO3 (Pm/3m), PbZrO3 (PBA2), PbZrO3 (PBam), MgZrO3, CdZrO3, MnZrO3, CuWO4 and Fe2WO6 were first obtained as -1078.75, -1058.45, -1343.87, -1266.54, -1342.29, -1333.03, -1210.43, -1388.05, -1131.07 and - 1860.11 kJ·mol-1, respectively.

  4. Plane wave density functional molecular dynamics study of exothermic reactions of Al/CuO thermites

    NASA Astrophysics Data System (ADS)

    Oloriegbe, Suleiman; Sewell, Thomas; Chen, Zhen; Jiang, Shan; Gan, Yong

    2014-03-01

    Exothermic reactions between nanosize aluminum (Al) and copper oxide (CuO) structures are of current interest because of their high reaction enthalpy and energy density which exceed those of traditional monomolecular energetic compounds such as TNT, RDX, and HMX. In this work, molecular dynamics simulations with forces obtained from plane wave density functional theory are used to investigate the atomic-scale and electronic processes that occur during the fast thermite reactions between Al and CuO nanostructures under adiabatic conditions. Aluminum surfaces in contact with O-exposed and Cu-exposed CuO surfaces are studied. Starting from initial temperature T = 800 K, we have observed: faster chemical reaction at the oxygen-rich interface during the initial 0.5 ps, linear temperature rise, and fast oxygen diffusion into the Al region with the rate 1.87 X 10-3 cm2/s. The density-derived electrostatic and chemical method is used to evaluate the net atomic charges and charge transfer during the important redox processes. High charge density around the oxygen-exposed interface may be responsible for the faster initial reactions at that interface. The overall reaction rate, determined using the time evolution of Cu-O charge orbital overlap population, is approximately first order.

  5. High-throughput shock investigation of thin film thermites and thermites in fluoropolymer binder

    NASA Astrophysics Data System (ADS)

    Matveev, Sergey; Basset, Will; Dlott, Dana; Lee, Evyn; Maria, Jon-Paul; University of Illinois at Urbana-Champaign Collaboration; North Carolina State University Collaboration

    2017-06-01

    Investigation of nanofabricated thermite systems with respect to their energy release is presented. The knowledge obtained by utilization of a high-throughput tabletop shock-system provides essential information that can be used to tune properties of reactive materials towards a desired application. Our shock system launches 0.25-0.75 mm flyer plates, which can reach velocities of 0.5-6 km s-1 and shock durations of 4 - 16 ns. In current studies, emission was detected by a home-built pyrometer. Various reactive materials with differing composition (Al/CuO and Zr/CuO nanolaminates; Al/CuO/PVDF); Al, Zr, CuO standards) and varying interfacial area, were impacted at velocities spanning the available range to ascertain reaction thresholds. Our results show that reaction-impact threshold for the thermite systems under consideration is <1 km/s and that reaction starts at a time as short as 20 ns. Utilization of graybody approximation provides temperature profiles along the reaction time. In future, our goal is to expand detection capabilities utilizing infrared absorption to analyze formation of the products after the shock. The work is supported by the U.S. Army Research Office under Award W911NF-16-1-0406.

  6. Laser interferometry and emission spectroscopy measurements of cold-sprayed copper thermite shocked to 35 GPa

    NASA Astrophysics Data System (ADS)

    Neel, Christopher; Lacina, David; Johnson, Stephanie

    2017-01-01

    Plate impact experiments were conducted on a cold-sprayed Al-CuO thermite at peak stresses between 5-35 GPa to determine the Hugoniot curve and characterize any shock induced energetic reaction. Photon Doppler Velocimetry (PDV) measurements were used to obtain particle velocity histories and shock speed information for both the shock loading and unloading behavior of the material. A jump in shock velocity was observed in the Hugoniot curve when the material was shocked beyond 20 GPa, suggesting a volume-increasing reaction occurs in this shocked Al-CuO thermite near 20 GPa. To better characterize any shock-induced thermite reactions, emission spectroscopy measurements were obtained at stresses above 20 GPa. The best time-resolved spectra obtained thus far, at 25 GPa, does not support the fast thermite reaction hypothesis.

  7. Electronic processes in fast thermite chemical reactions: a first-principles molecular dynamics study.

    PubMed

    Shimojo, Fuyuki; Nakano, Aiichiro; Kalia, Rajiv K; Vashishta, Priya

    2008-06-01

    Rapid reaction of a molten metal with an oxide is the key to understanding recently discovered fast reactions in nanothermite composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics simulations with interatomic forces calculated quantum mechanically in the framework of the density functional theory. A redox reaction to form iron metal and Al2O3 initiates with the rapid formation of Al-O bonds at the interface within 1 ps, followed by the propagation of the combustion front with a velocity of 70 m/s for at least 5 ps at 2000 K. The reaction time for an oxygen atom to change character from Fe2O3 type to Al2O3 type at the interface is estimated to be 1.7+/-0.9 ps , and bond-overlap population analysis has been used to calculate reaction rates.

  8. Modeling the ignition of a copper oxide aluminum thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  9. Laser Interferometry Measurements of Cold-Sprayed Copper Thermite Shocked to 30 GPa

    NASA Astrophysics Data System (ADS)

    Neel, Christopher; Lacina, David

    2015-06-01

    Plate impact experiments were conducted on a cold-sprayed Al-CuO thermite at peak stresses varying between 5-30 GPa to determine the Hugoniot and characterize any shock induced energetic reaction. Photon Doppler Velocimetry (PDV) measurements were used to obtain particle velocity histories and shock speed information for both the shock loading and unloading behavior of the material. Low stress experiments (<20GPa) exhibited a linearly increasing shock speed with increasing particle velocity. However, an obvious change in slope (i.e. a ``kink'') is present in the Hugoniot at stresses above ~ 20 GPa which follow a linear increase up to the highest stresses attained in this work. The change in Hugoniot curve suggests a volume-increasing reaction occurs in this shocked Al-CuO thermite near 20 GPa, but an analysis of the measured particle velocity histories does not support this assertion. To better characterize any shock-induced thermite reactions, emission spectroscopy measurements were obtained at stresses above and below 20 GPa.

  10. Heat Flux Analysis of a Reacting Thermite Spray Impingent on a Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Collins; Michelle L. Pantoya; Michael A. Daniels

    2012-03-01

    Spray combustion from a thermite reaction is a new area of research relevant to localized energy generation applications, such as welding or cutting. In this study, we characterized the heat flux of combustion spray impinging on a target from a nozzle for three thermite mixtures. The reactions studied include aluminum (Al) with iron oxide (Fe2O3), Al with copper oxide (CuO), and Al with molybdenum oxide (MoO3). Several standoff distances (i.e., distance from the nozzle exit to the target) were analyzed. A fast response heat flux sensor was engineered for this purpose and is discussed in detail. Results correlated substrate damagemore » to a threshold heat flux of 4550 W/cm2 for a fixed-nozzle configuration. Also, higher gas-generating thermites were shown to produce a widely dispersed spray and be less effective at imparting kinetic energy damage to a target. These results provide an understanding of the role of thermal and physical properties (i.e., such as heat of combustion, gas generation, and particle size) on thermite spray combustion performance measured by damaging a target substrate.« less

  11. Effect of nanocomposite synthesis on the combustion performance of a ternary thermite.

    PubMed

    Prentice, Daniel; Pantoya, Michelle L; Clapsaddle, Brady J

    2005-11-03

    Nanocomposite thermites are attractive materials for their diverse applications from metallurgy to ordnance technologies. While there are a plethora of combinations of fuel and oxidizers, this work shows that the composite's overall performance is intimately tied to how the fuel and oxidizer are prepared and combined. Comparison of the combustion velocities of two separate ternary mixtures of Al-Fe(2)O(3)-SiO(2), one prepared in situ using sol-gel processing and the other prepared by physically mixing discrete nanoscale particles, demonstrated different burning behaviors as a result of preparation technique. The stoichiometry of the two sets of thermite was varied to examine the influence of SiO(2) on combustion velocity as a means to control the reaction behavior. For pure Fe(2)O(3) + Al reactions, results show that the sol-gel synthesized materials (40 m/s) exhibit increased velocities over the physically mixed materials (9 m/s) by approximately 4 times. This trend is not observed, however, upon addition of SiO(2) to the thermite mixture; ternary thermites with 40 wt % SiO(2) showed decreased burn velocities of 0.02 m/s for sol-gel prepared thermites compared to 0.2 m/s for their physically mixed counterparts. The observed trends are believed to be caused by the unique mixing between the Fe(2)O(3) and SiO(2) phases resulting from the two synthesis techniques.

  12. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  13. Preparation of Al-La Master Alloy by Thermite Reaction in NaF-NaCl-KCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Jang, Poknam; Li, Hyonmo; Kim, Wenjae; Wang, Zhaowen; Liu, Fengguo

    2015-05-01

    A NaF-NaCl-KCl ternary system containing La2O3 was investigated for the preparation of Al-La master alloy by the thermite reaction method. The solubility of La2O3 in NaF-NaCl-KCl molten salt was determined by the method of isothermal solution saturation. Inductively coupled plasma-optical emission spectroscopy and x-ray diffraction (XRD) analyses were used to consider the content of La2O3 in molten salt and the supernatant composition of molten salt after dissolution of La2O3, respectively. The results showed that the content of NaF had a positive influence on the solubility of La2O3 in NaF-NaCl-KCl molten salts, and the solubility of La2O3 could reach 8.71 wt.% in molten salts of 50 wt.%NaF-50 wt.% (44 wt.%NaCl + 56 wt.%KCl). The XRD pattern of cooling molten salt indicated the formation of LaOF in molten salt, which was probably obtained by the reaction between NaF and La2O3. The kinetic study showed that the thermite reaction was in accord with a first-order reaction model. The main influence factors on La content in the Al-La master alloy product, including molten salt composition, amount of Al, concentration of La2O3, stirring, reduction time and temperature, were investigated by single-factor experimentation. The content of La in the Al-La master alloy could be reached to 10.1 wt.%.

  14. In-situ measurement of temperature during rapid thermite deflagrations

    NASA Astrophysics Data System (ADS)

    Densmore, John; Sullivan, Kyle

    Thermites are composite materials that consist of a fuel (metal) and oxidizer (metal oxide), that upon reaction can release a large amount of energy (20.8 kJ/cc for Al:CuO). The time scale for a thermite to release energy (ms) is much longer than a typical detonation (us). In-situ temperature and/or thermal flux measurements can provide fundamental insight into the reaction mechanisms. This information can inform the design and optimization of energy transport during a deflagration, to optimize the energy release rate. To measure the temperature we use a burn tube apparatus and various pyrometry techniques to measure the spatial temperature field as a reaction proceeds towards completion. We show that system properties can be adjusted to achieve custom thermal properties. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  15. Lunar in situ resource utilization by activated thermites

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Martirosyan, Karen

    2011-10-01

    NASA's anticipated returns to the Moon by 2020, subsequent establishment of lunar in situ resource utilization technologies are essential. The surface of Moon is covered with small eroded particles of regolith called lunar dust that adheres electro-statically to everything coming in contact with it, and is of much concern for future lunar base because of its continual mitigation. The next major concern is the protection of equipment and personnel in long term expeditions from harmful UV radiation, which can be made by constructing protective buildings. For construction of permanent structures it is highly desired to have regular shaped sintered regolith with utilization of local materials and with minimum energy consumption. In this study the concept of sintering of lunar regolith with activated thermite reactions is discussed. The thermodynamic calculations as well as the experimental procedure is provided to prove the effectiveness of activated thermites for regolith sintering using local lunar resources with a low (15 wt. %) concentration of aluminum or magnesium. The thermite method is much more energy efficient than the other sintering methods suggested in literature.

  16. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that willmore » allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.« less

  17. In-Situ Imaging of Particles during Rapid Thermite Deflagrations

    NASA Astrophysics Data System (ADS)

    Grapes, Michael; Sullivan, Kyle; Reeves, Robert; Densmore, John; Willey, Trevor; van Buuren, Tony; Fezaa, Kamel

    The dynamic behavior of rapidly deflagrating thermites is a highly complex process involving rapid decomposition, melting, and outgassing of intermediate and/or product gases. Few experimental techniques are capable of probing these phenomena in situ due to the small length and time scales associated with the reaction. Here we use a recently developed extended burn tube test, where we initiate a small pile of thermite on the closed end of a clear acrylic tube. The length of the tube is sufficient to fully contain the reaction as it proceeds and flows entrained particles down the tube. This experiment was brought to the Advanced Photon Source, and the particle formation was X-ray imaged at various positions down the tube. Several formulations, as well as formulation parameters were varied to investigate the size and morphology of the particles, as well as to look for dynamic behavior attributed to the reaction. In all cases, we see evidence of particle coalescence and condensed-phase interfacial reactions. The results improve our understanding of the procession of reactants to products in these systems. Funding provided by the LLNL LDRD program (PLS-16FS-028).

  18. Integral low-energy thermite igniter

    DOEpatents

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  19. Integral low-energy thermite igniter

    DOEpatents

    Gibson, Albert; Haws, Lowell D.; Mohler, Jonathan H.

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  20. A diagnostic for quantifying heat flux from a thermite spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. P. Nixon; M. L. Pantoya; D. J. Prentice

    2010-02-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allowmore » for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite sprays are reported. Results indicate that this newly designed heat flux sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion.« less

  1. In-Situ Imaging of Particles during Rapid Thermite Deflagrations

    NASA Astrophysics Data System (ADS)

    Grapes, Michael; Reeves, Robert; Densmore, John; Fezzaa, Kamel; van Buuren, Tony; Willey, Trevor; Sullivan, Kyle

    2017-06-01

    The dynamic behavior of rapidly deflagrating thermites is a highly complex process involving rapid decomposition, melting, and outgassing of intermediate and/or product gases. Few experimental techniques are capable of probing these phenomena in situ due to the small length and time scales associated with the reaction. Here we use a recently developed extended burn tube test, where we initiate a small pile of thermite on the closed end of a clear acrylic tube. The length of the tube is sufficient to fully contain the reaction as it proceeds and flows entrained particles down the tube. This experiment was brought to the Advanced Photon Source, and the particle formation was X-ray imaged at various positions down the tube. Several formulations, as well as formulation parameters were varied to investigate the size and morphology of the particles, as well as to look for dynamic behavior attributed to the reaction. In all cases, we see evidence of particle coalescence and condensed-phase interfacial reactions. The results improve our understanding of the procession of reactants to products in these systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-691140.

  2. Thermal imaging of Al-CuO thermites

    NASA Astrophysics Data System (ADS)

    Densmore, John; Sullivan, Kyle; Kuntz, Joshua; Gash, Alex

    2013-06-01

    We have performed spatial in-situ temperature measurements of aluminum-copper oxide thermite reactions using high-speed color pyrometry. Electrophoretic deposition was used to create thermite microstructures. Tests were performed with micron- and nano-sized particles at different stoichiometries. The color pyrometry was performed using a high-speed color camera. The color filter array on the image sensor collects light within three spectral bands. Assuming a gray-body emission spectrum a multi-wavelength ratio analysis allows a temperature to be calculated. An advantage of using a two-dimensional image sensor is that it allows heterogeneous flames to be measured with high spatial resolution. Light from the initial combustion of the Al-CuO can be differentiated from the light created by the late time oxidization with atmosphere. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Experiment on infrared radiation characteristic of colloid Fe/Al thermite

    NASA Astrophysics Data System (ADS)

    Zhen, Jian-wei; Li, Jin-ming; Guo, Meng-meng; Liu, Guo-qing; Wang, Guo-dong

    2016-01-01

    The Fe/Al thermite was made as bulk material. Mixed proportion with liquid energetic colloid, the Fe/Al thermite was made to be collid Fe/Al thermite combustible agent. Then, combustion test sample was got. The combustion process and the infrared radiation characteristic of colloid Fe/Al thermite was experiment by thermal infrared imager. It was showed that collid Fe/Al thermite combustible agent had better infrared radiation characteristic. It could be as based agentia of infrared decoy with the characteristic of persistent and wide spectral range.

  4. Reaction path in the formation of titanium diboride by a magnesium thermite process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, V.; Logan, K.V.; Speyer, R.F.

    1995-12-31

    TiB{sub 2} was formed by a thermite reaction amongst Mg, amorphous B{sub 2}O{sub 3} and TiO{sub 2} powders. Mixtures consisting of 2Mg-TiO{sub 2}, 3Mg-B{sub 2}O{sub 3} and 5Mg-TiO{sub 2}-B{sub 2}O{sub 3} were heat treated using DTA and separately via ignition with a nichrome wire; product phases were identified using XRD. MgO and Ti were products from the first mixture reacted in argon, whereas an incomplete transformation forming Mg{sub 3}TiO{sub 4} occurred in air. For the second mixture, a reaction forming Mg{sub 3}B{sub 2}O{sup 6} occurred in air, but no reaction occurred in argon due to deficiency of oxygen. Minor amountsmore » Of Mg{sub 3}B{sub 2}O{sub 6} and Mg{sub 2}TiO{sub 4} were detected in addition to the predicted product phases of MgO and TiB{sub 2} for the third mixture ignited both in air and argon. Based on available evidence, a path for this reaction was deduced; Mg particles in contact with TiO{sub 2} reacted to form Ti, which in turn reacted with B{sub 2}O{sub 3} to form TiB{sub 2}. TiB{sub 2} product particles from the reaction in argon had a more faceted appearance than those formed during the reaction in air. This was interpreted to be the result of glassy B{sub 2}O{sub 3} surface layer formation on TiB{sub 2} particles in air.« less

  5. Ignition, Combustion and Tuning of Nanocomposite Thermites

    DTIC Science & Technology

    2010-01-01

    8.2.10. The linescan indicates that an Ag/ Cu matrix is in surface contact with Al and O (assumed to be Al2O3). It is speculated the morphology is...chemical reaction. Generally, these are loose powders Al2O3 Al 3 As prepared, these are generally loose been used as the fuel, due to a...considered recently for its potential use in thermite-based biocidal applications.116 Silver exhibits biocidal properties in many forms.117 Morones et al

  6. Nanocomposite thermite ink

    DOEpatents

    Tappan, Alexander S [Albuquerque, NM; Cesarano, III, Joseph; Stuecker, John N [Albuquerque, NM

    2011-11-01

    A nanocomposite thermite ink for use in inkjet, screen, and gravure printing. Embodiments of this invention do not require separation of the fuel and oxidizer constituents prior to application of the ink to the printed substrate.

  7. Electrophoretic deposition of thermites onto micro-engineered electrodes prepared by direct-ink writing.

    PubMed

    Sullivan, K T; Zhu, C; Tanaka, D J; Kuntz, J D; Duoss, E B; Gash, A E

    2013-02-14

    This work combines electrophoretic deposition (EPD) with direct-ink writing (DIW) to prepare thin films of Al/CuO thermites onto patterned two- and three-dimensional silver electrodes. DIW was used to write the electrodes using a silver nanoparticle ink, and EPD was performed in a subsequent step to deposit the thermite onto the conductive electrodes. Unlike conventional lithographic techniques, DIW is a low-cost and versatile alternative to print fine-featured electrodes, and adds the benefit of printing self-supported three-dimensional structures. EPD provides a method for depositing the composite thermite only onto the conductive electrodes, and with controlled thicknesses, which provides fine spatial and mass control, respectively. EPD has previously been shown to produce well-mixed thermite composites which can pack to reasonably high densities without the need for any postprocessing. Homogeneous mixing is particularly important in reactive composities, where good mixing can enhance the reaction kinetics by decreasing the transport distance between the components. Several two- and three-dimensional designs were investigated to highlight the versatility of using DIW and EPD together. In addition to energetic applications, we anticipate that this combination of techniques will have a variety of other applications, which would benefit from the controlled placement of a thin film of one material onto a conductive architecture of a second material.

  8. Aluminum Hydride as a Fuel Supplement to NanoThermites

    DTIC Science & Technology

    2014-01-01

    nanocomposite thermite based on CuO, Bi2O3, and Fe2O3. Pressure cell and burn tube experiments demonstrated enhancements in absolute pressure...pressurization rate, and burning velocity when micron-scale aluminum hydride was used as a minor fuel component in a nanoaluminum–copper-oxide thermite ...alane, AlH3) replaced nanoaluminum incrementally as a fuel in a nanocomposite thermite based on CuO, Bi2O3, and Fe2O3. Pressure cell and burn tube

  9. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong

    2014-11-01

    Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.

  10. Formation of MgO-B{sub 4}C composite via a thermite-based combustion reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.L.; Munir, Z.A.; Holt, J.B.

    1995-03-01

    The combustion synthesis of MgO-B{sub 4}C composites was investigated by coupling a highly exothermic Mg-B{sub 2}O{sub 3} thermite reaction with a weakly exothermic B{sub 4}C formation reaction. Unlike the case of using Al as the reducing agent, the interaction between Mg and B{sub 2}O{sub 3} depends on the surrounding inert gas pressure due to the high vapor pressure of Mg. The interaction changes from one involving predominantly gaseous Mg and liquid B{sub 2}O{sub 3} to one involving liquid Mg and liquid B{sub 2}O{sub 3} as the pressure increases. At low inert gas pressure, the initiation temperature is found to bemore » just below the melting point of Mg (650 C). As the inert gas pressure increases, the vaporization loss of reactants is reduced, and this in turn increases the combustion temperature, which promotes greater grain growth of the product phases, MgO and B{sub 4}C. The particle size of B{sub 4}C increased from about 0.2 to 5 {mu}m as the pressure changed from 1 to 30 atm.« less

  11. Electrospun nanofiber-based thermite textiles and their reactive properties.

    PubMed

    Yan, Shi; Jian, Guoqiang; Zachariah, Michael R

    2012-12-01

    In this work, we present a first time fabrication of thermite-based nanofiber mats with a nitrocellulose composite energetic binder to create a new class of energetic 1D nanocomposite. The as prepared thermite based nanofibrous mats were characterized and tested for their burning behavior, and compared with the pure nitrocellulose and nanoaluminum incorporated nanofibers for their combustion performances. Thermite-based nanofibers show enhanced burning rates in combustion tests, which correlate to the mass loading of nanothermite relative to binder in nanofibers. The electrospinning method demonstrates the possibility of avoiding some of the problems associated with melt casting nanometalized propellants.

  12. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  13. Investigations of the small-scale thermal behavior of sol-gel thermites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith

    2009-02-01

    Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments undermore » argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure

  14. Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy

    NASA Astrophysics Data System (ADS)

    Monogarov, K. A.; Pivkina, A. N.; Grishin, L. I.; Frolov, Yu. V.; Dilhan, D.

    2017-06-01

    Analytical and experimental studies conducted at Semenov Institute of Chemical Physics for investigating the use of pyrotechnic compositions, i.e., thermites, to reduce the risk of the fall of thermally stable parts of deorbiting end-of-life LEO satellites on the Earth are described. The main idea was the use of passive heating during uncontrolled re-entry to ignite thermite composition, fixed on the titanium surface, with the subsequent combustion energy release to be sufficient to perforate the titanium cover. It is supposed, that thus destructed satellite parts will lose their streamline shape, and will burn out being aerodynamically heated during further descending in atmosphere (patent FR2975080). On the base of thermodynamic calculations the most promising thermite compositions have been selected for the experimental phase. The unique test facilities have been developed for the testing of the efficiency of thermite charges to perforate the titanium TA6V cover of 0.8 mm thickness under temperature/pressure conditions duplicated the uncontrolled re-entry of titanium tank after its mission on LEO. Experiments with the programmed laser heating inside the vacuum chamber revealed the only efficient thermite composition among preliminary selected ones to be Al/Co3O4. Experimental searching of the optimal aluminum powder between spherical and flaked nano- and micron-sized ones revealed the possibility to adjust the necessary ignition delay time, according to the titanium cover temperature dependency on deorbiting time. For the titanium tank the maximum temperature is 1100 °C at altitude 68 km and pressure 60 Pa. Under these conditions Al/Co3O4 formulations with nano-Al spherical particles provide the ignition time to be 13.3 s, and ignition temperature as low as 592±5 °C, whereas compositions with the micron-sized spherical Al powder reveal these values to be much higher, i.e., 26.3 s and 869±5 °C, respectively. The analytical and experimental studies described

  15. In-situ synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite by a thermite reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deevi, S.C.; Deevi, S.

    1995-08-01

    In this paper, the authors discuss the reaction mechanism involved in the thermite reaction leading to the synthesis of a composite since in an actual combustion synthesis, the reaction propagates at a velocity of 10 to 20 mm/sec. Reaction mechanism was determined by using a differential thermal analysis (DTA) and X-ray diffraction (XRD). During the combustion synthesis of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}, reaction of MoO{sub 3}, Al and Si occurs rapidly and the reactants and products are expected to be in the liquid state at the combustion temperature. MoO{sub 3} is first reduced to MoO{sub 2}, and the reaction betweenmore » MoO{sub 2}, Al and Si leads to a composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}. Differential thermal analysis reveals that the onset of exothermic reactions is preceded by melting indicating the necessity of molten Al for the synthesis of the composite. The reaction between MoO{sub 2} + 2Al +2Si can be moderated with Mo-Si mixtures such that the ratio of MoSi{sub 2} to Al{sub 2}O{sub 3} can be increased in the composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}.« less

  16. A pressure-driven flow analysis of gas trapping behavior in nanocomposite thermite films

    NASA Astrophysics Data System (ADS)

    Sullivan, K. T.; Bastea, S.; Kuntz, J. D.; Gash, A. E.

    2013-10-01

    This article is in direct response to a recently published article entitled Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites (K. T. Sullivan et al., J. Appl. Phys., 112(2), 2012), in which we introduced a non-dimensional parameter as the ratio of gas production to gas escape within a thin porous thermite film. In our original analysis, we had treated the problem as Fickian diffusion of gases through the porous network. However, we believe a more physical representation of the problem is to treat this as pressure-driven flow of gases in a porous medium. We offer a new derivation of the non-dimensional parameter which calculates gas velocity using the well-known Poiseuille's Law for pressure-driven flow in a pipe. This updated analysis incorporates the porosity, gas viscosity, and pressure gradient into the equation.

  17. Thermal Behavior of Fe2O3/Al Thermite Mixtures in Air and Vacuum Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duraes, L.; Santos, R.; Correia, A.

    2006-07-28

    In this work, the thermal behavior of Fe2O3/Al thermite mixtures, in air and vacuum, is studied. The individual reactants and three mixtures - stoichiometric and over aluminized - are tested, by Simultaneous Thermal Analysis (STA) and heating microscopy, with a heating rate of 10 deg. C/min. The STA results show that the presence of O2 from air, or from residual air in vacuum, influenced the reaction scheme. The Al oxidation by this oxygen was extensive, making the thermite reaction with Fe2O3 unviable. There was also evidence of significant conversion of the Fe2O3 into Fe3O4, supporting the previous conclusion. So, themore » STA curves for the three mixtures were similar and displayed features of the individual reactants' curves. The heating microscopy images confirmed the STA conclusions, with one exception: the thermal explosion of the Al sample close to 550 deg. C. The absence of this phenomenon in STA results was explained by the limited amount of material used in each sample.« less

  18. In situ microscopy of rapidly heated nano-Al and nano-Al/WO{sub 3} thermites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kyle T.; Zachariah, Michael R.; Chiou, Wen-An

    2010-09-27

    The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 10{sup 6} K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO{sub 3} composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring formore » the nano-Al/WO{sub 3} thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.« less

  19. The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria.

    PubMed

    Clark, Billy R; Pantoya, Michelle L

    2010-10-21

    The threat of biological weapons is a major concern in the present day and has led to studying methods to neutralize spore forming bacteria. A new technique involves the use of a thermite reaction that exhibits biocidal properties to limit bacterial growth. The objective was to examine the influence on bacteria growth upon spore exposure to thermite reactions with and without biocidal properties. Three thermites are considered: two that have biocidal properties (aluminium (Al) combined with iodine pentoxide (I(2)O(5)) and Al combined with silver oxide (Ag(2)O)); and, one that produces a highly exothermic reaction but has no biocidal properties (Al combined with iron oxide (Fe(2)O(3))). Results show that Al + I(2)O(5) is extremely effective at neutralizing spores after only one hour of exposure. The temperature generated by the reaction was not determined to be an influential factor affecting spore growth kinetics. Further analysis of the thermite reactions revealed that the Al + I(2)O(5) reaction produces iodine gas that effectively interacts with the spores and neutralizes bacteria growth, while the Al + Ag(2)O reaction temperature does not vaporize silver. In the condensed phase silver does not interact with the spores enough to neutralize bacteria growth. This study gives evidence that a thermite can be used as a stable transportation and delivery system for biocidal gas.

  20. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions.

    PubMed

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  1. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    PubMed Central

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809

  2. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-04-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  3. Synthesis and Performance Characterization of a Nanocomposite Ternary Thermite: Al/Fe2O3/SiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prentice, D; Pantoya, M L; Clapsaddle, B J

    2005-02-04

    Making solid energetic materials requires the physical mixing of solid fuels and oxidizers or the incorporation of fuel and oxidizing moieties into a single molecule. The former are referred to as composite energetic materials (i.e., thermites, propellants, pyrotechnics) and the latter are deemed monomolecular energetic materials (i.e., explosives). Mass diffusion between the fuel and oxidizer is the rate controlling step for composite reactions while bond breaking and chemical kinetics control monomolecular reactions. Although composites have higher energy densities than monomolecular species, they release that energy over a longer period of time because diffusion controlled reactions are considerably slower than chemistrymore » controlled reactions. Conversely, monomolecular species exhibit greater power due to more rapid kinetics than physically mixed energetics. Reducing the diffusion distance between fuel and oxidizer species within an energetic composite would enhance the reaction rate. Recent advances in nanotechnology have spurred the development of nano-scale fuel and oxidizer particles that can be combined into a composite and effectively reduce diffusion distances to nano-scale dimensions or less. These nanocomposites have the potential to deliver the best of both worlds: high energy density of the physically mixed composite with the high power of the monomolecular species. Toward this end, researchers at Lawrence Livermore National Laboratory (LLNL) developed nano-particle synthesis techniques, based on sol-gel chemistry, for the production of thermite nanocomposites.« less

  4. Dependence of catalytic properties of Al/Fe{sub 2}O{sub 3} thermites on morphology of Fe{sub 2}O{sub 3} particles in combustion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing

    2014-11-15

    Three Fe{sub 2}O{sub 3} particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe{sub 2}O{sub 3} thermites using ultrasonic mixing. The properties of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe{sub 2}O{sub 3} thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparisonmore » to those of Fe{sub 2}O{sub 3}. The results show that the Al/Fe{sub 2}O{sub 3} thermites are better than Fe{sub 2}O{sub 3} in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe{sub 2}O{sub 3} particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe{sub 2}O{sub 3} and the corresponding thermite is attributed to the large specific surface area of Fe{sub 2}O{sub 3}. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe{sub 2}O{sub 3} particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications. - Graphical abstract: Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} have been compared for the first time by analyzing combustion properties of formulations containing them, suggesting their potential application in AP/HTPB composite propellant systems. - Highlights

  5. Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites

    NASA Astrophysics Data System (ADS)

    Sullivan, K. T.; Kuntz, J. D.; Gash, A. E.

    2012-07-01

    Electrophoretic deposition was used to deposit thin films (˜10-200 μm) of nano-aluminum/copper oxide thermites, with a density of 29% the theoretical maximum. The reaction propagation velocity was examined using fine-patterned electrodes (0.25 × 20 mm), and the optimum velocity was found to correspond to a fuel-rich equivalence ratio of 1.7. This value did not correlate with the calculated maximum in gas production or temperature, and it is suggested that it is a result of enhanced condensed-phase transport, which is speculated to increase for fuel-rich conditions. A ˜25% drop in propagation velocity occurred above an equivalence ratio of 2.0, where Al2O3 is predicted to undergo a phase change from liquid to solid. This is expected to hinder the kinetics by decreasing the mobility of condensed-phase reacting species. The effect of film thickness on propagation velocity was investigated, using the optimum equivalence ratio. The velocity was seen to exhibit a two-plateau behavior, with one plateau between 13 and 50 μm film thickness, and the other above ˜120 μm. The latter had nearly an order of magnitude faster velocity than the former, 36 m/s vs. 4 m/s, respectively. For film thicknesses in the 50-120 μm range, a linear transitional regime was observed. Images from the combustion studies showed an increase in forward-transported particles as the film thickness increased, along with more turbulent behavior of the flame. It was suggested that the two-plateau behavior indicated a shift in the energy transport mechanism. While nanocomposite thermites have been traditionally thought to exhibit convective energy transport, we find in this work that particle advection may also be important. The velocity of particles ejected through a thin slit mounted above a thermite strip was measured, and was found to be even faster (˜2-3×) than the flame propagation velocity. The morphology of captured particles was examined with an electron microscope, and indicated that

  6. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  7. Investigation of Al/CuO multilayered thermite ignition

    NASA Astrophysics Data System (ADS)

    Nicollet, Andréa; Lahiner, Guillaume; Belisario, Andres; Souleille, Sandrine; Djafari-Rouhani, Mehdi; Estève, Alain; Rossi, Carole

    2017-01-01

    The ignition of the Al/CuO multilayered material is studied experimentally to explore the effects of the heating surface area, layering, and film thickness on the ignition characteristics and reaction performances. After the description of the micro-initiator devices and ignition conditions, we show that the heating surface area must be properly calibrated to optimize the nanothermite ignition performances. We demonstrated experimentally that a heating surface area of 0.25 mm2 is sufficient to ignite a multilayered thermite film of 1.6 mm wide by a few cm long, with a success rate of 100%. A new analytical and phenomenological ignition model based on atomic diffusion across layers and thermal exchange is also proposed. This model considers that CuO first decomposes into Cu2O, and then the oxygen diffuses across the Cu2O and Al2O3 layers before reaching the Al layer, where it reacts to form Al2O3. The theoretical results in terms of ignition response times confirm the experimental observation. The increase of the heating surface area leads to an increase of the ignition response time and ignition power threshold (go/no go condition). We also provide evidence that, for any heating surface area, the ignition time rapidly decreases when the electrical power density increases until an asymptotic value. This time point is referred to as the minimum response ignition time, which is a characteristic of the multilayered thermite itself. At the stoichiometric ratio (Al thickness is half of the CuO thickness), the minimum ignition response time can be easily tuned from 59 μs to 418 ms by tuning the heating surface area. The minimum ignition response time increases when the bilayer thickness increases. This work not only provides a set of micro-initiator design rules to obtain the best ignition conditions and reaction performances but also details a reliable and robust MicroElectroMechanical Systems process to fabricate igniters and brings new understanding of phenomena

  8. Fullerene Derivatives and Aluminum-based Nanothermites as Potential New Ammunition Primers

    DTIC Science & Technology

    2013-03-01

    such as RDX. In a thermite type reaction, a metal oxide is the oxidant and the fuel is aluminum. The nanothermites are generally composed of aluminum...and metal oxide nanopowders, unlike conventional thermite used for several years, which are composed of micron sized powders. The rate of release of...energy in conventional thermite is relatively slow in comparison with conventional energetic materials. The typical velocity of propagation of combustion

  9. A low-ignition energy, SCB, thermite igniter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickes, R.W. Jr.; Grubelich, M.C.; Wackerbarth, D.E.

