Sample records for waste-to-energy wte plants

  1. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia.

    PubMed

    Hadidi, Laith A; Omer, Mohamed Mahmoud

    2017-01-01

    Municipal Solid Waste (MSW) generation in Saudi Arabia is increasingly growing at a fast rate, as it hurtles towards ever increasing urban development coupled with rapid developments and expanding population. Saudi Arabia's energy demands are also rising at a faster rate. Therefore, the importance of an integrated waste management system in Saudi Arabia is increasingly rising and introducing Waste to Energy (WTE) facilities is becoming an absolute necessity. This paper analyzes the current situation of MSW management in Saudi Arabia and proposes a financial model to assess the viability of WTE investments in Saudi Arabia in order to address its waste management challenges and meet its forecasted energy demands. The research develops a financial model to investigate the financial viability of WTE plants utilizing gasification and Anaerobic Digestion (AD) conversion technologies. The financial model provides a cost estimate of establishing both gasification and anaerobic digestion WTE plants in Saudi Arabia through a set of financial indicators, i.e. net present value (NPV), internal rate of return (IRR), modified internal rate of return (MIRR), profitability index (PI), payback period, discounted payback period, Levelized Cost of Electricity (LCOE) and Levelized Cost of Waste (LCOW). Finally, the analysis of the financial model reveals the main affecting factors of the gasification plants investment decision, namely: facility generation capacity, generated electricity revenue, and the capacity factor. Similarly, the paper also identifies facility waste capacity and the capacity factor as the main affecting factors on the AD plants' investment decision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    PubMed

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the

  3. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    PubMed

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    PubMed

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio A

    2018-03-01

    Residual municipal solid waste (MSW) has an average lower heating value higher than 10GJ/Mg in the EU, and can be recovered in modern Waste-to-Energy (WtE) plants, producing combined heat and power (CHP) and reaching high levels of energy recovery. CHP is pinpointed as the best technique for energy recovery from waste. However, in some cases, heat recovery is not technically feasible - due to the absence of a thermal user (industrial plant or district heating) in the vicinity of the WtE plant - and power production remains the sole possibility. In these cases, there are some challenges involved in increasing the energy performance as much as possible. High energy recovery efficiency values are very important for the environmental sustainability of WtE plants. The more electricity and heat is produced, the better the saving of natural resources that can be achieved. Within this frame, the aim of this work is to carry out an environmental assessment, through Life Cycle Assessment, of an MSW WtE plant, considering different sizes and operated in different ways, from power production only to full cogeneration. The main assumption is that the electric conversion efficiency increases as the plant size increases, introducing technical improvements thanks to the economies of scale. Impact assessment results were calculated using ReCiPe 2008 methods. The climate change indicator is positive when the WtE plant is operated in power production only mode, with values decreasing for the increasing size. Values for the climate change are negative when cogeneration is applied, requiring increasing cogeneration ratios for decreasing size. Similarly, the fossil fuel depletion indicator benefits from increase of both the plant size and the cogeneration rate, but it is always negative, meaning that the residual MSW burning with energy recovery always provides a saving of fossil primary energy. Other indicator values are in general negative and are also beneficially affected by

  7. Electrical efficiency in modern waste to energy plants -- The advanced solutions adopted in a new Italian plant (Milan)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchini, F.M.; Pezzella, B.

    1998-07-01

    The paper has the goal to give a general overview of the current approach for the design of modern Waste to Energy (WtE) plants. The thermal treatment of solid waste is an environmentally sound method to get rid of the garbage produced by everyone and to recover energy simultaneously. A typical waste to energy plant is divided in four segments: incineration/boiler, air pollution control, residues treatment and power generation. Still in the 80's a WtE plant was simply consisting of a these four segments without any particular effort in putting them together into a coordinated plant; therefore the results weremore » very poor in term of overall plant performances even if the single segments were properly designed. This paper shows how this approach is changing and how the synergism between the segments allows to reach interesting performances in term of electric efficiency, always keeping in mind that power must be considered a by-product of the incinerator. Therefore all these efforts have to be done without affecting the burning capacity of the station. The new Milan WtE plant is taken as example throughout the paper. The first section of the paper tries to consider the Municipal Solid Waste as standard fuel; then focal point becomes the electrical efficiency of the plant. In the fourth section the flue gas cleaning system is approached, pointing out the gas quality at stack. Then in the fifth and sixth paragraphs all most important and innovative technical solutions of the Milan plant are shown with some details on water/steam cycle, giving also some availability results. Chapter seven shows some interesting key-figures, related to the combustion of 1,000 kg of MSW at 11 MJ/kg, with also some economical evaluations in term of investment cost per ton of waste per day.« less

  8. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  9. Temperature Measurement in WTE Boilers Using Suction Pyrometers

    PubMed Central

    Rinaldi, Fabio; Najafi, Behzad

    2013-01-01

    The temperature of the flue-gas in the post combustion zone of a waste to energy (WTE) plant has to be maintained within a fairly narrow range of values, the minimum of which is prescribed by the European Waste Directive 2000/76/CE, whereas the maximum value must be such as to ensure the preservation of the materials and the energy efficiency of the plant. A high degree of accuracy in measuring and controlling the aforementioned temperature is therefore required. In almost the totality of WTE plants this measurement process is carried out by using practical industrial thermometers, such as bare thermocouples and infrared radiation (IR) pyrometers, even if affected by different physical contributions which can make the gas temperature measurements incorrect. The objective of this paper is to analyze errors and uncertainties that can arise when using a bare thermocouple or an IR pyrometer in a WTE plant and to provide a method for the in situ calibration of these industrial sensors through the use of suction pyrometers. The paper describes principle of operation, design, and uncertainty contributions of suction pyrometers, it also provides the best estimation of the flue-gas temperature in the post combustion zone of a WTE plant and the estimation of its expanded uncertainty. PMID:24248279

  10. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    PubMed

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2018-03-01

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full

  11. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China.

    PubMed

    Liu, Yong; Sun, Chenjunyan; Xia, Bo; Cui, Caiyun; Coffey, Vaughan

    2018-06-01

    As one of the most popular methods for the treatment of municipal solid waste (MSW), waste-to-energy (WTE) incineration offers effective solutions to deal with the MSW surge and globe energy issues. Nevertheless, the construction of WTE facilities faces considerable and strong opposition from local communities due to the perceived potential risks. The present study aims to understand whether, and how, community engagement improves local residents' public acceptance towards waste-to-energy (WTE) incineration facilities using a questionnaire survey conducted with nearby residents of two selected WTE incineration plants located in Zhejiang province, China. The results of data analysis using Structural Equation Modeling (SEM) reveal that firstly, a lower level of public acceptance exists among local residents of over the age of 35, of lower education levels, living within 3 km from the WTE Plant and from WTE incineration Plants which are under construction. Secondly, the public trust of local government and other authorities was positively associated with the public acceptance of the WTE incineration project, both directly and indirectly based on perceived risk. Thirdly, community engagement can effectively enhance public trust in local government and other authorities related to the WTE incineration project. The findings contribute to the literature on MSW treatment policy-making and potentially hazardous facility siting, by exploring the determinants of public acceptance towards WTE incineration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.

    PubMed

    Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang

    2018-06-01

    Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.

    PubMed

    Schwarzböck, Therese; Rechberger, Helmut; Cencic, Oliver; Fellner, Johann

    2016-03-01

    Different directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from biomass in the waste feed, as well as the amount of fossil CO2 emissions generated by the combustion of fossil waste materials. This paper describes the application of the Balance Method for determining the overall amount of fossil and thus climate relevant CO2 emissions from waste incineration in Austria. The results of 10 Austrian WTE plants (annual waste throughput of around 2,300 kt) demonstrate large seasonal variations in the specific fossil CO2 emissions of the plants as well as large differences between the facilities (annual means range from 32±2 to 51±3 kg CO(2,foss)/GJ heating value). An overall amount of around 924 kt/yr of fossil CO2 for all 10 WTE plants is determined. In comparison biogenic (climate neutral) CO2 emissions amount to 1,187 kt/yr, which corresponds to 56% of the total CO2 emissions from waste incineration. The total energy input via waste feed to the 10 facilities is about 22,500 TJ/yr, of which around 48% can be assigned to biogenic and thus renewable sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2012-04-01

    A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  17. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.

    PubMed

    Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T

    2014-04-15

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  19. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    PubMed

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  20. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from Municipal Solid Waste (MSW) by dedicated Waste-To-Energy (WTE) plants. In strategy 1, the residue of Material Recovery (MR) is fed directly to a grate combustor, while in strategy 2 the grate combustor comes downstream of light mechanical treatment. In strategies 3 and 4, the MR residue is converted into Refuse Derived Fuel (RDF), in a fluidized cumbuster bed. The results of Part A, devoted to mass and energy balances, clearly show that pre-treating the MR residue in order to increase the heating value of the feedstock fed to the WTE plant has marginal effects on the energy efficiency of the WTE plant. When considering the efficiency of the whole strategy of waste management, the energy balances show that the more thorough the pre-treatment, the smaller the amount of energy recovered per unit of MR residue. Starting from the heat/mass balances illustrated in Part A, Part B examines the environmental impacts and economics of the various strategies by means of a Life Cycle Assessment (LCA). Results show that treating the MR residues ahead of the WTE plant does not provide environmental or economic benefits. RDF production worsens almost all impact indicators because it reduces net electricity production and thus the displacement of power plant emissions; it also increases costs, because the benefits of improving the quality of the material fed to the WTE plant do not compensate the cost of such improvement.

  1. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  3. Wet Waste-to-Energy Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, Anelia R; Heimiller, Donna M; Seiple, Timothy

    Waste-to-energy (WTE) technologies present an opportunity to recycle organic waste material into renewable energy while offsetting disposal and environmental costs. A key challenge to ensuring economic and environmental viability of WTE is understanding the variability of individual WTE resource characteristics, including their location, amount, and quality. The main objective of this study is to estimate the wet WTE resource potential in the United States and illustrate its geographic distribution. The wet resources considered in this study are wastewater sludge, animal manure, food waste, and FOG (fats, oils, and greases). This study is the first to achieve results below national level,more » at the finest geographic resolution. Our analysis indicates that about 566 teragrams (Tg) of wet WTE resources are generated annually in the United States. This amount corresponds to about 1 exajoule (EJ), which is sufficient to displace about 18% of the 2015 U.S. on-highway diesel consumption on an energy basis. About half of this potential is generated by animal manure.« less

  4. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without

  5. A review on technological options of waste to energy for effective management of municipal solid waste.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Waste to energy – key element for sustainable waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together withmore » prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.« less

  7. Environmental impact assessment of a WtE plant after structural upgrade measures.

    PubMed

    Passarini, Fabrizio; Nicoletti, Monica; Ciacci, Luca; Vassura, Ivano; Morselli, Luciano

    2014-04-01

    The study focuses on analysing the evolution of environmental impacts caused by a medium-large Italian WtE plant before and after revamping and maintenance operations, with the aim of providing an evaluation of how much these structural upgrade measures may affect the total environmental performance. LCA methodology was applied for the modelling and comparison of six WtE scenarios, each describing the main structural upgrades carried out in the plant over the years 1996-2011. The comparison was conducted by adopting 1ton of MSW as the functional unit, and the net contribution from energy recovery to power generation was distinguished by defining consistent national grid electricity mixes for every year considered. The Ecoindicator99 2.09 impact assessment method was used to evaluate the contribution to midpoint and endpoint categories (e.g. carcinogens, respiratory inorganics and organics, climate change, damage to human health). Lastly, the "Pedigree quality matrix" was applied to verify the reliability and robustness of the model created. As expected, the results showed better environmental scores after both the implementation of new procedures and the integration of operations. However, while a net reduction of air emissions seems to be achievable through dedicated flue gas treatment technologies, outcomes underscored potentials for improving the management of bottom ash through the adoption of alternative options aimed to use that solid residue mainly as filler, and to decrease risks from its current disposal in landfill. If the same effort that is put into flue gas treatment were devoted to energy recovery, the targets for the WtE plant could be easily met, achieving a higher sustainability. This aspect is even more complex: national policies for implementing greener and renewable energy sources would result in a lower impact of the national energy mix and, hence, in a lower net avoided burden from energy recovery. The study confirmed the expected improvements

  8. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada.

    PubMed

    Baxter, Jamie; Ho, Yvonne; Rollins, Yvonne; Maclaren, Virginia

    2016-04-01

    Despite progress in residential waste diversion, residual waste - that fraction which cannot be recycled or composted - must continue to be managed by municipalities. Zero waste and environmental groups worry that waste-to-energy (WtE) incinerators discourage diversion, while both incineration and landfill have been stigmatized in the popular consciousness such that WtE incinerators in particular are being cancelled more often than they are approved. We conducted a mail-back survey of 217 residents in Toronto, Durham and Peel, Ontario, to understand attitudes toward diversion, levels of support for WtE incineration and WtE landfill (landfill gas recovery) facilities, and predictors of facility support. Contrary to experiences elsewhere, diversion seems threatened by WtE when measured as attitudes with 18%, and 14% agreeing that they would be less inclined to divert recyclable/compostable materials if they knew materials went to a WtE landfill or incinerator. When forced to choose between four options landfill or incineration with and without energy recovery, WtE incineration is most preferred (65%) and landfill without WtE is the least preferred option (61%). However, measurement has a large influence on public opinion results in the sense that support for WtE incineration drops to 43% when asked as a "vote in favor" question and to only 36% when measured as a 4-item index of support. When the indexes of support for landfill and WtE incineration are modeled, the prominence of odor in the landfill model distinguishes it from the WtE incinerator model which is dominated more by community and concern about health effects. Implications for policy are discussed, particularly mandatory diversion targets to accompany WtE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A review on organic waste to energy systems in India.