    1996-06-01

    The authors describe threshold ignition studies for semiconductor bridge, SCB, ignition of aluminum/copper oxide (Al/CuO) thermite as a function of the capacitor discharge unit (CDU) firing set discharge capacitance, the charge holder material and the morphology of the CuO. All of the tests were carried out with the devices cooled to 0 F ({minus}18 C). They compared ignition thresholds using a brass charge holder and a G10 charge holder; G10 is a non-conducting, fiber-glass-epoxy composite material. They determined that at 50 V on the discharge capacitor, the thresholds were 30.1 {micro}F and 2.0 {micro}F respectively. The tests revealed that differentmore » CuO morphologies affected the function time (interval between start of the firing set current and the output of the thermite device) but did not significantly affect the threshold sensitivity.« less

  10. Mechanical properties and fracture toughness of rail steels and thermite welds at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-qing; Zhou, Hui; Shi, Yong-jiu; Feng, Bao-rui

    2012-05-01

    Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway service. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fracture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation after fracture and percentage reduction of area) and the toughness indices (Charpy impact energy A k and plane-strain fracture toughness K IC) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger A k and K IC values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.

  11. A demonstration of glass bonding using patterned nanocomposite thermites deposited from fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Juan Carlos

    2015-01-01

    Ceramics and other nonmetals are widely used in industrial and research applications. Although these materials provide many advantages, they often pose unique challenges during bonding. This work aims to expand on current processes, which have much narrower applications, to nd a more universal method for nonmetal bonding. We utilize inks comprised of aluminum-based nanoenergetics, (a heat source) and tin (a bonding agent). Requirements for successful bonding are explored and four key criteria are established. Through statistical simulation and thermochemical equilibrium calculations, we conclude that the presence of a diluent in large percentages negatively impacts reaction kinetics. Conversely, we show smallmore » percentages of added tin enhance gas generation and drive faster reaction rates. The bulk bonding material, thermite plus tin, forms a continuous structure during reaction, adhering well to the substrate surface. In some cases, these bonds failed above 1200 kPa.« less

  12. Fabrication and Characterization of Thermite Reactive Nano-Laminates

    NASA Astrophysics Data System (ADS)

    Lee, Evyn; Maria, Jon-Paul; Matveev, Sergey; Dlott, Dana; Rost, Christina; Hopkins, Patrick

    2017-06-01

    Results of fabrication and characterization of thermite reactive nano-laminates (RNLs) via magnetron sputtering will be presented. The samples were created in a bilayer geometry of a metal and metal oxide at varied thicknesses to alter the amount of interfacial area readily available to participate in the reaction. Two systems were investigated to characterize the RNL system: Al/CuO and Zr/CuO. The Al/CuO system was fabricated at a constant overall stack thickness of nearly one micron with varied numbers of bilayers (one to seven). Thermal conductivity and interface conductance of the Al/CuO system were investigated via time-domain thermoreflectance (TDTR). The Zr/CuO system was also fabricated at varying bilayer thickness and was characterized via high throughput shock studies to characterize the oxygen transfer process at short time scales. Emissions were obtained via a flyer plate impact at velocities ranging 0.5- 2 km s-1 at durations of 4-16 ns. The reaction impact threshold was found to be at velocities lower than 0.7(+/-0.05) km s-1. At impact velocities above the threshold, the reaction onset is seen at approximately 1 μs. ARO MURI: Multimodal energy flow at atomically engineered interfaces.

  13. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  14. SCB thermite igniter studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1996-12-31

    The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affectedmore » the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.« less

  15. Improving fatigue performance of rail thermite welds

    NASA Astrophysics Data System (ADS)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  16. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.

    2010-10-15

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case ofmore » the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.« less

  17. Nanostructured thermites based on iodine pentoxide for bio agent defeat systems.

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Kazansky, Alexander; Martirosyan, Karen

    2011-10-01

    The risk for bioterrorist events involving the intentional airborne release of contagious agents has led to development of new approaches for bio agent defeat technologies both indoors and outdoors. Novel approaches to defeat harmful biological agents have generated a strong demand for new active materials. The preferred solutions are to neutralize the biological agents within the immediate target area by using aerosolized biocidal substances released in situ by high energetic reactions. By using nano-thermite reactions, with energy release up to 25 kJ/cc, based on I2O5/Al nanoparticles we intend to generate high quantity of vaporized iodine for spatial deposition onto harmful bacteria for their destruction. In this report, the effect of reaction product on growth and survival of Escherichia coli (E-coli) expressing GFP (Green Fluorescent Protein) was investigated. Moreover, we developed an approach to increase sensitivity of the detection. The study has shown that I2O5/Al nanosystem is extremely effective to disinfect harmful biological agents such (E-coli) bacteria in seconds.

  18. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    NASA Astrophysics Data System (ADS)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  19. The Burn Rate of Calcium Sulfate Dihydrate-Aluminum Thermites.

    PubMed

    Govender, Desania Raquel; Focke, Walter Wilhelm; Tichapondwa, Shepherd Masimba; Cloete, William Edward

    2018-05-29

    The energetics of cast calcium sulfate dihydrate-aluminium thermites was investigated. The casts were prepared form water slurries with a solids content of xxx wt-%. The base case thermite comprised 60 wt-% calcium sulfate dihydrate as the oxidiser with 40 wt-% aluminium as fuel. The heat of hydration of the base case was 59 ± 8 kJkg-1 and the setting time was zzz min. The compressive strength reached 2.9 ± 0.2 MPa after three days drying in ambient air. The open air burn rate was 12.0 ± 1.6 mm s-1 and a maximum surface temperature of 1370 ± 64 °C was recorded with a pyrometer. Bomb calorimetry indicated an energy output of 8.0 ± 1.1 MJ kg-1, slightly lower than predicted by the EKVI thermodynamic simulation. Substitution of 10 wt-% of the oxidant with copper sulfate pentahydrate significantly decreased the setting time of the casts to about yyy min. The density of the castings was varied by either adding hollow sodium borosilicate glass spheres or by adding excess water during the casting process. The addition of the hollow glass spheres caused a decrease in the burning rate. The burning rate of the base case was not affected materially by the addition of excess water. However, it did increase the burning rate of the copper sulfate pentahydrate-modified thermite. Dehydration of the casts by thermal treatments at either 155 °C or 200 °C also led to significant increases in the burning rate.

  20. Structure and Properties of Thermite Welds in Premium Rails

    DOT National Transportation Integrated Search

    1985-12-01

    Thermite welds were used to join combinations of premium rails and AREA Controlled Cooled Carbon rails (i.e., standard rails). The premium rails comprised head-hardened rails and CrMo, CrV and Cr alloy rails. A major objective was to determine the fe...

  1. Exothermic Surface Reactions in Alumina-Aluminum Shell-Core Nanoparticles with Iodine Oxide Decomposition Fragments

    DTIC Science & Technology

    2014-02-22

    substantially high heat of combustion 6.22 kJ/g in comparison to other thermite reactions such as Al/CuO (4.09 kJ/g), Al/MoO3 (4.72 kJ/g), and Al/Fe2O3 (3.97 kJ...oxide shell growth on nano aluminum thermite propagation rates. Combust Flame 159:3448 3453 Granier JJ, Pantoya ML (2004) Laser ignition of...nanocomposite thermites . Combust Flame 138:373 383 2310 Page 8 of 9 J Nanopart Res (2014) 16:2310 1 3 Hlavacek V, Pranda P, Prandova K (2005) Reactivity, stored

  2. Microstructural and mechanical characterization of postweld heat-treated thermite weld in rails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilic, N.; Jovanovic, M.T.; Todorovic, M.

    1999-10-01

    This paper describes a comparative study of the hardness characteristics, mechanical properties, microstructures, and fracture mechanisms of the thermite welded rail steel joints before and after heat treatment. It has been found that heat treatment of the welded joint improves the mechanical properties (UTS and elongation), and changes the fracture mechanism from brittle to ductile. Improved strength and elongation are attributed to the finer ferrite-pearlite microstructure and the different fracture mechanism. Microporosity and numerous inclusions were seen on the fracture surface of the welded joint. The chemical composition of the inclusions indicated that the molten thermite mixture had reacted withmore » the magnesite lining of the ladle and the feeder.« less

  3. Incomplete reactions in nanothermite composites

    NASA Astrophysics Data System (ADS)

    Jacob, Rohit J.; Ortiz-Montalvo, Diana L.; Overdeep, Kyle R.; Weihs, Timothy P.; Zachariah, Michael R.

    2017-02-01

    Exothermic reactions between oxophilic metals and transition/post transition metal-oxides have been well documented owing to their fast reaction time scales (≈10 μs). This article examines the extent of the reaction in nano-aluminum based thermite systems through a forensic inspection of the products formed during reaction. Three nanothermite systems (Al/CuO, Al/Bi2O3, and Al/WO3) were selected owing to their diverse combustion characteristics, thereby providing sufficient generality and breadth to the analysis. Microgram quantities of the sample were coated onto a fine platinum wire, which was resistively heated at high heating rates (≈105 K/s) to ignite the sample. The subsequent products were captured/quenched very rapidly (≈500 μs) in order to preserve the chemistry/morphology during initiation and subsequent reaction and were quantitatively analyzed using electron microscopy and focused ion beam cross-sectioning followed by energy dispersive X-ray spectroscopy. Elemental examination of the cross-section of the quenched particles shows that oxygen is predominantly localized in the regions containing aluminum, implying the occurrence of the redox reaction. The Al/CuO system, which has simultaneous gaseous oxygen release and ignition (TIgnition ≈ TOxygen Release), shows a substantially lower oxygen content within the product particles as opposed to Al/Bi2O3 and Al/WO3 thermites, which are postulated to undergo a condensed phase reaction (TIgnition ≪ TOxygen Release). An effective Al:O composition for the interior section was obtained for all the mixtures, with the smaller particles generally showing a higher oxygen content than the larger ones. The observed results were further corroborated with the reaction temperature, obtained using a high-speed spectro-pyrometer, and bomb calorimetry conducted on larger samples (≈15 mg). The results suggest that thermites that produce sufficient amounts of gaseous products generate smaller product particles and

  4. The Combustion Performance and Ingredient Ratio of Thermite

    NASA Astrophysics Data System (ADS)

    Jia, Shuan-zhu; Du, Shi-guo; Zhen, Jian-wei; Yang, Xin-hui

    2017-12-01

    Thermite was widely used because of its combustion properties and combustion products. However, due to the combustion heat, ignition performance, burning rate and the ratio of energy conversion of different components of thermite agent are very different. The requirements of the main realization in: (a) Its easy to ignite and not easy to extinguish; (b) Combustion and heat as much as possible High; (c) The burning speed should be appropriate. So the performance of these aspects is always being hot focus. In this paper, four aspects of the improve about combustion heat, ignition performance, burning rate and the ratio of energy conversion were analyzed through the aluminum alloy, the addition of aluminum, the addition of the third party, the change of the particle size and the compaction density. Finaly states the research direction in the future. The future of aluminum heat agent formula research focus will be: (a) A single aluminum heat agent the best proportion of the study; (b) The addition of different additives and additives (c) The exploration of alternatives that are more excellent performance will inevitably become a hot topic to improve the heat of combustion. Aluminum heat agent performance will be much superior, and the application will also be more extensive.

  5. Hierarchical MnO2/SnO2 heterostructures for a novel free-standing ternary thermite membrane.

    PubMed

    Yang, Yong; Zhang, Zhi-Cheng; Wang, Peng-Peng; Zhang, Jing-Chao; Nosheen, Farhat; Zhuang, Jing; Wang, Xun

    2013-08-19

    We report the synthesis of a novel hierarchical MnO2/SnO2 heterostructures via a hydrothermal method. Secondary SnO2 nanostructure grows epitaxially on the surface of MnO2 backbones without any surfactant, which relies on the minimization of surface energy and interfacial lattice mismatch. Detailed investigations reveal that the cover density and morphology of the SnO2 nanostructure can be tailored by changing the experimental parameter. Moreover, we demonstrate a bottom-up method to produce energetic nanocomposites by assembling nanoaluminum (n-Al) and MnO2/SnO2 hierarchical nanostructures into a free-standing MnO2/SnO2/n-Al ternary thermite membrane. This assembled approach can significantly reduce diffusion distances and increase their intimacy between the components. Different thermite mixtures were investigated to evaluate the corresponding activation energies using DSC techniques. The energy performance of the ternary thermite membrane can be manipulated through different components of the MnO2/SnO2 heterostructures. Overall, our work may open a new route for new energetic materials.

  6. Fluid dynamic modeling of nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki

    2014-03-01

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.

  7. Fluid dynamic modeling of nano-thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.

    2014-03-14

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less

  8. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance.

  9. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  10. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE PAGES

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; ...

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly themore » full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  11. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time.more » After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  12. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less

  13. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  14. Doped δ-bismuth oxides to investigate oxygen ion transport as a metric for condensed phase thermite ignition.

    PubMed

    Wang, Xizheng; Zhou, Wenbo; DeLisio, Jeffery B; Egan, Garth C; Zachariah, Michael R

    2017-05-24

    Nanothermites offer high energy density and high burn rates, but are mechanistically only now being understood. One question of interest is how initiation occurs and how the ignition temperature is related to microscopic controlling parameters. In this study, we explored the potential role of oxygen ion transport in Bi 2 O 3 as a controlling mechanism for condensed phase ignition reaction. Seven different doped δ-Bi 2 O 3 were synthesized by aerosol spray pyrolysis. The ignition temperatures of Al/doped Bi 2 O 3 , C/doped Bi 2 O 3 and Ta/doped Bi 2 O 3 were measured by temperature-jump/time-of-flight mass spectrometer coupled with a high-speed camera respectively. These results were then correlated to the corresponding oxygen ion conductivity (directly proportional to ion diffusivity) for these doped Bi 2 O 3 measured by impedance spectroscopy. We find that ignition of thermite with doped Bi 2 O 3 as oxidizer occurs at a critical oxygen ion conductivity (∼0.06 S cm -1 ) of doped Bi 2 O 3 in the condensed-phase so long as the aluminum is in a molten state. These results suggest that oxygen ion transport limits the condensed state Bi 2 O 3 oxidized thermite ignition. We also find that the larger oxygen vacancy concentration and the smaller metal-oxide bond energy in doped Bi 2 O 3 , the lower the ignition temperature. The latter suggests that we can consider the possibility of manipulating microscopic properties within a crystal, to tune the resultant energetic properties.

  15. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  16. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  17. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    PubMed Central

    Chaiyut, Nattawut; Worawanitchaphong, Phatsakon

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854

  18. Factors Influencing Temperature Fields during Combustion Reactions

    DTIC Science & Technology

    2014-05-20

    promoting thermal energy distributions. Keywords: Thermites · Nanoparticle combustion • Aluminum · Infrared thermometry • Non-ideal explosives 1...materials (nano- thermite ) comprised of a metallic fuel and organic or metal- lic oxidizer and will be referred to as nanothermites hence forth. The most...magnesium (Mg), manganese (Mn), and titanium (Ti) nanoparticles were added to Al/CuO at 10% by weight of the nanothermite sample. The nano- thermites with

  19. Semiconductor bridge, SCB, ignition studies of Al/CuO thermite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1997-04-01

    The authors briefly summarize semiconductor bridge operation and review their ignition studies of Al/CuO thermite as a function of the capacitor discharge unit (CDU) firing set capacitance, charge holder material and morphology of the CuO. Ignition thresholds were obtained using a brass charge holder and a non-conducting fiber-glass-epoxy composite material, G10. At - 18 C and a charge voltage of 50V, the capacitance thresholds were 30.1 {mu}F and 2.0 {mu}F respectively. They also present new data on electrostatic discharge (ESD) and radio frequency (RF) vulnerability tests.

  20. Waste derived bioeconomy in India: A perspective.

    PubMed

    S, Venkata Mohan; P, Chiranjeevi; Dahiya, Shikha; A, Naresh Kumar

    2018-01-25

    Environmental and climatic change issues, population explosion, rapid urbanisation, depletion of fossil reserves, need for energy security, huge waste generation, etc. are some of the inherent issues associated with the fossil based linear economy which need greater attention. In this context, the world is gradually transforming from fossil-based economy to a sustainable circular bio-economy. The biogenic waste which is generated in enormous quanties in India can be considered as potential feedstock for structuring the bio-based economy. This communication depicts the need for developing waste derived bioeconomy in the Indian perspective. Waste is now being perceived as a resource with value and believed to supplement petroleum feedstock to a great extent if properly utilized. The necessity to introduce waste as the core element for the future economic models which also allows sustainable development is discussed. The review also establishes drivers for the bioeconomy and structures the waste derived bioeconomy in a sustainable format to address the futuristic needs, scope and opportunities envisaged in the business and economic realm. The enabling technologies/processes that can be applied for biogenic wastes valorisation are elaborated. Circularizing the economy in a waste biorefinery model for the production of biobased products including bioenergy is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    PubMed

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  2. A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films

    NASA Astrophysics Data System (ADS)

    Lahiner, Guillaume; Nicollet, Andrea; Zapata, James; Marín, Lorena; Richard, Nicolas; Rouhani, Mehdi Djafari; Rossi, Carole; Estève, Alain

    2017-10-01

    Thermite multilayered films have the potential to be used as local high intensity heat sources for a variety of applications. Improving the ability of researchers to more rapidly develop Micro Electro Mechanical Systems devices based on thermite multilayer films requires predictive modeling in which an understanding of the relationship between the properties (ignition and flame propagation), the multilayer structure and composition (bilayer thicknesses, ratio of reactants, and nature of interfaces), and aspects related to integration (substrate conductivity and ignition apparatus) is achieved. Assembling all these aspects, this work proposes an original 2D diffusion-reaction modeling framework to predict the ignition threshold and reaction dynamics of Al/CuO multilayered thin films. This model takes into consideration that CuO first decomposes into Cu2O, and then, released oxygen diffuses across the Cu2O and Al2O3 layers before reacting with pure Al to form Al2O3. This model is experimentally validated from ignition and flame velocity data acquired on Al/CuO multilayers deposited on a Kapton layer. This paper discusses, for the first time, the importance of determining the ceiling temperature above which the multilayers disintegrate, possibly before their complete combustion, thus severely impacting the reaction front velocity and energy release. This work provides a set of heating surface areas to obtain the best ignition conditions, i.e., with minimal ignition power, as a function of the substrate type.

  3. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  4. Thermal Investigations of Nanoaluminum/Perfluoropolyether Core-Shell Impregnated Composites for Structural Energetics

    DTIC Science & Technology

    2014-07-19

    that undergo an oxidation reduction thermite reaction releasing energy. Advances in the field have generated diverse material platforms ranging from bulk...This is a pre ignition reaction (PIR) similar to the one observed by Pantoya and Dean in n Al/Teflon thermite based reactions [14]. PIR exotherms were...2010) 2560–2569. [5] S. Yan, G. Jian, M.R. Zachariah, Electrospun nanofiber-based thermite textiles and their reactive properties, ACS Appl. Mater

  5. National markets for organic waste-derived fertilizers and soil amendments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, T.J.; Pierzynski, G.M.; Pepperman, R.E.

    1995-12-31

    The last decade has seen enormous growth in the U.S. in the recycling of organic waste materials like sewage sludge, manures, yard waste, solid waste and various industrial wastes. This has been prompted by real or perceived shortages of landfill capacity, state and federal regulations favoring beneficial use of organic wastes, and public support for recycling. Use of fertilizers and soil amendments derived from these wastes has been stimulated by favorable supply-side economics, a shift to organic/sustainable agriculture, and water quality concerns that favor slow-release nutrient sources. This paper summarizes the properties and beneficial use attributes of the various wastesmore » and their derived products, markets for these materials, and constraints/strategies for market penetration.« less

  6. High-Energy-Density LCA-Coupled Structural Energetic Materials for Counter WMD Applications

    DTIC Science & Technology

    2014-04-01

    reactive ( thermite ) fillers as high-energy-density structural energetic materials. The specific objectives include performing fundamental studies to...a) investigate mechanics of dynamic densification and reaction initiation in Ta+Fe2O3 and Ta+Bi2O3 thermite powder mixtures and to (b) design and...initiation in the thermite filler and allow controlled fragmentation. Linear Cellular A; counter WMDs; shock-compression and impact-initiated reactions

  7. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  8. Palladium Nanoparticles Immobilized on Individual Calcium Carbonate Plates Derived from Mussel Shell Waste: An Ecofriendly Catalyst for the Copper-Free Sonogashira Coupling Reaction.

    PubMed

    Saetan, Trin; Lertvachirapaiboon, Chutiparn; Ekgasit, Sanong; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2017-09-05

    The conversion of waste into high-value materials is considered an important sustainability strategy in modern chemical industries. A large volume of shell waste is generated globally from mussel cultivation. In this work, mussel shell waste (Perna viridis) is transformed into individual calcium carbonate plates (ICCPs) and is applied as a support for a heterogeneous catalyst. Palladium nanoparticles (3-6 nm) are deposited with an even dispersion on the ICCP surface, as demonstrated by X-ray diffraction and scanning electron microscopy. Using this system, Sonogashira cross-coupling reactions between aryl iodides and terminal acetylenes were accomplished in high yields with the use of 1 % Pd/ICCP in the presence of potassium carbonate without the use of any copper metal or external ligand. The Pd/ICCP catalyst could also be reused up to three times and activity over 90 % was maintained with negligible Pd-metal leaching. This work demonstrates that mussel shell waste can be used as an inexpensive and effective support for metal catalysts in coupling reactions, as demonstrated by the successful performance of the Pd-catalyzed, copper-free Sonogashira cross-coupling process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Waste-wood-derived fillers for plastics

    Treesearch

    Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider

    1996-01-01

    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...

  10. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2).

    PubMed

    Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice

    2012-03-09

    The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  11. Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste-to-Biofuel Conversion

    DOE PAGES

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao; ...

    2017-06-21

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  12. Low-Power Laser Ignition of Aluminum/Metal Oxide Nanothermites

    DTIC Science & Technology

    2014-01-01

    ignition energy needed for a specific thermite reaction. Low ignition delays (less than 15 ms) were obtained at approximately 300 mW laser power output for...both Al/MoO3 and Al/Bi2O3 thermites . Finally, a forward-looking infrared camera was used to estimate the ignition and burning temperatures of the Al...context would also be beneficial as a substitute for the various formulations containing lead or other toxic substances. In a thermite type reaction, a

  13. Diesel engine performance and emissions with fuels derived from waste tyres.

    PubMed

    Verma, Puneet; Zare, Ali; Jafari, Mohammad; Bodisco, Timothy A; Rainey, Thomas; Ristovski, Zoran D; Brown, Richard J

    2018-02-06

    The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel. Production methods and the influence of reactor operating parameters (such as reactor temperature and catalyst type) on oil yield are outlined. These have a major effect on the performance and emission characteristics of diesel engines when using tyre derived fuels. In general, tyre derived fuels increase the brake specific fuel consumption and decrease the brake thermal efficiency. The majority of studies indicate that NOx emissions increase with waste tyre derived fuels; however, a few studies have reported the opposite trend. A similar increasing trend has been observed for CO and CO 2 emissions. Although most studies reported an increase in HC emission owing to lower cetane number and higher density, some studies have reported reduced HC emissions. It has been found that the higher aromatic content in such fuels can lead to increased particulate matter emissions.

  14. Self-Assembled Nano-energetic Gas Generators based on Bi2O3

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Trevino, Tyler; Martirosyan, Karen

    2012-10-01

    Nanoenergetic Gas-Generators are formulations that rapidly release a large amount of gaseous products and generate a fast moving thermal wave. They are mainly based on thermite systems, which are pyrotechnic mixtures of metal powders (fuel- Al, Mg, etc.) and metal oxides (oxidizer, Bi2O3, Fe2O3, WO3, MoO3 etc.) that can generate an exothermic oxidation-reduction reaction referred to as a thermite reaction. A thermite reaction releases a large amount of energy and can generate rapidly extremely high temperatures. The intimate contact between the fuel and oxidizer can be enhanced by use of nano instead of micro particles. The contact area between oxidizer and metal particles depends from method of mixture preparation. In this work we utilize the self-assembly processes, which use the electrostatic forces to produce ordered and self-organized binary systems. In this process the intimate contact significantly enhances and gives the ability to build an energetic material in molecular level, which is crucial for thepressure discharge efficiency of nano-thermites. The DTA-TGA, Zeta-size analysis and FTIR technique were performed to characterize the Bi2O3 particles. The self-assembly of Aluminum and Bi2O3 was conducted in sonic bath with appropriate solvents and linkers. The resultant thermite pressure discharge values were tested in modified Parr reactor. In general, the self-assembled thermites give much higher-pressure discharge values than the thermites prepared with conventional roll-mixing technique.

  15. Employing CO2 as reaction medium for in-situ suppression of the formation of benzene derivatives and polycyclic aromatic hydrocarbons during pyrolysis of simulated municipal solid waste.

    PubMed

    Lee, Jechan; Choi, Dongho; Tsang, Yiu Fai; Oh, Jeong-Ik; Kwon, Eilhann E

    2017-05-01

    This study proposes a strategic principle to enhance the thermal efficiency of pyrolysis of municipal solid waste (MSW). An environmentally sound energy recovery platform was established by suppressing the formation of harmful organic compounds evolved from pyrolysis of MSW. Using CO 2 as reaction medium/feedstock, CO generation was enhanced through the following: 1) expediting the thermal cracking of volatile organic carbons (VOCs) evolved from the thermal degradation of the MSWs and 2) directly reacting VOCs with CO 2 . This particular influence of CO 2 on pyrolysis of the MSWs also led to the in-situ mitigation of harmful organic compounds (e.g., benzene derivatives and polycyclic aromatic hydrocarbons (PAHs)) considering that CO 2 acted as a carbon scavenger to block reaction pathways toward benzenes and PAHs in pyrolysis. To understand the fundamental influence of CO 2 , simulated MSWs (i.e., various ratios of biomass to polymer) were used to avoid any complexities arising from the heterogeneous matrix of MSW. All experimental findings in this study suggested the foreseeable environmental application of CO 2 to energy recovery from MSW together with disposal of MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  18. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2017-03-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  19. Cutin-derived CuO reaction products from purified cuticles and tree leaves

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Long chain (C 16-C 18) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple ( Malus pumila) cuticle include 16-hydroxy-hexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly ( Ilex aquifolium) leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.

  20. Structure-mechanics property relationship of waste derived biochars.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X-ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900°C and 60min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01GPa, respectively. It was shown that a combination of higher heat treatment (≥500°C) temperature and longer residence time (~60min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    DTIC Science & Technology

    2014-08-10

    Electrostatic discharge Ignition Aluminum Thermites Energetic materials a b s t r a c t Powder energetic materials are highly sensitive to electrostatic...Fundamentals, in: Heat Conduction, Wiley, Hoboken, NJ, 2012. [12] Davin G. Piercey, Thomas M. Klapotke, Nanoscale aluminum metal oxide ( thermite ) reactions for...propagation velocity in thermites with a nanoscale oxidizer, Propellants Explos. Pyrotechn. 39 (3) (2014) 407 415. [18] Kevin Moore, Michelle L

  2. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    PubMed

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  3. Thermite combustion enhancement resulting from biomodal luminum distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less

  4. Development of Molten Corium Using An Exothermic Chemical Reaction for the Molten- Fuel Moderator-Interaction Studies at Chalk River Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitheanandan, T.; Sanderson, D.B.; Kyle, G.

    2004-07-01

    Atomic Energy of Canada Limited (AECL) has partnered with Argonne National Laboratory to develop a corium thermite prototypical of Candu material and test the concept of ejecting {approx}25 kg of the molten material from a pressure tube with a driving pressure of 10 MPa. This development program has been completed and the technology transferred to AECL. Preparation for the molten-fuel moderator-interaction tests at AECL's Chalk River Laboratories is well underway. A mixture of 0.582 U/0.077 U{sub 3}O{sub 8}/0.151 Zr/0.19 CrO{sub 3} (wt%) as reactant chemicals has been demonstrated to produce a corium consisting of 0.73 UO{sub 2}/0.11 Zr/0.06 ZrO{sub 2}/0.10more » Cr (wt%) at {approx}2400 deg. C. This is comparable to the target Candu specific corium of 0.9 UO{sub 2}/0.1 Zr (wt%), with limited oxidation. The peak melt temperature was confirmed from small-scale thermitic reaction tests. Several small-scale tests were completed to qualify the thermite to ensure operational safety and a quantifiable experimental outcome. The proposed molten-fuel moderator-interaction experiments at Chalk River Laboratories will consist of heating the thermite mixture inside a 1.14-m long insulated pressure tube. Once the molten material has reached the desired temperature of {approx}2400 deg. C, the pressure inside the tube will be raised to about 10 MPa, and the pressure tube will fail at a pre-machined flaw, ejecting the molten material into the surrounding tank of water. The test apparatus, instrumentation, data acquisition and control systems have been assembled, and a series of successful commissioning tests have been completed. (authors)« less

  5. Core/shell CuO/Al Nanorods Thermite Film Based on Electrochemical Anodization.

    PubMed

    Yu, Chunpei; Zhang, Wenchao; Hu, Bin; Ni, Debin; Zheng, Zilong; Liu, Jingping; Ma, Kefeng; Ren, Wei

    2018-06-13

    In this study, a new method was reported for the fabrication of the nanostructured CuO/Al thermite film on the Cu substrate. The CuO nanorods (NRs) arrays vertically grew from the Cu surfaces by electrochemical anodization processes, followed by the deposition of an Al layer on the CuO NRs via magnetron sputtering to form a core/shell CuO/Al nanothermite film, whose component, structure and morphology were subsequently characterized. In addition, the energy-release characteristics of the obtained nanothermite film was investigated using thermal analyses and laser ignition tests. All evidences demonstrate that the obtained CuO/Al is of a uniform structure and superb energy performance. Impressively, this resulted material is potentially useful in the applications of functional energetic chips due to its easy integration with microelectromechanical systems (MEMS) technologies. © 2018 IOP Publishing Ltd.

  6. Transesterification reaction of the fat originated from solid waste of the leather industry.

    PubMed

    Işler, Asli; Sundu, Serap; Tüter, Melek; Karaosmanoğlu, Filiz

    2010-12-01

    The leather industry is an industry which generates a large amount of solid and liquid wastes. Most of the solid wastes originate from the pre-tanning processes while half of it comes from the fleshing step. Raw fleshing wastes which mainly consist of protein and fat have almost no recovery option and the disposal is costly. This study outlines the possibility of using the fleshing waste as an oil source for transesterification reaction. The effect of oil/alcohol molar ratio, the amount of catalyst and temperature on ester production was individually investigated and optimum reaction conditions were determined. The fuel properties of the ester product were also studied according to the EN 14214 standard. Cold filter plugging point and oxidation stability have to be improved in order to use the ester product as an alternative fuel candidate. Besides, this product can be used as a feedstock in lubricant production or cosmetic industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Pyrolysis reaction models of waste tires: Application of Master-Plots method for energy conversion via devolatilization.

    PubMed

    Irmak Aslan, Dilan; Parthasarathy, Prakash; Goldfarb, Jillian L; Ceylan, Selim

    2017-10-01

    Land applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis. This work is the first to probe the appropriate reaction model of waste tire pyrolysis. The average activation energy of pyrolysis was determined via iso-conversional methods over a mass fraction conversion range between 0.20 and 0.80 to be 162.8±23.2kJmol -1 . Using the Master Plots method, a reaction order of three was found to be the most suitable model to describe the pyrolytic decomposition. This suggests that the chemical reactions themselves (cracking, depolymerization, etc.), not diffusion or boundary layer interactions common with carbonaceous biomasses, are the rate-limiting steps in the pyrolytic decomposition of waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Adams, Ryan A.; Arora, Anjela

    The recycling of waste-tire rubber is of critical importance since the discarded tires pose serious environmental and health hazards to our society. Here, we report a new application for hard-carbon materials derived from waste-tires as anodes in potassium-ion batteries. The sustainable tire-derived carbons show good reversible potassium insertion at relatively high rates. Long-term stability tests exhibit capacities of 155 and 141 mAh g –1 for carbon pyrolyzed at 1100°C and 1600°C, respectively, after 200 cycles at current rate of C/2. As a result, this study provides an alternative solution for inexpensive and environmental benign potassium-ion battery anode materials.