    PubMed

    Dhar, Hiya; Kumar, Sunil; Kumar, Rakesh

    2017-12-01

    Waste generation is increasing day-by-day with the growth of population which directly affects the environment and economy. Organic municipal solid waste (MSW) and agriculture sectors contribute towards maximum waste generation in India. Thus, management of organic waste is very much essential with the increasing demand for energy. The present paper mainly focusses on reviewing waste to energy (WtE) potentials, its technologies, and the associated challenges. Different substrates are utilized through various technological options in India. Organic waste has good potential to attain sustainable energy yields with and without affecting the environment. A realistic scenario of WtE technologies and their challenges in line with the existing Indian condition is presented in this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.; Gelman, R.; Tomberlin, G.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandummore » of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.« less

  11. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    PubMed

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  12. FUEL FLEXIBLE LOW EMISSIONS BURNER FOR WASTE-TO-ENERGY SYSTEMS - PHASE I

    EPA Science Inventory

    Waste-to-energy (WTE) technologies are being developed that combine waste management and energy generation. These wastes include a wide range of bio-based fuel stocks (biomass from wood and/or grasslands) or organic waste streams (manure and farm waste, municipal solid wa...

  13. Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaggs, Richard L.; Coleman, Andre M.; Seiple, Timothy E.

    Here, waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processingmore » waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes' potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less

  14. Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States

    DOE PAGES

    Skaggs, Richard L.; Coleman, Andre M.; Seiple, Timothy E.; ...

    2017-10-18

    Here, waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processingmore » waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes' potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less

  15. Health risk assessment: WTE (waste-to-energy) vs. peanut butter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, R.A.

    1988-10-01

    The degree to which society will come to accept potential health risks associated with municipal waste-to-energy plants depends on three factors: the reliability with which exposure and adverse health effects associated with facility emissions can be described, quantified, and gradually reduced; the relative magnitude of the risks compared with those of other waste management options, especially landfilling and recycling; and the relative magnitude of the risks compared with those of more familiar activities, such as driving, flying, smoking, and eating peanut butter sandwiches. Progress in risk assessment has already improved quantification of human exposure to emissions through the food chain,more » as well as through other pathways within the general categories of inhalation, ingestion, and dermal contact. Where does this progress leave municipal refuse incineration relative to other risks This article explores that issue.« less

  16. Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaggs, Richard L.; Coleman, André M.; Seiple, Timothy E.

    Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste;more » and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes’ potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less

  17. Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States

    DOE PAGES

    Skaggs, Richard L.; Coleman, André M.; Seiple, Timothy E.; ...

    2017-10-18

    Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste;more » and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes’ potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less

  18. Technology and place: A geography of waste-to-energy in the United States

    NASA Astrophysics Data System (ADS)

    Howell, Jordan Patterson

    The adoption of technologies differs across space, for reasons attributed to economics, politics, and culture, but also due to limitations imposed by both the physical environment and the technology itself. This dissertation considers the case of waste-to-energy (WTE) incinerators in the United States, and asks why this technology is used in some places but rejected in others. The answer to this simple question is remarkably complex, as understandings and arguments about technology and the environment are mobilized differently by various actors to champion, oppose, or in some cases remain ambivalent about the installation and operation of WTE facilities. In this dissertation I explore the geography of WTE incineration in the United States since the 19th century. Informed by the insights of actor-network theory and the social construction of technology school, I employ the tools of discourse analysis to examine published and unpublished statements, papers, project studies, policy briefs, and archival materials generated alongside the development of WTE facilities in the United States, considering the specific case studies discussed below but also WTE technology in general. I look at federal, state, and local environmental agency documents as well as the papers of consulting firms, environmental and industry advocacy groups, and private companies. I also devote significant attention to the analysis of news media outlets in communities where WTE facilities are located or have been considered. In addition to these literal texts, I examine non-written and visual materials associated with WTE facilities, including films, websites, signage and logos, advertising campaigns, facility architecture, and artwork, as well as more abstract `texts' such as industry conferences, trade-show handouts, promotional materials, and academic and industry research programs. I build on this textual analysis with observations of WTE facilities in action. After an introductory chapter, I

  19. Air pollution control systems in WtE units: an overview.

    PubMed

    Vehlow, J

    2015-03-01

    All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  1. Waste-to-energy: What are the issues?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, J.A.

    1995-09-01

    It is very difficult to have been associated with the Waste-to-Energy ({open_quotes}WTE{close_quotes}) Industry during the past twelve months without feeling a profound sense of being under attack and more than a little shell shocked. That is not to say that scrutiny and regulation haven`t been an important factor for WTE from its inception, only that it seems that certain difficult issues have been thrust to the fore through the recent actions of the courts and regulatory agencies. While ash management and flow control hit center stage with a flourish in a one-two punch last Spring with the Supreme Court inmore » the City of Chicago and Carbone decisions, significant compliance issues still remain with respect to implementing the Clean Air Act Amendments of 1990 ({open_quotes}CAAA{close_quotes}). In my state, the long term plans for waste management have WTE facilities responsible for turning 50% of the total waste stream into electricity, with other recycling accounting for all but 4% of the rest. With similar reliance upon WTE facilities elsewhere, it is critical that cost effective ways of managing these issues be found. Beyond these primarily regulatory and legal issues, there are also numerous challenges in the marketplace with increased reliance on recycling and the normal ebb and flow of the business cycle. Finally, there are always issues, including those already mentioned, which are best addressed in the political arena. Working together as an industry and regulated community will be essential if we are to make progress in addressing many of our challenges.« less

  2. Waste-to-energy sector and the mitigation of greenhouse gas emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotis, S.C.; Sussman, D.

    The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in themore » United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.« less

  3. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    PubMed

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Air pollution control systems in WtE units: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removalmore » of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.« less

  5. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    PubMed

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  7. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE PAGES

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    2017-08-05

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  8. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    NASA Astrophysics Data System (ADS)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  9. A practical method to calculate the R1 index of waste-to-energy facilities.

    PubMed

    Viganò, Federico

    2018-03-01

    According to Directive 98/2008/EC, the operation carried out by an incinerator of Municipal Solid Waste (MSW) is classified either as energy recovery (R1) or as disposal (D10) depending on the result achieved by the application of the R1 formula. In 2011 the DG Environment of the European Commission (EC) issued some non-binding guidelines on the interpretation of such a formula that clarified many aspects related to its application. A point not fully clarified by the EC guidelines is the determination of the energy contained in the treated waste (E W ). For this term of the formula, reference is made to the indirect method for the calculation of boiler thermal efficiency, as defined by the norm EN 12952-15. However, the application of such a norm to an entire year of operation of a Waste-to-Energy (WtE) boiler is not immediate. Therefore, a practical method for the calculation of the E W term has been developed in the framework of a collaboration between the MatER Study Centre and the Lombardy Region (Italy). The method is based on: (i) the identification of the most reliable data available from the Distributed Control System (DCS) of the plant; (ii) the definition of a control volume around the boiler(s) also based on the availability of data; (iii) the closure of the mass balance for such a control volume; (iv) the energy balance of the same control volume that gives, thus, the E W term of the R1 formula. The method has been applied in 2015-2016 to nine plants, generating a number of interesting data reported and discussed in this work, such as R1 index values, Lower Heating Values (LHV) of the treated wastes, main sources of energy losses in WtE boilers, etc. For one case study, discussed in detail in this work, the law of propagation of uncertainties has been applied according to the ISO/IEC Guide 98-3, leading to the assessment of the accuracy of the method, which resulted in ±2.4% with a confidence level of circa 95%. Copyright © 2017 Elsevier Ltd. All

  10. Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL

    Science.gov Websites

    dots. Waste Feedstocks We inventory WTE feedstocks-waste fat, oil, and greases; municipal solid wastes " and points right to an icon of an Excel spreadsheet labeled "Equipment and Raw Material

  11. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    PubMed

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  12. Cost Benefit Analysis of a Utility Scale Waste-to-Energy/Concentrating Solar Power Hybrid Facility at Fort Bliss

    DTIC Science & Technology

    2012-06-01

    installations for Energy, Waste, and Water. This means Fort Bliss will strive to become Net Zero Energy, Net Zero Waste , and Net Zero Water in the coming...years. Net Zero Energy requires Fort Bliss to produce as much energy on-installation as it consumes annually. Net Zero Waste aims to reduce, reuse...become Net Zero Energy and Net Zero Waste by 2020. A WtE facility actually goes well beyond Fort Bliss’ Net Zero Energy mission. That mission

  13. High efficient waste-to-energy in Amsterdam: getting ready for the next steps.

    PubMed

    Murer, Martin J; Spliethoff, Hartmut; de Waal, Chantal M W; Wilpshaar, Saskia; Berkhout, Bart; van Berlo, Marcel A J; Gohlke, Oliver; Martin, Johannes J E

    2011-10-01

    Waste-to-energy (WtE) plants are traditionally designed for clean and economical disposal of waste. Design for output on the other hand was the guideline when projecting the HRC (HoogRendement Centrale) block of Afval Energie Bedrijf Amsterdam. Since commissioning of the plant in 2007, operation has continuously improved. In December 2010, the block's running average subsidy efficiency for one year exceeded 30% for the first time. The plant can increase its efficiency even further by raising the steam temperature to 480°C. In addition, the plant throughput can be increased by 10% to reduce the total cost of ownership. In order to take these steps, good preparation is required in areas such as change in heat transfer in the boiler and the resulting higher temperature upstream of the super heaters. A solution was found in the form of combining measured data with a computational fluid dynamics (CFD) model. Suction and acoustic pyrometers are used to obtain a clear picture of the temperature distribution in the first boiler pass. With the help of the CFD model, the change in heat transfer and vertical temperature distribution was predicted. For the increased load, the temperature is increased by 100°C; this implies a higher heat transfer in the first and second boiler passes. Even though the new block was designed beyond state-of-the art in waste-to-energy technology, margins remain for pushing energy efficiency and economy even further.

  14. Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach.

    PubMed

    Chen, Ying-Chu

    2016-12-01

    Energy recovery and greenhouse gas (GHG) emissions from wastes are getting noticed in recent years. This study evaluated the potential for energy recovery and GHG mitigation from municipal solid waste (MSW) with a waste-to-material (WTM) approach. Waste generated in Taiwan contains a large amount of paper, food waste, and plastics, which previously were mostly sent to waste-to-energy (WTE) plants for incineration. However, the mitigation of GHGs by the WTM approach has been especially successful in the recycling of metals (averaging 1.83×10 6 kgCO 2 -eq/year) and paper (averaging 7.38×10 5 kgCO 2 -eq/year). In addition, the recycling of paper (1.33×10 10 kWh) and plastics (1.26×10 10 kWh) has contributed greatly to energy saving. Both metal and glass are not suitable for incineration due to their low energy content. The volumes of paper and food waste contained in the MSW are positively related to the carbon concentration, which may contribute to increased GHGs during incineration. Therefore, the recycling of paper, metals, and food waste is beneficial for GHG mitigation. Measures to reduce GHGs were also suggested in this study. The development of the WTM approach may be helpful for the proper management of MSW with regards to GHG mitigation. The results of this study can be a successful example for other nations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    PubMed

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.

    PubMed

    Townsend, Aaron K; Webber, Michael E

    2012-07-01

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    PubMed

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Theory and practice of corrosion related to ashes and deposits in a WtE boiler.

    PubMed

    Verbinnen, Bram; De Greef, Johan; Van Caneghem, Jo

    2018-03-01

    Corrosion of heat-exchanging components is one of the main operational problems in Waste-to-Energy plants, limiting the electrical efficiency that can be reached. Corrosion is mainly related to the devolatilization and/or formation of chlorides, sulphates and mixtures thereof on the heat-exchanging surfaces. Theoretical considerations on this corrosion were already put forward in literature, but this paper now for the first time combines theory with a large scale sampling campaign of several Waste-to-Energy plants. Based on the outcome of elemental and mineralogical analysis, the distribution of Cl and S in ashes sampled throughout the plant during normal operation is explained. Cl concentrations are high (15-20%) in the first empty pass, decrease in the second and third empty pass, but increase again in the convective part, whereas the S concentrations show an inverse behavior, with the highest concentrations (30%) observed in the second and third empty pass. Sampling of deposits on specific places where corrosion possibly occurred, gives a better insight in the mechanisms related to corrosion phenomena in real-scale WtE plants and provides practical evidence for some phenomena that were only assumed on the basis of theory or lab scale experiments before. More specific, it confirms the role of oxygen content, temperatures in the different stages of the boiler, the presence of polysulphates, Pb and Zb, and the concentrations of HCl and SO 2 in the flue gas for different types of boiler corrosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Waste-to-Energy Plant Environmental Assessment, Dyess Air Force Base, Texas

    DTIC Science & Technology

    2011-09-01

    pyrolysis can be defined as “ gasification minus oxygen.” Pyrolysis is the technique of heating organic matter ( biomass ) between 480 and 1,470 °F in the...provider using one of four alternative technologies: 1) gasification ; 2) pyrolysis; 3) plasma gasification /pyrolysis and 4) incineration. Under this...the solicitation to build a WTE plant based on one of the following alternative technologies: I) gasification ; 2) pyrolysis; 3) plasma gasification

  20. A SCREENING LEVEL RISK ASSESSMENT OF THE INDIRECT IMPACTS FROM THE COLUMBUS WASTE TO ENERGY FACILITY IN COLUMBUS, OHIO

    EPA Science Inventory

    Testing for emissions of dioxins from the stack of the Columbus, Ohio Waste to Energy (WTE) municipal solid waste combustion facility in 1992 implied that dioxin concentrations in stack gas averaged 328 ng TEQ/m3. The incinerator had been in operation since the early 1980s. In ...

  1. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  2. Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells

    DTIC Science & Technology

    2011-10-01

    for both at current costs, when federal and state incentives are available • The integration of stationary fuel cells with biomass gasification is a... gasification plant utilizing biomass feedstock. 25 FuelCell Energy Market Research, January 2011...cell WTE opportunities near U.S. Department of Energy (DOE)-supported coal gasification sites. • Identify biomass -rich DOD installations

  3. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, Stefano; LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza; Vigano, Federico, E-mail: federico.vigano@polimi.it

    Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papersmore » reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the

  5. Quantification of main and trace metal components in the fly ash of waste-to-energy plants located in Germany and Switzerland: An overview and comparison of concentration fluctuations within and between several plants with particular focus on valuable metals.

    PubMed

    Haberl, Jasmin; Koralewska, Ralf; Schlumberger, Stefan; Schuster, Michael

    2018-05-01

    The elemental composition of fly ash from six waste-to-energy (WTE) plants in Germany and two WTE plants in Switzerland were analyzed. Samples were taken daily over a period of one month and mixed to a composite sample for each German plant. From two Swiss plants, two and three of these composite samples, respectively, were collected for different months in order to assess temporal differences between these months. In total, 61 elements, including rare earth elements, were analyzed using ICP-OES and ICP-MS. The analysis method was validated for 44 elements either by reference materials (BCR 176R and NIST 1633c) or analysis with both methods. Good recoveries, mostly ±10%, and high agreements between both methods were achieved. As long as no additives from flue gas cleaning were mixed with the fly ash, quite similar element contents were observed between all of the different incinerators. For most elements, the variations between the different months within the two Swiss plants were lower than differences between various plants. Especially main components show low variations between different months. To get a more detailed insight into temporal fluctuations within the mentioned Swiss plants, the concentrations of Zn, Pb, Cu, Cd, Sb, and Sn are presented over a period of three years (Jan. 2015 - Oct. 2017). The concentration profiles are based on weekly composite samples (consisting of daily taken samples) analyzed by the routine control of these plants using ED-XRF. The standard deviations of the average concentrations were around 20% over the three years for the regarded elements. The fluctuations were comparable at both plants. Due to the relatively low temporal concentration fluctuations observed within the plants, fly ash would be a continuous and constant source of secondary raw materials. Beside Zn, Pb, Cu, and Cd, which were already recovered on an industrial scale, Sb, Sn, and Bi also show a high potential as secondary raw material due to the high

  6. Converting campus waste into renewable energy - a case study for the University of Cincinnati.

    PubMed

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C

    2015-05-01

    This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enablers towards establishing and growing South Africa's waste to electricity industry.

    PubMed

    Amsterdam, Heinrich; Thopil, George Alex

    2017-10-01

    In South Africa the electricity generation mix is relatively un-diverse whereas globally the transformation of the sector is advancing rapidly. Coal remains the predominant fuel source and limited success has to date been achieved in the renewable energy sector. The electricity generation sector is therefore hindered from moving towards an electricity generation landscape where alternative fuel sources is utilised. This research is aimed at gaining insight into the enablers that led towards an increasing trend (observed globally) in exploiting waste as a fuel for electricity generation, and to outline the presence of obstacles that hinder separation of waste for electricity use in the South African context. Furthermore it is an attempt at informing what appropriate interventions (operational and policy) may be considered suitable for South Africa to overcome these barriers in order to enable a sustainable South African waste to electricity (WTE) Industry. Findings show that numerous barriers to a WTE exists in the South African context, however overcoming these barriers is not as simple as adopting the European model with the aim to modify the electricity generation mix and waste management landscape. Selected enablers deemed appropriate in the South African context are adapted from the European model, and are greatly influenced by the prevailing socio-economic status of South Africa. Primary enablers identified were, (i) government support is needed especially in the form of subsidisation for green energy, (ii) increase landfill costs through the implementation of a landfill tax, (iii) streamline the process for Independent Private Power Producers (IPPPs) to connect to the national grid with off-take guaranteed and the inclusion of WTE into an electricity roadmap (effectively government's strategy). The proposed enabling interventions would help in overcoming the barriers for a South African WTE industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Finding urban waste management solutions and policies: Waste-to-energy development and livelihood support system in Payatas, Metro Manila, Philippines.

    PubMed

    Serrona, Kevin Roy; Yu, Jeong-Soo

    2009-01-01

    One of the potential solutions in social and environmental sustainability in municipal solid waste management (MSW) in Metro Manila is to combine community-based recycling and sound landfill management strategies. The marriage of the two puts importance on recycling as a source of livelihood while proper landfill management aims to improve the aesthetic and environmental quality of disposal facilities in urban areas. To do this, a social mapping of wastepickers, junkshops and local recycling practices needs to be undertaken and at the same time assess strategies of the national and local governments vis-à-vis existing laws on municipal solid waste. The case of Payatas controlled disposal facility was taken as a pilot study because it represents the general condition of disposal sites in Metro Manila and the social landscape that it currently has. In addition, a waste-to-energy (WTE) project has been established in Payatas to produce electricity from methane gas. Preliminary interviews with wastepickers show that development interventions in disposal sites such as WTE pose no opposition from host communities for as long as alternative livelihood opportunities are provided. Regulating the flow of wastepickers into the landfill has advantages like improved income and security. Felt needs were also articulated like provision of financial support or capital for junkshop operation and skills training. Overall, a smooth relationship between the local government and community associations pays well in a transitioning landfill management scheme such as Payatas.

  9. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.

    PubMed

    Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S

    2015-12-01

    This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The implementation of anaerobic digestion of food waste in a highly populated urban area: an LCA evaluation.

    PubMed

    Grosso, Mario; Nava, Chiara; Testori, Roberta; Rigamonti, Lucia; Viganò, Federico

    2012-09-01

    While source separation of waste packaging materials for recycling is well established in several metropolitan areas, the collection of food waste from the households is less widespread because of its more difficult implementation. Source segregation of food waste in densely populated areas is raising new interest, as the availability of biogas following its anaerobic digestion (AD) paves the road to a number of possibilities, from electric energy production to its upgrading to biomethane and subsequent feeding in to the natural gas network or in vehicles as a fuel. The study addresses this waste management option by analysing a real metropolitan situation where food waste currently ends up mixed with the residual waste in a waste-to-energy plant (WTE). We assume to establish a new collection scheme for household food waste, followed by its treatment in a new AD and post-composting facility. A comparative life cycle assessment was carried out, where possible synergies between the existing WTE plant and the new one were evaluated. All new scenarios based on AD attained similar or better results compared with the reference scenario for almost all of the impact indicators. The most robust indication is related to global warming potential, with a potential improvement of up to 37%. Finally, a sensitivity analysis was carried out to assess the effect of the variation of the most relevant parameters. Results have proven to be very sensible to the hypothesis on the type of substituted electric energy. All the other examined sensitivities resulted in variations well below 10%.

  11. Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes

    NASA Astrophysics Data System (ADS)

    Naylor, Carl H.; Parkin, William M.; Gao, Zhaoli; Kang, Hojin; Noyan, Mehmet; Wexler, Robert B.; Tan, Liang Z.; Kim, Youngkuk; Kehayias, Christopher E.; Streller, Frank; Zhou, Yu Ren; Carpick, Robert; Luo, Zhengtang; Park, Yung Woo; Rappe, Andrew M.; Drndić, Marija; Kikkawa, James M.; Johnson, A. T. Charlie

    2017-06-01

    Large-area growth of monolayer films of the transition metal dichalcogenides is of the utmost importance in this rapidly advancing research area. The mechanical exfoliation method offers high quality monolayer material but it is a problematic approach when applied to materials that are not air stable. One important example is 1T’-WTe2, which in multilayer form is reported to possess a large non saturating magnetoresistance, pressure induced superconductivity, and a weak antilocalization effect, but electrical data for the monolayer is yet to be reported due to its rapid degradation in air. Here we report a reliable and reproducible large-area growth process for obtaining many monolayer 1T’-WTe2 flakes. We confirmed the composition and structure of monolayer 1T’-WTe2 flakes using x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, Raman spectroscopy and aberration corrected transmission electron microscopy. We studied the time dependent degradation of monolayer 1T’-WTe2 under ambient conditions, and we used first-principles calculations to identify reaction with oxygen as the degradation mechanism. Finally we investigated the electrical properties of monolayer 1T’-WTe2 and found metallic conduction at low temperature along with a weak antilocalization effect that is evidence for strong spin-orbit coupling.

  12. Waste-to-methanol: Process and economics assessment.

    PubMed

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    PubMed

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.

  14. Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the United States.

    PubMed

    Hodge, Keith L; Levis, James W; DeCarolis, Joseph F; Barlaz, Morton A

    2016-08-16

    New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes.

  15. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  16. Federal Sector Renewable Energy Project Implementation: ’What’s Working and Why’

    DTIC Science & Technology

    2011-01-13

    River Site biomass CHP (240,000 pph, 20 MW) 9 Oak Ridge National Laboratory biomass gasification • Hill AFB Landfill Gas to Energy Electrical...Photovoltaics (PV) � Concentrating Solar Power (CSP) (with storage) � Wind � Biomass power (waste-to-energy (WTE), wood feed stock combustion, etc...Projects examples ( biomass combustion) 9 NREL Renewable Fuel Heating Plant (6-8mmBtu/hr hot water boiler-displaces natural gas use) 9 Savannah

  17. Material and energy recovery in integrated waste management systems: project overview and main results.

    PubMed

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Ragazzi, Marco; Saccani, Cesare

    2011-01-01

    This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Introduction of the trapezoidal thermodynamic technique method for measuring and mapping the efficiency of waste-to-energy plants: A potential replacement to the R1 formula.

    PubMed

    Vakalis, Stergios; Moustakas, Konstantinos; Loizidou, Maria

    2018-06-01

    Waste-to-energy plants have the peculiarity of being considered both as energy production and as waste destruction facilities and this distinction is important for legislative reasons. The efficiency of waste-to-energy plants must be objective and consistent, independently if the focus is the production of energy, the destruction of waste or the recovery/upgrade of materials. With the introduction of polygeneration technologies, like gasification, the production of energy and the recovery/upgrade of materials, are interconnected. The existing methodology for assessing the efficiency of waste-to-energy plants is the R1 formula, which does not take into consideration the full spectrum of the operations that take place in waste-to-energy plants. This study introduces a novel methodology for assessing the efficiency of waste-to-energy plants and is defined as the 3T method, which stands for 'trapezoidal thermodynamic technique'. The 3T method is an integrated approach for assessing the efficiency of waste-to-energy plants, which takes into consideration not only the production of energy but also the quality of the products. The value that is returned from the 3T method can be placed in a tertiary diagram and the global efficiency map of waste-to-energy plants can be produced. The application of the 3T method showed that the waste-to-energy plants with high combined heat and power efficiency and high recovery of materials are favoured and these outcomes are in accordance with the cascade principle and with the high cogeneration standards that are set by the EU Energy Efficiency Directive.

  19. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives.

    PubMed

    Van Caneghem, Jo; Verbinnen, Bram; Cornelis, Geert; de Wijs, Joost; Mulder, Rob; Billen, Pieter; Vandecasteele, Carlo

    2016-08-01

    The leaching of Sb from waste-to-energy (WtE) bottom ash (BA) often exceeds the Dutch limit value of 0.32mgkg(-1) for recycling of BA in open construction applications. From the immobilization mechanisms described in the literature, it could be concluded that both Ca and Fe play an important role in the immobilization of Sb in WtE BA. Therefore, Ca and Fe containing compounds were added to the samples of the sand fraction of WtE BA, which in contrast to the granulate fraction is not recyclable to date, and the effect on the Sb leaching was studied by means of batch leaching tests. Results showed that addition of 0.5 and 2.5% CaO, 5% CaCl2, 2.5% Fe2(SO4)3 and 1% FeCl3 decreased the Sb leaching from 0.62±0.02mgkgDM(-1) to 0.20±0.02, 0.083±0.044, 0.25±0.01, 0.27±0.002 and 0.29±0.02mgkgDM(-1), respectively. Due to the increase in pH from 11.41 to 12.53 when 2.5% CaO was added, Pb and Zn leaching increased and exceeded the respective leaching limits. Addition of 5% CaCO3 had almost no effect on the Sb leaching, as evidenced by the resulting 0.53mgkgDM(-1) leaching concentration. This paper shows a complementary enhancement of the effect of Ca and Fe, by comparing the aforementioned Sb leaching results with those of WtE BA with combined addition of 2.5% CaO or 5% CaCl2 with 2.5% Fe2(SO4)3 or 1% FeCl3. These lab scale results suggest that formation of romeites with a high Ca content and formation of iron antimonate (tripuhyite) with a very low solubility are the main immobilization mechanisms of Sb in WtE BA. Besides the pure compounds and their mixtures, also addition of 10% of two Ca and Fe containing residues of the steel industry, hereafter referred to as R1 and R2, was effective in decreasing the Sb leaching from WtE BA below the Dutch limit value for reuse in open construction applications. To evaluate the long term effect of the additives, pilot plots of WtE BA with 10% of R1 and 5% and 10% of R2 were built and samples were submitted to leaching tests at

  20. Evidence of Electron-Hole Imbalance in WTe2 from High-Resolution Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang

    2017-08-01

    WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.

  1. Economic analysis of waste-to-energy industry in China.

    PubMed

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Inducing Strong Superconductivity in WTe2 by a Proximity Effect.