  9. Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber

    DOE PAGES

    Li, Yunchao; Adams, Ryan A.; Arora, Anjela; ...

    2017-04-13

    The recycling of waste-tire rubber is of critical importance since the discarded tires pose serious environmental and health hazards to our society. Here, we report a new application for hard-carbon materials derived from waste-tires as anodes in potassium-ion batteries. The sustainable tire-derived carbons show good reversible potassium insertion at relatively high rates. Long-term stability tests exhibit capacities of 155 and 141 mAh g –1 for carbon pyrolyzed at 1100°C and 1600°C, respectively, after 200 cycles at current rate of C/2. As a result, this study provides an alternative solution for inexpensive and environmental benign potassium-ion battery anode materials.

  10. The Use of Combustion Reactions for Processing Mineral Raw Materials: Metallothermy and Self-propagating High-temperature Synthesis (Review)

    NASA Astrophysics Data System (ADS)

    Urakaev, Farit Kh.; Akmalaev, Kenzhebek A.; Orynbekov, Eljan S.; Balgysheva, Beykut D.; Zharlykasimova, Dinar N.

    2016-02-01

    The use of metallothermy (MT) and self-propagating high-temperature synthesis (SHS) is considered for processing different geological and technogenic materials. Traditional MT and SHS processes for production of various metals and nonmetal materials are widely known. Another rapidly developing direction is that connected with the use of ores, concentrates, minerals, and technogenic waste products as one of the components of a thermite mixture, both for the treatment of mineral raw by means of MT or SHS resulting in semi-products and for technological, analytical, and ecological purposes.

  11. Core-shell-structured nanothermites synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Qin, Lijun; Gong, Ting; Hao, Haixia; Wang, Keyong; Feng, Hao

    2013-12-01

    Thermite materials feature very exothermic solid-state redox reactions. However, the energy release rates of traditional thermite mixtures are limited by the reactant diffusion velocities. In this work, atomic layer deposition (ALD) is utilized to synthesize thermite materials with greatly enhanced reaction rates. By depositing certain types of metal oxides (oxidizers) onto a commercial Al nanopowder, core-shell-structured nanothermites can be produced. The average film deposition rate on the Al nanopowder is 0.17 nm/cycle for ZnO and 0.031 nm/cycle for SnO2. The thickness of the oxidizer layer can be precisely controlled by adjusting the ALD cycle number. The compositions, morphologies, and structures of the ALD nanothermites are characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The characterization results reveal nearly perfect coverage of the Al nanoparticles by uniform ALD oxidizer layers and confirm the formation of core-shell nanoparticles. Combustion properties of the nanothermites are probed by laser ignition technique. Reactions of the core-shell-structured nanothermites are several times faster than the mixture of nanopowders. The promoted reaction rate is mostly attributed to the uniform distribution of reactants on the nanometer scale. These core-shell-structured nanothermites provide a potential pathway to control and enhance thermite reactions.

  12. Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions.

    PubMed

    Poppe, Jakeline Kathiele; Matte, Carla Roberta; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Ayub, Marco Antônio Záchia

    2018-04-21

    This work describes the use of an ultrasound system for the enzymatic transesterification of oils using combi-lipases as biocatalyst. The reactions were carried out evaluating the individual use of waste oil and fresh soybean oil, and the immobilized lipases CALB, TLL, and RML were used as biocatalysts. It was performed in a mixture design of three factors to obtain the ideal mixture of lipases according to the composition of fatty acids present in each oil, and the main reaction variables were optimized. After 18 h of reaction, ultrasound provided a biodiesel yield of about 90% when using soybean oil and 70% using the waste oil. The results showed that ultrasound technology, in combination with the application of enzyme mixtures, known as combi-lipases, and the use of waste oil, could be a promising route to reduce the overall process costs of enzymatic production of biodiesel.

  13. Nano-Al Based Energetics: Rapid Heating Studies and a New Preparation Technique

    NASA Astrophysics Data System (ADS)

    Sullivan, Kyle; Kuntz, Josh; Gash, Alex; Zachariah, Michael

    2011-06-01

    Nano-Al based thermites have become an attractive alternative to traditional energetic formulations due to their increased energy density and high reactivity. Understanding the intrinsic reaction mechanism has been a difficult task, largely due to the lack of experimental techniques capable of rapidly and uniform heating a sample (~104- 108 K/s). The current work presents several studies on nano-Al based thermites, using rapid heating techniques. A new mechanism termed a Reactive Sintering Mechanism is proposed for nano-Al based thermites. In addition, new experimental techniques for nanocomposite thermite deposition onto thin Pt electrodes will be discussed. This combined technique will offer more precise control of the deposition, and will serve to further our understanding of the intrinsic reaction mechanism of rapidly heated energetic systems. An improved mechanistic understanding will lead to the development of optimized formulations and architectures. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Using polyphenol derivatives to prevent muscle wasting.

    PubMed

    Francaux, Marc; Deldicque, Louise

    2018-05-01

    To highlight recent evidence for the ability of polyphenols and their derivatives to reduce muscle wasting in different pathological states. From January 2016 to August 2017, four articles dealt with the effects of polyphenols on muscle wasting, which were all carried out in mice. The four studies found that polyphenols reduced muscle mass loss associated with cancer cachexia, acute inflammation or sciatic nerve section. One study even showed that muscle mass was totally preserved when rutin was added to the diet of mice undergoing cancer cachexia. The beneficial effects of polyphenols on muscle wasting were mainly due to a reduction in the activation of the nuclear factor-kappa B pathway, a lower oxidative stress level and a better mitochondrial function. In addition, urolithin B was found to have a testosterone-like effect and to favorably regulate muscle protein balance. During the last 20 months, additional data have been collected about the beneficial effects of rutin, curcumin, quercetin, ellagitanins and urolithin B to limit the loss of muscle mass associated with several pathological states. However, currently, scientific evidence lacks for their use as nutraceuticals in human.

  15. A novel thiamine-derived pigment, pyrizepine, formed by the Maillard reaction.

    PubMed

    Igoshi, Asuka; Noda, Kyoko; Murata, Masatsune

    2018-04-26

    To find a Maillard pigment derived from thiamine, a solution containing glucose and thiamine was heated and analyzed with high-performance liquid chromatography equipped with diode-array detection. As a result, a unique peak showing an absorption maximum at 380 nm was detected. This peak was then isolated from a reaction solution containing glucose, lysine and thiamine, and was identified as 1-(2-methyl-6,9-dihydro-5H-pyrimido[4,5-e][1,4]diazepin-7-yl)ethan-1-one using instrumental analyses. This compound, named pyrizepine, was a novel yellow pigment having a fused ring consisting of pyrimidine and diazepine. Pyrizepine was a major low-molecular-weight pigment in the reaction solution. The structure suggests that pyrizepine is formed by condensation reaction between a degradation product of thiamine and a tetrosone derivative formed from glucose by the Maillard reaction.

  16. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    NASA Astrophysics Data System (ADS)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural

  17. Transient experiments with thermite melts for a core catcher concept based on water addition from below

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tromm, W.; Alsmeyer, H.

    1995-09-01

    A core catcher concept is proposed to be integrated into a new pressurized water reactor. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core melt based on a process of water inlet from the bottom through the melt. By highly effective heat removal that uses evaporating water in direct contact with the fragmented melt, the corium melt would solidify in a short time period, and long-term cooling could be maintained by continuous water evaporation from the flooded porous or fragmented corium bed. The key process for obtaining coolability is the coupling of the three effects: (a)more » water ingression from below and its evaporation, (b) break up and fragmentation of the corium layer, and (c) heat transfer and solidification of the let. These mechanisms are investigated in transient medium-scale experiments with thermite melts. The experimental setup represents a section of the proposed core catcher design. A thermite melt is located on the core catcher plate with a passive water supply from the bottom. After generation of the melt, the upper sacrificial layer is eroded until water penetrates into the melt for the bottom through plugs in the supporting plate. Fragmentation and fast solidification of the melt are observed, and long-term heat removal is guaranteed by the coolant water flooding the porous melt. Water inflow is sufficient to safely remove the decay heat in a comparable corium layer. The open porosity is created by the vapor streaming through the melt during the solidification process. Fracture of the solid by thermomechanical stresses is not observed. The experiments in their current stage show the principal feasibility of the proposed cooling concept and are used to prepare large-scale experiments to be performed in the modified BETA facility with sustained heating of the melt.« less

  18. Chloride/bromide ratios in leachate derived from farm-animal waste.

    PubMed

    Hudak, Paul F

    2003-01-01

    Ratios of conservative chemicals have been used to identify sources of groundwater contamination. While chloride/bromide ratios have been reported for several common sources of groundwater contamination, little work has been done on leachate derived from farm-animal waste. In this study, chloride/bromide ratios were measured in leachate derived from longhorn-cattle, quarterhorse, and pygme-goat waste at a farm in Abilene, Texas, USA. (Minimum, median, and maximum) chloride/bromide ratios of (66.5, 85.6, and 167), (119, 146, and 156), and (35.4, 57.8, and 165) were observed for cattle, horses, and goats, respectively. These ratios are below typical values for domestic wastewater and within the range commonly observed for oilfield brine. Results of this study have important implications for identifying sources of contaminated groundwater in settings with significant livestock and/or oil production.

  19. Use of Fenton reaction for the treatment of leachate from composting of different wastes.

    PubMed

    Trujillo, Daniel; Font, Xavier; Sánchez, Antoni

    2006-11-02

    The oxidation of leachate coming from the composting of two organic wastes (wastewater sludge and organic fraction of municipal solid wastes) using the Fenton's reagent was studied using different ratios [Fe(2+)]/[COD](0) and maintaining a ratio [H(2)O(2)]/[COD](0) equal to 1. The optimal conditions for Fenton reaction were found at a ratio [Fe(2+)]/[COD](0) equal to 0.1. Both leachates were significantly oxidized under these conditions in terms of COD removal (77 and 75% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively) and BOD(5) removal (90 and 98% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively). Fenton's reagent was found to oxidize preferably biodegradable organic matter of leachate. In consequence, a decrease in the biodegradability of leachates was observed after Fenton treatment for both leachates. Nevertheless, Fenton reaction proved to be a feasible technique for the oxidation of the leachate under study, and it can be considered a suitable treatment for this type of wastewaters.

  20. Designing the microturbine engine for waste-derived fuels.

    PubMed

    Seljak, Tine; Katrašnik, Tomaž

    2016-01-01

    Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. Copyright © 2015. Published by Elsevier Ltd.

  1. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    USDA-ARS?s Scientific Manuscript database

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  2. The behavior of nanothermite reaction based on Bi2O3/Al

    NASA Astrophysics Data System (ADS)

    Wang, L.; Luss, D.; Martirosyan, K. S.

    2011-10-01

    We studied the impact of aluminum particle size and the thickness of surrounding alumina layer on the dynamic pressure discharge of nanothermite reactions in the Bi2O3/Al system. A pressure discharge from 9 to 13 MPa was generated using as-synthesized Bi2O3 nano-particles produced by combustion synthesis and Al nanoparticles with size from 3 μm to 100 nm. The maximum reaction temperature was measured to be ˜2700 °C. The estimated activation energy of the reaction was 45 kJ/mol. A very large (several orders of magnitude) difference existed between the rate of the pressure pulse release by nanothermite reactions and by thermite reactions with large aluminum particles. The maximum observed pressurization rate was 3200 GPa/s. The time needed to reach the peak pressure was 0.01 ms and 100 ms for aluminum particles with diameter of 100 nm and 70 microns, respectively. The discharge pressure was a monotonic decreasing function of the thickness of the surrounding alumina layer.

  3. Characteristics of and sorption to biochars derived from waste material

    NASA Astrophysics Data System (ADS)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (<1% ash), sewage sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 < Log Kd < 6.5 L

  4. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research.

    PubMed

    Pavlovič, Irena; Knez, Željko; Škerget, Mojca

    2013-08-28

    Hydrothermal (HT) reactions of agricultural and food-processing waste have been proposed as an alternative to conventional waste treatment technologies due to allowing several improvements in terms of process performance and energy and economical advantages, especially due to their great ability to process high moisture content biomass waste without prior dewatering. Complex structures of wastes and unique properties of water at higher temperatures and pressures enable a variety of physical-chemical reactions and a wide spectra of products. This paper's aim is to give extensive information about the fundamentals and mechanisms of HT reactions and provide state of the research of agri-food waste HT conversion.

  5. Synthesis of pyroglutamic acid derivatives via double michael reactions of alkynones.

    PubMed

    Scansetti, Myriam; Hu, Xiangping; McDermott, Benjamin P; Lam, Hon Wai

    2007-05-24

    In the presence of substoichiometric quantities of potassium tert-butoxide and an additional metal salt, amide-tethered diacids undergo double Michael reactions with alkynones to provide highly functionalized pyroglutamic acid derivatives. The metal salt was found to play an important role in improving the diastereoselectivities of the reactions.

  6. Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst

    NASA Astrophysics Data System (ADS)

    Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin

    2017-12-01

    This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.

  7. Carpatizine, a novel bridged oxazine derivative generated by non-enzymatic reactions.

    PubMed

    Fu, Peng; MacMillan, John B

    2017-06-27

    Carpatizine (1), a new bridged oxazine derivative, was isolated from a marine-derived Streptomyces strain SNE-011. The structure was fully determined by spectroscopic analysis, ECD calculations and chemical methods. A plausible non-enzymatic reaction mechanism from daryamide D leading to carpatizine was presented, which was confirmed by chemical transformation.

  8. Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C-N and C-O coupling reactions.

    PubMed

    Pereira, G; Vilaça, H; Ferreira, P M T

    2013-02-01

    Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C-N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N'-dimethylethylenediamine as ligand and K(2)CO(3) as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N'-dimethylethylene diamine) was used in the C-O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers.

  9. Application of the radioisotope excited X-ray fluorescence technique in charge optimization during thermite smelting of Fe-Ni, Fe-cr, and Fe-Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, I.G.; Joseph, D.; Lal, M.

    1995-10-01

    A wide range of ferroalloys are used to facilitate the addition of different alloying elements to molten steel. High-carbon ferroalloys are produced on a tonnage basis by carbothermic smelting in an electric furnace, and an aluminothermic route is generally adopted for small scale production of low-carbon varieties. The physicochemical principles of carbothermy and aluminothermy have been well documented in the literature. However, limited technical data are reported on the production of individual ferroalloys of low-carbon varieties from their selected resources. The authors demonstrate her the application of an energy dispersive X-ray fluorescence (EDXRF) technique in meeting the analytical requirements ofmore » a thermite smelting campaign, carried out with the aim of preparing low-carbon-low-nitrogen Fe-Ni, Fe-Cr, and Fe-Ti alloys from indigenously available nickel bearing spent catalyst, mineral chromite, and ilmenite/rutile, respectively. They have chosen the EDXRF technique to meet the analytical requirements because of its capability to analyze samples of ore, minerals, a metal, and alloys in different forms, such as powder, sponge, as-smelted, or as-cast, to obtain rapid multielement analyses with ease. Rapid analyses of thermite feed and product by this technique have aided in the appropriate alterations of the charge constitutents to obtain optimum charge consumption.« less

  10. Telescoping Reactions with Trifluorodiazoethane-Derived Aza-Wittig Reagents and Allenyl esters.

    PubMed

    Zhang, Fa-Guang; Zeng, Jun-Liang; Tian, Yi-Qiang; Zheng, Yan; Cahard, Dominique; Ma, Jun-An

    2018-05-28

    A telescoping process involving the consecutive addition of four reagents (trifluorodiazoethane, phosphine, allenyl ester, and acetic acid) into a single reactor was developed for the novel functionalization of allenyl esters. First, new phosphazenes derived from trifluorodiazoethane and phosphines were generated and reacted with allenyl esters to give unexpected α-iminophosphoranes through the creation of C=P, C=N, and C-H bonds at the α-, β-, and γ-carbon atoms, respectively, of the allenyl esters. The α-iminophosphoranes did not react with aldehydes in a classic Wittig reaction, but instead β-enamino esters were obtained. The overall sequence of reactions offered a formal hydrohydrazonation of allenyl esters. The method was extended to other related diazo compounds and applied to the preparation of novel 5-pyrazolone derivatives. Not only is the telescoping process described herein an effective approach for truncating the multistep synthesis, but also each step has been dissected to understand and support the reaction mechanisms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    PubMed

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-04-01

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.; Kawase, Y.

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less

  13. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Zhao; Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University; Ling, Tung-Chai

    2011-08-15

    Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However,more » the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.« less

  14. Tandem Aldol-Michael Reactions in Aqueous Diethylamine Medium: A Greener and Efficient Approach to Bis-Pyrimidine Derivatives

    PubMed Central

    Al-Majid, Abdullah M.; Barakat, Assem; AL-Najjar, Hany J.; Mabkhot, Yahia N.; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2013-01-01

    A simple protocol, involving the green synthesis for the construction of novel bis-pyrimidine derivatives, 3a–i and 4a–e are accomplished by the aqueous diethylamine media promoted tandem Aldol-Michael reaction between two molecules of barbituric acid derivatives 1a,b with various aldehydes. This efficient synthetic protocol using an economic and environmentally friendly reaction media with versatility and shorter reaction time provides bis-pyrimidine derivatives with high yields (88%–99%). PMID:24317435

  15. The Effect of Acetone Amount Ratio as Co-Solvent to Methanol in Transesterification Reaction of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Julianto, T. S.; Nurlestari, R.

    2018-04-01

    The production of biodiesel from waste cooking oil by transesterification reaction using acetone as co-solvent has been carried out. This research studied the optimal amount ratio of acetone as co-solvent to methanol in the transesterification process using homogeneous alkaline catalyst KOH 1% (w/w) of waste cooking oil at room temperature for 15 minutes of reaction time. Mole ratio of waste cooking oil to methanol is 1:12. Acetone was added as co-solvent in varied amount ratio to methanol are 1:4, 1:2, and 1:1, respectively. The results of fatty acid methyl esters (FAME) were analysed using GC-MS instrument. The results showed that the optimal ratio is 1:4 with 99.93% of FAME yield.

  16. Gas Suppression via Copper Interlayers in Magnetron Sputtered Al-Cu2O Multilayers.

    PubMed

    Kinsey, Alex H; Slusarski, Kyle; Sosa, Steven; Weihs, Timothy P

    2017-07-05

    The use of thin-foil, self-propagating thermite reactions to bond components successfully depends on the ability to suppress gas generation and avoid pore formation during the exothermic production of brazes. To study the mechanisms of vapor production in diluted thermites, thin film multilayer Al-Cu-Cu 2 O-Cu foils are produced via magnetron sputtering, where the Cu layer thickness is systematically increased from 0 to 100 nm in 25 nm increments. The excess Cu layers act as diffusion barriers, limiting the transport of oxygen from the oxide to the Al fuel, as determined by slow heating differential scanning calorimetry experiments. Furthermore, by adding excess Cu to the system, the temperature of the self-propagating thermite reactions drops below the boiling point of Cu, eliminating the metal vapor production. It is determined that Cu vapor production can be eliminated by increasing the Cu interlayer thickness above 50 nm. However, the porous nature of the final products suggests that only metal vapor production is suppressed via dilution. Gas generation via oxygen release is still capable of producing a porous reaction product.

  17. Oxidative cyclization reactions: controlling the course of a radical cation-derived reaction with the use of a second nucleophile.

    PubMed

    Redden, Alison; Perkins, Robert J; Moeller, Kevin D

    2013-12-02

    Construction of new ring systems: Oxidative cyclizations (see picture; RVC=reticulated vitreous carbon) have been conducted that use two separate intramolecular nucleophiles to trap an enol ether-derived radical cation intermediate. The reactions provide a means for rapidly trapping the radical cation intermediate in a manner that avoids competitive decomposition reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermal and catalytic coprocessing of coal and waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orr, E.C.; Tuntawiroon, W.; Ding, W.B.

    1995-12-31

    Coprocessing of coal with waste materials to produce liquid fuels with emphasis on finding reasonable reaction pathways and catalysts for such processing is presently the subject of intensive investigation. Polymer wastes such as polyethylene, polystyrene, polypropylene and used rubber tires are not naturally degraded over time. More than 22 million tons of plastic waste are annually discarded in landfills and over 75 percent of used rubber tires are similarly treated. In order to obtain distillate liquids or petroleum compatible refined products from coal, addition of hydrogen is necessary. A possible method for hydrogen addition is coprocessing of coal with polymericmore » waste materials since these latter materials contain hydrogen at levels much higher than are found in coal. The breakdown of waste rubber tires is interesting because the liquids derived may prove to be important as a coal dissolution and/or hydrogen donor solvent. Recently, Badger and coworkers reported that hydrogenated tire oils (hydrogenated in the presence of CoMo catalyst) were effective for the dissolution of coal. Studies on the coprocessing of coal and waste materials have only recently been done intensively. Limited data are available on reaction conditions and catalytic effects for processing coal mixed with post-consumer wastes. The purpose of the present study was to determine the effects of reaction temperature, pressure, catalysts, and mixture ratio on the coprocessing of coal and waste materials.« less

  19. Recent developments in Cope-type hydroamination reactions of hydroxylamine and hydrazine derivatives.

    PubMed

    Beauchemin, André M

    2013-11-07

    Cope-type hydroaminations are versatile for the direct amination of alkenes, alkynes and allenes using hydroxylamines and hydrazine derivatives. These reactions occur via a concerted, 5-membered cyclic transition state that is the microscopic reverse of the Cope elimination. This article focuses on recent developments, including intermolecular variants, directed reactions, and asymmetric variants using aldehydes as tethering catalysts, and their applications in target-oriented synthesis.

  20. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    NASA Astrophysics Data System (ADS)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  1. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    PubMed

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  2. Stable Hydrogen Production from Ethanol through Steam Reforming Reaction over Nickel-Containing Smectite-Derived Catalyst

    PubMed Central

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-01-01

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2. PMID:25547495

  3. Instrumentation for Spectroscopy of Impact Initiation of Reactive Materials

    DTIC Science & Technology

    2015-04-14

    combustion of aluminum and nanocomposite thermite powders , Combust. Sci. and Tech. 179, 457-476 (2007). 8. M. Schoenitz, S. Umbrajkar, and E. L. Dreizin...L. Dreizin, Nanocomposite thermite powders prepared by cryomilling, Journal of Alloys and Compounds 488, 386-391 (2009). 10. J. A. Puszynski...reaction in a flake nickel + spherical aluminum powder mixture, J. Appl. Phys. 100, 113521 (2006). 13. A. S. Shteinberg, Y. C. Lin, S. F. Son, and A

  4. Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Boota, Muhammad

    A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer tomore » produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.« less

  5. Methodology for modeling the devolatilization of refuse-derived fuel from thermogravimetric analysis of municipal solid waste components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.

    1994-09-01

    A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for themore » as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.« less

  6. An unexpected epoxidation of benzil derivatives in their reaction with a germene.

    PubMed

    El Kettani, Sakina Ech-Cherif; Lazraq, Mohamed; Ouhsaine, Fatima; Gornitzka, Heinz; Ranaivonjatovo, Henri; Escudié, Jean

    2008-11-07

    The germene Mes(2)Ge=CR(2) (Mes = 2,4,6-trimethylphenyl, CR(2) = fluorenylidene) reacts with various benzil derivatives to lead to germanium-containing bicyclic epoxides by an unexpected new type of epoxidation reaction.

  7. Bioremediation of cooking oil waste using lipases from wastes

    PubMed Central

    do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166

  8. Bioremediation of cooking oil waste using lipases from wastes.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Prado, Débora Zanoni do; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando; Fleuri, Luciana Francisco

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  9. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  10. Heat of combustion of tantalum-tungsten oxide thermite composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616; Kuntz, Joshua D.

    2010-12-15

    The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 C. For samples consolidated at 25 C, the density of the CA compositemore » is 61.65 {+-} 1.07% in comparison to 56.41 {+-} 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 C. The theoretical maximum density for the SG composite consolidated to 400 and 500 C are 81.30 {+-} 0.58% and 84.42 {+-} 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 C are 74.54 {+-} 0.80% and 77.90 {+-} 0.79%, respectively. X-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 C in comparison to samples consolidated at 25 C. (author)« less

  11. Synthesis of As-Cast Ti-Al-V Alloy from Titanium-Rich Material by Thermite Reduction

    NASA Astrophysics Data System (ADS)

    Cheng, Chu; Dou, Zhi He; Zhang, Ting An; Zhang, Hui Jie; Yi, Xin; Su, Jian Ming

    2017-10-01

    We present a novel methodology for preparing as-cast Ti-Al-V alloy directly from titanium-rich material through a thermite reduction. The new method is shown to be feasible through a thermodynamics and dynamics analysis. The as-cast Ti-Al-V alloys synthesized from titanium dioxide, rutile, and high-titanium slag were analyzed by an x-ray diffractometer, a scanning electron microscope, an inductively coupled plasma emission spectrometer, and an oxygen/nitrogen/hydrogen analyzer. The results indicate that the alloy is composed of a Ti-Al-V matrix and Al2O3 inclusions. The Al and V contents in the matrix are close to the mass ratio of Ti-6Al-4V (Al: 5.5-6.8 wt.%, V: 3.5-4.5 wt.%). The Si and Fe in the alloys synthesized from rutile and high-titanium slag can be used as alloying elements in low-cost titanium alloys. The present method is expected to be useful for preparing Ti-Al-V alloys at a low production cost.

  12. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE PAGES

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.; ...

    2016-09-05

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased

  13. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased

  14. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  15. Bio-waste corn-cob cellulose supported poly(hydroxamic acid) copper complex for Huisgen reaction: Waste to wealth approach.

    PubMed

    Mandal, Bablu Hira; Rahman, Md Lutfor; Yusoff, Mashitah Mohd; Chong, Kwok Feng; Sarkar, Shaheen M

    2017-01-20

    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h -1 ) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis of High-Quality Biodiesel Using Feedstock and Catalyst Derived from Fish Wastes.

    PubMed

    Madhu, Devarapaga; Arora, Rajan; Sahani, Shalini; Singh, Veena; Sharma, Yogesh Chandra

    2017-03-15

    A low-cost and high-purity calcium oxide (CaO) was prepared from waste crab shells, which were extracted from the dead crabs, was used as an efficient solid base catalyst in the synthesis of biodiesel. Raw fish oil was extracted from waste parts of fish through mechanical expeller followed by solvent extraction. Physical as well as chemical properties of raw fish oil were studied, and its free fatty acid composition was analyzed with GC-MS. Stable and high-purity CaO was obtained when the material was calcined at 800 °C for 4 h. Prepared catalyst was characterized by XRD, FT-IR, and TGA/DTA. The surface structure of the catalyst was analyzed with SEM, and elemental composition was determined by EDX spectra. Esterification followed by transesterification reactions were conducted for the synthesis of biodiesel. The effect of cosolvent on biodiesel yield was studied in each experiment using different solvents such as toluene, diethyl ether, hexane, tetrahydrofuran, and acetone. High-quality and pure biodiesel was synthesized and characterized by 1 H NMR and FT-IR. Biodiesel yield was affected by parameters such as reaction temperature, reaction time, molar ratio (methanol:oil), and catalyst loading. Properties of synthesized biodiesel such as density, kinematic viscosity, and cloud point were determined according to ASTM standards. Reusability of prepared CaO catalyst was checked, and the catalyst was found to be stable up to five runs without significant loss of catalytic activity.

  17. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar.

    PubMed

    Cao, Leichang; Yu, Iris K M; Chen, Season S; Tsang, Daniel C W; Wang, Lei; Xiong, Xinni; Zhang, Shicheng; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol; Poon, Chi Sun

    2018-03-01

    Sulfonated biochar derived from forestry wood waste was employed for the catalytic conversion of starch-rich food waste (e.g., bread) into 5-hydroxymethylfurfural (HMF). Chemical and physical properties of catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and elemental analysis. The conversion of HMF was investigated via controlling the reaction parameters such as catalyst loading, temperature, and reaction time. Under the optimum reaction conditions the HMF yield of 30.4 Cmol% (i.e., 22 wt% of bread waste) was achieved in the mixture of dimethylsulfoxide (DMSO)/deionized-water (DIW) at 180 °C in 20 min. The effectiveness of sulfonated biochar catalyst was positively correlated to the density of strong/weak Brønsted acidity (SO 3 H, COOH, and OH groups) and inversely correlated to humins content on the surface. With regeneration process, sulfonated biochar catalyst displayed excellent recyclability for comparable HMF yield from bread waste over five cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Novel duplex vapor-electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Westphal, S.

    1979-01-01

    Optimization studies were carried out for the SiF4-Na reaction with solid Na feed. The goals of the study were the consistent production of high purity reaction products and the gathering of relevant information needed to scale-up the reactor. Parameters studied include: (1) effect of surface to volume ratio of Na slices on the extent of reaction; (2) effect of Na surface oxidation on the extent of reaction; (3) effect of external heating on the extent of SiF4-Na reaction; (4) effect of Na slice addition rate on extent of the reaction; and (5) SiF4-Na reaction - high pressure experiments. An investigation was also made of the possible role played by NaF as a fluxing agent during the separation of silicon by melting of the reaction product (Si + NaF) mixture. Since silicon can be produced by the thermite reaction between Na2SiF6 and Na, studies were initiated to gather information on parameters which control the efficiency of the thermite reaction.

  19. Converting inert plastic waste into energetic materials: A study on the light-accelerated decomposition of plastic waste with the Fenton reaction.

    PubMed

    Chow, Cheuk-Fai; Wong, Wing-Leung; Chan, Ching-Wan; Chan, Chung-Sum

    2018-05-01

    Better treatment and management strategies than landfilling are needed to address the large quantities of unrecycled plastic waste generated by daily human activities. Waste-to-energy conversion is an ideal benchmark for developing future large-scale waste management technologies. The present study explores a new approach for producing energetic materials by converting inert plastic waste into energy (thermal and mechanical energies) via a light-controlled process through the simple chemical activation of plastic waste, including polyethylene, polypropylene, and polyvinyl chloride. The inert and non-polar polymer surfaces of the plastics were modified by generating a number of sulfonic groups (SO 3 - ) using chlorosulfuric acid, followed by grafting of Fe(III) catalyst onto the polymer chains to obtain activated polymer. Elemental analyses of these activated materials showed that the carbon-to-sulfur ratio ranged from 3:1 to 5:1. The FTIR spectra indicated the presence of CC bonds (v C=C : 1615-1630 cm -1 ) and SO bonds (v S=O : 1151-1167 cm -1 ) in the activated polymers after chemical reaction. These activated materials were energetic, as light could be used to convert them into thermal (1800-3200 J/g) and mechanical energies (380-560 kPa/g) using hydrogen peroxide as the oxidant under ambient conditions within 1 h. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. MINERALOGY AND CHARACTERIZATION OF ARSENIC, IRON, AND LEAD IN A MINE WASTE-DERIVED FERTILIZER

    EPA Science Inventory

    The solid-state speciation of arsenic (As), iron (Fe), and lead (Pb) was studied in the mine waste-derived fertilizer Ironite using X-ray absorption spectroscopy, Mössbauer spectroscopy, and aging studies. Arsenic was primarily associated with ferrihydrite (60-70%) with the rema...

  1. Consumption of particulate wastes derived from cage fish farming by aggregated wild fish. An experimental approach.

    PubMed

    Ballester-Moltó, M; Sanchez-Jerez, P; Aguado-Giménez, F

    2017-09-01

    Particulate wastes derived from cage fish farming are a trophic resource used by wild fish. This study assesses waste consumption by wild fish and the impact on the final balance of wastes. Consumption was determined according to the difference between the particulate matter exiting the cages and that reaching 5 m away at three different depths, in the presence and absence of wild fish. Wild fish around the experimental cages were counted during feeding and non-feeding periods. A weighted abundance of 1057 fish 1000 m -3 consumed 17.75% of the particulate wastes exiting the cages, on average. Consumption was higher below the cages, where waste outflow was greater. However, waste removal by wild fish was noteworthy along the shallow and deep sides of the cages. Wild fish diminished the net particulate wastes by about 14%, transforming them into more easily dispersible and less harmful wastes. This study demonstrates the mitigating potential of wild fish in reducing environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    PubMed Central

    2013-01-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907

  3. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    NASA Astrophysics Data System (ADS)

    Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman

    2013-04-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.

  4. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites.

    PubMed

    Wen, John Z; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y Norman

    2013-04-20

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.

  5. Ultrafast Screening of a Novel, Moderately Hydrophilic Angiotensin-Converting-Enzyme-Inhibitory Peptide, RYL, from Silkworm Pupa Using an Fe-Doped-Silkworm-Excrement-Derived Biocarbon: Waste Conversion by Waste.

    PubMed

    Liu, Long; Wei, Yanan; Chang, Qing; Sun, Huaju; Chai, Kungang; Huang, Zuqiang; Zhao, Zhenxia; Zhao, Zhongxing

    2017-12-27

    A novel, moderately hydrophilic peptide (RYL) with high ACE-inhibitory activity was screened ultrafast via a concept of waste conversion using waste. This novel peptide was screened from silkworm pupa using an Fe-doped porous biocarbon (FL/Z-SE) derived from silkworm excrement. FL/Z-SE possessed magnetic properties and specific selection for peptides due to Fe's dual functions. The selected RYL, which has moderate hydrophilicity (LogP = -0.22), exhibited a comparatively high ACE-inhibitory activity (IC 50 = 3.31 ± 0.11 μM). The inhibitory kinetics and docking-simulation results show that, as a competitive ACE inhibitor, RYL formed five hydrogen bonds with the ACE residues in the S1 and S2 pockets. In this work, both the screening carbon material and the selected ACE-inhibitory peptide were derived from agricultural waste (silkworm excrement and pupa), which offers a new way of thinking about the development of advanced uses of the silkworm byproducts and wastes.