    PubMed

    Huang, Ce; Narayan, Awadhesh; Zhang, Enze; Liu, Yanwen; Yan, Xiao; Wang, Jiaxiang; Zhang, Cheng; Wang, Weiyi; Zhou, Tong; Yi, Changjiang; Liu, Shanshan; Ling, Jiwei; Zhang, Huiqin; Liu, Ran; Sankar, Raman; Chou, Fangcheng; Wang, Yihua; Shi, Youguo; Law, Kam Tuen; Sanvito, Stefano; Zhou, Peng; Han, Zheng; Xiu, Faxian

    2018-06-21

    The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe 2 , in a van der Waals hybrid structure obtained by mechanically transferring NbSe 2 onto various thicknesses of WTe 2 . When the WTe 2 thickness ( t WTe 2 ) reaches 21 nm, the superconducting transition occurs around the critical temperature ( T c ) of NbSe 2 with a gap amplitude (Δ p ) of 0.38 meV and an unexpected ultralong proximity length ( l p ) up to 7 μm. With the thicker 42 nm WTe 2 layer, however, the proximity effect yields T c ≈ 1.2 K, Δ p = 0.07 meV, and a short l p of less than 1 μm. Our theoretical calculations, based on the Bogoliubov-de Gennes equations in the clean limit, predict that the induced superconducting gap is a sizable fraction of the NbSe 2 superconducting one when t WTe 2 is less than 30 nm and then decreases quickly as t WTe 2 increases. This agrees qualitatively well with the experiments. Such observations form a basis in the search for superconducting phases in topological semimetals.

  3. Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2.

    PubMed

    Asaba, Tomoya; Wang, Yongjie; Li, Gang; Xiang, Ziji; Tinsman, Colin; Chen, Lu; Zhou, Shangnan; Zhao, Songrui; Laleyan, David; Li, Yi; Mi, Zetian; Li, Lu

    2018-04-25

    In conventional superconductors an external magnetic field generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin film tungsten telluride (WTe 2 ). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe 2 thin films with a high precision rotation stage, we map the upper critical field H c2 at different temperatures T. We observe the superconducting transition temperature T c is enhanced by in-plane magnetic fields. The upper critical field H c2 is observed to establish an unconventional non-monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of H c2 in Ising superconductors.

  4. Drivers for innovation in waste-to-energy technology.

    PubMed

    Gohlke, Oliver; Martin, Johannes

    2007-06-01

    This paper summarizes developments made in the field of waste-to-energy technology between the 1980s and the present. In the USA, many waste-to-energy systems were developed in the 1980s and early 1990s. These plants generated power relatively efficiently (typically 23%) in 60 bar/ 443 degrees C boilers. Unfortunately, the development came to a stop when the US Supreme Court rejected the practice of waste flow control in 1994. Consequently, waste was directed to mega-landfills, associated with very negative environmental impacts. However, given landfill taxes and increased fuel prices, new waste-to-energy projects have recently been developed. Attractive premiums for renewable power production from municipal waste have been introduced in several European countries. This triggered important innovations in the field of improved energy recovery. Examples of modern waste-to-energy plants are Brescia and Amsterdam with net efficiencies of 24 and 30%, respectively. Incineration is traditionally preferred in Japan due to space constraints. New legislation promoted ash melting or gasification to obtain improved ash quality. However, these processes reduce the efficiency in terms of energy, cost and availability. A new oxygen-enriched waste-to-energy system is under development in order to better achieve the required inert ash quality.

  5. Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion

    DTIC Science & Technology

    2012-09-21

    including paper , wood, plastic, food and agricultural waste. The system uses a shredder, dryer , and pelletizing preprocessor to fuel an in-house...limited information available, this paper does not attempt to determine the best way to use plasma in a gasifier. Instead, this paper makes general...Gasification Plasma gasification for the purposes of this paper includes any WTE system using plasma as part of the generation of syngas and/or cleanup

  6. Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhan; Wu, Quansheng; Zhang, Lunyong; Cheong, Sang-Wook; Soluyanov, Alexey A.; Wu, Weida

    2017-10-01

    A topological Weyl semimetal (TWS) is a metal where low-energy excitations behave like Weyl fermions of high-energy physics. Recently, it was shown that, due to the lower symmetry of condensed-matter systems, they can realize two distinct types of Weyl fermions. The type-I Weyl fermion in a metal is formed by a linear crossing of two bands at a point in the crystalline momentum space—Brillouin zone. The second type of TWSs host type-II Weyl points appearing at the touching points of electron and hole pockets, which is a result of tilted linear dispersion. The type-II TWS was predicted to exist in several compounds, including WTe2. Several angle-resolved photoemission spectroscopy studies of WTe2 were reported so far, having contradictory conclusions on the topological nature of observed Fermi arcs. In this paper, we report the results of spectroscopic imaging with a scanning tunneling microscope and first-principles calculations, establishing clear quasiparticle interference features of the surface states of WTe2. Our paper provides strong evidence for surface-state scattering. Although the surface Fermi arcs clearly are observed, it is still difficult to prove the existence of predicted type-II Weyl points in the bulk.

  7. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    PubMed

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  8. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    PubMed Central

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria’s waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria’s waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita. PMID:27474393

  9. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    PubMed

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap -1 . In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap -1  a -1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  10. Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films

    NASA Astrophysics Data System (ADS)

    Gao, Wenbin; Huang, Lei; Xu, Jinlong; Chen, Yequan; Zhu, Chunhui; Nie, Zhonghui; Li, Yao; Wang, Xuefeng; Xie, Zhenda; Zhu, Shining; Xu, Jun; Wan, Xiangang; Zhang, Chao; Xu, Yongbing; Shi, Yi; Wang, Fengqiu

    2018-04-01

    WTe2 is a unique material in the family of transition metal dichalcogenides and it has been proposed as a candidate for type-II Weyl semimetals. However, thus far, studies on the optical properties of this emerging material have been significantly hindered by the lack of large-area, high-quality WTe2 materials. Here, we grow a centimeter-scale, highly crystalline WTe2 ultrathin film (˜35 nm) by a pulsed laser deposition technique. Broadband pump-probe spectroscopy (1.2-2.5 μm) reveals a peculiar ultrafast optical response where an initial photo-bleaching signal (lasting ˜3 ps) is followed by a long-lived photoinduced absorption signature. Nonlinear absorption characterization using femtosecond pulses confirms the saturable absorption response of the WTe2 ultrathin films, and we further demonstrated a mode-locked Thulium fiber laser using a WTe2 absorber. Our work provides important insights into linear and nonlinear optical responses of WTe2 thin films.

  11. Long-term sampling of CO(2) from waste-to-energy plants: (14)C determination methodology, data variation and uncertainty.

    PubMed

    Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg; Astrup, Thomas Fruergaard

    2014-02-01

    A dedicated sampling and measurement method was developed for long-term measurements of biogenic and fossil-derived CO(2) from thermal waste-to-energy processes. Based on long-term sampling of CO(2) and (14)C determination, plant-specific emission factors can be determined more accurately, and the annual emission of fossil CO(2) from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO(2) emitted were observed, not only over time, but also between plants. From the results of monthly samples at one plant, the annual mean fraction of biogenic CO(2) was found to be 69% of the total annual CO(2) emissions. From weekly samples, taken every 3 months at the five plants, significant seasonal variations in biogenic CO(2) emissions were observed (between 56% and 71% biogenic CO(2)). These variations confirmed that biomass fractions in the waste can vary considerably, not only from day to day but also from month to month. An uncertainty budget for the measurement method itself showed that the expanded uncertainty of the method was ± 4.0 pmC (95 % confidence interval) at 62 pmC. The long-term sampling method was found to be useful for waste incinerators for determination of annual fossil and biogenic CO(2) emissions with relatively low uncertainty.

  12. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  13. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE PAGES

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...

    2017-05-18

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  14. Comparing Waste-to-Energy technologies by applying energy system analysis.

    PubMed

    Münster, Marie; Lund, Henrik

    2010-07-01

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO(2) reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Examination of food waste co-digestion to manage the peak in energy demand at wastewater treatment plants.

    PubMed

    Lensch, D; Schaum, C; Cornel, P

    2016-01-01

    Many digesters in Germany are not operated at full capacity; this offers the opportunity for co-digestion. Within this research the potentials and limits of a flexible and adapted sludge treatment are examined with a focus on the digestion process with added food waste as co-substrate. In parallel, energy data from a municipal wastewater treatment plant (WWTP) are analysed and lab-scale semi-continuous and batch digestion tests are conducted. Within the digestion tests, the ratio of sewage sludge to co-substrate was varied. The final methane yields show the high potential of food waste: the higher the amount of food waste the higher the final yield. However, the conversion rates directly after charging demonstrate better results by charging 10% food waste instead of 20%. Finally, these results are merged with the energy data from the WWTP. As an illustration, the load required to cover base loads as well as peak loads for typical daily variations of the plant's energy demand are calculated. It was found that 735 m³ raw sludge and 73 m³ of a mixture of raw sludge and food waste is required to cover 100% of the base load and 95% of the peak load.

  16. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.

    PubMed

    Tabata, Tomohiro

    2013-11-01

    Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.

  17. Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection.

    PubMed

    Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik

    2015-07-01

    Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system

  18. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.

    PubMed

    Islam, K M Nazmul

    2017-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Waste-to-energy plants face costly emissions-control upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, R.W.

    1995-06-01

    One treatment method of municipal solid waste, incineration, has fallen in and out of public favor. In the 1970s, emerging consciousness of the threat to groundwater posed by leaking landfills made incineration an attractive option. Prompted by disrupted energy supplies and steeply rising prices, more than 100 municipalities began to generate electricity from the heat produced by burning trash. In the 1990s, the pendulum of public enthusiasm has swung away from incineration. Energy prices have declined dramatically, and safety and siting concerns complicate new projects. A recent Supreme Court decision ruled that municipal incinerator ash must be tested as hazardousmore » waste and disposed accordingly if levels of such pollutants as cadmium and lead exceed Resource Conservation and Recovery Act limits. So-called flow control regulations, which allowed municipalities to apportion garbage disposal to ensure steady supplies to incinerators, also have been struck down. EPA is tackling the issue of air emissions from waste-to-energy and non-energy-producing municipal waste combustors. Emissions guidelines for MWCs and new-source performance standards for new units, proposed Sept. 20 under Sec. 129 of the Clean Air Act Amendments of 1990, are the culmination of a stalled and litigated initiative dating back to the CAA Amendments of 1977.« less

  20. Quantum spin Hall state in monolayer 1T '-WTe 2

    DOE PAGES

    Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...

    2017-06-26

    A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less

  1. Quantum spin Hall state in monolayer 1T '-WTe 2

    DOE PAGES

    Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...

    2017-06-26

    A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less

  2. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Mou, Daixiang; Jo, Na Hyun

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less

  3. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2

    DOE PAGES

    Wu, Yun; Mou, Daixiang; Jo, Na Hyun; ...

    2016-09-14

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less

  4. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    PubMed

    Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.

  5. Options for management of municipal solid waste in New York City: A preliminary comparison of health risks and policy implications

    PubMed Central

    Moy, Pearl; Krishnan, Nikhil; Ulloa, Priscilla; Cohen, Steven; Brandt-Rauf, Paul W.

    2008-01-01

    Landfill disposal and waste-to-energy (WTE) incineration remain the two principal options for managing municipal solid waste (MSW). One critical determinant of the acceptability of these options is the different health risks associated with each. In this analysis relying on published data and exposure modeling, we have performed health risk assessments for landfill disposal versus WTE treatment options for the management of New York City’s MSW. These are based on the realistic scenario of using a waste transfer station (WTS) in Brooklyn and then transporting the untreated MSW by truck to a landfill in Pennsylvania or using a WTE facility in Brooklyn and then transporting the resultant ash by truck to a landfill in Pennsylvania. The overall results indicate that the individual cancer risks for both options would be considered generally acceptable, although the risk from landfilling is approximately 5 times greater than from WTE treatment; the individual non-cancer health risks for both options would be considered generally unacceptable, although once again the risk from landfilling is approximately 5 times greater than from WTE treatment. If one considers only the population in Brooklyn that would be directly affected by the siting of either a WTS or a WTE facility in their immediate neighborhood, individual cancer and non-cancer health risks for both options would be considered generally acceptable, but risks for the former remain considerably higher than for the latter. These results should be considered preliminary due to several limitations of this study such as: consideration of risks only from inhalation exposures; assumption that only volume and not composition of the waste stream is altered by WTE treatment; reliance on data from the literature rather than actual measurements of the sites considered, assuming comparability of the sites. However, the results of studies such as this, in conjunction with ecological, socioeconomic and equity considerations

  6. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    PubMed

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdahl, Sonja E

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  8. Pressure-induced Td to 1T' structural phase transition in WTe 2

    DOE PAGES

    Zhou, Yonghui; Chen, Xuliang; Li, Nana; ...

    2016-07-01

    WTe 2 is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe 2. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T' with space group of P21/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cellmore » volume by ~20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.« less

  9. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  10. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it; Racanella, Gaia; Marras, Roberto

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminarymore » stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests

  11. Inventory of U.S. 2012 dioxin emissions to atmosphere.

    PubMed

    Dwyer, Henri; Themelis, Nickolas J

    2015-12-01

    In 2006, the U.S. EPA published an inventory of dioxin emissions for the U.S. covering the period from 1987-2000. This paper is an updated inventory of all U.S. dioxin emissions to the atmosphere in the year 2012. The sources of emissions of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), collectively referred to in this paper as "dioxins", were separated into two classes: controlled industrial and open burning sources. Controlled source emissions decreased 95.5% from 14.0 kg TEQ in 1987 to 0.6 kg in 2012. Open burning source emissions increased from 2.3 kg TEQ in 1987 to 2.9 kg in 2012. The 2012 dioxin emissions from 53 U.S. waste-to-energy (WTE) power plants were compiled on the basis of detailed data obtained from the two major U.S. WTE companies, representing 84% of the total MSW combusted (27.4 million metric tons). The dioxin emissions of all U.S. WTE plants in 2012 were 3.4 g TEQ and represented 0.54% of the controlled industrial dioxin emissions, and 0.09% of all dioxin emissions from controlled and open burning sources. Copyright © 2015. Published by Elsevier Ltd.