  6. Preparation of tungsten fiber reinforced-tungsten/copper composite for plasma facing component

    NASA Astrophysics Data System (ADS)

    He, Gang; Xu, Kunyuan; Guo, Shibin; Qian, Xueqiang; Yang, Zengchao; Liu, Guanghua; Li, Jiangtao

    2014-12-01

    W fiber reinforced-W/Cu composite is designed as a transition layer between CuCrZr heat sink material and W plasma facing material. A novel method was developed for the preparation of W fiber reinforced-W/Cu composite by combining combustion synthesis with centrifugal infiltration. Cu melt with a transient temperature over 2000 °C produced by the thermite reaction was infiltrated into the W powder and fiber bed with the assistance of a high gravity field. It was found that the W particles were sintered and bonded to the W fibers due to the high temperature produced by the thermite reaction. The bending strength of W/Cu composite improved 12.7% through W fibers reinforcement.

  7. High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia.

    PubMed

    Florin, N H; Maddocks, A R; Wood, S; Harris, A T

    2009-04-01

    The high-temperature thermal destruction of poultry derived wastes (e.g., manure and bedding) for energy recovery is viable in Australia when considering resource availability and equivalent commercial-scale experience in the UK. In this work, we identified and examined the opportunities and risks associated with common thermal destruction techniques, including: volume of waste, costs, technological risks and environmental impacts. Typical poultry waste streams were characterised based on compositional analysis, thermodynamic equilibrium modelling and non-isothermal thermogravimetric analysis coupled with mass spectrometry (TG-MS). Poultry waste is highly variable but otherwise comparable with other biomass fuels. The major technical and operating challenges are associated with this variability in terms of: moisture content, presence of inorganic species and type of litter. This variability is subject to a range of parameters including: type and age of bird, and geographical and seasonal inconsistencies. There are environmental and health considerations associated with combustion and gasification due to the formation of: NO(X), SO(X), H(2)S and HCl gas. Mitigation of these emissions is achievable through correct plant design and operation, however, with significant economic penalty. Based on our analysis and literature data, we present cost estimates for generic poultry-waste-fired power plants with throughputs of 2 and 8 tonnes/h.

  8. Biodiesel production via the transesterification of soybean oil using waste starfish (Asterina pectinifera).

    PubMed

    Jo, Yong Beom; Park, Sung Hoon; Jeon, Jong-Ki; Ko, Chang Hyun; Ryu, Changkook; Park, Young-Kwon

    2013-07-01

    Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.

  9. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    PubMed

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  10. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as…

  11. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE PAGES

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  12. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    PubMed

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  13. Ion Cloud Modeling

    DTIC Science & Technology

    1977-11-11

    neutral collision time is discussed in Section 4.4. The chemical formulation for the barium thermite is based on the reaction of 2.5 moles of barium...per mole of cupric oxide according to the formula 2.5Ba + CuO - BaO + Cu + 1.5Ba. 23 In addition, 1.8% of the thermite weight was barium azide. 5 As a...constant value, tf . Generally at? 1 but if VD1 >> U 2 ,the value of atf * can be much less than 1 . In this case of rapid descent of the ion cloud, its

  14. Plasmid-derived DNA Strand Displacement Gates for Implementing Chemical Reaction Networks.

    PubMed

    Chen, Yuan-Jyue; Rao, Sundipta D; Seelig, Georg

    2015-11-25

    DNA nanotechnology requires large amounts of highly pure DNA as an engineering material. Plasmid DNA could meet this need since it is replicated with high fidelity, is readily amplified through bacterial culture and can be stored indefinitely in the form of bacterial glycerol stocks. However, the double-stranded nature of plasmid DNA has so far hindered its efficient use for construction of DNA nanostructures or devices that typically contain single-stranded or branched domains. In recent work, it was found that nicked double stranded DNA (ndsDNA) strand displacement gates could be sourced from plasmid DNA. The following is a protocol that details how these ndsDNA gates can be efficiently encoded in plasmids and can be derived from the plasmids through a small number of enzymatic processing steps. Also given is a protocol for testing ndsDNA gates using fluorescence kinetics measurements. NdsDNA gates can be used to implement arbitrary chemical reaction networks (CRNs) and thus provide a pathway towards the use of the CRN formalism as a prescriptive molecular programming language. To demonstrate this technology, a multi-step reaction cascade with catalytic kinetics is constructed. Further it is shown that plasmid-derived components perform better than identical components assembled from synthetic DNA.

  15. Reaction of. beta. -propiolactone with derivatives of adenine and with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, R.; Mieyal, J.J.; Goldthwait, D.A.

    1982-01-01

    The reaction of deoxyadenosine with ..beta..-propiolactone produces two derivatives. One is 1-(2-carboxyethyl)-2-deoxyadenosine (CEdA). The proposed structure for the other is 3-(..beta..-D-2-deoxyribosyl)-7,8-dihydropyrimido-(2,l-i)purine-9-one (dDPP). Spectral characteristics of both compounds are presented. These include u.v. spectra of each in acidic, neutral and alkaline solutions, i.r. spectra, fluorescence spectra, and n.m.r. spectra. The dDPP can be converted to CEdA by mild acid hydrolysis, and the CEdA can be converted to dDPP by reaction with a carbodiimide derivative. When poly A was reacted with ..beta..-propiolactone, the yield of dDPP in the polymer was 7-9%. When double-stranded DNA was alkylated by (/sup 3/H)..beta..-propiolactone at relatively highmore » concentrations and then acid hydrolyzed to separate 1-(2-carboxyethyl)adenine (CEA) and 7-(2-carboxyethyl)guanine (CEG), and CEA to CEG ratio of up to 0.62 was obtained. With relatively low concentrations of (/sup 3/H)..beta..-propiolactone, the yield of CEA was low with double-stranded DNA but was 5-6 fold greater with single-stranded DNA.« less

  16. Severe Acute Local Reactions to a Hyaluronic Acid-derived Dermal Filler

    PubMed Central

    Hays, Geoffrey P.; Caglia, Anthony E.; Caglia, Michael

    2010-01-01

    Injectable fillers are normally well tolerated by patients with little or no adverse effects. The most common side effects include swelling, redness, bruising, and pain at the injection site. This report describes three cases in which patients injected with a hyaluronic acid-derived injectable filler that is premixed with lidocaine developed adverse reactions including persistent swelling, pain, and nodule formation. Two of the three patients' abscesses were cultured for aerobic and anaerobic bacteria and mycobacterium. All three cultures were negative. Abscess persistence in all cases necessitated physical removal and/or enzymatic degradation with hyaluronidase. The effects subsided only after the product had been removed. Two of these patients were subsequently treated with other hyaluronic acid-derived dermal fillers without adverse events. PMID:20725567

  17. Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes.

    PubMed

    Voon, Lee Ken; Pang, Suh Cem; Chin, Suk Fun

    2016-05-20

    Cellulose extracted from printed paper wastes were selectively depolymerized under controlled conditions into cello-oligomers of controllable chain lengths via dissolution in an ionic liquid, 1-allyl-3-methylimidazolium chloride (AMIMCl), and in the presence of an acid catalyst, Amberlyst 15DRY. The depolymerization process was optimized against reaction temperature, concentration of acid catalyst, and reaction time. Despite rapid initial depolymerization process, the rate of cellulose depolymerization slowed down gradually upon prolonged reaction time, with 75.0 wt% yield of regenerated cello-oligomers (mean Viscosimetric Degree of Polymerization value of 81) obtained after 40 min. The depolymerization of cellulose fibers at 80 °C appeared to proceed via a second-order kinetic reaction with respect to the catalyst concentration of 0.23 mmol H3O(+). As such, the cellulose depolymerization process could afford some degree of control on the degree of polymerization or chain lengths of cello-oligomers formed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction.

    PubMed

    Gullón, Beatriz; Montenegro, María I; Ruiz-Matute, Ana I; Cardelle-Cobas, Alejandra; Corzo, Nieves; Pintado, Manuela E

    2016-02-10

    Chitosan (Chit) was submitted to the Maillard reaction (MR) by co-heating a solution with glucose (Glc). Different reaction conditions as temperature (40, 60 and 80 °C), Glc concentration (0.5%, 1%, and 2%, w/v), and reaction time (72, 52 and 24h) were evaluated. Assessment of the reaction extent was monitored by measuring changes in UV absorbance, browning and fluorescence. Under the best conditions, 2% (w/v) of Chit, 2% (w/v) of Glc at 60°C and 32 h of reaction time, a chitosan-glucose (Chit-Glc) derivative was purified and submitted to structural characterization to confirm its formation. Analysis of its molecular weight (MW) and the degree of substitution (DS) was carried out by HPLC-Size Exclusion Chromatography (SEC) and a colloid titration method, respectively. FT-IR and (1)H NMR were also used to analyze the functional groups and evaluate the introduction of Glc into the Chit molecule. According to our objectives, the results obtained in this work allowed to better understand the key parameters influencing the MR with Chit as well as to confirm the successful introduction of Glc into the Chit molecule obtaining a Chit-Glc derivative with a DS of 64.76 ± 4.40% and a MW of 210.37 kDa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bismuth(III) trifluoromethanesulfonate catalyzed ring opening reaction of mono epoxy oleochemicals to form keto and diketo derivatives

    USDA-ARS?s Scientific Manuscript database

    Using a catalytic system, methyl oleate is transformed into long chain keto and diketo derivatives via an epoxide route. Methyl 9(10)-oxooctadecanoate and methyl 9,10-dioxooctadecanoate were made by a ring opening reaction of epoxidized methyl oleate using bismuth triflate catalyst. Lower reaction t...

  1. Continuous-flow retro-Diels-Alder reaction: an efficient method for the preparation of pyrimidinone derivatives.

    PubMed

    Nekkaa, Imane; Palkó, Márta; Mándity, István M; Fülöp, Ferenc

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels-Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved.

  2. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  3. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    PubMed

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP  >   k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  4. Non-Catalyzed Click Reactions of ADIBO Derivatives with 5-Methyluridine Azides and Conformational Study of the Resulting Triazoles

    PubMed Central

    Smyslova, Petra; Popa, Igor; Lyčka, Antonín; Tejral, Gracian; Hlavac, Jan

    2015-01-01

    Copper-free click reactions between a dibenzoazocine derivative and azides derived from 5-methyluridine were investigated. The non-catalyzed reaction yielded both regioisomers in an approximately equivalent ratio. The NMR spectra of each regioisomer revealed conformational isomery. The ratio of isomers was dependent on the type of regioisomer and the type of solvent. The synthesis of various analogs, a detailed NMR study and computational modeling provided evidence that the isomery was dependent on the interaction of the azocine and pyrimidine parts. PMID:26673606

  5. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wamore » Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.« less

  6. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  7. Continuous-flow retro-Diels–Alder reaction: an efficient method for the preparation of pyrimidinone derivatives

    PubMed Central

    Nekkaa, Imane; Palkó, Márta; Mándity, István M

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels–Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved. PMID:29507637

  8. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes.

    PubMed

    Sasaki, Takeshi; Iizuka, Atsushi; Watanabe, Masayuki; Hongo, Teruhisa; Yamasaki, Akihiro

    2014-10-01

    Solid adsorbent materials, prepared from waste cement powder and concrete sludge were assessed for removal of arsenic in the form of arsenic (As(V)) from water. All the materials exhibited arsenic removal capacity when added to distilled water containing 10-700 mg/L arsenic. The arsenic removal isotherms were expressed by the Langmuir type equations, and the highest removal capacity was observed for the adsorbent prepared from concrete sludge with heat treatment at 105°C, the maximum removal capacity being 175 mg-As(V)/g. Based on changes in arsenic and calcium ion concentrations, and solution pH, the removal mechanism for arsenic was considered to involve the precipitation of calcium arsenate, Ca3(AsO4)2. The enhanced removal of arsenic for the adsorbent prepared from concrete sludge with heat treatment was thought to reflect ion exchange by ettringite. The prepared adsorbents, derived from waste cement and concrete using simple procedures, may offer a cost effective approach for arsenic removal and clean-up of contaminated waters, especially in developing countries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    PubMed

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  10. Natural food colourants derived from onion wastes: application in a yoghurt product.

    PubMed

    Mourtzinos, Ioannis; Prodromidis, Prodromos; Grigorakis, Spyros; Makris, Dimitris P; Biliaderis, Costas G; Moschakis, Thomas

    2018-06-10

    The valorization of onion (Allium cepa) solid wastes, a 450,000 tonnes/year waste in Europe, by a green extraction method is presented. Polyphenols of onion solid wastes were extracted using eco-friendly solvents, such as water and glycerol. The 2-hydroxypropyl-β-cyclodextrin was also used as a co-solvent for the augmentation of the extraction yield. The process has been optimized by implementing a central composite face centered design of experiments, with two replicates in the central point, taking into consideration the following independent variables: glycerol concentration, cyclodextrin concentration and temperature. The assessment of the extraction model was based on two responses: the total pigment yield and the antiradical capacity. LC-MS analysis was also employed in order to identify polyphenols and colourants of the obtained extracts. The main polyphenols found were quercetin and quercetin derivatives and the main colourant was cyanidin 3-O-glucoside. The extract was also tested as a food colourant in a yoghurt matrix. The onion leaf extract was found to be a stable natural colourant and could be utilized as an alternative ingredient to synthetic coloring agents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    PubMed

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  12. Multiphoton-gated cycloreversion reaction of a fluorescent diarylethene derivative as revealed by transient absorption spectroscopy.

    PubMed

    Nagasaka, Tatsuhiro; Kunishi, Tomohiro; Sotome, Hikaru; Koga, Masafumi; Morimoto, Masakazu; Irie, Masahiro; Miyasaka, Hiroshi

    2018-06-07

    The one- and two-photon cycloreversion reactions of a fluorescent diarylethene derivative with oxidized benzothiophene moieties were investigated by means of ultrafast laser spectroscopy. Femtosecond transient absorption spectroscopy under the one-photon excitation condition revealed that the excited closed-ring isomer is simply deactivated into the initial ground state with a time constant of 2.6 ns without remarkable cycloreversion, the results of which are consistent with the very low cycloreversion reaction yield (<10-5) under steady-state light irradiation. On the other hand, an efficient cycloreversion reaction was observed under irradiation with a picosecond laser pulse at 532 nm. The excitation intensity dependence of the cycloreversion reaction indicates that a highly excited state attained by the stepwise two-photon absorption is responsible for the marked increase of the cycloreversion reaction, and the quantum yield at the highly excited state was estimated to be 0.018 from quantitative analysis, indicating that the reaction is enhanced by a factor of >1800.

  13. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic.

    PubMed

    Tang, Yijing; Huang, Qunxing; Sun, Kai; Chi, Yong; Yan, Jianhua

    2018-02-01

    In this work, typical organic food waste (soybean protein (SP)) and typical chlorine enriched plastic waste (polyvinyl chloride (PVC)) were chosen as principal MSW components and their interaction during co-pyrolysis was investigated. Results indicate that the interaction accelerated the reaction during co-pyrolysis. The activation energies needed were 2-13% lower for the decomposition of mixture compared with linear calculation while the maximum reaction rates were 12-16% higher than calculation. In the fixed-bed experiments, interaction was observed to reduce the yield of tar by 2-69% and promote the yield of char by 13-39% compared with linear calculation. In addition, 2-6 times more heavy components and 61-93% less nitrogen-containing components were formed for tar derived from mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.

    PubMed

    Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith

    2016-11-15

    Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  16. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.

    PubMed

    Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

    2009-02-01

    In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  17. N-Heterocyclic carbene-catalyzed chemoselective cross-aza-benzoin reaction of enals with isatin-derived ketimines: access to chiral quaternary aminooxindoles.

    PubMed

    Xu, Jianfeng; Mou, Chengli; Zhu, Tingshun; Song, Bao-An; Chi, Yonggui Robin

    2014-06-20

    A chemo- and enantioselective cross-aza-benzoin reaction between enals and isatin-derived ketimines is disclosed. The high chemoselectivity (of the acyl anion reaction over enal α- and β-carbon reactions) is enabled by the electronic and steric properties of the N-heterocyclic carbene organocatalyst.

  18. Caffeoylquinic acid derived free radicals identified during antioxidant reactions of bitter tea (Ilex latifolia and Ilex kudincha).

    PubMed

    Pirker, Katharina Franziska; Goodman, Bernard Albert

    2010-12-01

    In order to provide some insight into the chemical basis for the antioxidant behaviour of bitter tea, the Chinese medicinal beverage derived from leaves of Ilex kudincha or Ilex latifolia, free radicals generated during the oxidation of aqueous extracts of dried leaves have been investigated by electron paramagnetic resonance (EPR) spectroscopy. With both beverages, the major components in the EPR spectra after accelerated autoxidation under alkaline conditions or oxidation with the superoxide anion radical were comparable to those derived from reactions of caffeoylquinic acids. Thus these reaction products have sufficient stability for biological activity, and the present results suggest that such molecules contribute appreciably to the antioxidant chemistry of these beverages.

  19. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Evans, Tabitha J.; Cheng, Lei

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Majormore » products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.« less

  20. Organocatalytic sequential α-amination/Corey-Chaykovsky reaction of aldehydes: a high yield synthesis of 4-hydroxypyrazolidine derivatives.

    PubMed

    Kumar, B Senthil; Venkataramasubramanian, V; Sudalai, Arumugam

    2012-05-18

    A tandem reaction of in situ generated α-amino aldehydes with dimethyloxosulfonium methylide under Corey-Chaykovsky reaction conditions proceeds efficiently to give 4-hydroxypyrazolidine derivatives in high yields with excellent enantio- and diastereoselectivities. This organocatalytic sequential method provides for the efficient synthesis of anti-1,2-aminoalcohols, structural subunits present in several bioactive molecules as well.

  1. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  2. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes.

    PubMed

    Sumalinog, Divine Angela G; Capareda, Sergio C; de Luna, Mark Daniel G

    2018-03-15

    The adsorption potential and governing mechanisms of emerging contaminants, i.e. acetaminophen or acetyl-para-aminophenol (APAP) and methylene blue (MB) dye, on activated carbon derived from municipal solid waste were investigated in this work. Results showed that MB adsorption was significantly more effective, with a maximum removal of 99.9%, than APAP adsorption (%R max  = 63.7%). MB adsorption was found to be unaffected by pH change, while the adsorption capacity of APAP drastically dropped by about 89% when the pH was adjusted from pH 2 to 12. Surface reactions during APAP adsorption was dominated by both physical and chemical interactions, with the kinetic data showing good fit in both pseudo-first order (R 2  = 0.986-0.997) and pseudo-second order (R 2 >0.998) models. On the other hand, MB adsorption was best described by the pseudo-second order model, with R 2 >0.981, denoting that chemisorption controlled the process. Electrostatic attractions and chemical reactions with oxygenated surface functional groups (i.e., -OH and -COOH) govern the adsorption of APAP and MB on the activated biochar. Thermodynamic study showed that APAP and MB adsorption were endothermic with positive ΔH° values of 16.5 and 74.7 kJ mol -1 , respectively. Negative ΔG° values obtained for APAP (-3.7 to -5.1 kJ mol -1 ) and MB (-11.4 to -17.1 kJ mol -1 ) implied that the adsorption onto the activated biochar was spontaneous and feasible. Overall, the study demonstrates the effectiveness of activated biochar from municipal solid wastes as alternative adsorbent for the removal of acetaminophen and methylene blue dye from contaminated waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    PubMed

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics.

  4. Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.

    2010-08-15

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3}more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)« less

  5. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17more » g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.« less

  6. The scavenging reactions of nitrogen dioxide radical and carbonate radical by tea polyphenol derivatives: a pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Miao, Jin-Ling; Wang, Wen-Feng; Pan, Jing-Xi; Lu, Chang-Yuan; Li, Rong-Qun; Yao, Si-De

    2001-02-01

    The reactions of tea polyphenol derivatives, including epicatechin (EC) and epigallocatechin gallate (EGCG), with nitrogen dioxide radical (NO 2rad ) and carbonate radical (CO 3rad - ) have been studied in detail using time-resolved pulse radiolysis technique. In all the cases, the corresponding phenoxyl radical was formed through electron transfer reaction. From the build-up kinetics of the phenoxyl radicals and the decay kinetics of CO 3rad - radical, the reaction rate constants of EC, EGCG with NO 2rad and CO 3rad - were determined to be 9.0×10 7, 1.2×10 8 and 5.6×10 8, 6.6×10 8 dm 3 mol -1 s -1, respectively. Therefore, tea polyphenol derivatives proved to be efficient scavengers of NO 2rad and CO 3rad - radicals.

  7. Colloid formation during waste form reaction: Implications for nuclear waste disposal

    USGS Publications Warehouse

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; Buchholtz ten Brink, Marilyn R.

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  8. Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity.

    PubMed

    Yu, Iris K M; Tsang, Daniel C W; Yip, Alex C K; Chen, Season S; Wang, Lei; Ok, Yong Sik; Poon, Chi Sun

    2017-08-01

    This study aimed to maximize the valorization of bread waste, a typical food waste stream, into hydroxymethylfurfural (HMF) by improving our kinetic understanding. The highest HMF yield (30mol%) was achieved using SnCl 4 as catalyst, which offered strong derived Brønsted acidity and moderate Lewis acidity. We evaluated the kinetic balance between these acidities to facilitate faster desirable reactions (i.e., hydrolysis, isomerization, and dehydration) relative to undesirable reactions (i.e., rehydration and polymerization). Such catalyst selectivity of SnCl 4 , AlCl 3 , and FeCl 3 was critical in maximizing HMF yield. Higher temperature made marginal advancement by accelerating the undesirable reactions to a similar extent as the desirable pathways. The polymerization-induced metal-impregnated high-porosity carbon was a possible precursor of biochar-based catalyst, further driving up the economic potential. Preliminary economic analysis indicated a net gain of USD 43-236 per kilogram bread waste considering the thermochemical-conversion cost and chemical-trading revenue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Removal of cadmium ions from wastewater using innovative electronic waste-derived material.

    PubMed

    Xu, Meng; Hadi, Pejman; Chen, Guohua; McKay, Gordon

    2014-05-30

    Cadmium is a highly toxic heavy metal even at a trace level. In this study, a novel material derived from waste PCBs has been applied as an adsorbent to remove cadmium ions from aqueous solutions. The effects of various factors including contact time, initial cadmium ion concentration, pH and adsorbent dosage have been evaluated. The maximum uptake capacity of the newly derived material for cadmium ions has reached 2.1mmol/g at an initial pH 4. This value shows that this material can effectively remove cadmium ions from effluent. The equilibrium isotherm has been analyzed using several isotherm equations and is best described by the Redlich-Peterson model. Furthermore, different commercial adsorbent resins have been studied for comparison purposes. The results further confirm that this activated material is highly competitive with its commercial counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A statistically derived index for classifying East Coast fever reactions in cattle challenged with Theileria parva under experimental conditions.

    PubMed

    Rowlands, G J; Musoke, A J; Morzaria, S P; Nagda, S M; Ballingall, K T; McKeever, D J

    2000-04-01

    A statistically derived disease reaction index based on parasitological, clinical and haematological measurements observed in 309 5 to 8-month-old Boran cattle following laboratory challenge with Theileria parva is described. Principal component analysis was applied to 13 measures including first appearance of schizonts, first appearance of piroplasms and first occurrence of pyrexia, together with the duration and severity of these symptoms, and white blood cell count. The first principal component, which was based on approximately equal contributions of the 13 variables, provided the definition for the disease reaction index, defined on a scale of 0-10. As well as providing a more objective measure of the severity of the reaction, the continuous nature of the index score enables more powerful statistical analysis of the data compared with that which has been previously possible through clinically derived categories of non-, mild, moderate and severe reactions.

  11. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.

    PubMed

    Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan

    2010-03-01

    An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh. 2009 Elsevier Ltd. All rights reserved.

  12. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.

    PubMed

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  13. Human Atopic Dermatitis Skin-derived T Cells can Induce a Reaction in Mouse Keratinocytes in vivo.

    PubMed

    Martel, B C; Blom, L; Dyring-Andersen, B; Skov, L; Thestrup-Pedersen, K; Skov, S; Skak, K; Poulsen, L K

    2015-08-01

    In atopic dermatitis (AD), the inflammatory response between skin-infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice through keratinocyte activation and consequently cause the development of eczematous lesions. Punch biopsies of the lesional skin from AD patients were used to establish skin-derived T cell cultures, which were transferred to NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that the subcutaneous injection of the human AD skin-derived T cells resulted in the migration of the human T cells from subcutis to the papillary dermis followed by the development of erythema and oedema in the mouse skin. Furthermore, the human T cells induced a transient proliferative response in the mouse keratinocytes shown as increased numbers of Ki-67(+) keratinocytes and increased epidermal thickness. Out of six established AD skin-derived T cell cultures, two were superior at inducing a skin reaction in the mice, and these cultures were found to contain >10% CCR10(+) T cells compared to <2% for the other cultures. In comparison, blood-derived in vitro-differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in the mouse skin through the induction of a proliferative response in the mouse keratinocytes. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  14. Characterization of organic compounds in biochars derived from municipal solid waste.

    PubMed

    Taherymoosavi, Sarasadat; Verheyen, Vince; Munroe, Paul; Joseph, Stephen; Reynolds, Alicia

    2017-09-01

    Municipal solid waste (MSW) generation has been growing in many countries, which has led to numerous environmental problems. Converting MSW into a valuable biochar-based by-product can manage waste and, possibly, improve soil fertility, depending on the soil properties. In this study, MSW-based biochars, collected from domestic waste materials and kerbsides in two Sydney's regions, were composted and pyrolysed at 450°C, 550°C and 650°C. The characteristics of the organic components and their interactions with mineral phases were investigated using a range of analytical techniques, with special attention given to polycyclic aromatic hydrocarbons and heavy metal concentrations. The MSW biochar prepared at 450°C contained the most complex organic compounds. The highest concentration of fixed C, indicating the stability of biochar, was detected in the high-temperature-biochar. Microscopic analysis showed development of pores and migration of mineral phases, mainly Ca/P/O-rich phases, into the micro-pores and Si/Al/O-rich phases on the surface of the biochar in the MSW biochar produced at 550°C. Amalgamation of organic phases with mineral compounds was observed, at higher pyrolysis temperatures, indicating chemical reactions between these two phases at 650°C. XPS analysis showed the main changes occurred in C and N bonds. During heat treatment, N-C/C=N functionalities decomposed and oxidized N configurations, mainly pyridine-N-oxide groups, were formed. The majority of the dissolved organic carbon fraction in both MSW biochar produced at 450°C and 550°C was in the form of building blocks, whereas LMW acids was the main fraction in high-temperature-biochar (59.9%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  16. The Expansion of Explosives Safety Education for the 21st Century

    DTIC Science & Technology

    2010-07-01

    shape charges, explosive welding, thermite reaction – Sensitivity testing: drop hammer, electrospark discharge, friction – Physics of explosives, history... ATF ) • Phytoremediation workers use plants to remove explosives from soil and render the explosives harmless • Sales of explosives detection

  17. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  18. Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.

    Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less

  19. Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System

    DOE PAGES

    Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.; ...

    2017-05-16

    Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less

  20. Immobilization of metals in contaminated soil from E-waste recycling site by dairy-manure-derived biochar.

    PubMed

    Chen, Zhiliang; Zhang, Jianqiang; Liu, Minchao; Wu, Yingxin; Yuan, Zhihui

    2017-08-24

    E-waste is a growing concern around the world and varieties of abandoned E-waste recycling sites, especially in urban area, need to remediate immediately. The impacts of dairy-manure-derived biochars (BCs) on the amelioration of soil properties, the changes in the morphologies as well as the mobility of metals were studied to test their efficacy in immobilization of metals for a potential restoration of vegetation landscape in abandoned E-waste recycling site. The amendment with BCs produced positive effects on bioavailability and mobility reduction for Pb, Cd, Zn and Cu depending on BC ratio and incubation time. The BCs promoted the transformation of species of heavy metals to a more stable fraction, and the metals concentrations in Toxicity Characteristic Leaching Procedure extract declined significantly, especially Pb and Cu. Besides, the BCs ameliorated the substrate with increasing the soil pH, cations exchangeable capacity and available phosphorous, which suggested BC as a potential amendment material for abandoned E-waste recycling sites before restoration of vegetation landscape. Generally, the BC modified by alkaline treatment has a higher efficacy, probably due to increase of specific surface area and porosity as well as the functional groups after alkaline treatment.

  1. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW)

    NASA Astrophysics Data System (ADS)

    Dianda, P.; Mahidin; Munawar, E.

    2018-03-01

    Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.

  2. WASTE CONTAINMENT OVERVIEW

    EPA Science Inventory

    BSE waste is derived from diseased animals such as BSE (bovine spongiform encepilopothy, also known as Mad Cow) in cattle and CWD (chronic wasting disease) in deer and elk. Landfilling is examined as a disposal option and this presentation introduces waste containment technology...

  3. The kinetics of the 2π+2π photodimerisation reactions of single-crystalline derivatives of trans-cinnamic acid: A study by infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Jenkins, Samantha L.; Almond, Matthew J.; Atkinson, Samantha D. M.; Drew, Michael G. B.; Hollins, Peter; Mortimore, Joanne L.; Tobin, Mark J.

    2006-04-01

    The kinetics of the photodimerisation reactions of the 2- and 4-β-halogeno-derivatives of trans-cinnamic acid (where the halogen is fluorine, chlorine or bromine) have been investigated by infrared microspectroscopy. It is found that none of the reactions proceed to 100% yield. This is in line with a reaction mechanism developed by Wernick and his co-workers that postulates the formation of isolated monomers within the solid, which cannot react. β-4-Bromo and β-4-chloro- trans-cinnamic acids show approximately first order kinetics, although in both cases the reaction accelerates somewhat as it proceeds. First order kinetics is explained in terms of a reaction between one excited- and one ground-state monomer molecule, while the acceleration of the reaction implies that it is promoted as defects are formed within the crystal. By contrast β-2-chloro- trans-cinnamic acid shows a strongly accelerating reaction which models closely to the contracting cube equation. β-2-Fluoro- and β-4-fluoro- trans-cinnamic acids show a close match to first order kinetics. The 4-fluoro-derivative, however, shows a reaction that proceeds via a structural intermediate. The difference in behaviour between the 2-fluoro- and 4-fluoro-derivative may be due to different C-H⋯F hydrogen bonds observed within these single-crystalline starting materials.

  4. Violent oxidation of lithium-containing aluminum alloys in liquid oxygen

    NASA Astrophysics Data System (ADS)

    Dalins, Ilmars; Karimi, Majid; Ila, Daryush

    1991-06-01

    A strong exothermic and quite well known thermite reaction involving aluminum, oxygen and transition metals (Fe, Cr, Ni, etc.) has apparently been initiated during impact testing of Alcoa aluminum alloy #2090 in liquid oxygen at NASA-MSFC. In some instances, this reaction, essentially an oxidation process, has been so intense that the Inconel 718 cup containing the aluminum alloy disk and associated impacter has melted raising certain safety concerns in the use of this alloy. Reaction products as well as the test specimen surfaces have been studied with surface science techniques like XPS/ESCA, SIMS and AES. Typically, in order to initiate the thermite reaction a temperature of approximately 1000°C is necessary. The mechanism responsible for this oxidation is of great interest. The analysis of the reaction products together with a theoretical analysis, including digital modeling has been pursued. There is strong evidence that the large relaxation energy of the aluminum oxide coating, formed during the aluminum alloy cleaning process, is causing a highly localized energy release during fracture or lattice deformation which is enhancing the oxidation process to a runaway condition. The presence of alkali atoms (Li) enhances the likelihood and intensity of the oxidation reaction. The details of the surface studies will be discussed.

  5. Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions.

    PubMed

    Huang, Qingguo; Weber, Walter J

    2004-01-01

    The influence of dissolved soil organic matter (DSOM) derived from three geosorbents of different chemical composition and diagenetic history on the horseradish peroxidase (HRP) catalyzed oxidative coupling reactions of phenol was investigated. Phenol conversion and precipitate-product formation were measured, respectively, by HPLC and radiolabeled species analysis. Fourier transform infrared (FTIR) spectroscopy and capillary electrophoresis (CE) were used to characterize the products of enzymatic coupling, and the acute toxicities of the soluble products were determined by Microtox assay. Phenol conversion and precipitate formation were both significantly influenced by cross-coupling of phenol with dissolved organic matter, particularly in the cases of the more reactive and soluble DSOMs derived from two diagenetically "young" humic-type geosorbents. FTIR and CE characterizations indicate that enzymatic cross-coupling in these two cases leads to incorporation of phenol in DSOM macromolecules, yielding nontoxic soluble products. Conversely, cross-coupling appears to proceed in parallel with self-coupling in the presence of the relatively inert and more hydrophobic DSOM derived from a diagenetically "old" kerogen-type shale material. The products formed in this system have lower solubility and precipitate more readily, although their soluble forms tend to be more toxic than those formed by dominant cross-coupling reactions in the humic-type DSOM solutions. Several of the findings reported may be critically important with respect to feasibility evaluations and the engineering design of associated remediation schemes.

  6. Palladium-catalyzed cyclization reactions of 2-vinylthiiranes with heterocumulenes. Regioselective and enantioselective formation of thiazolidine, oxathiolane, and dithiolane derivatives.