  12. Factors governing particle number emissions in a waste-to-energy plant.

    PubMed

    Ozgen, Senem; Cernuschi, Stefano; Giugliano, Michele

    2015-05-01

    Particle number concentration and size distribution measurements were performed on the stack gas of a waste-to-energy plant which co-incinerates municipal solid waste, sewage sludge and clinical waste in two lines. Average total number of particles was found to be 4.0·10(5)cm(-3) and 1.9·10(5)cm(-3) for the line equipped with a wet flue gas cleaning process and a dry cleaning system, respectively. Ultrafine particles (dp<100nm) accounted for about 97% of total number concentration for both lines, whereas the nanoparticle (dp<50nm) contribution differed slightly between the lines (87% and 84%). The experimental data is explored statistically through some multivariate pattern identifying methods such as factor analysis and cluster analysis to help the interpretation of the results regarding the origin of the particles in the flue gas with the objective of determining the factors governing the particle number emissions. The higher moisture of the flue gas in the wet cleaning process was found to increase the particle number emissions on average by a factor of about 2 due to increased secondary formation of nanoparticles through nucleation of gaseous precursors such as sulfuric acid, ammonia and water. The influence of flue gas dilution and cooling monitored through the variation of the sampling conditions also confirms the potential effect of the secondary new particle formation in increasing the particle number emissions. This finding shows the importance of reporting the experimental conditions in detail to enable the comparison and interpretation of particle number emissions. Regarding the fuel characteristics no difference was observed in terms of particle number concentration and size distributions between the clinical waste feed and the municipal solid waste co-incineration with sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Energy efficiency in waste-to-energy and its relevance with regard to climate control.

    PubMed

    Ragossnig, Arne M; Wartha, Christian; Kirchner, Andreas

    2008-02-01

    This article focuses on systematically highlighting the ways to optimize waste-to-energy plants in terms of their energy efficiency as an indicator of the positive effect with regard to climate control. Potentials for increasing energy efficiency are identified and grouped into categories. The measures mentioned are illustrated by real-world examples. As an example, district cooling as a means for increasing energy efficiency in the district heating network of Vienna is described. Furthermore a scenario analysis shows the relevance of energy efficiency in waste management scenarios based on thermal treatment of waste with regard to climate control. The description is based on a model that comprises all relevant processes from the collection and transportation up to the thermal treatment of waste. The model has been applied for household-like commercial waste. The alternatives compared are a combined heat and power incinerator, which is being introduced in many places as an industrial utility boiler or in metropolitan areas where there is a demand for district heating and a classical municipal solid waste incinerator producing solely electrical power. For comparative purposes a direct landfilling scenario has been included in the scenario analysis. It is shown that the energy efficiency of thermal treatment facilities is crucial to the quantity of greenhouse gases emitted.

  14. Military Wastes-to-Energy Applications,

    DTIC Science & Technology

    1980-11-01

    and silvicultural resources of several tree species . Aquaculture uses kelp and other plant species . Energy-rich organic wastes and residue are from...dry tons/year would require about 20,000 to 50,000 acres depending on tree species , culitivation method, land conditions, and other factors...recommendations for specific sites. For example, tree species selection information are not adequate to determine whether a particular specie would be

  15. Military wastes-to-energy applications

    NASA Astrophysics Data System (ADS)

    Kawaoka, K. E.

    1980-11-01

    This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.

  16. A screening level risk assessment of the indirect impacts from the Columbus Waste to Energy facility in Columbus, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorber, M.; Cleverly, D.; Schaum, J.

    1996-12-31

    Testing for emissions of dioxins from the stack of the Columbus, Ohio Waste to Energy (WTE) municipal solid waste combustion facility in 1992 implied that dioxin emissions could approach 1,000 grams of dioxin toxic equivalents (TEQs) per year. The incinerator has been in operation since the early 1980s. Several varying activities to further evaluate or curtail emissions were conducted by local, state and federal agencies in 1994. Also in that year, US EPA`s Region 5 issued an emergency order under Section 7003 of RCRA requiring the facility to install maximum Achievable Control Technology (MACT). As part of their justification formore » this emergency order, Region 5 used a screening level risk assessment of potential indirect impacts. This paper describes this assessment. The exposure setting is a hypothetical dairy farm where individuals on the farm obtain their beef, milk, and vegetables from home sources. A 70-year exposure scenario is considered, which includes 45 years of facility operation at the pre- and post-MACT emission rates, followed by 25 years of impact due to residual soil concentrations. Soil dermal contact, inhalation, and breast milk exposures were also considered for this assessment. The source term, or dioxin loadings to this setting, were derived from air dispersion modeling of emissions from the Columbus WTE. A key finding of the assessment was that exposures to dioxin in beef and milk dominated the estimated risks, with excess cancer risk form these two pathways estimated at 2.8 {times} 10{sup {minus}4}. A second key finding was that over 90% of a lifetime of impact from these two pathways, and the inhalation and vegetable ingestion pathways, has already occurred due to pre-MACT emissions.« less

  17. The Louisiana State University waste-to-energy incinerator

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  18. The Louisiana State University waste-to-energy incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes aremore » produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.« less

  19. Density functional theory calculation of monolayer WTe2 transition metal dichalcogenides doped with H, Li and Be

    NASA Astrophysics Data System (ADS)

    Igumbor, E.; Mapasha, R. E.; Meyer, W. E.

    2018-04-01

    Results based on density functional theory modelling of electronic and structural properties of single layer WTe2 dichalcogenides doped with X (X=H, Li and Be) were presented. The generalized gradient approximation functional of Perdew, Burke, and Ernzerhof exchange correlation was used for all calculations. Formation energies of X dopant substituted for W (XW) were obtained to be between 3.59 and 2.61 eV. The LiW defect with energy of formation of 2.14 eV was energetically the most favourable. For all dopants considered, while the HW induced no magnetic moment, the LiW and BeW induced magnetic moments of 3.44 and 0.05 μB, respectively. The band gap of the WTe2 as a result of the dopants was populated with several orbital ground states, and thus reduced within a few eV. While all XW behave as p - type dopant, the LiW defect posses half metallic character.

  20. Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe2

    NASA Astrophysics Data System (ADS)

    Xiang, Fei-Xiang; Veldhorst, Menno; Dou, Shi-Xue; Wang, Xiao-Lin

    2015-11-01

    The recently discovered non-saturating and parabolic magnetoresistance and the pressure-induced superconductivity at low temperature in WTe2 imply its rich electronic structure and possible practical applications. Here we use magnetotransport measurements to investigate the electronic structure of WTe2 single crystals. A non-saturating and parabolic magnetoresistance is observed from low temperature to high temperature up to 200 K with magnetic fields up to 8 T. Shubnikov-de Haas (SdH) oscillations with beating patterns are observed, the fast Fourier transform of which reveals three oscillation frequencies, corresponding to three pairs of Fermi pockets with comparable effective masses, m* ∼ 0.31~me . By fitting the Hall resistivity, we infer that they can be attributed to one pair of electron pockets and two pairs of hole pockets, together with nearly perfect compensation of the electron-hole carrier concentration. These magnetotransport measurements reveal the complex electronic structure in WTe2, explaining the non-saturating magnetoresistance.

  1. The recovery of waste and off-gas in Large Combustion Plants subject to IPPC National Permit in Italy.

    PubMed

    Di Marco, Giuseppe; Manuzzi, Raffaella

    2018-03-01

    The recovery of off-gas, waste, and biomass in Large Combustion Plants for energy production gives the opportunity to recycle waste and by-products and to recover materials produced in agricultural and industrial activities. The paper illustrates the Italian situation regarding the production of energy from off-gas, biomass, and waste in Large Combustion Plants subject to Integrated Pollution Prevention and Control (IPPC) National Permit. Moreover, it focuses on the 4 Italian Large Combustion Plants producing energy from biomass and waste. For these ones it illustrates the specific issues related to and provides a description of the solutions adopted in the 4 Italian plants. Given that air emission performance is the most relevant aspect of this kind of plants, the paper specifically focuses and reports results about this subject. In particular, in Italy among 113 LCPs subject to IPPC National Permit we have found that 4 plants use as fuel waste (i.e. solid or liquid biomasses and Solid Recovered Fuels), or a mixture of waste and traditional fuels (co-combustion of Solid Recovered Fuels and coal), and that 11 plants use as fuel off-gases listed in Annex X (i.e. Refinery Fuel Gas, Syngas, and gases produced in iron and steel industries). Moreover, there are 2 IPPC chemical plants that recovery energy from different off-gases not listed in Annex X. Regarding the 4 LCPs that produce energy from waste combustion or co-combustion, we find that they take into account all the specific issues related to this kind of plants (i.e. detailed waste characterization, waste acceptance procedures, waste handling and storage, waste pretreatment and emissions to air), and adopt solutions that are best available techniques to prevent pollution. Moreover for one of these plants, the only one for which we have a significant set of monitoring data because it obtained the IPPC National Permit in 2008, we find that energy efficiency and air emissions of the principal pollutants are in

  2. CAPE-OPEN simulation of waste-to-energy technologies for urban cities

    NASA Astrophysics Data System (ADS)

    Andreadou, Christina; Martinopoulos, Georgios

    2018-01-01

    Uncontrolled waste disposal and unsustainable waste management not only damage the environment, but also affect human health. In most urban areas, municipal solid waste production is constantly increasing following the everlasting increase in energy consumption. Technologies aim to exploit wastes in order to recover energy, decrease the depletion rate of fossil fuels, and reduce waste disposal. In this paper, the annual amount of municipal solid waste disposed in the greater metropolitan area of Thessaloniki is taken into consideration, in order to size and model a combined heat and power facility for energy recovery. From the various waste-to-energy technologies available, a fluidised bed combustion boiler combined heat and power plant was selected and modelled through the use of COCO, a CAPE-OPEN simulation software, to estimate the amount of electrical and thermal energy that could be generated for different boiler pressures. Although average efficiency was similar in all cases, providing almost 15% of Thessaloniki's energy needs, a great variation in the electricity to thermal energy ratio was observed.

  3. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  4. GreenVMAS: Virtual Organization Based Platform for Heating Greenhouses Using Waste Energy from Power Plants.

    PubMed

    González-Briones, Alfonso; Chamoso, Pablo; Yoe, Hyun; Corchado, Juan M

    2018-03-14

    The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user's energy bill is greatly reduced with the implemented system.

  5. GreenVMAS: Virtual Organization Based Platform for Heating Greenhouses Using Waste Energy from Power Plants

    PubMed Central

    Yoe, Hyun

    2018-01-01

    The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user’s energy bill is greatly reduced with the implemented system. PMID:29538351

  6. RELATIONSHIPS BETWEEN DIOXINS IN SOIL, AIR, ASH, AND EMISSIONS FROM A MUNICIPAL SOLID WASTE INCINERATOR EMITTING LARGE AMOUNTS OF DIOXINS

    EPA Science Inventory

    The Columbus Municipal Waste-to-Energy (Columbus WTE) facility in Columbus, Ohio, began operation in June, 1983 and ceased operation in December, 1994. During its operation, it was estimated to have released nearly 1000 grams of dioxin Toxic Equivalents (TEQs) per year. This co...

  7. Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed

  8. Waste-to-Energy Cogeneration Project, Centennial Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utilitymore » bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.« less

  9. Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells.

    PubMed

    Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J

    2018-03-01

    With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.

  10. Circular economy and waste to energy

    NASA Astrophysics Data System (ADS)

    Rada, E. C.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L. I.

    2018-05-01

    Waste management in European Union has long being regulated by the 4Rs principle, i.e. reduction, reuse, recycling, recovery, with landfill disposal as the last option. This vision recently led the European Union (especially since 2015) to the introduction of virtuous goals based on the rejection of linear economy in favour of circular economy strongly founded on materials recovery. In this scenario, landfill disposal option will disappear, while energy recovery may appear controversial when not applied to biogas production from anaerobic digestion. The present work aims to analyse the effects that circular economy principles introduced in the European Union context will have on the thermochemical waste treatment plants design. Results demonstrate that indirect combustion (gasification + combustion) along with integrated vitrification of the non-combustible fraction of treated waste will have a more relevant role in the field of waste treatment than in the past, thanks to the compliance of this option with the principles of circular economy.

  11. Origins of the structural phase transitions in MoTe2 and WTe2

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Kang, Seoung-Hun; Hamada, Ikutaro; Son, Young-Woo

    2017-05-01

    Layered transition metal dichalcogenides MoTe2 and WTe2 share almost similar lattice constants as well as topological electronic properties except their structural phase transitions. While the former shows a first-order phase transition between monoclinic and orthorhombic structures, the latter does not. Using a recently proposed van der Waals density functional method, we investigate structural stability of the two materials and uncover that the disparate phase transitions originate from delicate differences between their interlayer bonding states near the Fermi energy. By exploiting the relation between the structural phase transitions and the low energy electronic properties, we show that a charge doping can control the transition substantially, thereby suggesting a way to stabilize or to eliminate their topological electronic energy bands.

  12. Controllable Synthesis of Atomically Thin Type-II Weyl Semimetal WTe2 Nanosheets: An Advanced Electrode Material for All-Solid-State Flexible Supercapacitors.