    PubMed

    Larksarp, C; Sellier, O; Alper, H

    2001-05-18

    The first palladium-catalyzed ring-expansion reaction of 2-vinylthiiranes with heterocumulenes to form sulfur-containing five-membered-ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of bidendate phosphine ligand (dppp, BINAP), at 50-80 degrees C, in THF. The reaction of 2-vinylthiiranes with carbodiimides, isocyanates, and ketenimines affords 1,3-thiazolidine derivatives, whereas the reaction with diphenylketene or isothiocyanates results in the formation of 1,3-oxathiolane or 1,3-dithiolane compounds in good to excellent isolated yields and in up to 78% ee.

  7. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    PubMed

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  9. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging.

    PubMed

    Leunissen, E H P; Meuleners, M H L; Verkade, J M M; Dommerholt, J; Hoenderop, J G J; van Delft, F L

    2014-07-07

    The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain-promoted alkyne-azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino-BCN, glutarylamino-BCN and bis(hydroxymethyl)-BCN] display reaction rates similar to those of BCN and are less cell-permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino-BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N-glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal-to-noise ratios. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    PubMed

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh.

    PubMed

    Islam, M Rofiqul; Haniu, H; Fardoushi, J

    2009-02-01

    Pyrolysis kinetics of available bicycle/rickshaw, motorcycle and truck tire wastes in Bangladesh have been investigated thermogravimetrically in a nitrogen atmosphere at heating rates of 10 and 60 degrees C/min over a temperature range of 30-800 degrees C. The three tire wastes exhibited similar behaviors in that, when heating rate was increased, the initial reaction temperature decreased but the reaction range and reaction rate increased. The percentage of total weight loss was higher for truck tire waste and lower for bicycle/rickshaw tire waste. The pyrolysis of truck tire waste was found to be easier than that of bicycle/rickshaw and motorcycle tire wastes while it was comparatively more difficult for motorcycle tire waste. The overall rate equation for the three tire wastes has been modeled satisfactorily by one simplified equation from which the kinetic parameters of unreacted materials based on the Arrhenius form can be determined. The predicted rate equation compares fairly well with the measured TG and DTG data. DTA curves for all of the samples show that the degradation reactions are three main exotherms and one endotherm.

  12. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...

  13. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...

  14. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...

  15. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...

  16. Physical and chemical characterization of waste wood derived biochars.

    PubMed

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification

  17. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    NASA Astrophysics Data System (ADS)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  19. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    NASA Astrophysics Data System (ADS)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  20. Microwave-Assisted Organocatalytic Intramolecular Knoevenagel/Hetero Diels-Alder Reaction with O-(Arylpropynyloxy)-Salicylaldehydes: Synthesis of Polycyclic Embelin Derivatives.

    PubMed

    Martín-Acosta, Pedro; Feresin, Gabriela; Tapia, Alejandro; Estévez-Braun, Ana

    2016-10-21

    A highly efficient and regioselective approach to new polycyclic embelin derivatives through a domino Knoevenagel condensation/intramolecular hetero Diels-Alder reaction using O-(arylpropynyloxy)-salicylaldehydes in the presence of ethylenediamine diacetate (EDDA) is reported. This organocatalyzed protocol is compatible toward a wide range of aryl-substituted alkynyl ethers with electron-donating and electron-withdrawing groups. When other active methylene compounds were subjected to this domino reaction the corresponding adducts were obtained in high yield.

  1. Overview of waste stabilization with cement.

    PubMed

    Batchelor, B

    2006-01-01

    Cement can treat a variety of wastes by improving physical characteristics (solidification) and reducing the toxicity and mobility of contaminants (stabilization). Potentially adverse waste-binder interactions are an important consideration because they can limit solidification. Stabilization occurs when a contaminant is converted from the dissolved (mobile) phase to a solid (immobile) phase by reactions, such as precipitation, sorption, or substitution. These reactions are often strongly affected by pH, so the presence of components of the waste that control pH are critical to stabilization reactions. Evaluating environmental impacts can be accomplished in a tiered strategy in which simplest approach would be to measure the maximum amount of contaminant that could be released. Alternatively, the sequence of release can be determined, either by microcosm tests that attempt to simulate conditions in the disposal zone or by mechanistic models that attempt to predict behavior using fundamental characteristics of the treated waste.

  2. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    NASA Astrophysics Data System (ADS)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  3. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, J. OM.; Hitchens, G. D.; Kaba, L.

    1988-01-01

    The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.

  4. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    NASA Astrophysics Data System (ADS)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  5. Quinazoline derivatives: synthesis and bioactivities

    PubMed Central

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reaction, Ultrasound-promoted reaction and Phase-transfer catalysis reaction. The biological activities of the synthesized quinazoline derivatives also are discussed. PMID:23731671

  6. Demonstration of Thermite and Related Reactions To Form Metals.

    ERIC Educational Resources Information Center

    Foskett, R. R.

    1994-01-01

    Provides descriptions of a range of resources and methods that can be used to produce metals such as titanium, vanadium, chromium, manganese, iron, and molybdenum. Details on equipment and safety precautions are also outlined. (DDR)

  7. Orthotopic Patient-Derived Pancreatic Cancer Xenografts Engraft Into the Pancreatic Parenchyma, Metastasize, and Induce Muscle Wasting to Recapitulate the Human Disease.

    PubMed

    Go, Kristina L; Delitto, Daniel; Judge, Sarah M; Gerber, Michael H; George, Thomas J; Behrns, Kevin E; Hughes, Steven J; Judge, Andrew R; Trevino, Jose G

    2017-07-01

    Limitations associated with current animal models serve as a major obstacle to reliable preclinical evaluation of therapies in pancreatic cancer (PC). In an effort to develop more reliable preclinical models, we have recently established a subcutaneous patient-derived xenograft (PDX) model. However, critical aspects of PC responsible for its highly lethal nature, such as the development of distant metastasis and cancer cachexia, remain underrepresented in the flank PDX model. The purpose of this study was to evaluate the degree to which an orthotopic PDX model of PC recapitulates these aspects of the human disease. Human PDX-derived PC tumors were implanted directly into the pancreas of NOD.Cg-Prkdc Il2rg/SzJ mice. Tumor growth, metastasis, and muscle wasting were then evaluated. Orthotopically implanted PDX-derived tumors consistently incorporated into the murine pancreatic parenchyma, metastasized to both the liver and lungs and induced muscle wasting directly proportional to the size of the tumor, consistent of the cancer cachexia syndrome. Through the orthotopic implantation technique described, we demonstrate a highly reproducible model that recapitulates both local and systemic aspects of human PC.

  8. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  9. Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbo; DeLisio, Jeffery B.; Wang, Xizheng; Egan, Garth C.; Zachariah, Michael R.

    2015-09-01

    This study investigates the ignition of nano-aluminum (n-Al) and n-Al based energetic materials (nanothermites) at varying O2 pressures (1-18 atm), aiming to differentiate the effects of free and bound oxygen on ignition and to assess if it is possible to identify a critical reaction condition for ignition independent of oxygen source. Ignition experiments were conducted by rapidly heating the samples on a fine Pt wire at a heating rate of ˜105 °C s-1 to determine the ignition time and temperature. The ignition temperature of n-Al was found to reduce as the O2 pressure increased, whereas the ignition temperatures of nanothermites (n-Al/Fe2O3, n-Al/Bi2O3, n-Al/K2SO4, and n-Al/K2S2O8) had different sensitivities to O2 pressure depending on the formulations. A phenomenological kinetic/transport model was evaluated to correlate the concentrations of oxygen both in condensed and gaseous phases, with the initiation rate of Al-O at ignition temperature. We found that a constant critical reaction rate (5 × 10-2 mol m-2 s-1) for ignition exists which is independent to ignition temperature, heating rate, and free vs bound oxygen. Since for both the thermite and the free O2 reaction the critical reaction rate for ignition is the same, the various ignition temperatures are simply reflecting the conditions when the critical reaction rate for thermal runaway is achieved.

  10. Assessing the fate of explosives derived nitrate in mine waste rock dumps using the stable isotopes of oxygen and nitrogen.

    PubMed

    Hendry, M Jim; Wassenaar, Leonard I; Barbour, S Lee; Schabert, Marcie S; Birkham, Tyler K; Fedec, Tony; Schmeling, Erin E

    2018-05-29

    Ammonium nitrate (NH 4 NO 3 ) mixed with fuel oil is a common blasting agent used to fragment rock into workable size fractions at mines throughout the world. The decomposition and oxidation of undetonated explosives can result in high NO 3 - concentrations in waters emanating from waste rock dumps. We used the stable isotopic composition of NO 3 - (δ 15 N- and δ 18 O-NO 3 - ) to define and quantify the controls on NO 3 - composition in waste rock dumps by studying water-unsaturated and saturated conditions at nine coal waste rock dumps located in the Elk Valley, British Columbia, Canada. Estimates of the extent of nitrification of NH 4 NO 3 in oxic zones in the dumps, initial NO 3 - concentrations prior to denitrification, and the extent of NO 3 - removal by denitrification in sub-oxic to anoxic zones are provided. δ 15 N data from unsaturated waste rock dumps confirm NO 3 - is derived from blasting. δ 15 N- and δ 18 O-NO 3 - data show extensive denitrification can occur in saturated waste rock and in localized zones of elevated water saturation and low oxygen concentrations in unsaturated waste rock. At the mine dump scale, the extent of denitrification in the unsaturated waste rock was inferred from water samples collected from underlying rock drains. Copyright © 2018. Published by Elsevier B.V.

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides instructions and a list of materials needed to demonstrate: (1) a model of the quantum mechanical atom; (2) principles involved in metal corrosion and in the prevention of this destructive process by electrochemical means; and (3) a Thermit reaction, modified to make it more dramatic and interesting for students. (SK)

  12. Reaction pathways of biomass-derived oxygenates on noble metal surfaces

    NASA Astrophysics Data System (ADS)

    McManus, Jesse R.

    As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway

  13. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  14. Co-complexes Derived from Alkene Insertion to Alkyne-dicobaltpentacarbonyl complexes: Insight into the Regioselectivity of Pauson-Khand Reactions of Cyclopropenes

    PubMed Central

    Pallerla, Mahesh K.; Yap, Glenn P. A.; Fox, Joseph M.

    2009-01-01

    Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to μ-bonded, five-carbon “flyover” carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes. PMID:18637694

  15. Co-complexes derived from alkene insertion to alkyne-dicobaltpentacarbonyl complexes: insight into the regioselectivity of pauson-khand reactions of cyclopropenes.

    PubMed

    Pallerla, Mahesh K; Yap, Glenn P A; Fox, Joseph M

    2008-08-15

    Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to mu-bonded, five-carbon "flyover" carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes.

  16. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.

    PubMed

    Möller, Matías N; Hatch, Duane M; Kim, Hye-Young H; Porter, Ned A

    2012-10-10

    Tyrosine-derived hydroperoxides are formed in peptides and proteins exposed to enzymatic or cellular sources of superoxide and oxidizing species as a result of the nearly diffusion-limited reaction between tyrosyl radical and superoxide. However, the structure of these products, which informs their reactivity in biology, has not been unequivocally established. We report here the complete characterization of the products formed in the addition of superoxide, generated from xanthine oxidase, to several peptide-derived tyrosyl radicals, formed from horseradish peroxidase. RP-HPLC, LC-MS, and NMR experiments indicate that the primary stable products of superoxide addition to tyrosyl radical are para-hydroperoxide derivatives (para relative to the position of the OH in tyrosine) that can be reduced to the corresponding para-alcohol. In the case of glycyl-tyrosine, a stable 3-(1-hydroperoxy-4-oxocyclohexa-2,5-dien-1-yl)-L-alanine was formed. In tyrosyl-glycine and Leu-enkephalin, which have N-terminal tyrosines, bicyclic indolic para-hydroperoxide derivatives were formed ((2S,3aR,7aR)-3a-hydroperoxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid) by the conjugate addition of the free amine to the cyclohexadienone. It was also found that significant amounts of the para-OH derivative were generated from the hydroxyl radical, formed on exposure of tyrosine-containing peptides to Fenton conditions. The para-OOH and para-OH derivatives are much more reactive than other tyrosine oxidation products and may play important roles in physiology and disease.

  17. Regioselective SN2' Mitsunobu reaction of Morita-Baylis-Hillman alcohols: A facile and stereoselective synthesis of α-alkylidene-β-hydrazino acid derivatives.

    PubMed

    Xu, Silong; Shang, Jian; Zhang, Junjie; Tang, Yuhai

    2014-01-01

    A highly regioselective SN2' Mitsunobu reaction between Morita-Baylis-Hillman (MBH) alcohols, azodicarboxylates, and triphenylphosphine is developed, which provides an easy access to α-alkylidene-β-hydrazino acid derivatives in high yields and good stereoselectivity. This reaction represents the first direct transformation of MBH alcohols into hydrazines.

  18. A Diastereoselective Multicomponent Reaction for Construction of Alkynylamide-Substituted α,β-Diamino Acid Derivatives To Hunt Hits.

    PubMed

    Lei, Ruirui; Wu, Yong; Dong, Suzhen; Jia, Kaili; Liu, Shunying; Hu, Wenhao

    2017-03-17

    A highly diasetereoselective Mannich-type multicomponent reaction was developed to rapidly construct alkynylamide-substituted α,β-diamino acid derivatives from simple starting materials under mild conditions in moderate to good yields for hit hunting. Most of the resulting products 4 exhibited good anticancer activity in HCT116, BEL7402, and SMMC7721 cells.

  19. Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials

    DTIC Science & Technology

    2013-02-01

    intermetallic) [13,14], a metal oxide ( thermite ) [13e15], or a fluoropolymer [16,17]. They can be used as additives in explosives to decrease...research on ESD ignition sensitivity of thermites and intermetallics. Because thermites are composed of particulate media and widely used, they pose a... thermites and intermetallics for pyrotechnic applications, in: 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 1996. [15] K.W. Watson, M.L

  20. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    NASA Astrophysics Data System (ADS)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  1. Chiral and achiral phosphine derivatives of alkylidyne tricobalt carbonyl clusters as catalyst precursors for (asymmetric) inter- and intramolecular Pauson-Khand reactions.

    PubMed

    Moberg, Viktor; Mottalib, M Abdul; Sauer, Désirée; Poplavskaya, Yulia; Craig, Donald C; Colbran, Stephen B; Deeming, Antony J; Nordlander, Ebbe

    2008-05-14

    Phosphine derivatives of alkylidyne tricobalt carbonyl clusters have been tested as catalysts/catalyst precursors in intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. A number of new phosphine derivatives of the tricobalt alkylidyne clusters [Co3(micro3-CR)(CO)9] (R = H, CO2Et) were prepared and characterised. The clusters [Co3(micro3-CR)(CO)9-x(PR'3)x] (PR'3 = achiral or chiral monodentate phosphine, x = 1-3) and [Co3(micro3-CR)(CO)7)(P-P)] (P-P = chiral diphosphine; 1,1'- and 1,2-structural isomers) were assayed as catalysts for intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. The phosphine-substituted tricobalt clusters proved to be viable catalysts/catalyst precursors that gave moderate to very good product yields (up to approximately 90%), but the enantiomeric excesses were too low for the clusters to be of practical use in the asymmetric reactions.

  2. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (< 0.7) and the lack of space, respectively. The most probable zones of microbial activity, those likely to develop sustainable biofilms are within the interface zones. A major restriction

  3. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    PubMed

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Effect of Mineral Powders Derived From Industrial Wastes on Selected Mechanical Properties of Concrete

    NASA Astrophysics Data System (ADS)

    Galińska, Anna; Czarnecki, Sławomir

    2017-10-01

    In recent years, concrete has been the most popular construction material. The main component of the concrete is cement. However, its production and transport causes significant emissions of CO2. Reports in the literature show that many laboratories are attempting to modify the composition of the concrete using various additives. These attempts are primarily designed to eliminate parts of cement. The greater part of the cement will be replaced with the selected additive, the more significant is the economic and ecological effect. Most attempts are related to the replacement of the selected additive in an amount of from 10 to 30% by weight of cement. Mineral powders, which are waste material producing crushed aggregate, are increasingly used for this purpose. Management of the waste carries significant cost related to their storage and disposal. With this in mind, the aim of this study was to evaluate the effect of mineral powders derived from industrial wastes on selected mechanical properties of concrete. In particular, the aim was to determine the effect of quartz and quartz-feldspar powders. For this purpose, 40, 50, 60% by weight of the cement was replaced by the selected powders. The results obtained were analysed and compared with previous attempts to replace the selected additive in an amount of from 10 to 30% by weight of cement.

  5. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    PubMed

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  7. MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Hu, Jiapeng; Chen, Juan; Lin, Hao; Liu, Ruilai; Yang, Xiaobing

    2018-03-01

    Designing efficient electrocatalysts for oxygen evolution reaction (OER) is very important for renewable energy storage and conversion devices. In this paper, we introduced a new strategy to synthesize Ni doped Co/NC catalysts (NC is the abbreviation of nitrogen-doped graphitic carbon), which were derived from ZIF-67. All catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and oxygen evolution reaction (OER). The results show that Ni was well doped in the Ni/Co/NC catalysts and the doping of Ni has great influence on the OER activity of Ni/Co/NC catalysts. Among these catalysts, 0.50Ni/Co/NC exhibits the highest OER activity. The onset potential of 0.50Ni/Co/NC is 1.47 V, which is superior than the onset potential of Co/NC (1.54 V), 0.25Ni/Co/NC (1.48 V), 1.00Ni/Co/NC (1.53 V). The excellent OER activity of 0.50Ni/Co/NC catalyst makes its potential to be used on renewable energy storage.

  8. Relative radiological risks derived from different TENORM wastes in Malaysia.

    PubMed

    Ismail, B; Teng, I L; Muhammad Samudi, Y

    2011-11-01

    In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory

  9. [Comparative evaluation of health hazards associated with industrial chemicals and their derivates forming during water chlorination].

    PubMed

    Zholdakova, Z I; Poliakova, E E; Lebedev, A T

    2006-01-01

    Many industrial chemicals found in waste waters are able to form organochlorine by-products during water disinfection. The transformation of seven model compounds, cyclohexene, n-butanol, diphenylmethane, acetophenone, aniline, 1-methylnaphthalene, and phenylxylylethane during a reaction with active chlorine was studied. Aqueous chlorine and sodium hypochlorite were used as chlorinating agents. The products of the reaction were analyzed by means of chromatomass-spectrometry. A schematic model of diphenylmethane transformation was proposed. Comparative evaluation of hazards associated with the model chemicals and their derivates confirmed that chlorination products can be more toxic and dangerous than the initial compounds, and may possess mutagenic and cancerigenic properties.

  10. Microsphere Composites of Nano-Al and Nanothermite: An Approach to Better Utilization of Nanomaterials

    DTIC Science & Technology

    2014-01-01

    2 μm to 16 μm. The combustion behavior is found to be very different from either nanoaluminum or micron aluminum and their corresponding thermite ... thermite mixture with the addition of nanoparticles of copper oxide. In a typical experiment, 180 mg of Al nanoparticles, and 540 mg CuO nanoparticles...combustion performance of thermite samples was evaluated by igniting 25.0 mg of thermite sample in the combustion cell, instrumented with a fast

  11. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  12. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kyle T.

    Reactive composites utilizing nanoparticles have been the topic of extensive research in the past two decades. The driver for this is that, as the particle size is decreased, the mixing scale between constituents is greatly reduced, which has long thought to increase the rate of chemical reaction. While a general trend of increased reactivity has been seen for metal / metal oxide, or thermite, reactive materials, some results have demonstrated diminishing returns as the particle size is further decreased. Recent results have shown that nanoparticles, which are typically aggregates of several primary particles, can undergo very rapid coalescence to formmore » micron particles once a critical temperature is reached. Experiments on this topic to date have been performed on very small sample masses, and sometimes under vacuum; conditions which are not representative of the environment during a deflagration. In this feasibility study, a custom burn tube was used to ignite and react 100 mg powdered thermite samples in long acrylic tubes. X-ray imaging at APS Sector 32 was performed to image the particle field as a function of distance and time as the rarefied particle cloud expanded and flowed down the tube. Five different thermite formulations were investigated, Al / CuO, Al / Fe 2O 3, Al / SnO 2, Al / WO 3, and Al / Fe 2O 3, along with Al / CuO formulations with different sizes of Al particles ranging from 80 nm to approximate 10 μm. The results clearly show that the sample powder reacts and unloads into a distribution of larger micron-scale particles (~5-500 μm), which continue to react and propagate as the particle-laden stream flows down the tube. This was the first direct imaging of the particle field during a thermite deflagration, and gives significant insight into the evolution of reactants to products. Analysis of phase is currently being pursued to determine whether this method can be used to extract reaction kinetics.« less

  14. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life

    DOE PAGES

    Boota, M.; Paranthaman, Mariappan Parans; Naskar, Amit K.; ...

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m 2/g –1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g –1 at 1 mV/s –1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance andmore » long cycle life were ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.« less

  15. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boota, M.; Paranthaman, M. Parans; Naskar, Amit K.

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2 g-1) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g-1 at 1 mV s-1 with excellent capacitance retention of up to 98 % after 10 000 charge/discharge cycles. The high capacitancemore » and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π–π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life—a key challenge for redox active polymers.« less

  16. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life.

    PubMed

    Boota, M; Paranthaman, M Parans; Naskar, Amit K; Li, Yunchao; Akato, Kokouvi; Gogotsi, Y

    2015-11-01

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2)  g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  18. Reuse of ground waste glass as aggregate for mortars.

    PubMed

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  19. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    PubMed

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil.

    PubMed

    Hindryawati, Noor; Maniam, Gaanty Pragas

    2015-01-01

    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. 40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...

  2. 40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...

  3. Welding of Armor: Summary of Ballistic Shock Test Results on 1-1/2 inch Homogeneous Armor ’H’ Plates Welded with Austenitic Electrodes and Tested at Aberdeen Proving Ground during the Period 1 April 1943 through 30 September 1943

    DTIC Science & Technology

    1944-04-10

    Laughlin Carnegie-Illinois Alloy Rods Metal & Thermit 9 1 Florence Stove Jones & Laughlin Great Lakes Crucible 10-11 U Ford Motor Ford Motor...Alloy Rods Harnischfeger A. 0, Smith Metal & Thermit Page 20 1 Kalanazoo Stove Great Lakes Crucible 2i -au 1C Lima Locomotive Youngstcvm Tones...Avery Page Metal & Thermit Crucible Heid-Avery Hollup McKay Metal & Thermit A. 0. Smith Crucible . C 38- 39 Uo Ui U2- U3 U7 50 51-55

  4. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  6. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.

    PubMed

    Miandad, R; Nizami, A S; Rehan, M; Barakat, M A; Khan, M I; Mustafa, A; Ismail, I M I; Murphy, J D

    2016-12-01

    This paper aims to investigate the effect of temperature and reaction time on the yield and quality of liquid oil produced from a pyrolysis process. Polystyrene (PS) type plastic waste was used as a feedstock in a small pilot scale batch pyrolysis reactor. At 400°C with a reaction time of 75min, the gas yield was 8% by mass, the char yield was 16% by mass, while the liquid oil yield was 76% by mass. Raising the temperature to 450°C increased the gas production to 13% by mass, reduced the char production to 6.2% and increased the liquid oil yield to 80.8% by mass. The optimum temperature and reaction time was found to be 450°C and 75min. The liquid oil at optimum conditions had a dynamic viscosity of 1.77mPas, kinematic viscosity of 1.92cSt, a density of 0.92g/cm 3 , a pour point of -60°C, a freezing point of -64°C, a flash point of 30.2°C and a high heating value (HHV) of 41.6MJ/kg this is similar to conventional diesel. The gas chromatography with mass spectrophotometry (GC-MS) analysis showed that liquid oil contains mainly styrene (48%), toluene (26%) and ethyl-benzene (21%) compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste: Reactivity and synergy.

    PubMed

    Wei, Juntao; Guo, Qinghua; He, Qing; Ding, Lu; Yoshikawa, Kunio; Yu, Guangsuo

    2017-09-01

    In this work, the influences of gasification temperature and blended ratio on co-gasification reactivity and synergy of Shenfu bituminous coal (SF) and municipal solid waste-derived hydrochar (HTC) were investigated using TGA. Additionally, active alkaline and alkaline earth metal (AAEM) transformation during co-gasification was quantitatively analyzed by inductively coupled plasma optical emission spectrometer for correlating synergy on co-gasification reactivity. The results showed that higher char gasification reactivity existed at higher HTC char proportion and gasification temperature, and the main synergy behaviour on co-gasification reactivity was performed as synergistic effect. Enhanced synergistic effect at lower temperature was mainly resulted from more obviously inhibiting the primary AAEM (i.e. active Ca) transformation, and weak synergistic effect still existed at higher temperature since more active K with prominent catalysis was retained. Furthermore, more active HTC-derived AAEM remaining in SF sample during co-gasification would lead to enhanced synergistic effect as HTC char proportion increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    PubMed Central

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar–similar (e.g., “apple is to orange as dog is to cat”) versus different–different (e.g., “he is to his brother as chalk is to cheese”) derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar–similar responding to be significantly faster than different–different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different–different waveforms were significantly more negative than similar–similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar–similar responding is relationally “simpler” than, and functionally distinct from, different–different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations. PMID:16596974

  9. Titanium isopropoxide as efficient catalyst for the aza-Baylis-Hillman reaction. Selective formation of alpha-methylene-beta-amino acid derivatives.

    PubMed

    Balan, Daniela; Adolfsson, Hans

    2002-04-05

    The direct formation of alpha-methylene-beta-amino acid derivatives is achieved using the aza version of the Baylis-Hillman protocol. The products are readily formed in a three-component one-pot reaction between arylaldehydes, sulfonamides, and alpha,beta-unsaturated carbonyl compounds. The reaction is efficiently catalyzed by titanium isopropoxide and 2-hydroxyquinuclidine in the presence of molecular sieves. The protocol allows for structural variation of the substrates, tolerating electron-poor and electron-rich arylaldehydes and various Michael acceptors.

  10. OH Radical Reactions with Nitroimidazole and Nitrotriazole Derivatives

    NASA Astrophysics Data System (ADS)

    Gümüş, Selçuk

    2012-04-01

    The reactions between hydroxyl radical and 5-nitro-1H-imidazole (A), 2-nitro-1H-imidazole (B), and 3-nitro-4H-1,2,4-triazole (C) were theoretically investigated using B3LYP/6-31G(d,p) level of theory. The OH radical additions to double bonds were explored in bulk solvent (water). The data presented show that the barriers to reaction were very low, 3-7 kcal/mol, indicating fast reactions. Thermodynamically, OH addition to position 2 of structure A leads to the most stable radical product. The main geometrical parameters are reported for reactants, transition states, and radical products together with some energetic data of the nitro-imidazolone-type final compounds.

  11. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel R.; Rice, Jarrett A.

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted withmore » amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.« less

  12. Investigation on electrochemical behavior and its catalytic effect on oxygen reduction reaction of 3-Ferrocenyl dihydropyrazole derivative as electron relay

    NASA Astrophysics Data System (ADS)

    Zeng, Han; Huo, Wen-Shan; Zhao, Shu-Xian; Zhang, Yu-He

    2017-11-01

    Amino group surface tailored multi-wall carbon nano-tubes were covalently tethered to the gold disk electrode and Laccase molecules were covalently coupled to nano-tubes to prepare Lac-based electrode. Derivative of 3-ferrocenyl dihydropyrazole (FDPFFP) was proposed to be electron mediator for mediated oxygen reduction reaction. Investigation in electro-chemical behavior and catalytic performance to enzymatic reaction of FDPFFP indicated that it displayed quasi-reversible characteristics of electro-chemical reaction with rapid dynamics of electron shuttle and had apparent catalytic effect in oxygen reduction (onset potential for catalysis at 450 mV vs NHE). This enzymatic catalysis was restrained by the step in diffusion of substrate.

  13. Synthesis of Novel Basic Skeletons Derived from Naltrexone

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    We will describe eight interesting reactions using naltrexone derivatives. Almost all these reactions are characteristic of naltrexone derivatives, and can lead to the synthesis of many novel skeletons that provide new interesting pharmacological data. Some of the new reactions that were found with naltrexone derivatives were expanded into general reactions. For example, the reaction of 6α-hydroxyaldehyde derived from naltrexone led to the oxazoline dimer and the 1,3,5-trioxazatriquinane skeleton (triplet drug); this reaction was applied to general ketones which were converted to α-hydroxyaldehydes, followed by conversion to dimers and trimers, as described in Sect. 7.

  14. Method for producing synthetic fuels from solid waste

    DOEpatents

    Antal, Jr., Michael J.

    1976-11-23

    Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.

  15. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    PubMed

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  16. Organocatalytic aza-Michael/retro-aza-Michael reaction: pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction.

    PubMed

    Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen

    2011-05-01

    A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.

  17. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  18. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  19. Rocket-borne Lithium ejection system for neutral wind measurement

    NASA Astrophysics Data System (ADS)

    Habu, H.; Yamamoto, M.; Watanabe, S.; Larsen, M. F.

    2013-11-01

    Chemical tracer releases represent the most widely used technique for in situ neutral wind measurements in the thermosphere/ionosphere region. Different chemicals have been used for this purpose, but lithium releases in particular provide some unique capabilities due to the strong resonant emissions that are produced when lithium is illuminated by sunlight. The majority of the lithium releases from sounding rockets were carried out in the 1960's and 1970's, but there has been recent renewed interest in the use of lithium vapor releases to extend neutral wind measurements into the F region and for daytime wind profile measurements in the E region. The rocketborne Lithium Ejection System (LES) is a chemical release device that has been developed for the Japanese space research program. Since lithium vapor acts as a neutral tracer, the winds are obtained by tracking the motion of the clouds or trails optically from the ground using the bright red emission that is characteristic of the chemical. Lithium is a solid at room temperature, so that a gas release requires rapid vaporization of the metal to make the cloud at the intended altitude. The release canister is designed to produce a high-heat chemical reaction without gaseous products. Appropriate mixtures of thermite are employed as the heat source. In early experiments, lithium pellets were mixed directly into the thermite. However, since lithium is an active chemical, the use of lithium-thermite mixtures creates potential hazards when used in a rocket-borne device. Moreover, the pyrotechnic devices used to ignite the thermite also have to be considered in the payload canister design to assure that the safety standards for sounding rockets are satisfied. The design of the LES, described in this paper, was based on the safety requirements and the reliability in storing and handling of the materials. The LES design is also flexible in that the lithium tracer material can be replaced with other chemicals without

  20. From waste to high-value product: Jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications.

    PubMed

    Govindaraj, Dharman; Rajan, Mariappan; Hatamleh, Ashraf A; Munusamy, Murugan A

    2018-01-01

    Public requirements encouraged by the current asset framework drive industry to expand its general effectiveness by enhancing existing procedures or finding new uses for waste. Thus, the aim of this study was the isolation, fabrication, and characterization of pectin derived from jackfruit (Artocarpus heterophyllus) peels and the generation of hybrid of pectin (P)/apatite (HA) (P/HA) bionanocomposites. In this process, the natural pectin polymer derived from the peel of jackfruits was used in different concentrations for the fabrication of HA bionanocomposites. Characterization of the isolated pectin and bionanocomposites samples was performed with 1 H NMR and 13 C NMR, FTIR, XRD, SEM-EDX, and HR-TEM. Cytocompatibility, ALP, fibroblast stem cells, anti-inflammatory and cell adhesion testing of the fabricated bionanocomposites was showed good biocompatibility. Our results signify that the fabricated bionanocomposites might be applicable as bone graft materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein.

    PubMed

    Hu, Yancheng; Li, Ning; Li, Guangyi; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl - and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl - may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Theoretical considerations for Reaction-Formed Silicon Carbide (RFSC) formation by molten silicon infiltration into slurry-derived preforms

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.; Singh, M.

    1993-01-01

    For reaction-formed silicon carbide (RFSC) ceramics produced by silicon melt infiltration of porous carbon preforms, equations are developed to relate the amount of residual silicon to the initial carbon density. Also, for a slurry derived preform containing both carbon and silicon powder, equations are derived which relate the amount of residual silicon in the RFSC to the relative density of the carbon in the preform and to the amount of silicon powder added to the slurry. For a porous carbon preform that does not have enough porosity to prevent choking-off of the silicon infiltration, these results show that complete silicon infiltration can occur by adding silicon powder to the slurry mixture used to produce these preforms.

  3. Secondary Waste Form Down Selection Data Package – Ceramicrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The

  4. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2006-09-01

    We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.

  5. Waste-to-Energy Systems

    DTIC Science & Technology

    2009-04-01

    at hospitals, at schools,” or wherever there are people creating masses of trash.5 Pyrolytic Gasification Pyrolytic gasification is not a new...prevalent with both. Gasification is . . . the chemical reaction and molecular breakdown or degradation of materials. The first pyrolytic gasification...dealing with about 2 tons of mixed solid waste per day, will destroy wood, paper card, food, plastics, and sanitary, clinical, and oil waste and

  6. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1993-01-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less

  7. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1993-03-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less

  8. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the highermore » energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.« less

  9. Reaction rates for mesoscopic reaction-diffusion kinetics

    DOE PAGES

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-23

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less

  10. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  11. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  12. Suppression of muscle wasting by the plant‐derived compound ursolic acid in a model of chronic kidney disease

    PubMed Central

    Yu, Rizhen; Chen, Ji‐an; Xu, Jing; Cao, Jin; Wang, Yanlin; Thomas, Sandhya S.