    PubMed

    Yu, Peng; Fu, Wei; Zeng, Qingsheng; Lin, Junhao; Yan, Cheng; Lai, Zhuangchai; Tang, Bijun; Suenaga, Kazu; Zhang, Hua; Liu, Zheng

    2017-09-01

    Compared with 2D S-based and Se-based transition metal dichalcogenides (TMDs), Te-based TMDs display much better electrical conductivities, which will be beneficial to enhance the capacitances in supercapacitors. However, to date, the reports about the applications of Te-based TMDs in supercapacitors are quite rare. Herein, the first supercapacitor example of the Te-based TMD is reported: the type-II Weyl semimetal 1Td WTe 2 . It is demonstrated that single crystals of 1Td WTe 2 can be exfoliated into the nanosheets with 2-7 layers by liquid-phase exfoliation, which are assembled into air-stable films and further all-solid-state flexible supercapacitors. The resulting supercapacitors deliver a mass capacitance of 221 F g -1 and a stack capacitance of 74 F cm -3 . Furthermore, they also show excellent volumetric energy and power densities of 0.01 Wh cm -3 and 83.6 W cm -3 , respectively, superior to the commercial 4V/500 µAh Li thin-film battery and the commercial 3V/300 µAh Al electrolytic capacitor, in association with outstanding mechanical flexibility and superior cycling stability (capacitance retention of ≈91% after 5500 cycles). These results indicate that the 1Td WTe 2 nanosheet is a promising flexible electrode material for high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Waste-to-Energy Decision Support Method for Forward Deployed Forces

    DTIC Science & Technology

    2014-03-27

    15 Gasification ...stable electrical source to generate the plasma. Thermal WTE technology includes three subtypes called incineration, gasification , and pyrolysis...unfavorable public perception associated with the emissions produced by the technology. Gasification Gasification is a thermal process in which

  14. Optimal utilization of waste-to-energy in an LCA perspective.

    PubMed

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less

  16. Green plants as solar energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    A survey covers the potential of energy production from biomass and solid wastes; various processes for the combustion of wastes, such as the co-combustion of solid waste and sewage sludge at the St. Paul/Seneca Treatment Plant Sludge Incinerator; various biological processes for the conversion of solid wastes to fuel such as the Institute of Gas Technology 400 l. digestor for the biogasification of municipal solid waste and sewage solids to a methane-rich product gas; the use of industrial wastes for fuel, such as slash and mill residues used as fuel in lumber mills; the biogasification of animal wastes by usingmore » small-scale on-site digesters to produce methane gas for cooking and lighting; energy farming methods, such as growing giant California kelp, sargassum, and plankton as suitable feedstock for the production of methane, fertilizers, and food; problems, such as the possible alteration of the reflectivity of large areas of the earth's surface by rapidly growing plants raised for biomass; and benefits such as the reduction in air, water, and land pollution associated with the use of wastes and biomass grown especially for energy.« less

  17. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  18. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  19. Anisotropic electrodynamics of type-II Weyl semimetal candidate WTe 2

    DOE PAGES

    Frenzel, A. J.; Homes, C. C.; Gibson, Q. D.; ...

    2017-06-30

    We investigated the ab-plane optical properties of single crystals of WTe 2 for light polarized parallel and perpendicular to the W-chain axis over a broad range of frequency and temperature. At far-infrared frequencies, we observed a striking dependence of the reflectance edge on light polarization, corresponding to anisotropy of the carrier effective masses. We quantitatively studied the temperature dependence of the plasma frequency, revealing a modest increase of the effective mass anisotropy in the ab plane upon cooling. We also found strongly anisotropic interband transitions persisting to high photon energies. These results were analyzed by comparison with ab initio calculations.more » The calculated and measured plasma frequencies agree to within 10% for both polarizations, while the calculated interband conductivity shows excellent agreement with experiment.« less

  20. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    PubMed

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Discussion of and reply to ``Waste-to-energy: The next step in the hierarchy after the 3-Rs``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niessen, W.R.; Hahn, J.L.; Jones, K.H.

    1995-11-01

    In their paper Jeffrey L. Hahn and Kay H. Jones addressed the issue of what the next step should be in the hierarchy after reduction, reuse and recycling (the 3-Rs) with regards to communities managing their solid wastes. The author believes Mr. Hahn and Ms. Jones should provide literature citations or their estimation methodology and assumptions. The author questions the apparent assertion by Mr. Hahn and Ms. Jones that the greenhouse gas emission of WTE are much less than that of landfills. The relative magnitude of the maximum year and average year non-methane organic carbon emission estimates for landfills ismore » questioned. This article also contains the original authors` reply to the comments and questions.« less

  2. Anomalous vibrational modes in few layer WTe 2 revealed by polarized Raman scattering and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Sheremetyeva, Natalya; Liang, Liangbo

    When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a two-dimensional geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe 2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe 2 as a vibrational mode centered at ~86.9 cm -1 in the monolayer splits into two active modes at 82.9 and 89.6 cm -1 in the bilayer. Davydov splitting ofmore » these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe 2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe 2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.« less

  3. Anomalous vibrational modes in few layer WTe 2 revealed by polarized Raman scattering and first-principles calculations

    DOE PAGES

    Cao, Yan; Sheremetyeva, Natalya; Liang, Liangbo; ...

    2017-08-02

    When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a two-dimensional geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe 2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe 2 as a vibrational mode centered at ~86.9 cm -1 in the monolayer splits into two active modes at 82.9 and 89.6 cm -1 in the bilayer. Davydov splitting ofmore » these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe 2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe 2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.« less

  4. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe 2

    DOE PAGES

    Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...

    2016-02-29

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe 2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe 2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spinmore » and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe 2 is not strictly two dimensional.« less

  5. Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe1.98 Crystals at the Quasiclassical Regime

    NASA Astrophysics Data System (ADS)

    Lv, Yang-Yang; Li, Xiao; Zhang, Bin-Bin; Deng, W. Y.; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Zhang, Lei; Tian, Mingliang; Sheng, L.; Chen, Yan-Feng

    2017-03-01

    The asymmetric electron dispersion in type-II Weyl semimetal theoretically hosts anisotropic transport properties. Here, we observe the significant anisotropic Adler-Bell-Jackiw (ABJ) anomaly in the Fermi-level delicately adjusted WTe1.98 crystals. Quantitatively, CW , a coefficient representing the intensity of the ABJ anomaly along the a and b axis of WTe1.98 are 0.030 and 0.051 T-2 at 2 K, respectively. We found that the temperature-sensitive ABJ anomaly is attributed to a topological phase transition from a type-II Weyl semimetal to a trivial semimetal, which is verified by a first-principles calculation using experimentally determined lattice parameters at different temperatures. Theoretical electrical transport study reveals that the observation of an anisotropic ABJ along both the a and b axes in WTe1.98 is attributed to electrical transport in the quasiclassical regime. Our work may suggest that electron-doped WTe2 is an ideal playground to explore the novel properties in type-II Weyl semimetals.

  6. Livestock waste-to-energy opportunities

    USDA-ARS?s Scientific Manuscript database

    The use of animal manure and other organic-based livestock wastes as feedstocks for waste-to-energy production has the potential to convert the livestock waste treatment from a liability into a profit center that can generate annual revenues and diversify farm income. This presentation introduces tw...

  7. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  8. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tunesi, Simonetta, E-mail: s.tunesi@ucl.ac.uk

    An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy willmore » result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The

  9. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow.

    PubMed

    Tunesi, Simonetta

    2011-03-01

    An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The

  10. Large-Scale Power Production Potential on U.S. Department of Energy Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, Alicen J.; Elgqvist, Emma M.; Gagne, Douglas A.

    This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.

  11. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.

    PubMed

    Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P

    2018-03-01

    The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.

  12. Waste water biological purification plants of dairy products industry and energy management

    NASA Astrophysics Data System (ADS)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  13. PLANNING AND ASSESSMENT MEASURES TO UPDATING RESOURCES RECYCLING EQUIPMENTS IN COLLABORATION WITH SEWAGE TREATMENT PLANTS AND WASTE INCINERATION PLANTS

    NASA Astrophysics Data System (ADS)

    Nakakubo, Toyohiko; Tokai, Akihiro; Ohno, Koichi

    This study aims to assess two biomass utilization policies: the integration of food waste treatment in a sewerage treatment plant with an anaerobic digestion tank, and the pruned branch usage as heat source for drying sludge. We focused on two points in our analysis that the impact of the increase of dewatered sludge on sludge treatment processes after digestion and the improvement of the efficiency of waste power generation plants. A developed model was applied to the case study in Kobe city and evaluated the impact until 2030 by four indicators: energy consumption, greenhouse gas (GHG) emission, phosphorus-recovery, and cost. The results showed that case 3-C, which introducing the combined sludge and food waste digestion system, pyrolysis gasification with gas engine and wood-chip boiler, could supply additional 452 TJ/y of energy, recovery 93 t-P/y of phosphorus, and reduce 38 kt-CO2eq./y of GHG while shrinking the cost by 88 million yen/y compared to business as usual types-update case.

  14. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  15. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  16. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  17. DOE's Notification of Planned Change to the EPA 40 CFR Part 194 Certification of the Waste Isolation Pilot Plant: Remote-Handled Transuranic Waste Characterization Plan

    EPA Pesticide Factsheets

    The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

  18. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  19. From Animal Waste to Energy; A Study of Methane Gas converted to Energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2016-12-01

    Does animal waste produce enough harvestable energy to power a household, and if so, what animal's waste can produce the most methane that is usable. What can we power using this methane and how can we power these appliances within an average household using the produced methane from animal waste. The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  20. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  1. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    NASA Astrophysics Data System (ADS)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  2. Naval facility energy conversion plants as resource recovery system components

    NASA Astrophysics Data System (ADS)

    Capps, A. G.

    1980-01-01

    This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.

  3. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  4. Medical waste to energy: experimental study.

    PubMed

    Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S

    2013-04-01

    Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.

  5. From Solid Waste to Energy.

    ERIC Educational Resources Information Center

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  6. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    PubMed

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Waste-to-Energy Laboratory. Grades 8-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an activity for grades 8-12 students that focuses on the reuse of waste as an energy source by burning and converting it into energy. For this experiment students construct a calorimeter from simple recyclable material. The calorimeter is used to measure the amount of energy stored in paper and yard waste that could be used…

  8. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processingmore » plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the

  9. Codigestion of manure and organic wastes in centralized biogas plants: status and future trends.

    PubMed

    Angelidaki, I; Ellegaard, L

    2003-01-01

    Centralized biogas plants in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste, and sewage sludge. Today 22 large-scale centralized biogas plants are in operation in Denmark, and in 2001 they treated approx 1.2 million tons of manure as well as approx 300,000 of organic industrial waste. Besides the centralized biogas plants there are a large number of smaller farm-scale plants. The long-term energy plan objective is a 10-fold increase of the 1998 level of biogas production by the year 2020. This will help to achieve a target of 12-14% of the national energy consumption being provided by renewable energy by the year 2005 and 33% by the year 2030. A major part of this increase is expected to come from new centralized biogas plants. The annual potential for biogas production from biomass resources available in Denmark is estimated to be approx 30 Peta Joule (PJ). Manure comprises about 80% of this potential. Special emphasis has been paid to establishing good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils.

  10. Energy efficiency of substance and energy recovery of selected waste fractions.

    PubMed

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Energy efficiency of substance and energy recovery of selected waste fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Klaus, E-mail: klaus.fricke@tu-bs.de; Bahr, Tobias, E-mail: t.bahr@tu-bs.de; Bidlingmaier, Werner, E-mail: werner.bidlingmaier@uni-weimar.de

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard tomore » the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.« less

  12. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  13. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    NASA Astrophysics Data System (ADS)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  14. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Alison; Barkley, Michelle; Poppiti, James

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  15. Compensation opportunities and waste-to-energy plants

    NASA Astrophysics Data System (ADS)

    Rada, E. C.; Castagna, G.; Adami, L.; Torretta, V.; Ragazzi, M.

    2018-05-01

    Compensations are part of the pathway of design of a thermochemical plant. The evolution of the technology of this sector, integrated with adequate mitigations, can allow reaching a level of environmental impact that can be negligible locally. In spite of that, the local acceptance of modern plants is still critical. The global impact on the environment is more complex to define because of the variability of input of the plants. In this context, the role of compensations is very important, opening also to interesting opportunities for the territory, as demonstrated by the analysis reported in this article.

  16. Waste to Energy at SUNY Cobleskill

    DTIC Science & Technology

    2011-05-10

    Overview on Army Net Zero Concepts • Gasification Intro. • SUNY Cobleskill Center for Environmental Science and Technology. • TURNW2E™ Gasification ...5 GASIFICATION A TECHNOLOGY 2-fer • Waste Reduction • Reduced Logistics for Waste Transportation • Reduced environmental and personnel impact... GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy

  17. The Waste Isolation Pilot Plant transuranic waste repository: A sleeping beauty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, L.G.

    On May 13, 1998, crowning a 24-year United States Department of Energy effort, the US Environmental Protection Agency certified that the deep geological repository for safe disposal of long-lived, transuranic radioactive waste proposed by the DOE at the Waste Isolation Pilot Plant site in New Mexico complied with all applicable environmental radiation protection standards and compliance criteria. Pursuant to the applicable law, the WIPP Land Withdrawal Act of 1992, as amended in 1997, at the decision of the secretary of energy, the WIPP repository could open 30 calendar days after receiving the EPA certification. The secretary of energy announced Maymore » 13, 1998, that he intended to open the WIPP TRUW repository by June 14, 1998. However, at the end of 1998, the opening of the WIPP TRUW repository remains hostage to time-consuming, hazardous-waste-permitting procedures by the state of New Mexico Environment Department and two legal actions. Based on the EPA-verified high safety and the demonstrated risk reduction to both current and future generations offered by the WIPP TRUW repository, it is concluded that the WIPP TRUW repository is a sleeping beauty that will awake, perhaps in stages, and begin its important mission in 1999.« less

  18. Anaerobic digestion of organic waste in Japan: the first demonstration plant at Kyoto City.

    PubMed

    Komatsu, T; Kimura, T; Kuriyama, Y; Isshiki, Y; Kawano, T; Hirao, T; Masuda, M; Yokoyama, K; Matsumoto, T; Takeda, M

    2002-01-01

    Recycling of Municipal Solid Waste is vigorously promoted in Japan and the necessity of energy recovery from organic waste is increasing. An anaerobic digestion demonstration plant for organic waste in Kyoto City, Japan has been operated for about two years. Three kinds of wastes (garbage and leftovers from hotels, yard waste and used paper) mixed at various ratios are used. The plant has maintained stable operations with each mixture, generating biogas by the decomposition of VS at the rate of about 820 m3N/ton-VS.

  19. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    PubMed

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of

  1. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  2. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  3. Separation and characterization of magnetic fractions from waste-to-energy bottom ash with an emphasis on the leachability of heavy metals.

    PubMed

    Wei, Yunmei; Mei, Xiaoxia; Shi, Dezhi; Liu, Guotao; Li, Li; Shimaoka, Takayuki

    2017-06-01

    Magnetic fractions were extracted from pulverized waste-to-energy (WTE) bottom ashes using a combined wet-dry extraction method. The resulting magnetic and non-magnetic fractions were subjected to compositional, mineralogical, and redox state analyses by X-ray diffraction (XRD), X-ray fluorescence, and X-ray photoelectron spectroscopy (XPS), respectively. The distribution and leaching toxicity of heavy metals were assessed to evaluate potential effects on the environment. Compositional analyses revealed that Fe accounted for 35% of the magnetic fraction of pulverized ashes, which was approximately seven times that of the raw ash. In addition to Fe, elemental Ni, Mn, and Cr were also significantly enriched in the magnetic fractions. The mineralogical analysis determined that Fe was primarily present as hematite and magnetite, and metallic iron was also identified in the magnetic fraction samples. The XPS analysis further proved the existence of zero-valence Fe. However, a significant amount of Fe remained in the non-magnetic fractions, which could partially be ascribed to the intergrowth structure of the various minerals. The elevated concentrations of toxicity characteristic leaching procedure (TCLP)-extracted Mn, Ni, Cr, Cu, Pb, and Zn were primarily ascribed to the lower buffering capability of the magnetic fractions, with the enrichment of Mn, Ni, and Cr in the magnetic fractions also contributing to this elevation.

  4. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. © The Author(s) 2016.

  5. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  6. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    PubMed

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  7. Energy recovery from waste incineration: assessing the importance of district heating networks.

    PubMed

    Fruergaard, T; Christensen, T H; Astrup, T

    2010-07-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1GJ of waste heat delivered substitutes for 1GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO(2) accounts showed significantly different results: waste incineration in one network caused a CO(2) saving of 48 kg CO(2)/GJ energy input while in the other network a load of 43 kg CO(2)/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    PubMed

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density <1000 persons (km(2))(-1) produce <500 MJ t(-1) of heat. We also found that external use of such energy for factories, markets, and related use, was noted in cities with a population density of 2000 to 4000 persons (km(2))(-1). Several incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation. © The Author(s) 2015.

  9. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments

  10. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    PubMed

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  11. Analysis of energy recovery potential using innovative technologies of waste gasification.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-01

    In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  13. Waste-to-energy conversion from a microfluidic device

    NASA Astrophysics Data System (ADS)

    López-González, B.; Jiménez-Valdés, R. J.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; García-Cordero, J. L.; Arriaga, L. G.

    2017-08-01

    This work reports the successful harvesting of energy from waste produced in a microfluidic device using a fuel cell. A miniaturized glucose air-breathing microfluidic fuel cell (ABμFFC) was designed, fabricated and tested with three different configurations according to their electrode nature: inorganic, hybrid and biofuel cell. Each ABμFFC was characterized using an ideal medium, with sterile cell culture medium, and with waste produced on a microfluidic device. The inorganic-ABμFFC exhibited the highest performance compared to the rest of the configurations. As a proof-of-concept, cancer cells were cultured on a microfluidic device and the consumed cell culture media (glucose concentration <11 mM) was used as an energy source without further treatment, into the inorganic-ABμFFC. The fuel cell generated a maximum total power of 5.2 μW, which is enough energy to power low-consumption microelectronic chips. This application demonstrates that the waste produced by microfluidic applications could be potentially scavenged to produce electrical energy. It also opens the possibility to develop truly energy self-sufficient portable devices.

  14. An overview of EPA regulation of the safe disposal of transuranic waste at the Waste Isolation Pilot Plant.

    PubMed

    Wolbarst, A B; Forinash, E K; Byrum, C O; Peake, R T; Marcinowski, F; Kruger, M U

    2001-02-01

    In March of 1999, the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico, the world's first deep geological repository for radioactive materials, began receiving defense-related transuranic waste. The WIPP was designed and constructed by the U.S. Department of Energy, but critical to its opening was certification by the U.S. Environmental Protection Agency that the repository complies with the radioactive waste disposal regulations set forth as environmental radiation protection standards (40 CFR Part 191) and compliance criteria (40 CFR Part 194). This paper provides a summary of the regulatory process, including the Environmental Protection Agency's waste containment, groundwater protection, and individual dose regulations for the WIPP; the Department of Energy's performance assessment and the other parts of its compliance certification application; and the Environmental Protection Agency's review and analysis of the compliance certification application and related documentation.

  15. Central Plant Optimization for Waste Energy Reduction (CPOWER)

    DTIC Science & Technology

    2016-12-01

    data such as windspeed and solar radiation is recorded in CPOWER. For these periods, the following data fields from the CPOWER database and the weather...The solar radiation data did not appear reliable in the weather dataset for the location, and hence we did not use this. The energy consumption...that several factors affect the total energy consumption of the chiller plant and additional data and additional factors (e.g., solar insolation) may be

  16. Biogas and energy production from cattle waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthi, J.

    1997-12-31

    Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking,more » lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.« less

  17. 78 FR 34380 - Biennial Determination of the Waste Isolation Pilot Plant's Compliance With Applicable Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... documentation submitted by the U.S. Department of Energy (DOE) for the Waste Isolation Pilot Plant (WIPP), the U... requirements designated in Section 9(a)(1) of the WIPP Land Withdrawal Act, as amended. The Secretary of Energy... Act; (3) the Solid Waste Disposal Act; (4) the Safe Drinking Water Act; (5) the Toxic Substances...

  18. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Rigamonti, Lucia; Marras, Roberto; Grosso, Mario

    2015-02-01

    In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. 76 FR 31611 - Biennial Determination of the Waste Isolation Pilot Plant's Compliance with Applicable Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... documentation submitted by the U.S. Department of Energy (DOE) for the Waste Isolation Pilot Plant (WIPP), the U... requirements designated in Section 9(a)(1) of the WIPP Land Withdrawal Act, as amended. The Secretary of Energy...) the Clean Air Act; (3) the Solid Waste Disposal Act; (4) the Safe Drinking Water Act; (5) the Toxic...

  20. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

    NASA Astrophysics Data System (ADS)

    MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.

    2017-03-01

    Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.

  1. Extremely large magnetoresistance in a high-quality WTe2 grown by flux method

    NASA Astrophysics Data System (ADS)

    Tsumura, K.; Yano, R.; Kashiwaya, H.; Koyanagi, M.; Masubuchi, S.; Machida, T.; Namiki, H.; Sasagawa, T.; Kashiwaya, S.

    2018-03-01

    We have grown single crystals of WTe2 by a self-flux method and evaluated the quality of the crystals. A Hall bar-type device was fabricated from an as-exfoliated film on a Si substrate and longitudinal resistance Rxx was measured. Rxx increased with an applied perpendicular magnetic field without saturation and an extremely large magnetoresistance as high as 376,059 % was observed at 8.27 T and 1.7 K.

  2. Food waste-to-energy conversion technologies: current status and future directions.

    PubMed

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  4. Energy from poultry waste: An Aspen Plus-based approach to the thermo-chemical processes.

    PubMed

    Cavalaglio, Gianluca; Coccia, Valentina; Cotana, Franco; Gelosia, Mattia; Nicolini, Andrea; Petrozzi, Alessandro

    2018-03-01

    A particular approach to the task of energy conversion of a residual waste material was properly experienced during the implementation of the national funded Enerpoll project. This project is a case study developed in the estate of a poultry farm that is located in a rural area of central Italy (Umbria Region); such a farm was chosen for the research project since it is almost representative of many similar small-sized breeding realties of the Italian regional context. The purpose of the case study was the disposal of a waste material (i.e. poultry manure) and its energy recovery; this task is in agreement with the main objectives of the new Energy Union policy. Considering this background, an innovative gasification plant (300KW thermal power) was chosen and installed for the experimentation. The novelty of the investigated technology is the possibility to achieve the production of thermal energy burning just the produced syngas and not directly the solid residues. This aspect allows to reduce the quantity of nitrogen released in the atmosphere by the exhaust flue gases and conveying it into the solid residues (ashes). A critical aspect of the research program was the optimization of the pretreatment (reduction of the water content) and the dimensional homogenization of the poultry waste before its energy recovery. This physical pretreatment allowed the reduction of the complexity of the matrix to be energy enhanced. Further to the real scale plant monitoring, a complete Aspen Plus v.8.0 model was also elaborated for the prediction of the quality of the produced synthesis gas as a function of both the gasification temperature and the equivalence ratio (ER). The model is an ideal flowchart using as input material just the homogenized and dried material. On the basis of the real monitored thermal power (equal to about 200kW average value in an hour) the model was used for the estimation of the syngas energy content (i.e. LHV) that resulted in the range of 3-5MJ/m 3

  5. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  6. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  7. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  8. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRAmore » regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.« less

  9. Energy and solid/hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  10. Production of high-calorie energy briquettes from bark waste, plastic and oil

    NASA Astrophysics Data System (ADS)

    Suwinarti, W.; Amirta, R.; Yuliansyah

    2018-04-01

    Bark is the waste generated from the utilization of plantation timber, while plastics and oil waste are produced from daily human activity. These waste has the potential to be used as energy briquettes raw materials, especially for fuel in power plants. It would be worth very strategic for the environment and the welfare of society, considering that at this time we are not yet fully capable of well managing all three waste types. On the other hands most of the power plants that operate today still use diesel and coal as fuel. Therefore, the best composition of mixing bark, plastic and oil will be studied as well as its influence on the physical and chemical quality of the briquettes produced. The results show that the addition of the oil waste (70%) and used plastic (30%) as additive give effect to the performance of the briquette formation with the highest calorific value of 33.56 MJ/kg.

  11. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ruijie

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) tomore » recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.« less

  12. Wool-waste as organic nutrient source for container-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) inmore » pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.« less

  13. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westinghouse TRU Solutions

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified inmore » the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.« less

  14. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    PubMed

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  15. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to

  16. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    PubMed

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Energy or compost from green waste? - A CO{sub 2} - Based assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kranert, Martin, E-mail: martin.kranert@iswa.uni-stuttgart.d; Gottschall, Ralf; Bruns, Christian

    2010-04-15

    Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currentlymore » subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO{sub 2}-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.« less

  18. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  19. Temperature-induced Lifshitz transition in WTe 2

    DOE PAGES

    Wu, Yun; Jo, Na Hyun; Ochi, Masayuki; ...

    2015-10-12

    In this study, we use ultrahigh resolution, tunable, vacuum ultraviolet laser-based, angle-resolved photoemission spectroscopy (ARPES), temperature- and field-dependent resistivity, and thermoelectric power (TEP) measurements to study the electronic properties of WTe 2, a compound that manifests exceptionally large, temperature-dependent magnetoresistance. The Fermi surface consists of two pairs of electron and two pairs of hole pockets along the X–Γ–X direction. Using detailed ARPES temperature scans, we find a rare example of a temperature-induced Lifshitz transition at T≃160 K, associated with the complete disappearance of the hole pockets. Our electronic structure calculations show a clear and substantial shift of the chemical potentialmore » μ(T) due to the semimetal nature of this material driven by modest changes in temperature. This change of Fermi surface topology is also corroborated by the temperature dependence of the TEP that shows a change of slope at T≈175 K and a breakdown of Kohler’s rule in the 70–140 K range. Our results and the mechanisms driving the Lifshitz transition and transport anomalies are relevant to other systems, such as pnictides, 3D Dirac semimetals, and Weyl semimetals.« less

  20. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  1. Problems of Waste Management at Poultry Plants and Ways to Address Them

    NASA Astrophysics Data System (ADS)

    Lazareva, L. P.; Kostryakova, O. N.

    2017-11-01

    The paper analyzes scientific literature on manure recycling and systems of waste management at two poultry plants that use different technologies of poultry housing and manure disposal and calculates the volumes of waste generation for two plants. The authors suggest an economically and ecologically efficient manure utilization technology, consider the feasibility of replacing traditional fuel with the one produced by manure recycling and calculate expected profits and the payback time of equipment.

  2. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  3. Ultrafast carrier dynamics in the large-magnetoresistance material WTe 2

    DOE PAGES

    Dai, Y. M.; Bowlan, J.; Li, H.; ...

    2015-10-07

    In this study, ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large-magnetoresistance material WTe 2. Our experiments reveal a fast relaxation process occurring on a subpicosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of ~5–15 ps, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the time scale governing this process increases due to the reduction of the phonon population. However, below ~50 K, an unusual decrease of the recombination time sets in,more » most likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.« less

  4. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  5. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  6. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Arne; Lidar, Per; Bergh, Niklas

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  7. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    PubMed Central

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  8. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    PubMed

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  9. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  10. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    PubMed

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    PubMed

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development of a Small Thermoelectric Generators Prototype for Energy Harvesting from Low Temperature Waste Heat at Industrial Plant.