    2016-01-01

    Abstract Background Muscle wasting in chronic kidney disease (CKD) and other catabolic disorders contributes to morbidity and mortality, and there are no therapeutic interventions that regularly and safely block losses of muscle mass. We have obtained evidence that impaired IGF‐1/insulin signalling and increases in glucocorticoids, myostatin and/or inflammatory cytokines that contribute to the development of muscle wasting in catabolic disorders by activating protein degradation. Methods Using in vitro and in vivo models of muscle wasting associated with CKD or dexamethasone administration, we measured protein synthesis and degradation and examined mechanisms by which ursolic acid, derived from plants, could block the loss of muscle mass stimulated by CKD or excessive levels of dexamethasone. Results Using cultured C2C12 myotubes to study muscle wasting, we found that exposure to glucocorticoids cause loss of cell proteins plus an increase in myostatin; both responses are significantly suppressed by ursolic acid. Results from promoter and ChIP assays demonstrated a mechanism involving ursolic acid blockade of myostatin promoter activity that is related to CEBP/δ expression. In mouse models of CKD‐induced or dexamethasone‐induced muscle wasting, we found that ursolic acid blocked the loss of muscle mass by stimulating protein synthesis and decreasing protein degradation. These beneficial responses included decreased expression of myostatin and inflammatory cytokines (e.g. TGF‐β, IL‐6 and TNFα), which are initiators of muscle‐specific ubiquitin‐E3 ligases (e.g. Atrogin‐1, MuRF‐1 and MUSA1). Conclusions Ursolic acid improves CKD‐induced muscle mass by suppressing the expression of myostatin and inflammatory cytokines via increasing protein synthesis and reducing proteolysis. PMID:27897418

  13. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene.

    PubMed

    Kiran Ciliz, Nilgun; Ekinci, Ekrem; Snape, Colin E

    2004-01-01

    A comparison of waste and virgin polypropylene (PP) plastics under slow pyrolysis conditions is presented. Moreover, mixtures of waste PP with wastes of polyethylene (PE) and polystyrene (PS) were pyrolyzed under the same operating conditions. Not only the impact of waste on degradation products but also impacts of the variations in the mixing ratio were investigated. The thermogravimetric weight loss curves and their derivatives of virgin and waste PP showed differences due to the impurities which are dirt and food residues. The liquid yield distribution concerning the aliphatic, mono-aromatic and poly-aromatic compounds varies as the ratio of PP waste increases in the waste plastic mixtures. In addition to this, the alkene/alkane ratio of gas products shows variations depending on the mixing ratio of wastes.

  14. OH Production from Reactions of Organic Peroxy Radicals with HO2 : Recent Studies on Ether-Derived Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.; Kegley Owen, C. S.; Reynoldson, N.

    2013-12-01

    There is now ample evidence supporting significant formation of OH radicals in the reaction of HO2 with certain organic peroxy radicals (RO2). These reaction channels serve to promote radical propagation, and thus have the potential to alter HOx budgets and partitioning and hence tropospheric oxidative capacity. While much focus has been placed on OH production from reactions involving carbonyl-containing RO2 species, it is also the case that other oxygen- substituted peroxy species (e.g., CH3OCH2OO, HOCH2OO) likely generate OH in their reactions with HO2 (see ref. 1 and refs therein). In this work, the Cl-atom-initiated oxidation of two ethers, diethyl and diisopropyl ether, is investigated over ranges of conditions in an environmental chamber, using both FTIR and GC-FID methods for product quantification. Preliminary analysis suggests that significant OH production is occurring in the reaction of HO2 with CH3CH2OCH(OO)CH3, and also provides evidence for a rapid unimolecular reaction of diisopropyl ether-derived peroxy radicals. Details of these and other results will be described. 1. Orlando, J. J., and G. S. Tyndall, 2012: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chemical Society Reviews, 41, 6294-6317, doi: 10.1039/C2CS35166H.

  15. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  16. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  17. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather.

    PubMed

    Li, Huiqin; Hu, Jingtao; Meng, Yue; Su, Jinhua; Wang, Xiaojing

    2017-12-15

    This study investigated the removal of tetracycline (TC) using multilayered graphene-phase biochar (MGB) derived from waste chicken feather. MGB was produced through a two-stage carbonization and KOH-activation method. MGB was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR), Raman spectra, Zeta potential and elemental analysis. Various chemical functional groups were demonstrated on the surface of MGB. MGB was featured by a very large BET surface area of 1838m 2 /g. A rapid equilibrium (within 30s) and an ultrahigh removal efficiency (up to 99.65%) were obtained when MGB was used in the adsorption of TCs. The adsorption processes were temperature-dependent and the maximum adsorption capacity of MGB was 388.33mg/g at 30°C. The data of adsorption isotherms and kinetics were represented well by the Langmuir and Elovich models, respectively. The chemical monolayer adsorption could play an important role in this process. Furthermore, the adsorption of MGB was tolerant with wide pH, high ionic strength and even co-existing anions. Regeneration experiments indicated the removal efficiency was still satisfied (96.61%) even after four cycles. These results have important implications for the future application of animal waste-derived adsorbents in the treatment of wastewater containing antibiotic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Natural analogues of nuclear waste glass corrosion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information availablemore » on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.« less

  19. Allergic reactions to insect secretions.

    PubMed

    Pecquet, Catherine

    2013-01-01

    Some products derived from insects can induce allergic reactions. The main characteristics of some products from honeybees, cochineal and silkworms are summarised here. We review allergic reactions from honey-derived products (propolis, wax, royal jelly), from cochineal products (shellac and carmine) and from silk : clinical features, allergological investigations and allergens if they are known.

  20. Children with health impairments by heavy metals in an e-waste recycling area.

    PubMed

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Huo, Xia

    2016-04-01

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals derived from electronic waste (e-waste), such as, lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), aluminum (Al) and cobalt (Co), differ in their chemical composition, reaction properties, distribution, metabolism, excretion and biological transmission. Our previous studies showed that heavy metal exposure have adverse effects on children's health including lower birth weight, lower anogenital distance, lower Apgar scores, lower current weight, lower lung function, lower hepatitis B surface antibody levels, higher prevalence of attention-deficit/hyperactivity disorder, and higher DNA and chromosome damage. Heavy metals influence a number of diverse systems and organs, resulting in both acute and chronic effects on children's health, ranging from minor upper respiratory irritation to chronic respiratory, cardiovascular, nervous, urinary and reproductive disease, as well as aggravation of pre-existing symptoms and disease. These effects of heavy metals on children's health are briefly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels

    DTIC Science & Technology

    2012-10-30

    analysis of three different thermites consisting of aluminum (Al) particles with and without surface functionalization combined with molybdenum...of thermites , aluminum synthesis, aluminum fluoropolymer combustion, acid coatings Keerti S. Kappagantula, Cory Farley, Michelle L. Pantoya, Jillian...Reactivity Using Surface Functionalization of Aluminum Fuels Report Title ABSTRACT Combustion analysis of three different thermites consisting of aluminum (Al

  2. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APPENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  3. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  4. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    PubMed

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  5. Efficient Synthesis of Novel Pyridine-Based Derivatives via Suzuki Cross-Coupling Reaction of Commercially Available 5-Bromo-2-methylpyridin-3-amine: Quantum Mechanical Investigations and Biological Activities.

    PubMed

    Ahmad, Gulraiz; Rasool, Nasir; Ikram, Hafiz Mansoor; Gul Khan, Samreen; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Al-Zahrani, Eman; Ali Rana, Usman; Akhtar, Muhammad Nadeem; Alitheen, Noorjahan Banu

    2017-01-27

    The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a - 2i , 4a - 4i . In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine ( 1 ) directly or via N -[5-bromo-2-methylpyridine-3-yl]acetamide ( 3 ) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a - 2i and 4a - 4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.

  6. Prospects of banana waste utilization in wastewater treatment: A review.

    PubMed

    Ahmad, Tanweer; Danish, Mohammed

    2018-01-15

    This review article explores utilization of banana waste (fruit peels, pseudo-stem, trunks, and leaves) as precursor materials to produce an adsorbent, and its application against environmental pollutants such as heavy metals, dyes, organic pollutants, pesticides, and various other gaseous pollutants. In recent past, quite a good number of research articles have been published on the utilization of low-cost adsorbents derived from biomass wastes. The literature survey on banana waste derived adsorbents shown that due to the abundance of banana waste worldwide, it also considered as low-cost adsorbents with promising future application against various environmental pollutants. Furthermore, raw banana biomass can be chemically modified to prepare efficient adsorbent as per requirement; chemical surface functional group modification may enhance the multiple uses of the adsorbent with industrial standard. It was evident from a literature survey that banana waste derived adsorbents have significant removal efficiency against various pollutants. Most of the published articles on banana waste derived adsorbents have been discussed critically, and the conclusion is drawn based on the results reported. Some results with poorly performed experiments were also discussed and pointed out their lacking in reporting. Based on literature survey, the future research prospect on banana wastes has a significant impact on upcoming research strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...

  8. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...

  9. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation.

    PubMed

    Shu, Qing; Nawaz, Zeeshan; Gao, Jixian; Liao, Yuhui; Zhang, Qiang; Wang, Dezheng; Wang, Jinfu

    2010-07-01

    A solid acid catalyst that can keep high activity and stability is necessary when low cost feedstocks are utilized for biodiesel synthesis because the reaction medium contains a large amount of water. Three solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt. The structure of these catalysts was characterized by a variety of techniques. A new process that used the coupling of the reaction and separation was employed, which greatly improved the conversion of cottonseed oil (triglyceride) and free fatty acids (FFA) when a model waste oil feedstock was used. The vegetable oil asphalt-based catalyst showed the highest catalytic activity. This was due to the high density and stability of its acid sites, its loose irregular network, its hydrophobicity that prevented the hydration of -OH species, and large pores that provided more acid sites for the reactants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Extracts deriving from olive mill waste water and their effects on the liver of the goldfish Carassius auratus fed with hypercholesterolemic diet.

    PubMed

    Alesci, Alessio; Cicero, Nicola; Salvo, Andrea; Palombieri, Deborah; Zaccone, Daniele; Dugo, Giacomo; Bruno, Maurizio; Vadalà, Rossella; Lauriano, Eugenia Rita; Pergolizzi, Simona

    2014-01-01

    The present research aims to evaluate the beneficial effects of polyphenols derived from waste water from a olive mill, obtained by non-plastic molecular imprinting device, in a hypercholesterolemic diet on Carassius auratus, commonly known as goldfish that was selected as experimental model. The study was conducted with morphological and histochemical analyses and also the data were supported by immunohistochemical analysis. Results show the beneficial activity of polyphenols with a reduction of the damage in the steatotic group, confirming that they may be suggested in the treatment of diseases by lipid accumulation, and used as any addition in feed for farmed fish, in order to improve the organoleptic and nutritional quality. The beneficial effects of waste oil extract should be suggested in the contexts of research programmes focused on the products to the health system. Furthermore, the olive mill waste water polyphenols free can be used as natural fertilizers.

  11. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, H.; Otsu, H.; Sakurai, H.; Ahn, D. S.; Aikawa, M.; Doornenbal, P.; Fukuda, N.; Isobe, T.; Kawakami, S.; Koyama, S.; Kubo, T.; Kubono, S.; Lorusso, G.; Maeda, Y.; Makinaga, A.; Momiyama, S.; Nakano, K.; Niikura, M.; Shiga, Y.; Söderström, P.-A.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Taniuchi, R.; Watanabe, Ya.; Watanabe, Yu.; Yamasaki, H.; Yoshida, K.

    2016-03-01

    We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  12. Characterization and quantification of geochemical reaction rates in mine waste piles using unsaturated zone gases

    NASA Astrophysics Data System (ADS)

    Birkham, T.; Hendry, J.; Kirkland, R.; Bradley, S.; Mendoza, C.; Wassenaar, L.

    2003-04-01

    From 1997 to the present, we have installed and monitored 240 gas probes (maximum depth of 43 m) in unsaturated waste rock, overburden and tailings piles at a uranium mine in northern Saskatchewan, Canada and an oil sands mine in northern Alberta, Canada. Depth profiles of O2, CO2, N2 and CH4 pore-gas concentrations, temperature, and moisture content were measured in the field and used to characterize and quantifyin situ geochemical reaction rates. An innovative field-portable GC system has been developed to monitor pore-gas concentrations. At most sites, gas migration has been attributed to diffusion. At sites where advective transport may be important, subsurface total pressure measurements have been used to assess the contribution of advection to gas migration. The stable isotopes of molecular O2 (16O2 and 18O16O) and C in CO2 (12CO2 and 13CO2) have also been measured and modeled. At the uranium mine, the modelling of the O2, CO2, δ18OO2, and δ13CCO2 depth profiles was used to identify an alternative mechanism of O2 consumption and CO2 production in mine waste-rock piles. At the oil sands mine, a complex and unique system involving O2, CO2, and CH4 fluxes in the unsaturated zone and across the capillary fringe has been identified and is currently being modeled.

  13. Piezoelectric Ignition of Nanocomposite Energetic Materials

    DTIC Science & Technology

    2013-01-01

    Sensitivity, Piezoelectric Crystals, Nanoparticles, Thermites Eric Collins, Michelle L Pantoya, Andreas Neuber, Michael Daniels, Daniel Prentice...use of PZT as an alternative ignition source. Key Words: Aluminum, Ignition, Combustion, Piezocrystal, Nanoparticles, Thermites ... thermites ,” Combustion and Flame, vol. 138, no. 4, pp. 373–383, Sep. 2004. [13] T. Bazyn, N. Glumac, H. Krier, T. S. Ward, M. Schoenitz, and E. L

  14. Some reactions of the hydroxyl adduct of adenine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.

    1975-01-01

    The chemical reactions of purine derivatives resulting from pulse radiolysis were studied. Some reactions of the hydroxyl adduct of adenine are described and one of these reactions was compared with similar reactions of hydroxyl adducts of other purine derivatives. Evidence is given that in various purines opening of the imidazole ring is due to unimolecular rearrangements of the hydroxyl adducts. (GRA)

  15. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  16. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.

    PubMed

    Jung, Su-Hwa; Kim, Seon-Jin; Kim, Joo-Sik

    2012-06-01

    Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated using an effective carbon number (ECN) that was multiplied by the peak area of each component detected by a GC-FID. The predominant compounds in the bio-oils were methyl acetate, acids, hydroxyacetone, furfural, non-aromatic ketones, levoglucosan and phenolic compounds. The WOP-derived bio-oil showed it to have relatively high nitrogen content. Increasing the reaction temperature was shown to have little effect on nitrogen removal. The ash and solid contents of both bio-oils were below 0.1 wt.% due to the excellent performance of the char separation system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. High performance supercapacitor from activated carbon derived from waste orange skin

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.

    2018-05-01

    Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.

  18. Synthesis, Crystal Structures and Properties of Ferrocenyl Bis-Amide Derivatives Yielded via the Ugi Four-Component Reaction.

    PubMed

    Zhao, Mei; Shao, Guang-Kui; Huang, Dan-Dan; Lv, Xue-Xin; Guo, Dian-Shun

    2017-05-04

    Ten ferrocenyl bis-amide derivatives were successfully synthesized via the Ugi four-component reaction by treating ferrocenecarboxylic acid with diverse aldehydes, amines, and isocyanides in methanol solution. Their chemical structures were fully characterized by IR, NMR, HR-MS, and X-ray diffraction analyses. They feature unique molecular morphologies and create a 14-membered ring motif in the centro-symmetric dimers generated in the solid state. Moreover, the electrochemical behavior of these ferrocenyl bis-amides was assessed by cyclic voltammetry.

  19. Influence of shell thickness on thermal stability of bimetallic Al-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Wen, John Z.; Nguyen, Ngoc Ha; Rawlins, John; Petre, Catalin F.; Ringuette, Sophie

    2014-07-01

    Aluminum-based bimetallic core-shell nanoparticles have shown promising applications in civil and defense industries. This study addresses the thermal stability of aluminum-palladium (Al-Pd) core/shell nanoparticles with a varying shell thickness of 5, 6, and 7 Å, respectively. The classic molecular dynamics (MD) simulations are performed in order to investigate the effects of the shell thickness on the ignition mechanism and subsequent energetic processes of these nanoparticles. The histograms of temperature change and structural evolution clearly show the inhibition role of the Pd shell during ignition. While the nanoparticle with a thicker shell is more thermally stable and hence requires more excess energy, stored as the potential energy of the nanoparticle and provided through numerically heating, to initiate the thermite reaction, a higher adiabatic temperature can be produced from this nanoparticle, thanks to its greater content of Pd. The two-stage thermite reactions are discussed with their activation energy based on the energy balance processes during MD heating and production. Analyses of the simulation results reveal that the inner pressure of the core-shell nanoparticle increases with both temperature and the absorbed thermal energy during heating, which may result in a breakup of the Pd shell.

  20. Pinostrobin Derivatives from PrenylationReaction and their Antibacterial Activity against Clinical Bacteria

    NASA Astrophysics Data System (ADS)

    Marliyana, S. D.; Mujahidin, D.; Syah, Y. M.

    2018-04-01

    Kaempferia pandurata (syn. Boesenbergia rotunda, B. pandurata (Roxb.)Schltr), locally known as "TemuKunci"in Indonesia, is one of the medicinal plants of the family Zingiberaceae. Phytochemical studies on the rhizome of K. pandurata showed the presence of flavonoid derivative, namely flavanones, which constitute as the main components of this plant. Bioactivity studies on this species exhibited various biological activities, such as antibacteria, anti-inflammatory, antitumor, antidiarrhea, antidisentri, anti-HIV, antioxidant, antipyretic, analgesic and insecticides. Among the biological activities, the antibacterial activity results are important as an attempt to answer the emergence of resistance of some bacteria against existing drugs, as well as the emergence of a number of outbreaks of disease caused by bacteria. Therefore, a search to find new compounds that are potential as an antibacterial is an urgent matter. The present study was aimed at the chemical transformation of pinostrobin (1) from K. pandurata rhizome and an antibacterial activity.The chemical transformation was performed through a prenylation reaction of pinostrobin (1) which is the main component of K. pandurata rhizome. The prenylation reaction was carried out by reacting pinostrobin (1) with prenyl bromide and potassium carbonat (K2CO3). The purification of product was done using the radial chromatography with mix solvent n-hexane and ethyl acetate (97.5:2.5; 9.5:0.5; 9.0:1.0.; 8.0:2.0). The purity test of isolated compound was analysedby TLC using different types of eluent. The identification of compounds was determined based on NMR data and mass spectra analysis. Five compounds were obtained from the prenylation reaction, i.e. monooxyprenylated pinostrobin (2), monooxyprenylated chalcone (3), diprenylated chalcone (4), triprenylated chalcone (5), and triprenylated cyclohexene chalcone (6). These compounds were tested for antibacterial activities against four clinical bacteria, namely

  1. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    NASA Astrophysics Data System (ADS)

    Bouqbis, Laila; Werner Koyro, Hans; Kammann, Claudia; Zohra Ainlhout, Lalla Fatima; Boukhalef, Laila; Cherif Harrouni, Moulay

    2018-05-01

    Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC), high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L.) nor for barley (Hordeum vulgare) indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  2. Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived layered CNX catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid

    EPA Science Inventory

    Chitosan derived porous layered nitrogen-enriched carbonaceous CNx catalyst (PLCNx) has been synthesized from marine waste and its use demonstrated in a metal-free heterogeneous selective oxidation of 5-hydroxymethyl-furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using aeria...

  3. Combustion of Micro- and Nanothermites under Elevating Pressure

    NASA Astrophysics Data System (ADS)

    Monogarov, K.; Pivkina, Alla; Muravyev, N.; Meerov, D.; Dilhan, D.

    Non-equilibrium process of combustion-wave propagation of thermite compositions (Mg/Fe2O3) inside the sealed steel tube have been investigated to study the burning rate at elevating pressure. Under confinement the hot gas-phase products, formed during thermite combustion result in considerable overpressure inside the tube that reverses the gas flow and leads to pressure-driven preheating effect of the burned-gas permeation. Convective origin of this preheating effect is discussed. The pressure-time dependency is obtained experimentally. The composition was pressed inside the steel tube in pellets; the size of each part was measured to obtain burning rate - pressure dependency. Both micro- and nanosized components were used to prepare thermite compositions under study. The significant difference in burning parameters of micron- and nanosized thermites is observed and analyzed. Based on obtained results, the combustion mechanism of thermites with the micro- and nanosized components is discussed.

  4. An effective utilization of the slag from acid leaching of coal-waste: preparation of water glass with a low-temperature co-melting reaction.

    PubMed

    Fang, Li; Duan, Xiaofang; Chen, Rongming; Cheng, Fangqin

    2014-08-01

    This paper presents an effective utilization of slag from acid leaching of coal-waste with a novel approach, namely low-temperature co-melting method, for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock. It is very interesting that the co-melting reaction temperature of the mixture of Na2CO3 and the feedstock (50-100 microm) was as low as 850 degrees C, which was significantly lower than the temperature used in traditional sodium silicate production (1400 degrees C). The optimum SiO2/Na2O ratio was identified as 7:3 according to the results of thermogravimetry-differential scanning calorimetry (TGA-DSC), ICP-AES, and X-ray diffraction (XRD) analyses. In this condition, the main product was sodium disilicate (Na2O x 2SiO2), with water solubility of 85.0%. More importantly, the impurities such as aluminum in the feedstock, which had adverse effect on subsequent treatment, were concentrated almost completely in the filter residue as insoluble sodium alumunosilicates, i.e., Na(Si2Al)O6 x H2O. The lower co-melting temperature of this process demonstrates a significant energy-saving opportunity and thus a promising approach for highly effective utilization of coal-waste. Implications: Recently, alumina extraction from coal-waste has been extensively investigated and industrial applied in China. However, the slag-containing silica generated from the acid leaching process of coal-waste led to a secondary pollution, which hindered large-scale production. The proposed low-temperature co-melting method for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock indicated that it is an efficient approach for the recovery of silica from the acid-leached slag of coal-waste with minimal environmental impact.

  5. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    PubMed

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe 2+ reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A 420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A 420 . The A 420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe 2+ reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  6. Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review.

    PubMed

    Shen, Yafei

    2017-02-08

    Silica-rich rice husk (RH) is an abundant and sustainable agricultural waste. The recovery of value-added products from RH or its ash to explore an economic way for the valorization of agricultural wastes has attracted wide attention. For instance, RH can be converted to biofuels and biochars simultaneously via thermochemical processes. In general, the applications of RH biochars include soil remediation, pollutant removal, silicon battery materials, and so forth. This review concludes recent progress in the synthesis of RH-derived silicon materials for lithium-ion battery (LIB) applications. Silica nanomaterials produced from RH are initially discussed. RH amorphous silica can also be fabricated to crystal silicon used for battery materials via widely used magnesiothermic reduction. However, the RH-derived Si nanoparticles suffer from a low Coulombic efficiency in the initial charge/discharge and limited cycle life as anode materials due to high surface reactions and low thermodynamic stability. The synthesis of Si materials with nano/microhierarchical structure would be an ideal way to improve their electrochemical performances. Embedding nano-Si into 3D conductive matrix is an effective way to improve the structural stability. Among the Si/carbon composite materials, carbon nanotubdes (CNTs) are a promising matrix due to the wired morphology, high electronic conductivity, and robust structure. Additionally, CNTs can easily form 3D cross-linked conducting networks, ensuring effective electron transportation among active particles. Si nanomaterials with microhierarchical structures in which CNTs are tightly intertwined between the RH-derived Si nanoparticles have been proven to be ideal LIB anode materials.

  7. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, RE- FUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I: SUMMARY OF RESULTS

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  8. Analysis on 3RWB model (Reduce, reuse, recycle, and waste bank) in comprehensive waste management toward community-based zero waste

    NASA Astrophysics Data System (ADS)

    Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi

    2017-06-01

    Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.

  9. Hydroalumination of Ketenimines and Subsequent Reactions with Heterocumulenes: Synthesis of Unsaturated Amide Derivatives and 1,3-Diimines.

    PubMed

    Jin, Xing; Willeke, Matthias; Lucchesi, Ralph; Daniliuc, Constantin-Gabriel; Fröhlich, Roland; Wibbeling, Birgit; Uhl, Werner; Würthwein, Ernst-Ulrich

    2015-06-19

    The series of differently substituted ketenimines 1 was hydroluminated using di-iso-butyl aluminum hydride. For the sterically congested ketenimine 1a, preferred hydroalumination of the C═N-bond was proven by X-ray crystallography (compound 5a). In situ treatment of the hydroaluminated ketenimines 5 with various heterocumulenes like carbodiimides, isocycanates, isothiocyanates and ketenimines as electrophiles and subsequent hydrolytic workup resulted in novel enamine derived amide species in case of N-attack (sterically less hindered ketenimines) under formation of a new C-N-bond or in 1,3-diimines by C-C-bond-formation in case of bulky substituents at the ketenimine-nitrogen atom. Furthermore, domino reactions with more than 1 equiv of the electrophile or by subsequent addition of two different electrophiles are possible and lead to polyfunctional amide derivatives of the biuret type which are otherwise not easily accessible.

  10. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.

    PubMed

    Wu, Chunfei; Nahil, Mohamad A; Miskolczi, Norbert; Huang, Jun; Williams, Paul T

    2014-01-01

    Producing both hydrogen and high-value carbon nanotubes (CNTs) derived from waste plastics is reported here using a pyrolysis-reforming technology comprising a two-stage reaction system, in the presence of steam and a Ni-Mn-Al catalyst. The waste plastics consisted of plastics from a motor oil container (MOC), commercial waste high density polyethylene (HDPE) and regranulated HDPE waste containing polyvinyl chloride (PVC). The results show that hydrogen can be produced from the pyrolysis-reforming process, but also carbon nanotubes are formed on the catalyst. However, the content of 0.3 wt.% polyvinyl chloride in the waste HDPE (HDPE/PVC) has been shown to poison the catalyst and significantly reduce the quantity and purity of CNTs. The presence of sulfur has shown less influence on the production of CNTs in terms of quantity and CNT morphologies. Around 94.4 mmol H2 g(-1) plastic was obtained for the pyrolysis-reforming of HDPE waste in the presence of the Ni-Mn-Al catalyst and steam at a reforming temperature of 800 °C. The addition of steam in the process results in an increase of hydrogen production and reduction of carbon yield; in addition, the defects of CNTs, for example, edge dislocations were found to be increased with the introduction of steam (from Raman analysis).

  11. Reactive Nanolaminates with Tailored Yield

    DTIC Science & Technology

    2014-07-31

    nanolaminates, completed a calorimetry study of three different thermite families, and initiated a Kirkendall-type experiment in Zr-CuO layered...profiles of electrically ignited thermite multilayers, and can predict/recreate differential scanning 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 nanolaminate, thermite , thin film REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S

  12. Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

    NASA Astrophysics Data System (ADS)

    Birol, Yucel

    2013-04-01

    Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.

  13. The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye: A Discovery-Oriented Capstone Project for the Second-Year Organic Laboratory

    ERIC Educational Resources Information Center

    Mascarenhas, Cheryl M.

    2008-01-01

    In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR, under basic conditions. The three naphthyl acetate derivatives used in this study are 2-naphthyl acetate (1a), 6-bromo-2-naphthyl acetate (1b) and 1,6-dibromo-2-naphthyl acetate (1c). The two-step, one-pot…

  14. Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.

    PubMed

    Crandell, L E; Peters, C A; Um, W; Jones, K W; Lindquist, W B

    2012-04-01

    At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    NASA Astrophysics Data System (ADS)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  16. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive

  17. Military wastes-to-energy applications

    NASA Astrophysics Data System (ADS)

    Kawaoka, K. E.

    1980-11-01

    This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.

  18. Biodiesel production using waste frying oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less

  19. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge.

    PubMed

    Mo, Wing Yin; Man, Yu Bon; Wong, Ming Hung

    2018-02-01

    China's aquaculture industry is growing dramatically in recent years and now accounts for 60.5% of global aquaculture production. Fish protein is expected to play an important role in China's food security. Formulated feed has become the main diet of farmed fish. The species farmed have been diversified, and a large amount of 'trash fish' is directly used as feed or is processed into fishmeal for fish feed. The use of locally available food waste as an alternative protein source for producing fish feed has been suggested as a means of tackling the problem of sourcing safe and sustainable feed. This paper reviews the feasibility of using locally available waste materials, including fish waste, okara and food waste. Although the fishmeal derived from fish waste, okara or food waste is less nutritious than fishmeal from whole fish or soybean meal, most fish species farmed in China, such as tilapia and various Chinese carp, grow well on diets with minimal amounts of fishmeal and 40% digestible carbohydrate. It can be concluded that food waste is suitable as a component of the diet of farmed fish. However, it will be necessary to revise regulations on feed and feed ingredients to facilitate the use of food waste in the manufacture of fish feed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Environmental and human exposure to persistent halogenated compounds derived from e-waste in China.

    PubMed

    Ni, Hong-Gang; Zeng, Hui; Tao, Shu; Zeng, Eddy Y

    2010-06-01

    Various classes of persistent halogenated compounds (PHCs) can be released into the environment due to improper handling and disposal of electronic waste (e-waste), which creates severe environmental problems and poses hazards to human health as well. In this review, polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), tetrabromobisphenol A (TBBPA), polybrominated phenols (PBPs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), and chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are the main target contaminants for examination. As the world's largest importer and recycler of e-waste, China has been under tremendous pressure to deal with this huge e-waste situation. This review assesses the magnitude of the e-waste problems in China based on data obtained from the last several years, during which many significant investigations have been conducted. Comparative analyses of the concentrations of several classes of toxic compounds, in which e-waste recycling sites are compared with reference sites in China, have indicated that improper e-waste handling affects the environment of dismantling sites more than that of control sites. An assessment of the annual mass loadings of PBDEs, PBBs, TBBPA, PBPs, PCDD/Fs, and ClPAHs from e-waste in China has shown that PBDEs are the dominant components of PHCs in e-waste, followed by ClPAHs and PCDD/Fs. The annual loadings of PBDEs, ClPAHs, and PCDD/Fs emission were estimated to range from 76,200 to 182,000, 900 to 2,000 and 3 to 8 kg/year, respectively. However, PCDD/Fs and ClPAHs should not be neglected because they are also primarily released from e-waste recycling processes. Overall, the magnitude of human exposure to these toxics in e-waste sites in China is at the high end of the global range. Copyright 2010 SETAC.

  1. Preparation and application of nanocrystalline cellulose derived from sugarcane waste as filler modified alkanolamide on crosslink of natural rubber latex film

    NASA Astrophysics Data System (ADS)

    Harahap, Hamidah; Hayat, Nuim; Lubis, Marfuah

    2017-07-01

    Sugarcane waste is abundant sources of cellulose and it has potential to reutilize. Cellulose from sugarcane waste can be derived into nanocystalline cellulose (NCC) from crystalline region. The NCC as a filler has capability to reinforce natural rubber latex product. The crosslink in vulcanized natural rubber latex film influences several properties of product. In this work, we extracted NCC from sugarcane waste then added into natural rubber latex as filler modified alkanolamide (ALK) and also studied the crosslink of natural rubber latex films. NCC were produced from sugarcane waste by hydrolysis process with sulfuric acid 45%. The obtained NCC was characterized by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infra red (FTIR). NCC was modified by alkanolamide and dispersed in water with filler concentration of 10%. Then the dispersion were added into latex system followed by pre-vulcanization at 70 °C. The films were prepared by coagulant dipping method and dried at 100 °C and 120 °C for 20 minutes. Characterization of NCC from sugarcane waste by using FTIR was done, it clearly showed the functional groups of cellulose. TEM showed the obtained NCC were rod-shaped with about 40-160 nm in diameter and several hundred nm in length, and XRD showed that the degree of crystalinity of NCC from sugarcane waste is 92.33%. The crosslink of natural rubber films were studied by measure the crosslink density for different filler loading by using swelling measurement with toluene solution. The result show that the crosslink density increased in line with amount of filler which added into the system, and also the crosslink density that obtained from vulcanization at 120 °C were higher than 100 °C.

  2. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste

    PubMed Central

    Lam, Wan Chi; Han, Wei; Lau, Kin Yan; Lei, Ho Man; Lo, Kin Yu; Ng, Wai Yee; Melikoglu, Mehmet

    2014-01-01

    In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate. PMID:25136626

  3. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.

    PubMed

    Su, Yuh-fan; Cheng, Yu-ling; Shih, Yang-hsin

    2013-11-15

    Activated carbon (AC) and zerovalent iron (ZVI) have been widely used in the adsorption and dehalogenation process, respectively, for the removal of organic compounds in environmental treatments. This study aims to prepare ZVI/AC derived from an agricultural waste, coir pith, through simple one-step pyrolysis. The effect of activation temperature and time on the surface area, iron content, and zerovalent iron ratio of ZVI/AC was systemically investigated. The results indicated that the activation of AC by FeSO4 significantly increased surface area of AC and distributed elemental iron over the AC. The X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and X-ray absorption near edge structure (XANES) spectra of ZVI/AC revealed that zerovalent iron was present. As compared to AC without FeSO4 activation, ZVI/AC increased the trichloroethylene removal rate constant by 7 times. The dechlorination ability of ZVI/AC was dominated by the zerovalent iron content. We have shown that lab-made ZVI/AC from coir pith can effectively adsorb and dehalogenate the chlorinated compounds in water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Derivatives of cardanol through the ene reaction with diethyl azodicarboxylate

    USDA-ARS?s Scientific Manuscript database

    Cardanol is an alkyl/alkenyl phenolic material obtained from cashew nut shell liquid (CNSL), which is a byproduct of cashew nut processing. In an effort to develop new uses, cardanol was derivatized for the first time with diethyl azodicarboxylate (DEAD) through the ene reaction. The reaction was fa...

  5. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  6. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    NASA Astrophysics Data System (ADS)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  7. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes.

    PubMed

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (U VI O 2 2+ ) coordinated by formate or acetate ligands. Anionic complexes containing U VI O 2 2+ and formate ligands fragment by decarboxylation and elimination of CH 2 =O, ultimately to produce an oxo-hydride species [U VI O 2 (O)(H)] - . Cationic species ultimately dissociate to make [U VI O 2 (OH)] + . Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH 3 CO 2 •, with associated reduction of uranyl to U V O 2 + . Subsequent CID steps cause elimination of CO 2 and CH 4 , ultimately to produce [U V O 2 (O)] - . Loss of CH 4 occurs by an intra-complex H + transfer process that leaves U V O 2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH 2 =C=O to leave [U V O 2 (O)] - . Elimination of CH 4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H 2 O. The reactions of other anionic species with gas-phase H 2 O create hydroxyl products, presumably through the elimination of H 2 . Graphical Abstract ᅟ.

  8. Reactions of glycidyl derivatives with ambident nucleophiles; part 2: amino acid derivatives

    PubMed Central

    Dyker, Gerald; Thöne, Andreas; Henkel, Gerald

    2007-01-01

    A three-step procedure for the synthesis of multifunctionalized heterocycles from a pyroglutamic acid derivative, glycidyl components and anilines by nucleophilic substitution and cobalt catalysis is presented. PMID:17900352

  9. Towards the synthesis of prenylated phloroglucinol derivatives: An X-ray crystallographic and DFT study of unexpected reaction products

    NASA Astrophysics Data System (ADS)

    Akerman, Matthew P.; Mkhize, Zimbili; van Heerden, Fanie R.

    2018-07-01

    Owing to their bioactivity and prevalence in medicinal plant extracts, prenylated phloroglucinols have garnered significant interest. Towards the synthesis of prenylated phloroglucinol derivatives, 2,4,6-trihydroxy-3-(3-methylbut-2-enyl)acetophenone is required as an intermediate. Herein, this was synthesised by a tandem Claisen-Cope rearrangement reaction on 2,4-bis(methoxymethoxy)-6-(3-methylbut-2-enyloxy)acetophenone and a subsequent hydrolysis to remove protecting groups. This reaction yielded the desired product as well as three by-products. Two of these by-products were isomeric chromane derivatives (2 and 3) and the third was a methoxy derivative (4). These compounds have been studied by single crystal X-ray crystallography and DFT methods. Compound (2) crystallised in the P21/c space group with two hydrogen-bonded molecules in the asymmetric unit (Z = 8). Compound (4) crystallised in the Pbca space group with a single molecule in the asymmetric unit (Z = 8). Both compounds formed extensive supramolecular structures supported by hydrogen bonds in the solid state. Compound (2) forms a simple one-dimensional hydrogen-bonded chain co-linear with the a-axis. Compound (4) forms a two-dimensional supramolecular structure comprising "pentameric" hydrogen-bonded motifs linked by additional H-bonds to form the supramolecular structure. Both structures showed intramolecular hydrogen bonds between the acetyl oxygen and adjacent OH group. DFT simulations were used to probe the relative energies of the molecules and hydrogen bonds. These simulations showed that the intramolecular hydrogen bond has a substantial stabilising effect with an interaction strength of 70.64 kJ mol-1. The formation of the hydrogen-bonded dimer of (2) from which the supramolecular structure is formed has a ΔHassoc constant of -42.32 kJ mol-1, illustrating that the formation of the hydrogen-bonded structure is energetically favourable.

  10. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less

  11. Physical and chemical characterization of waste wood derived biochars

    USDA-ARS?s Scientific Manuscript database

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties, such as its high surface area and...

  12. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste

    PubMed Central

    Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964

  13. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.

    PubMed

    Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.

  14. Removal of total suspended solid by natural coagulant derived from cassava peel waste

    NASA Astrophysics Data System (ADS)

    Mohd-Asharuddin, S.; Othman, N.; Mohd-Zin, N. S.; Tajarudin, H. A.

    2018-04-01

    The present study was aimed to investigate the performance of starch derived from cassava peel waste as primary coagulant and coagulant aid. Comparable study was also conducted using commercially used aluminium sulfate (alum) as primary coagulant. A series of Jar tests were performed using raw water from Sembrong Barat water treatment plant. It was observed that coagulation test using cassava peel starch (CPS) alone had unappreciable removing ability. However, it was found that combination of alum-CPS successfully achieve up to 90.48% of total suspended solid (TSS) removal under optimized working conditions (pH 9, 7.5mg/L : 100 mg/L of alum : CPS dosage, rapid mixing of 200 rpm for 1 minute; 100 rpm for 2 minutes, slow mixing of 25 rpm for 30 minutes and 30 minutes settling time). This remarks the reduction in alum dosage up to 50% compared to coagulation test using alum alone. Therefore this finding suggesting that CPS can be considered as potential source of sustainable and effective coagulant aid for water treatment especially in developing countries.

  15. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    PubMed

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  16. Shock Response and Explosive Launch of Compacted Reactive Material

    NASA Astrophysics Data System (ADS)

    Molitoris, John; Gash, Alexander; Garza, Raul; Gagliardi, Franco; Tringe, Joseph; Batteux, Jan; Souers, P.; HEAF Team

    2013-06-01

    We have performed a series of experiments investigating the detailed dynamic response of compacted reactive material to shock and blast. Here a granular reactive formulation (Fe2O3/Al based thermite) was pressed into a solid cylinder of material and mated to a high-explosive charge of the same diameter. Detonation of the charge transmitted a shock wave to the thermite cylinder and imparted momentum launching it in the direction of the detonation. High-resolution time sequence radiography was used to image the dynamic response of the thermite. This technique allowed a detailed investigation of material deformation in addition to changes in the internal structure and indications of reactivity. The effect of variations in the initial density of the pressed thermite was also examined. We find that these pressed thermites behave much like solid metals during shock transit, then respond much differently. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Morphology and phase evolution in microwave synthesized Al/FeO4 system.

    PubMed

    Chuan, Lee Chang; Yoshikawaa, Noboru; Taniguchia, Shoji

    2011-01-01

    Thermite reaction between Al/Fe3O4 raised by microwave (MW) heating under N2 atmosphere has been investigated, and compared with that by the electric furnace. In addition to the stoichiometric ratio for the production of metallic iron and alumina, mixture with slightly Lower in Al content is also studied. As thermite reaction is highly exothermic, melting of reaction product and destruction of microstructure may occur, which corresponds to the enthalpy and adiabatic temperature of the reaction. Hence, to avoid this problem, reaction coupled with a smaller driving force by controlling the MW ignition condition at low temperature exotherm has been investigated. The phase and microstructure evolution during the reaction were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Thermogram of the DTA analysis, irrespective of their mole ratio, recorded two exothermic peaks, one at - 1310 degrees C and another one at - 1370 degrees C. When heated by microwave at 955 degrees C, the main products were identified as Al, FeO and Fe, minor amount of Fe3O4 and some Fe and alumina were detected. When heating to 1155 degrees C, Al and Fe3O4 peaks disappeared, formation of Fe-Al alloy was observed. For sample heated at 1265 degrees C, a porous body was obtained. Micron sized metal particles with complex morphology, irregular in size and shapes were formed, uniformly distributed within the spinel hercynite and/or alumina matrix. In contrast, conventional heating produced no porous products. Formation of alumina is also observed around the metal particles. Controlling of the reaction progress was possible while heating the sample by MW around the low temperature exotherm region, whereas the combustion wave could not be self-propagated.

  18. Structure, crystallization and dielectric resonances in 2-13 GHz of waste-derived glass-ceramic

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Chen, XiaoYu; Wang, GuangRong; Zheng, Feng

    2016-12-01

    Structure, kinetics of crystallization, and dielectric resonances of waste-derived glass-ceramic prepared via quench-heating route were studied as a function of dosage of iron ore tailing (IOT) within 20-40 wt% using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vector network analyzer (VNA) measurements. The glass-ceramic mainly consisted of ferrite crystals embedded in borosilicate glass matrix. Crystallization kinetics and morphologies of ferrite crystals as well as coordination transformation of boron between [BO4] and [BO3] in glass network were adjustable by changing the amount of IOT. Dielectric resonances in 6-13 GHz were found to be dominated by oscillations of Ca2+ cations in glass network with [SiO4] units on their neighboring sites. Ni2+ ions made a small contribution to those resonances. Diopside formed when IOT exceeded 35 wt%, which led to weakening of the resonances.

  19. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  20. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section 80.1155... producer of cellulosic biomass ethanol or waste derived ethanol? (a) A producer of cellulosic biomass ethanol or waste derived ethanol (hereinafter referred to as “ethanol producer” under this section) is...

  1. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section 80.1155... producer of cellulosic biomass ethanol or waste derived ethanol? (a) A producer of cellulosic biomass ethanol or waste derived ethanol (hereinafter referred to as “ethanol producer” under this section) is...

  2. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section 80.1155... producer of cellulosic biomass ethanol or waste derived ethanol? (a) A producer of cellulosic biomass ethanol or waste derived ethanol (hereinafter referred to as “ethanol producer” under this section) is...

  3. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section 80.1155... producer of cellulosic biomass ethanol or waste derived ethanol? (a) A producer of cellulosic biomass ethanol or waste derived ethanol (hereinafter referred to as “ethanol producer” under this section) is...

  4. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ryan, Thomas W., III; Schwab, S. T.; Harlowe, W. W.

    1992-01-01

    The subject of this paper is the design of supersonic combustors which will be required in order to achieve the needed reaction rates in a reasonable sized combustor. A fuel additive approach, which is the focus of this research, is the use of pyrophorics to shorten the ignition delay time and to increase the energy density of the fuel. Pyrophoric organometallic compounds may also provide an ignition source and flame stabilization mechanism within the combustor, thus permitting use of hydrocarbon fuels in supersonic combustion systems. Triethylaluminum (TEA) and trimethylaluminum (TMA) were suggested for this application due to their high energy density and reactivity. The objective here is to provide comparative data for the ignition quality, the energy content, and the reaction rates of several different adducts of both TEA and TMA. The results of the experiments indicate the aluminum alkyls and their more stable derivatives reduce the ignition delay and total reaction time to JP-10 jet fuel. Furthermore, the temperature dependence of ignition delay and total reaction time of the blends of the adducts are significantly lower than in neat JP-10.

  5. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Colloid formation in Hanford sediments reacted with simulated tank waste.

    PubMed

    Mashal, Kholoud; Harsh, James B; Flury, Markus; Felmy, Andrew R; Zhao, Hongting

    2004-11-01

    Solutions of high pH, ionic strength, and aluminum concentration have leaked into the subsurface from underground waste storage tanks atthe Hanford Reservation in Washington State. Here, we test the hypothesis that these waste solutions alter and dissolve the native minerals present in the sediments and that colloidal (diameter < 2 microm) feldspathoids form. We reacted Hanford sediments with simulated solutions representative of Hanford waste tanks. The solutions consisted of 1.4 or 2.8 mol/kg NaOH, 0.125 or 0.25 mol/kg NaAlO4, and 3.7 mol/kg NaNO3 and were contacted with the sediments for a period of 25 or 40 days at 50 degrees C. The colloidal size fraction was separated from the sediments and characterized in terms of mineralogy, morphology, chemical composition, and electrophoretic mobility. Upon reaction with tank waste solutions, native minerals released Si and other elements into the solution phase. This Si precipitated with the Al present in the waste solutions to form secondary minerals, identified as the feldspathoids cancrinite and sodalite. The solution phase was modeled with the chemical equilibrium model GMIN for solution speciation and saturation indices with respect to sodalite and cancrinite. The amount of colloidal material in the sediments increased upon reaction with waste solutions. At the natural pH found in Hanford sediments (pH 8) the newly formed minerals are negatively charged, similar to the unreacted colloidal material present in the sediments. The formation of colloidal material in Hanford sediments upon reaction with tank waste solutions is an important aspect to consider in the characterization of Hanford tank leaks and may affect the fate of hazardous radionuclides present in the tank waste.

  7. Potential effects of deep-well waste disposal in western New York

    USGS Publications Warehouse

    Waller, Roger Milton; Turk, John T.; Dingman, Robert James

    1978-01-01

    Mathematical and laboratory models were used to observe, respectively, the hydraulic and chemical reactions that may take place during proposed injection of a highly acidic, iron-rich waste pickle liquor into a deep waste-disposal well in western New York. Field temperature and pressure conditions were simulated in the tests. Hydraulic pressure in the middle stages of the initial (1968) injection test had probably hydraulically fractured the Cambrian sandstone-dolomite formation adjacent to the borehole. Transmissivity of the formation is 13 feet squared per day. The proposed rate of injection (72,000 gallons per day) of waste pickle liquor would approach a wellhead pressure of 600 pounds per square inch in about a year. Hydraulic fracturing would reoccur at about 580 pounds per square inch. The measurable cone of influence would extend about 22 miles after injection for 1 year. Chemical reactions between acidic wastes and brine-saturated dolomite would create precipitates that would drastically reduce the permeability of the unfractured part of the dolomite. Nondolomitic sandstone permeability would not be affected by chemical reactions, but the pores might be plugged by the iron-bearing waste. The digital model can be used for qualitative predictions on a regional scale. (Woodard-USGS)

  8. Synthesis and spectroscopic characterization of azoic dyes based on pyrazolone derivatives catalyzed by an acidic ionic liquid supported on silica-coated magnetite nanoparticle

    NASA Astrophysics Data System (ADS)

    Isaad, Jalal; El Achari, Ahmida

    2018-02-01

    Novel family of azoic dyes pyrazolone based were prepared by an efficient and rapid methodology through diazotization reaction of different pyrazolone amine derivatives, in the presence of acidic ionic liquid supported on silica-coated magnetite nanoparticles as acidic catalyst at room temperature and under solvent-free conditions. The attractive advantages of the present process include short reaction times, milder and cleaner conditions, higher purity and yields, easy isolation of products, easier work-up procedure and lower generation of waste or pollution. This catalyst was easily separated by an external magnet and the recovered catalyst was reused several times without any significant loss of activity. Therefore, this method provides improved protocol over the existing methods.

  9. Synthesizing Aluminum Particles Towards Controlling Electrostatic Discharge Ignition Sensitivity

    DTIC Science & Technology

    2014-01-01

    composite energetic materials, Combust. Flame 160 (May 2013) 2279 2281. [10] J. Granier, M. Pantoya, Laser ignition of nanocomposite thermites , Combust...Reactive sintering: an important component in the combustion of nanocomposite thermites , Combust. Flame 159 (1) (Jan. 2012) 2 15. [12] B. Dikici, M.L...Pantoya, V. Levitas, The effect of pre-heating on flame propa- gation behavior in nanocomposite thermites , Combust. Flame 157 (8) (2010) 1581 1585. E.S. Collins et al. / Journal of Electrostatics 72 (2014) 28 3232

  10. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  11. Reaction modeling of drainage quality in the Duluth Complex, northern Minnesota, USA

    USGS Publications Warehouse

    Seal, Robert; Lapakko, Kim; Piatak, Nadine; Woodruff, Laurel G.

    2015-01-01

    Reaction modeling can be a valuable tool in predicting the long-term behavior of waste material if representative rate constants can be derived from long-term leaching tests or other approaches. Reaction modeling using the REACT program of the Geochemist’s Workbench was conducted to evaluate long-term drainage quality affected by disseminated Cu-Ni-(Co-)-PGM sulfide mineralization in the basal zone of the Duluth Complex where significant resources have been identified. Disseminated sulfide minerals, mostly pyrrhotite and Cu-Fe sulfides, are hosted by clinopyroxene-bearing troctolites. Carbonate minerals are scarce to non-existent. Long-term simulations of up to 20 years of weathering of tailings used two different sets of rate constants: one based on published laboratory single-mineral dissolution experiments, and one based on leaching experiments using bulk material from the Duluth Complex conducted by the Minnesota Department of Natural Resources (MNDNR). The simulations included only plagioclase, olivine, clinopyroxene, pyrrhotite, and water as starting phases. Dissolved oxygen concentrations were assumed to be in equilibrium with atmospheric oxygen. The simulations based on the published single-mineral rate constants predicted that pyrrhotite would be effectively exhausted in less than two years and pH would rise accordingly. In contrast, only 20 percent of the pyrrhotite was depleted after two years using the MNDNR rate constants. Predicted pyrrhotite depletion by the simulation based on the MNDNR rate constant matched well with published results of laboratory tests on tailings. Modeling long-term weathering of mine wastes also can provide important insights into secondary reactions that may influence the permeability of tailings and thereby affect weathering behavior. Both models predicted the precipitation of a variety of secondary phases including goethite, gibbsite, and clay (nontronite).

  12. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  13. Small-Scale Waste-to-Energy Technology for Contingency Bases

    DTIC Science & Technology

    2012-05-24

    Expedient, No Waste Sorting Technology Readiness Level High Fuel Demand Water Required Steam Infrastructure Required Air Emissions Gasification ...Full gasification system • Costs $26K • GM Industrial Engine (GM 4 Cylinder, 3.00 L) • MeccAlte Generator Head • Imbert type downdraft reactor...Solid waste volume reduction − Response to waste streams  biomass , refuse-derived fuel, shredded waste − Operation and maintenance requirements

  14. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewatermore » (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.« less

  15. Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Clement, T. P.

    2008-02-01

    Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.

  16. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  17. Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers.

    PubMed

    Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho

    2017-10-06

    The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.

  18. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  19. Recycling of mixed wastes using Quantum-CEP{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sameski, B.

    1997-02-01

    The author describes the process that M4 Environmental Management, Inc., is commercializing for the treatment of mixed wastes. He summarizes the types of wastes which the process can be applied to, the products which come out of the process, and examples of various waste streams which have been processed. The process is presently licensed to treat mixed wastes and the company has in place contracts for such services. The process uses a molten metal bath to catalyze reactions which break the incoming products down to an atomic level, and allow different process steams to be tapped at the output end.

  20. Co-pyrolyzing plastic mulch waste with animal manures

    USDA-ARS?s Scientific Manuscript database

    Pyrolyzing various livestock and agricultural wastes produces power and value-added byproducts. It also substantially reduces ultimate waste volume to be disposed of and improves soil fertility and promotes carbon sequestration via soil application of biochar. Researchers found that manure-derived ...

  1. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... scientific or engineering literature, data from trial tests (e.g., bench scale or pilot scale tests), waste...

  2. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  3. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste.

    PubMed

    Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K

    2017-10-15

    This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.

  4. Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production.

    PubMed

    Kim, Jaai; Kim, Hakchan; Baek, Gahyun; Lee, Changsoo

    2017-02-01

    Proper management of spent coffee grounds has become a challenging problem as the production of this waste residue has increased rapidly worldwide. This study investigated the feasibility of the anaerobic co-digestion of spent coffee ground with various organic wastes, i.e., food waste, Ulva, waste activated sludge, and whey, for biomethanation. The effect of co-digestion was evaluated for each tested co-substrate in batch biochemical methane potential tests by varying the substrate mixing ratio. Co-digestion with waste activated sludge had an apparent negative effect on both the yield and production rate of methane. Meanwhile, the other co-substrates enhanced the reaction rate while maintaining methane production at a comparable or higher level to that of the mono-digestion of spent coffee ground. The reaction rate increased with the proportion of co-substrates without a significant loss in methanation potential. These results suggest the potential to reduce the reaction time and thus the reactor capacity without compromising methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu .

  6. The Potential of Biodiesel Production derived from Fish Waste

    NASA Astrophysics Data System (ADS)

    Farzana Samat, Amira; Amirah Safiah Muhamad, Nor; Rasib, Nur Aziera Abd; Hassan, Siti Aminah Mohd; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur

    2018-03-01

    Petroleum based diesel is one of the largest greenhouse emitters in the worlds based on its contribution to more likely of all carbon, methane and other greenhouse emissions. Besides, the depletion of fossil fuel that indirectly increased its price has force the global oil industry not to be so dependent on the fossil fuel but instead start focusing on alternative sources. Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant from combustion equipment. In this study, the discarded parts of mixed marine fish species were used as the raw material to produce biodiesel. Marine fish oil was extracted from the discarded part of fish and if refined through a series of pretreatment process. The refined marine fish oil undergoes esterification process to reduce the amount of free fatty acid. The oil was then transesterified with methanol and sodium hydroxide as an alkaline catalyst that will speed up the conversion of oil to methyl ester. The three process parameters considered for this study were reaction time, reaction temperature and methanol to oil molar ratio. Biodiesel obtained was then analyzed using gas chromatography (GC). Statistical analyses were performed using SPSS software. The data obtained was analyzed by using one way analysis of variance (ANOVA) repeated measure. The results obtained showed that the conversion of FAME yield is the highest at reaction time 180 minutes, reaction temperature 60°C and methanol to oil molar ratio at 15:1 with FAME yield 80.16%, 80.03% and 80.39%. Thus, it can be concluded that the conversion of biodiesel increased as the reaction time, temperature and

  7. Facial Regioselective Synthesis of Novel Bioactive Spiropyrrolidine/Pyrrolizine-Oxindole Derivatives via a Three Components Reaction as Potential Antimicrobial Agents.

    PubMed

    Hassaneen, Huwaida M E; Eid, Elshimaa M; Eid, Hamid A; Farghaly, Thoraya A; Mabkhot, Yahia Nasser

    2017-02-26

    This article presents the synthesis of new derivatives of spirooxindole-spiropiperidinone- pyrrolidines 6a - j and spirooxindole-spiropiperidinone-pyrrolizines 8a - j, through a 1,3-dipolar cycloaddition reaction of azomethineylides generated from isatin, sarcosine, and l-proline, through a decarboxylative route with dipolarophile 4a - j . All of the newly synthesized compounds were evaluated for their antimicrobial activities and their minimum inhibitory concentration (MIC) against most of the test organisms. The tested compounds displayed excellent activity against all of the tested microorganisms.

  8. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  9. Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome

    PubMed Central

    Chang, Chia-Lo; Sung, Pei-Hsun; Chen, Kuan-Hung; Shao, Pei-Lin; Yang, Chih-Chao; Cheng, Ben-Chung; Lin, Kun-Chen; Chen, Chih-Hung; Chai, Han-Tan; Chang, Hsueh-Wen; Yip, Hon-Kan; Chen, Hong-Hwa

    2018-01-01

    This study tested the hypothesis that healthy adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes (HMSCEXO) and apoptotic (A) (induced by 12 h hypoxia/12 h starvation)-ADMSC-derived exosomes (AMSCEXO) were comparably effective at alleviating sepsis syndrome [SS; induced by cecal-ligation and puncture (CLP)]-induced systemic inflammation and reduced organ damage and unfavorable outcomes in rats. SD rats were divided into sham control (SC), SS only, SS + HMSCEXO (100 µg intravenous administration 3 h after CLP), and AMSCEXO. By day 5 after CLP procedure, the mortality rate was significantly higher in SS than in SC and HMSCEXO (all P < 0.01), but it showed no significant different between SC and HMSCEXO, between AMSCEXO and HMSCEXO or between SS and AMSCEXO (P > 0.05). The levels of inflammatory mediators in circulation (CD11b/c/Ly6G/MIF), bronchioalveolar lavage (CD11b/c/Ly6G) and abdominal ascites (CD11b/c/CD14/Ly6G/MIF) were highest in SS, lowest in SC and significantly higher in AMSCEXO than in HMSCEXO (all P < 0.001). The circulating/splenic levels of immune cells (CD34+/CD4+/CD3+/CD8+) were expressed in an identical pattern whereas the T-reg+ cells exhibited an opposite pattern of inflammation among the groups (all P < 0.001). The protein expressions of inflammation (MMP-9/MIF/TNF-α/NF-κB/IL-1β) and oxidative stress (NOX-1/NOX-2/oxidized protein), and cellular expressions (CD14+/CD68+) in lung/kidney parenchyma exhibited an identical pattern of inflammatory mediators (all P < 0.001). The kidney/lung injury scores displayed an identical pattern of inflammatory mediators among the groups (all P < 0.001). In conclusion, HMSCEXO might be superior to AMSCEXO for improving survival and suppressing the inflammatory reactions in rats after SS. PMID:29736200

  10. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  11. Rapid synthesis of carbohydrate derivatives, including mimetics of C-linked disaccharides and C-linked aza disaccharides, using the hetero-Diels-Alder reaction.

    PubMed

    Burland, Peter A; Coisson, David; Osborn, Helen M I

    2010-11-05

    In this work we demonstrate the value of performing a hetero-Diels-Alder reaction (HDAR) between Danishefsky's diene and a range of aldehydes or imines, under microwave irradiation. By using a range of aldehydes and imines, including those derived from carbohydrates, access to functionalized 2,3-dihydro-4H-pyran-4-ones or 2,3-dihydro-4-pyridinones in good to excellent synthetic yields is possible. A particular strength of the methodology is its ability to access mimetics of C-linked disaccharides and C-linked aza disaccharides, targets of current therapeutic interest, in a rapid, convenient, and diastereoselective manner. The effect of high pressure on the HDARs involving carbohydrate-derived aldehydes and imines is also explored, with enhancement in yields occurring for the aldehyde substrates. Finally, HDARs using carbohydrate derived ketones, enones, and enals are described under a range of conditions. Optimum results were obtained under high-pressure conditions, with highly functionalized carbohydrate derivatives being afforded, in good yields, in this way.

  12. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  13. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  14. Radiation reaction in fusion plasmas.

    PubMed

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  15. Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells.

    PubMed

    Chen, Wei; Feng, Huajun; Shen, Dongsheng; Jia, Yufeng; Li, Na; Ying, Xianbin; Chen, Ting; Zhou, Yuyang; Guo, Jiayun; Zhou, Mengjiao

    2018-03-15

    In this study, carbonized waste tires were directly used as a high-performance anode material in microbial fuel cells (MFCs). The effect of the pyrolysis temperature used for waste tire carbonization on the current output performance was investigated to determine the optimal pyrolysis temperature. Thermal gravimetric analysis/differential scanning calorimetry showed that tire carbonization started at 200°C and ended at about 500°C; the weight loss was about 64%. When used in an MFC, the electrode obtained from waste tires carbonized at 800°C gave a current density of 23.1±1.4Am -2 , which is much higher than that achieved with traditional graphite felt anodes (5.5±0.1Am -2 ). The results of this study will be useful in optimizing the design of carbonized waste tire anodes for enhancing MFC performances and will alleviate the environmental problems caused by waste tires. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Household hazardous waste management: a review.

    PubMed

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-05

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of hydrogen gas getters for TRU waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, J. P.; Mroz, E. J.; Peterson, E.

    2004-01-01

    within the TP-II to ensure that no more than 50% of getter material is consumed during the 60 days; and (3) Adequate hydrogen removal rate from the getter reaction in the absence of the recombination reaction of hydrogen to produce water. This conservative approach provides a measure of safety for waste shipments by ensuring that sufficient getter material is present and by not taking credit for the recombination reaction. The rationale for measuring and reporting the hydrogen removal rate at 50% getter capacity is thus derived. All of the coated getters as well as the uncoated DEB performed well above the performance requirements. Coating the DEB with polymers did not significantly enhance getter performance in the presence of poisons relative to uncoated DEB. The next phase of the project is to evaluate a scaled-up getter package for performance under waste shipping conditions anticipated in the TP-II.« less

  19. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    PubMed

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants.

  20. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose.

    PubMed

    Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Karim, Zoheb

    2018-07-15

    Roselle fiber is a renewable and sustainable agricultural waste enriched with cellulose polysaccharides. The isolation of Nanocrystalline cellulose (NCC) from roselle-derived microcrystalline cellulose (MCC) is an alternative approach to recover the agricultural roselle plant residue. In the present study, acid hydrolysis with different reaction time was carried out to degrade the roselle-derived MCC to form NCC. The characterizations of isolated NCC were conducted through Fourier Transform Infrared Ray (FTIR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). As evaluated from the performed morphological investigations, the needle-like shape NCC nanostructures were observed under TEM and AFM microscopy studies, while irregular rod-like shape of NCC was observed under FESEM analysis. With 60min hydrolysis time, XRD analysis demonstrated the highest NCC crystallinity degree with 79.5%. In thermal analysis by TGA and DSC, the shorter hydrolysis time tended to produce NCC with higher thermal stability. Thus, the isolated NCC from roselle-derived MCC has high potential to be used in application of pharmaceutical and biomedical fields for nanocomposite fabrication. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives.

    PubMed

    Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María

    2015-08-07

    Phytylated chlorophyll derivatives undergo specific oxidative reactions through the natural metabolism or during food processing or storage, and consequently pyro-, 13(2)-hydroxy-, 15(1)-hydroxy-lactone chlorophylls, and pheophytins (a and b) are originated. New analytical procedures have been developed here to reproduce controlled oxidation reactions that specifically, and in reasonable amounts, produce those natural target standards. At the same time and under the same conditions, 16 natural chlorophyll derivatives have been analyzed by APCI-HPLC-hrMS(2) and most of them by the first time. The combination of the high-resolution MS mode with powerful post-processing software has allowed the identification of new fragmentation patterns, characterizing specific product ions for some particular standards. In addition, new hypotheses and reaction mechanisms for the established MS(2)-based reactions have been proposed. As a general rule, the main product ions involve the phytyl and the propionic chains but the introduction of oxygenated functional groups at the isocyclic ring produces new and specific productions and at the same time inhibits some particular fragmentations. It is noteworthy that all b derivatives, except 15(1)-hydroxy-lactone compounds, undergo specific CO losses. We propose a new reaction mechanism based in the structural configuration of a and b chlorophyll derivatives that explain the exclusive CO fragmentation in all b series except for 15(1)-hydroxy-lactone b and all a series compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Autoxidation of packed almonds as affected by maillard reaction volatile compounds derived from roasting.

    PubMed

    Severini, C; Gomes, T; De Pilli, T; Romani, S; Massini, R

    2000-10-01

    Shelled almonds of two Italian varieties, Romana and Pizzuta, peeled and unpeeled, were roasted and packed under different conditions: air (control), vacuum, and Maillard reaction volatile compounds (MRVc) derived from the roasting process. Samples were stored for approximately 8 months at room temperature, without light, and, at regular intervals, were collected and analyzed to evaluate the progress of lipid oxidation. Peroxide values, triglyceride oligopolymers, and oxidized triglycerides were evaluated during the storage time. Results showed that, although the MRVc atmosphere did not protect the lipid fraction of almonds as well as the vacuum condition; nevertheless, it was more protective than the control atmosphere, showing an antioxidant effect. The effect of the natural coating was a strong protection against lipid oxidation; in fact, only the unpeeled samples showed peroxide values lower than the threshold of acceptability (25 milliequiv of O(2)/kg of oil). Moreover, at the end of the storage period, Pizzuta almonds showed a greater deterioration than those of the Romana variety.

  3. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf)3 catalyst in the reaction selectivity

    PubMed Central

    Herrera Cano, Natividad; Uranga, Jorge G; Nardi, Mónica; Procopio, Antonio; Wunderlin, Daniel A

    2016-01-01

    An improved and greener protocol for the synthesis of benzimidazole derivatives, starting from o-phenylenediamine, with different aldehydes is reported. Double-condensation products were selectively obtained when Er(OTf)3 was used as the catalyst in the presence of electron-rich aldehydes. Conversely, the formation of mono-condensation products was the preferred path in absence of this catalyst. One of the major advantages of these reactions was the formation of a single product, avoiding extensive isolation and purification of products, which is frequently associated with these reactions. Theoretical calculations helped to understand the different reactivity established for these reactions. Thus, we found that the charge density on the oxygen of the carbonyl group has a significant impact on the reaction pathway. For instance, electron-rich aldehydes better coordinate to the catalyst, which favours the addition of the amine group to the carbonyl group, therefore facilitating the formation of double-condensation products. Reactions with aliphatic or aromatic aldehydes were possible, without using organic solvents and in a one-pot procedure with short reaction time (2–5 min), affording single products in excellent yields (75–99%). This convenient and eco-friendly methodology offers numerous benefits with respect to other protocols reported for similar compounds. PMID:28144309

  4. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf)3 catalyst in the reaction selectivity.

    PubMed

    Herrera Cano, Natividad; Uranga, Jorge G; Nardi, Mónica; Procopio, Antonio; Wunderlin, Daniel A; Santiago, Ana N

    2016-01-01

    An improved and greener protocol for the synthesis of benzimidazole derivatives, starting from o -phenylenediamine, with different aldehydes is reported. Double-condensation products were selectively obtained when Er(OTf) 3 was used as the catalyst in the presence of electron-rich aldehydes. Conversely, the formation of mono-condensation products was the preferred path in absence of this catalyst. One of the major advantages of these reactions was the formation of a single product, avoiding extensive isolation and purification of products, which is frequently associated with these reactions. Theoretical calculations helped to understand the different reactivity established for these reactions. Thus, we found that the charge density on the oxygen of the carbonyl group has a significant impact on the reaction pathway. For instance, electron-rich aldehydes better coordinate to the catalyst, which favours the addition of the amine group to the carbonyl group, therefore facilitating the formation of double-condensation products. Reactions with aliphatic or aromatic aldehydes were possible, without using organic solvents and in a one-pot procedure with short reaction time (2-5 min), affording single products in excellent yields (75-99%). This convenient and eco-friendly methodology offers numerous benefits with respect to other protocols reported for similar compounds.

  5. Efficient Green's Function Reaction Dynamics (GFRD) simulations for diffusion-limited, reversible reactions

    NASA Astrophysics Data System (ADS)

    Bashardanesh, Zahedeh; Lötstedt, Per

    2018-03-01

    In diffusion controlled reversible bimolecular reactions in three dimensions, a dissociation step is typically followed by multiple, rapid re-association steps slowing down the simulations of such systems. In order to improve the efficiency, we first derive an exact Green's function describing the rate at which an isolated pair of particles undergoing reversible bimolecular reactions and unimolecular decay separates beyond an arbitrarily chosen distance. Then the Green's function is used in an algorithm for particle-based stochastic reaction-diffusion simulations for prediction of the dynamics of biochemical networks. The accuracy and efficiency of the algorithm are evaluated using a reversible reaction and a push-pull chemical network. The computational work is independent of the rates of the re-associations.

  6. Heterogeneous catalytic reactions of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Krylov, Oleg V.; Mamedov, A. Kh

    1995-09-01

    The most important classes of heterogeneous catalytic reactions involving CO2 are examined: the incorporation of CO2 in the C-C, C-H, and C-N bonds with formation of carbonyl- and carboxyl-containing compounds and oxidation of other compounds by CO2. Reactions of the second class are more promising from the standpoint of the utilisation of carbon dioxide as a chemical raw material and from the standpoint of the solution of the ecological problems involving its utilisation from the gaseous waste discharged into the atmosphere. The reactions involving the oxidation of C1-C7 hydrocarbons and C1-C2 alcohols by carbon dioxide, which have been investigated by the authors of this review, are examined in detail. Catalysts based on manganese oxides are most effective in these reactions. The bibliography includes 231 references.

  7. Advanced waste management technology evaluation

    NASA Technical Reports Server (NTRS)

    Couch, H.; Birbara, P.

    1996-01-01

    The purpose of this program is to evaluate the feasibility of steam reforming spacecraft wastes into simple recyclable inorganic salts, carbon dioxide and water. Model waste compounds included cellulose, urea, methionine, Igapon TC-42, and high density polyethylenes. These are compounds found in urine, feces, hygiene water, etc. The gasification and steam reforming process used the addition of heat and low quantities of oxygen to oxidize and reduce the model compounds.The studied reactions were aimed at recovery of inorganic residues that can be recycled into a closed biologic system. Results indicate that even at very low concentrations of oxygen (less than 3%) the formation of a carbonaceous residue was suppressed. The use of a nickel/cobalt reforming catalyst at reaction temperature of 1600 degrees yielded an efficient destruction of the organic effluents, including methane and ammonia. Additionally, the reforming process with nickel/cobalt catalyst diminished the noxious odors associated with butyric acid, methionine and plastics.

  8. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  9. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    PubMed

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  10. Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Liang, Yeru; Dong, Hanwu; Hu, Hang; Zhao, Xiao; Cai, Yijing; Xiao, Yong; Liu, Yingliang; Zheng, Mingtao

    2018-02-01

    The synthesis and energy storage application of hierarchical porous carbons with size ranging from nano-to micrometres has attracted considerable attention all over the world. Exploring eco-friendly and reliable synthesis of hierarchical porous carbons for supercapacitors with high energy density and high power is still of ongoing challenge. In this work, we report the design and synthesis of super-hierarchical porous carbons with highly developed porosity by a stepwise removal strategy for high-rate supercapacitors. The mixed biomass wastes of coconut shell and sewage sludge are employed as raw material. The as-prepared super-hierarchical porous carbons present high surface areas (3003 m2 g-1), large pore volume (2.04 cm3 g-1), appropriate porosity, and outstanding electrochemical performance. The dependence of electrochemical performance on structural, textural, and functional properties of carbons engineered by various synthesis strategies is investigated in detail. Moreover, the as-assembled symmetrical supercapacitor exhibits high energy density of 25.4 Wh kg-1 at a power density of 225 W kg-1 and retains 20.7 Wh kg-1 even at a very high power of 9000 W kg-1. This work provides an environmentally benign strategy and new insights to efficiently regulate the porosity of hierarchical porous carbons derived from biomass wastes for energy storage applications.

  11. Algae Derived Biofuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahan, Kauser

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA studymore » was also conducted to investigate the energy intensive steps in algae cultivation.« less

  12. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  13. Enantioselective aldol reactions with masked fluoroacetates

    NASA Astrophysics Data System (ADS)

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.

  14. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  15. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions

    EPA Science Inventory

    An efficient and benign protocol is reported for the synthesis of 4-methoxyaniline, medicinally important pyrazole derivatives, and Ullmann-type condensation reaction using magnetically separable and reusable magnetite-supported copper (nanocat-Fe-CuO) nanoparticles under mild co...

  16. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    PubMed

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Prediction of the chemo- and regioselectivity of Diels-Alder reactions of o-benzoquinone derivatives with thiophenes by means of DFT-based reactivity indices

    NASA Astrophysics Data System (ADS)

    Ghomri, Amina; Mekelleche, Sidi Mohamed

    2014-03-01

    Global and local reactivity indices derived from density functional theory were used to elucidate the regio- and chemoselectivity of Diels-Alder reactions of masked o-benzoquinones with thiophenes acting as dienophiles. The polarity of the studied reactions is evaluated in terms of the difference of electrophilicity powers between the diene and dienophile partners. Preferential cyclisation modes of these cycloadditions are predicted using Domingo's polar model based on the local electrophilicity index, ωk, of the electrophile and the local nucleophilicity index, Nuk, of the nucleophile. The theoretical calculations, carried out at the B3LYP/6-311G(d,p) level of theory, are in good agreement with experimental findings.

  18. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste

    PubMed Central

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%–77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3−-N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields. PMID:28419163

  19. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    PubMed

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  20. Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yang, Shuting; Mao, Xinxin; Cao, Zhaoxia; Yin, Yanhong; Wang, Zhichao; Shi, Mengjiao; Dong, Hongyu

    2018-01-01

    Onion-derived nitrogen, sulfur self-doped nanoporous carbon spheres (NSC) as efficient metal-free electrocatalyst were synthesized via a facile hydrothermal and subsequent pyrolysis process. The typical NSC with a high BET specific surface area of 1558 m2 g-1, contains 6.23 at.% N and 0.36 at.% S, and possesses high concentration of pyridinic and graphitic nitrogen species. Experimentally, the best performance was the NSC-A2 which showed excellent catalytic activity to oxygen reduction reaction via a 4 electron mechanism with an onset potential of 0.88 V (vs. RHE), and a superior stability comparable to commercial Pt/C catalyst. The high electrocatalytic activity is attributed to not only the synergistic effect of N and S dual doping in carbon and the sufficient active sites, but also its high BET specific surface area and suitable microporous structure. The results demonstrate that it is a simple and scalable approach for preparing efficient and low-cost carbon-based electrocatalysts for oxygen reduction reaction.

  1. Knoevenagel Reaction of Unprotected Sugars

    NASA Astrophysics Data System (ADS)

    Scherrmann, Marie-Christine

    The Knoevenagel reaction of unprotected sugars was investigated in the 1950s using zinc chloride as promoter. The so-called Garcia Gonzalez reaction had been almost forgotten for 50 years, until the emergence of new water tolerant catalysts having Lewis acid behavior. The reaction was thus reinvestigated and optimal conditions have been found to prepare trihydroxylated furan derivatives from pentose or β-tetrahydrofuranylfuran from hexoses with non-cyclic β-keto ester or β-diketones. Other valuable compounds such as β-linked tetrahydrobenzofuranyl glycosides or hydroxyalkyl-3,3,6,6,-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione can be obtained using cyclic β-dicarbonylic derivatives. Apart from one report in the 1950s, the Knoevenagel reaction of unprotected carbohydrate in basic condition has been studied only in the mid-1980s to prepare C-glycosyl barbiturates from barbituric acids and, later on, from non-cyclic β-diketones, β-C-glycosidic ketones. The efficient method exploited to prepare such compounds has found an industrial development in cosmetics.

  2. Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS system with timed and highly selective reaction monitoring.

    PubMed

    Zhao, Zhiyong; Liu, Na; Yang, Lingchen; Deng, Yifeng; Wang, Jianhua; Song, Suquan; Lin, Shanhai; Wu, Aibo; Zhou, Zhenlei; Hou, Jiafa

    2015-09-01

    Mycotoxins have the potential to enter the human food chain through carry-over of contaminants from feed into animal-derived products. The objective of the study was to develop a reliable and sensitive method for the analysis of 30 mycotoxins in animal feed and animal-derived food (meat, edible animal tissues, and milk) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the study, three extraction procedures, as well as various cleanup procedures, were evaluated to select the most suitable sample preparation procedure for different sample matrices. In addition, timed and highly selective reaction monitoring on LC-MS/MS was used to filter out isobaric matrix interferences. The performance characteristics (linearity, sensitivity, recovery, precision, and specificity) of the method were determined according to Commission Decision 2002/657/EC and 401/2006/EC. The established method was successfully applied to screening of mycotoxins in animal feed and animal-derived food. The results indicated that mycotoxin contamination in feed directly influenced the presence of mycotoxin in animal-derived food. Graphical abstract Multi-mycotoxin analysis of animal feed and animal-derived food using LC-MS/MS.

  3. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  4. A General Diastereoselective Catalytic Vinylogous Aldol Reaction Among Tetramic Acid-Derived Pyrroles

    PubMed Central

    2015-01-01

    A catalytic diastereoselective aldol reaction has been developed for N1-arylated/C2-O-silylated/C3-methylated and brominated/C4-O-methylated pyrroles in its reactions with various aldehydes. Syn adducts emerge with regard to the vicinal nitrogen and oxygen heteroatom substituents. The N1-aryl residue undergoes oxidative cleavage, and the C3-bromine atom undergoes palladium-mediated coupling reactions, both without disturbing the newly created stereocenters. PMID:25119431

  5. Evaluation of the cytotoxic effects of humid lightweight coal ash derived from the disposal of waste on normal human keratinocyte and endothelial cell lines in 2-D and 3-D culture.

    PubMed

    Scanarotti, Chiara; Vernazza, Stefania; Brignone, Massimiliano; Danailova, Jenia; Pronzato, Maria A; Bassi, Anna M

    2013-12-01

    The presence of waste in the environment has frequently been indicated as a significant risk to human health. Therefore, landfill sites and the disposal of urban solid and non-hazardous waste by incineration are subject to much environmental monitoring, in addition to the regulations already in place. However, little action has been taken, and consequently no specific legislation exists, in relation to the assessment of the real biological risk of various substances, including chemical mixtures and ashes, derived from the incineration processes. This study assessed the cytotoxic potential of humid lightweight coal ash (LA) derived from incineration processes and waste management, on two cell lines: NCTC 2544 normal human keratinocytes and HECV endothelial cells. To reach this goal and to assess more-realistic methods for animal replacement, we employed different in vitro experimental approaches: acute and longer exposure to LA, by direct and indirect contact (0-2mg/ml and 16mg, respectively), both in 2-D and 3-D cultures. In 2-D HECV cultures, we observed a decrease in the viability index, but only during direct contact with LA doses higher than 0.1mg/ml. Moreover, some striking differences in cytotoxicity were observed between the 2-D and 3-D models. Taken together, these observations indicate that, for studying pollutant toxicity during longer exposure times, 3-D cultures in direct contact with the pollutant seem to offer a more suitable approach - they mimic the in vivo behaviour of cells more realistically and under strictly controlled conditions. Thus, in readiness for possible forthcoming European regulations, we believe that the proposed study, even in its preliminary phase, can provide new advice on the assessment of the toxic and biological potential of particular chemical compounds derived from waste management processes. 2013 FRAME.

  6. Alternatives for Disposal of Depleted Uranium Waste.

    DTIC Science & Technology

    1985-11-01

    spontaneous increase in heat or pressure o No significant chemical or galvanic reaction o Closures to prevent inadvertent leakage 20 iL-i MI.....Nq...Ignition stops when the mass of the remaining metal can absorb the energy generated by the oxidation without reaching reaction temperatures. Thin sections...Compliance Worksheet i. Completion of Solid Waste Burial Record j. Structural Analysis of Special Containers k. Handling Procedures and Use of Forklifts 1

  7. C–C Cross-Coupling Reactions of O6-Alkyl-2-Haloinosine Derivatives and a One-Pot Cross-Coupling/O6-Deprotection Procedure

    PubMed Central

    Gurram, Venkateshwarlu; Pottabathini, Narender; Garlapati, Ramesh; Chaudhary, Avinash B.; Patro, Balaram; Lakshman, Mahesh K.

    2012-01-01

    Reaction conditions for the C–C cross-coupling of O6-alkyl-2-bromo- and 2-chloroinosine derivatives with aryl-, hetaryl-, and alkylboronic acids were studied. Optimization experiments with silyl-protected 2-bromo-O6-methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4-dioxane as the best condition for these reactions (dcpf = 1,1’-bis(dicyclohexylphosphino)ferrocene). Attempted O6-demethylation, as well as the replacement of the C-6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd-cleavable groups such that C–C cross-coupling and O6-deprotection could be accomplished in a single step. Thus, inosine 2-chloro-O6-allylinosine was chosen as the substrate and, after re-evaluation of the cross-coupling conditions with 2-chloro-O6-methylinosine as a model substrate, one-step C–C cross-coupling/deprotection reactions were performed with the O6-allyl analogue. These reactions are the first such examples of a one-pot procedure for the modification and deprotection of purine nucleosides under C–C cross-coupling conditions. PMID:22570232

  8. C-C cross-coupling reactions of O6-alkyl-2-haloinosine derivatives and a one-pot cross-coupling/O6-deprotection procedure.

    PubMed

    Gurram, Venkateshwarlu; Pottabathini, Narender; Garlapati, Ramesh; Chaudhary, Avinash B; Patro, Balaram; Lakshman, Mahesh K

    2012-08-01

    Reaction conditions for the CC cross-coupling of O(6)-alkyl-2-bromo- and 2-chloroinosine derivatives with aryl-, hetaryl-, and alkylboronic acids were studied. Optimization experiments with silyl-protected 2-bromo-O(6)-methylinosine led to the identification of [PdCl(2)(dcpf)]/K(3)PO(4) in 1,4-dioxane as the best conditions for these reactions (dcpf=1,1'-bis(dicyclohexylphosphino)ferrocene). Attempted O(6)-demethylation, as well as the replacement of the C-6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd-cleavable groups such that C-C cross-coupling and O(6)-deprotection could be accomplished in a single step. Thus, inosine 2-chloro-O(6)-allylinosine was chosen as the substrate and, after re-evaluation of the cross-coupling conditions with 2-chloro-O(6)-methylinosine as a model substrate, one-step C-C cross-coupling/deprotection reactions were performed with the O(6)-allyl analogue. These reactions are the first such examples of a one-pot procedure for the modification and deprotection of purine nucleosides under C-C cross-coupling conditions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Performance Analysis of Cofiring Densified Refuse Derived Fuel in a Military Boiler.

    DTIC Science & Technology

    1981-12-01

    Derived Fuel 70 Design Considerations for Municipal Solid Waste Conveyors 71 Densification of Refuse -Derived Fuels: Preparation Properties and Systems...problems could be realized if the system were expanded and if operating demands were increased. 70 DESIGN CONSIDERATIONS FOR MUNICIPAL SOLID WASTE CONVEYORS ...cleanup might be very useful in order to determine the level at which a conveyor design is monetarily accep~table. A scan of conveying technologies for

  10. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    PubMed

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Isosinglet approximation for nonelastic reactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1972-01-01

    Group theoretic relations are derived between different combinations of projectile and secondary particles which appear to have a broad range of application in spacecraft shielding or radiation damage studies. These relations are used to reduce the experimental effort required to obtain nuclear reaction data for transport calculations. Implications for theoretical modeling are also noted, especially for heavy-heavy reactions.

  12. Effect of electric signal frequency and form on physical-chemical oxidation of organic wastes

    NASA Astrophysics Data System (ADS)

    Morozov, Yegor; Tikhomirov, Alexander A.; Trifonov, Sergey V.; Kudenko, D.. Yurii A.

    The behavior conditions of physical-chemical reactions securing organic wastes’ oxidation in H _{2}O _{2} aqueous medium aimed at an increase of mass exchange processes in a life support system (LSS) for a space purpose have been under study. The character of dependence of organic wastes oxidation rate in H _{2}O _{2} aqueous medium, activated with alternating current of different frequency and form have been considered. Ways of those parameters optimization for the purpose to efficiently increase the physical-chemical decomposition of organic wastes in LSS have been proposed. Specifically, power consumption and reaction time of wastes mineralization have been determined to reduce more than twice. Involvement ways of mineralized organic wastes received in intrasystem mass exchange have been shown. Application feasibility of the obtained results both for space and terrestrial purpose has been discussed. Key words: life support sustem, mineralization, turnover, frequency, organic wastes

  13. Toxic assessment of the leachates of paddy soils and river sediments from e-waste dismantling sites to microalga, Pseudokirchneriella subcapitata.

    PubMed

    Nie, Xiangping; Fan, Canpeng; Wang, Zhaohui; Su, Tian; Liu, Xinyu; An, Taicheng

    2015-01-01

    The potential adverse effects of e-waste recycling activity on environment are getting increasing concern. In this work, a model alga, Pseudokirchneriella subcapitata, was employed to assess the toxic effects of the leachates of paddy soils and river sediments collected from e-waste dismantling sites. Chemical analysis of the paddy soils and river sediments and their leachates were carried out and the growth rate, chlorophyll a fluorescence and anti-oxidative systems of the alga were measured. Results showed that two leachates decreased the amount of PSII active reaction centers and affected photosynthesis performance, interfered with chlorophyll synthesis and inhibited algal growth. Some chemical pollutants in the sediments and soils such as polybrominated diphenyl ethers (PBDEs) and metals derived from e-waste recycling activity may impose oxidative stress on algae and affect the activity of anti-oxidative enzymes such as GST, SOD, CAT and APX. The leachates of both river sediments and paddy soils are potentially toxic to the primary producers, P. subcapitata and the leachate from sediments was more deleterious than that from soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    PubMed Central

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  15. Application of the Ugi reaction with multiple amino acid-derived components: synthesis and conformational evaluation of piperazine-based minimalist peptidomimetics.

    PubMed

    Stucchi, Mattia; Cairati, Silvia; Cetin-Atalay, Rengul; Christodoulou, Michael S; Grazioso, Giovanni; Pescitelli, Gennaro; Silvani, Alessandra; Yildirim, Deniz Cansen; Lesma, Giordano

    2015-05-07

    The concurrent employment of α-amino acid-derived chiral components such as aldehydes and α-isocyanoacetates, in a sequential Ugi reaction/cyclization two-step strategy, opens the door to the synthesis of three structurally distinct piperazine-based scaffolds, characterized by the presence of L-Ala and/or L-Phe-derived side chains and bearing appropriate functionalities to be easily applied in peptide chemistry. By means of computational studies, these scaffolds have been demonstrated to act as minimalist peptidomimetics, able to mimic a well defined range of peptide secondary structures and therefore potentially useful for the synthesis of small-molecule PPI modulators. Preliminary biological evaluation of two different resistant hepatocellular carcinoma cellular lines, for which differentiation versus resistance ability seem to be strongly correlated with well defined types of PPIs, has revealed a promising antiproliferative activity for selected compounds.

  16. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.

    PubMed

    Newland, Mike J; Rickard, Andrew R; Alam, Mohammed S; Vereecken, Luc; Muñoz, Amalia; Ródenas, Milagros; Bloss, William J

    2015-02-14

    The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) with H2O. The observed SO2 removal kinetics are consistent with relative rate constants, k(SCI + H2O)/k(SCI + SO2), of 3.3 (±1.1) × 10(-5) for CH2OO, 26 (±10) × 10(-5) for CH3CHOO derived from cis-but-2-ene, 33 (±10) × 10(-5) for CH3CHOO derived from trans-but-2-ene, and 8.7 (±2.5) × 10(-5) for (CH3)2COO derived from 2,3-dimethyl-but-2-ene. The relative rate constants for k(SCI decomposition)/k(SCI + SO2) are -2.3 (±3.5) × 10(11) cm(-3) for CH2OO, 13 (±43) × 10(11) cm(-3) for CH3CHOO derived from cis-but-2-ene, -14 (±31) × 10(11) cm(-3) for CH3CHOO derived from trans-but-2-ene and 63 (±14) × 10(11) cm(-3) for (CH3)2COO. Uncertainties are ±2σ and represent combined systematic and precision components. These values are derived following the approximation that a single SCI is present for each system; a more comprehensive interpretation, explicitly considering the differing reactivity for syn- and anti-SCI conformers, is also presented. This yields values of 3.5 (±3.1) × 10(-4) for k(SCI + H2O)/k(SCI + SO2) of anti-CH3CHOO and 1.2 (±1.1) × 10(13) for k(SCI decomposition)/k(SCI + SO2) of syn-CH3CHOO. The reaction of the water dimer with CH2OO is also considered, with a derived value for k(CH2OO + (H2O)2)/k(CH2OO + SO2) of 1.4 (±1.8) × 10(-2). The observed SO2 removal rate constants, which technically represent upper limits, are consistent with decomposition being a significant, structure dependent, sink in the atmosphere for syn-SCI.

  17. A calorimetric and microstructural study of solidified toxic wastes. Part 1: A classification of OPC/waste interference effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, C.D.; Sollars, C.J.; Perry, R.

    1994-01-01

    Ordinary Portland cement (OPC) has been used to solidify hazardous waste for about 25 years. The effects of waste components on the hydraulic activity of his binder have been subject to increasing research. Under certain circumstances, as yet to be defined, the hydration reactions thought responsible for solidification can be poisoned and appear to be retarded indefinitely. In this study, a number of wastes known to be capable of poisoning hydration were added to OPC and the effects were examined by conduction calorimetry and microstructural analysis techniques. A comparison of results showed that it was possible to classify waste/OPC interactionsmore » by phase development and the heat of hydration evolved. During the second part of this work, which is reported separately, the individual wastes were characterized, and the individual components identified as significant were added to OPC in single and combined additions. A comparison of results showed that it was possible to reproduce the poisoning effects observed.« less

  18. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  19. Microwaves in chemistry: Another way of heating reaction mixtures

    NASA Astrophysics Data System (ADS)

    Berlan, J.

    1995-04-01

    The question of a possible "microwave activation" of chemical reaction is discussed. In fact two cases should be distinguished: homogeneous or heterogeneous reaction mixtures. In homogeneous mixtures there are no (or very low) rate enhancements compared to a conventional heating, but some influence on chemioselectivity has been observed. These effects derive from fast and mass heating of microwaves, and probably, especially under reflux, from different boiling rates and/or overheating. With heterogeneous mixtures non conventional effects probably derive from mass heating and selective overheating. This is illustrated with several reactions: Diels-Alder, naphthalene sulphonation, preparation of cyanuric acid, hydrolysis of nitriles, transposition reaction on solid support.

  20. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    PubMed

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. New Complexity-Building Reactions of Alpha-Keto Esters

    NASA Astrophysics Data System (ADS)

    Bartlett, Samuel L.

    I. Introduction: Importance of Asymmetric Catalysis and the Reactivity Patterns of alpha-Keto Esters. II. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation of Stereochemically Labile alpha-Keto Esters. Enantioconvergent arylation reactions of boronic acids and racemic ?-stereogenic alpha-keto esters have been developed. The reactions are catalyzed by a chiral (diene)Rh(I) complex and provide a wide array of beta-stereogenic tertiary aryl glycolate derivatives with high levels of diastereo- and enantioselectivity. Racemization studies employing a series of sterically differentiated tertiary amines suggest that the steric nature of the amine base additive exerts a significant influence on the rate of substrate racemization. III. Palladium-Catalyzed beta-Arylation of alpha-Keto Esters . A catalyst system derived from commercially available Pd2(dba) 3 and PtBu3 has been applied to the coupling of alpha-keto ester enolates and aryl bromides. The reaction provides access to an array of beta-stereogenic alpha-keto ester derivatives. When the air stable ligand precursor PtBu 3˙HBF4 is employed, the reaction can be carried out without use of a glovebox. The derived products are of broad interest given the prevalence of the alpha-keto acid substructure in biologically important molecules. IV. Catalytic Enantioselective [3+2] Cycloaddition of alpha-Keto Ester Enolates and Nitrile Oxides. An enantioselective [3+2] cycloaddition reaction between nitrile oxides and transiently generated enolates of alpha-keto esters has been developed. The catalyst system was found to be compatible with in situ nitrile oxide generation conditions. A versatile array of nitrile oxides and alpha-keto esters could participate in the cycloaddition, providing novel 5-hydroxy-2-isoxazolines in high chemical yield with high levels of diastereo- and enantioselectivity. Notably, the optimal reaction conditions circumvented concurrent reaction via O-imidoylation and hetero-[3

  2. 40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pressure, (2) fire or explosion, (3) violent reaction, (4) toxic dusts, mists, fumes, or gases, or (5... analyze his wastes so that he can avoid creating uncontrolled substances or reactions of the type listed... mixed in a way that precludes a reaction (e.g., adding acid to water rather than water to acid) or that...

  3. 40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure, (2) fire or explosion, (3) violent reaction, (4) toxic dusts, mists, fumes, or gases, or (5... analyze his wastes so that he can avoid creating uncontrolled substances or reactions of the type listed... mixed in a way that precludes a reaction (e.g., adding acid to water rather than water to acid) or that...

  4. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  5. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.

    PubMed

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M

    2016-01-01

    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  6. Potential of solid waste utilization as source of refuse derived fuel (RDF) energy (case study at temporary solid waste disposal site in West Jakarta)

    NASA Astrophysics Data System (ADS)

    Indrawati, D.; Lindu, M.; Denita, P.

    2018-01-01

    This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.

  7. Food waste conversion to microbial polyhydroxyalkanoates.

    PubMed

    Nielsen, Chad; Rahman, Asif; Rehman, Asad Ur; Walsh, Marie K; Miller, Charles D

    2017-11-01

    Polyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large-scale PHA production is the cost of carbon substrate for PHA-producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food-related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food-derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.

    PubMed

    Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J

    2005-06-01

    Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.

  9. Anomalous dielectric relaxation with linear reaction dynamics in space-dependent force fields.

    PubMed

    Hong, Tao; Tang, Zhengming; Zhu, Huacheng

    2016-12-28

    The anomalous dielectric relaxation of disordered reaction with linear reaction dynamics is studied via the continuous time random walk model in the presence of space-dependent electric field. Two kinds of modified reaction-subdiffusion equations are derived for different linear reaction processes by the master equation, including the instantaneous annihilation reaction and the noninstantaneous annihilation reaction. If a constant proportion of walkers is added or removed instantaneously at the end of each step, there will be a modified reaction-subdiffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps, there will be a standard linear reaction kinetics term but a fractional order temporal derivative operating on an anomalous diffusion term. The dielectric polarization is analyzed based on the Legendre polynomials and the dielectric properties of both reactions can be expressed by the effective rotational diffusion function and component concentration function, which is similar to the standard reaction-diffusion process. The results show that the effective permittivity can be used to describe the dielectric properties in these reactions if the chemical reaction time is much longer than the relaxation time.

  10. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior.

    PubMed

    Lin, Yousheng; Ma, Xiaoqian; Peng, Xiaowei; Yu, Zhaosheng

    2017-11-01

    In this work, five typical components were employed as representative pseudo-components to indirectly complete previous established simulation system during hydrothermal carbonization (HTC) of municipal solid waste. The fuel characteristics and combustion behavior of HTC-derived hydrochars were evaluated. Results clearly illustrated that the energy ranks of hydrochars were upgraded after HTC. For paper and wood, superior combustion performances of their hydrochars could achieve under suitable conditions. While for food, none positive enrichments on combustion loss rate were observed for hydrochars due to its high solubilization and decomposition under hot compressed water. It was noteworthy that a new weight loss peak was detected for paper and food, suggesting that new compounds were formed. For rubber, the HTC process made the properties of styrene butadiene rubber more close to natural rubber. Therefore, the first peak of hydrochars became significantly intense. While for plastic, only physical changes of polypropylene and polyethylene were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Immobilization of metal wastes by reaction with H2S in anoxic basins: concept and elaboration.

    PubMed

    Schuiling, R D

    2013-10-01

    Metal wastes are produced in large quantities by a number of industries. Their disposal in isolated waste deposits is certain to cause many subsequent problems, because every material will sooner or later return to the geochemical cycle. The sealing of disposal sites usually starts to leak, often within a short time after the disposal site has been filled. The contained heavy metals are leached from the waste deposit and will contaminate the soil and the groundwater. It is evident that storage as metal sulfides in a permanently anoxic environment is the only safe way to handle metal wastes. The world's largest anoxic basin, the Black Sea, can serve as a georeactor. The metal wastes are sustainably transformed into harmless and immobile solids. These are incorporated in the lifeless bottom muds, where they are stored for millions of years.

  13. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shupei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shinichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  14. Development of a methodology for electronic waste estimation: A material flow analysis-based SYE-Waste Model.

    PubMed

    Yedla, Sudhakar

    2016-01-01

    Improved living standards and the share of services sector to the economy in Asia, and the use of electronic equipment is on the rise and results in increased electronic waste generation. A peculiarity of electronic waste is that it has a 'significant' value even after its life time, and to add complication, even after its extended life in its 'dump' stage. Thus, in Indian situations, after its life time is over, the e-material changes hands more than once and finally ends up either in the hands of informal recyclers or in the store rooms of urban dwellings. This character makes it extremely difficult to estimate electronic waste generation. The present study attempts to develop a functional model based on a material flow analysis approach by considering all possible end uses of the material, its transformed goods finally arriving at disposal. It considers various degrees of uses derived of the e-goods regarding their primary use (life time), secondary use (first degree extension of life), third-hand use (second degree extension of life), donation, retention at the respective places (without discarding), fraction shifted to scrap vendor, and the components reaching the final dump site from various end points of use. This 'generic functional model' named SYE-Waste Model, developed based on a material flow analysis approach, can be used to derive 'obsolescence factors' for various degrees of usage of e-goods and also to make a comprehensive estimation of electronic waste in any city/country. © The Author(s) 2015.

  15. Saponification of fatty slaughterhouse wastes for enhancing anaerobic biodegradability.

    PubMed

    Battimelli, Audrey; Carrère, Hélène; Delgenès, Jean-Philippe

    2009-08-01

    The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste--aeroflotation fats and flesh fats from animal carcasses--was studied in order to improve the waste's anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions. The results showed little increase in the total volume of biogas, indicating a good biodegradability of the raw wastes. Mean biogas volume reached 1200 mL/g VS which represented more than 90% of the maximal theoretical biogas potential. Raw fatty wastes were slowly biodegraded whereas pretreated wastes showed improved initial reaction kinetics, indicating a better initial bio-availability, particularly for mesophilic runs. The effects observed for raw wastes with ethanol as co-substrate depended on the process temperature: in mesophilic conditions, an initial improvement was observed whereas in thermophilic conditions a significant decrease in biodegradability was observed.

  16. Sources and processing of CELSS wastes

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Tremor, J.; Koo, C.; Jacquez, R.

    1989-01-01

    The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure.

  17. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    PubMed

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  18. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    NASA Astrophysics Data System (ADS)

    Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.

    2011-10-01

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  19. Synthesis of ketones from biomass-derived feedstock.

    PubMed

    Meng, Qinglei; Hou, Minqiang; Liu, Huizhen; Song, Jinliang; Han, Buxing

    2017-01-31

    Cyclohexanone and its derivatives are very important chemicals, which are currently produced mainly by oxidation of cyclohexane or alkylcyclohexane, hydrogenation of phenols, and alkylation of cyclohexanone. Here we report that bromide salt-modified Pd/C in H 2 O/CH 2 Cl 2 can efficiently catalyse the transformation of aromatic ethers, which can be derived from biomass, to cyclohexanone and its derivatives via hydrogenation and hydrolysis processes. The yield of cyclohexanone from anisole can reach 96%, and the yields of cyclohexanone derivatives produced from the aromatic ethers, which can be extracted from plants or derived from lignin, are also satisfactory. Detailed study shows that the Pd, bromide salt and H 2 O/CH 2 Cl 2 work cooperatively to promote the desired reaction and inhibit the side reaction. Thus high yields of desired products can be obtained. This work opens the way for production of ketones from aromatic ethers that can be derived from biomass.

  20. Analysis of the adverse reactions induced by natural product-derived drugs

    PubMed Central

    Zeng, Zhi-Ping; Jiang, Jian-Guo

    2010-01-01

    Compared with the therapeutic effects of established medicinal drugs, it is often considered that natural product-derived drugs are of a more benign nature in side-effects, which has made natural medicines become a popular form of therapy. Traditional Chinese medicine (TCM) is generally considered as being natural and harmless. TCM has been paid much more attention than before and widely used for the treatment nowadays. However, with the increasing cases of adverse drug reactions (ADRs), the ADRs induced by TCM are becoming more widely recognized. Some ADRs are sometimes even life-threatening. This article reviews literatures on ADRs induced by TCM which was published in the past 10 years. A total of 3122 cases including complete data are selected for the present analysis. From the data of the 3122 cases, statistics is carried out to the distribution of administration routes and time of the occurrence of ADRs, the prognosis of ADRs, sex and age factors, types and clinical symptoms of ADRs, and drugs involved in ADRs. In addition, occurrence and influencing factors of TCM-induced diseases are also analysed, which includes spices confusion, processing drugs improperly, toxic components, long-term medication, improper concerted application, interaction of TCM and Western medicine. It is concluded that the efficacy and toxicity of TCM, often using the compound prescription involving various plants and animals, resulted from a variety of chemical constituents, which lead to a comprehensive response in the human body. The ‘toxicity’ of TCM should be correctly recognized and reasonably utilized. PMID:20233209