    PubMed

    Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano

    2017-03-01

    A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.

  13. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udomsri, Seksan, E-mail: seksan.udomsri@energy.kth.s; Martin, Andrew R.; Fransson, Torsten H.

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessmentmore » of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO{sub 2} levels by 3% in comparison with current thermal power plants.« less

  14. Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, Nick; Kowalczyk, Joseph

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality

  15. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. Copyright © 2013

  16. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    PubMed

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are

  17. Risk perception and public acceptance toward a highly protested Waste-to-Energy facility.

    PubMed

    Ren, Xiangyu; Che, Yue; Yang, Kai; Tao, Yun

    2016-02-01

    The application of Waste-to-Energy treatment in Municipal Solid Waste faces strong protest by local communities, especially in cities with high population densities. This study introduces insight into the public awareness, acceptance and risk perception toward Waste-to-Energy through a structured questionnaire survey around a Waste-to-Energy facility in Shanghai, China. The Dichotomous-Choice contingent valuation method was applied to study the willingness to accept of residents as an indicator of risk perception and tolerance. The factors influencing risk perception and the protest response choice were analyzed. The geographical distributions of the acceptance of Waste-to-Energy facility and protest response were explored using geographical information systems. The findings of the research indicated an encouraging vision of promoting Waste-to-Energy, considering its benefits of renewable energy and the conservation of land. A high percentage of protest willingness to accept (50.94%) was highlighted with the effect of income, opinion about Waste-to-Energy, gender and perceived impact. The fuzzy classification among people with different opinions on compensation (valid 0, positive or protest willingness to accept) revealed the existing yet rejected demand of compensation among protesters. Geographical distribution in the public attitude can also be observed. Finally significant statistical relation between knowledge and risk perception indicates the need of risk communication, as well as involving public into whole management process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.

    2000-05-22

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA tomore » demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.« less

  19. Plant and Industry Experience. MAS-122. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to use plant and industry experience to improve plant safety and reliability. The following topics are covered in the module's individual…

  20. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  1. Electronic structure and Fermi surface topology of WTe2 in a magnetic field

    NASA Astrophysics Data System (ADS)

    Krishna, Jyoti; Maitra, T.

    2018-05-01

    Two dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently become the foremost candidate for future electronic device applications overcoming graphene as latter has no bandgap which limits some of the applications. WTe2 is one such TMD whose magnetoresistance (MR) continue to increase with magnetic field without any indication of saturation. Inspired by this, we have theoretically investigated the material using first principle density functional theory (DFT) approach to study the effect of magnetic field on electronic structure of the compound. The magnetic field is seen to enhance the hole pockets' size along Γ-Z direction, which brings in significant change in the Fermi surface topology.

  2. Evaluating the progress of the UK's Material Recycling Facilities: a mini review.

    PubMed

    Ali, Muhammad; Courtenay, Peter

    2014-12-01

    Over the last 15 years, the UK has made great strides in reducing the amount of waste being sent to landfill while also increasing the amount of waste being recycled. The key drivers for this change are the European Union Landfill Directive (1999/31/EC) and the UK Landfill Tax. However, also playing their part are the growing numbers of Material Recycling Facilities (MRFs), which process recyclables. This mini review evaluates the current state of MRFs in the UK, through extensive secondary research, and detailed primary data analysis focussing on MRFs located in South-East England, UK. This study also explores technologies that aim to generate energy from waste, including Waste-to-Energy (WtE) and Refuse-derived Fuel (RDF) facilities. These facilities can have a huge appetite for waste, which can be detrimental to recycling efforts as some of the waste being sent there should be recycled. It was found that the waste sent to a typical UK MRF would recycle around 92% of materials while 6% was sent to energy recovery and the remaining 2% ended up in landfill. Therefore, the total estimated rejected or non-compliance materials from MRFs are around 8%. A key recommendation from this study is to adopt a strategy to combine MRFs with a form of energy generation, such as WtE or RDF. This integrated approach would ensure any residual waste arising from the recycling process can be used as a sustainable fuel, while also increasing the recycling rates. © The Author(s) 2014.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C., E-mail: mcavoydm@ucmail.uc.edu

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of theirmore » implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.« less

  4. Biogeochemical Investigations to Evaluate the Performance of the Waste Isolation Pilot Plant (WIPP) (Invited)

    NASA Astrophysics Data System (ADS)

    Gillow, J. B.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy facility located in southeastern New Mexico, approximately 655 m (2150 ft.) below ground surface in a bedded salt, Permian evaporite formation. This mined geologic repository has been receiving transuranic (TRU) waste from defense-related and environmental-management activities since March 1999. TRU waste contains alpha-emitting transuranic nuclides with half-lives greater than twenty years at concentrations greater than 100 nCi/gram. These actinide-contaminated wastes were generated from nuclear-weapons production and related processing activities. They include various organics, adsorbed liquids, sludges, cellulosics, plastics, rubber, and a variety of metals and cemented materials. An extensive set of investigations were performed to establish the basis for TRU waste disposal at WIPP and to support initial certification from the U.S. Environmental Protection Agency. A significant element of the conceptual geochemical model for WIPP is the microbiologically-driven reactions leading to biodegradation of organic constituents in TRU wastes, as well as interactions with actinides present in the waste. This presentation will discuss the biogeochemical investigations that were performed to evaluate microbiological activity at WIPP, including studies of gas generation due to biodegradation of cellulose, plastic, and rubber materials and actinide-microbe interactions leading to changes in actinide chemical speciation. Highlights of this work are discussed here. Cellulose biodegradation in salt-brine systems results in the generation of carbon dioxide and hydrogen, and aqueous fermentation products (low molecular weight organic acids). Hypersaline brine can limit the range of microbial metabolic pathways, due to the energetic stresses of maintaining osmotic balance compatible with metabolic processes. Methanogenesis yields the lowest free energy per mole of carbon and as such is often not detected in

  5. Waste-to-Energy and Fuel Cell Technologies Overview

    DTIC Science & Technology

    2011-01-13

    Integration of stationary fuel cells with biomass gasification is a developing technology that is in need of demonstration. Innovation for Our...the PureCell®400 Innovation for Our Energy Future Gasification of wood wastes is another potential source of useful fuel gas. Wood waste... Gasification → Cleanup → Fuel Cell Gasification uses high temperature to convert cellulosic materials to fuel gas • Hydrogen (H2) • Carbon monoxide (CO

  6. Waste-to-energy: A review of life cycle assessment and its extension methods.

    PubMed

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  7. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Dougall, James

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less

  8. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    PubMed

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Analysis of tincal ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique

    NASA Astrophysics Data System (ADS)

    Kalfa, Orhan Murat; Üstündağ, Zafer; Özkırım, Ilknur; Kagan Kadıoğlu, Yusuf

    2007-01-01

    Etibank Borax Plant is located in Kırka-Eskişehir, Turkey. The borax waste from this plant was analyzed by means of energy dispersive X-ray fluorescence (EDXRF). The standard addition method was used for the determination of the concentration of Al, Fe, Zn, Sn, and Ba. The results are presented and discussed in this paper.

  10. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, Giorgio, E-mail: buonanno@unicas.it; Stabile, Luca; Avino, Pasquale

    2011-11-15

    Highlights: > Particle size distributions and total concentrations measurement at the stack and before the fabric filter of an incinerator. > Chemical characterization of UFPs in terms of heavy metal concentration through a nuclear method. > Mineralogical investigation through a Transmission Electron Microscope equipped with an Energy Dispersive Spectrometer. > Heavy metal concentrations on UFPs as function of the boiling temperature. > Different mineralogical and morphological composition amongst samples collected before the fabric filter and at the stack. - Abstract: Waste combustion processes are responsible of particles and gaseous emissions. Referring to the particle emission, in the last years specificmore » attention was paid to ultrafine particles (UFPs, diameter less than 0.1 {mu}m), mainly emitted by combustion processes. In fact, recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas. To these purposes, in the present work an experimental campaign aimed to monitor UFPs was carried out at the incineration plant in San Vittore del Lazio (Italy). Particle size distributions and total concentrations were measured both at the stack and before the fabric filter inlet in order to evaluate the removal efficiency of the filter in terms of UFPs. A chemical characterization of UFPs in terms of heavy metal concentration was performed through a nuclear method, i.e. Instrumental Neutron Activation Analysis (INAA), as well as a mineralogical investigation was carried out through a Transmission Electron Microscope (TEM) equipped with an Energy Dispersive Spectrometer (EDS) in order to evaluate shape, crystalline state and mineral compound of sampled particles. Maximum values of 2.7 x 10{sup 7} part

  11. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    PubMed

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Recycling plant, human and animal wastes to plant nutrients in a closed ecological system

    NASA Technical Reports Server (NTRS)

    Meissner, H. P.; Modell, M.

    1979-01-01

    The essential minerals for plant growth are nitrogen, phosphorous, potassium (macronutrients), calcium, magnesium, sulfur (secondary nutrients), iron, manganese, boron, copper, zinc, chlorine, sodium, and molybdenum (micronutrients). The first step in recycling wastes will undoubtedly be oxidation of carbon and hydrogen to CO2 and H2O. Transformation of minerals to plant nutrients depends upon the mode of oxidation to define the state of the nutrients. For the purpose of illustrating the type of processing required, ash and off-gas compositions of an incineration process were assumed and subsequent processing requirements were identified. Several processing schemes are described for separating out sodium chloride from the ash, leading to reformulation of a nutrient solution which should be acceptable to plants.

  13. NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE

    EPA Science Inventory

    The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...

  14. Waste-to-Energy Thermal Destruction Identification for Forward Operating Bases

    DTIC Science & Technology

    2016-07-01

    waste disposal strategy is to simplify the technology development goals. Specifically, we recommend a goal of reducing total net energy consumption ...to net zero. The minimum objective should be the lowest possible fuel consumption per unit of waste disposed. By shifting the focus from W2E to waste...over long distances increases the risks to military personnel and contractors. Because fuel is a limited resource at FOBs, diesel fuel consumption

  15. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  16. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se; Escobar, Federico; Fu Xinmei

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competitionmore » for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop

  17. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  18. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    PubMed

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Micro-scale energy valorization of grape marcs in winery production plants.

    PubMed

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-02-01

    The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Energy in Solid Waste: A Citizen Guide to Saving.

    ERIC Educational Resources Information Center

    Citizens Advisory Committee on Environmental Quality.

    This booklet contains information for citizens on solid wastes. It discusses the possible energy available in combustible and noncombustible trash. It suggests how citizens can reduce waste at home through discriminating buying practices and through recycling and reuse of resources. Recommendations are given for community action along with state…

  2. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastesmore » for disposal.« less

  3. In-plant management of hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, M.W.; Howell, W.L. Jr.

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interestsmore » within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.« less

  4. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washinton TRU Solutions LLC

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO andmore » the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).« less

  5. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  6. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    (population density) and transport infrastructure is used as input data to an engineering model (BeWhere) for optimizing scale and location of waste treatment plants with potential energy and fertilizer co-generation. Finally, this paper quantifies the economic dimension of mitigation through innovative waste treatment while considering the additional business-feasibility and potential benefits from waste treatment co-products such as energy generation, fertilizer and biochar production for counteracting soil degradation.

  7. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not

  8. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  9. Energy aspects of solid waste management: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less

  10. Effect of Flue Gas Desulfurization Waste on Corn Plants

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization gypsum (FGDG) is a by-product of conversion of sulfur dioxide into solid waste from coal combustion power generation plant. This by-product is rich in calcium, magnesium, and contains various other essential plant nutrients. The beneficial use of application of this waste as...

  11. 75 FR 70584 - Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ...With this document, the Environmental Protection Agency (EPA) recertifies that the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) continues to comply with the ``Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High- Level and Transuranic (TRU) Radioactive Waste.'' EPA initially certified that WIPP met applicable regulatory requirements on May 18, 1998, and the first shipment of waste was received at WIPP on March 26, 1999. The first Compliance Recertification Application (CRA) was submitted by DOE to EPA on March 26, 2004, and the Agency's first recertification decision was issued on March 29, 2006.

  12. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  13. NREL and Cogent Energy Systems | Energy Systems Integration Facility | NREL

    Science.gov Websites

    to one of ESIF's 250-kVA resistive/inductive/capacitive load banks in order to simulate the WTE combined load of a standalone microgrid. Once the team demonstrates the system's ability to operate in a response to load demands that exceed solar energy output. By operating this way, the system can be used to

  14. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    PubMed

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  15. Q Fever Outbreak among Workers at a Waste-Sorting Plant

    PubMed Central

    Alonso, Eva; Lopez-Etxaniz, Idoia; Hurtado, Ana; Liendo, Paloma; Urbaneja, Felix; Aspiritxaga, Inmaculada; Olaizola, Jose Ignacio; Piñero, Alvaro; Arrazola, Iñaki; Barandika, Jesús F.; Hernáez, Silvia; Muniozguren, Nerea; García- Pérez, Ana L.

    2015-01-01

    An outbreak of Q fever occurred in February–April 2014 among workers at a waste-sorting plant in Bilbao (Spain). The outbreak affected 58.5% of investigated employees, 47.2% as confirmed cases (PCR and/or serology) and 11.3% as probable cases (symptoms without laboratory confirmation). Only employees who had no-access to the waste processing areas of the plant were not affected and incidence of infection was significantly higher among workers not using respiratory protection masks. Detection by qPCR of Coxiella burnetii in dust collected from surfaces of the plant facilities confirmed exposure of workers inside the plant. Animal remains sporadically detected among the residues received for waste-sorting were the most probable source of infection. After cleaning and disinfection, all environmental samples tested negative. Personal protection measures were reinforced and made compulsory for the staff and actions were taken to raise farmers’ awareness of the biological risk of discharging animal carcasses as urban waste. PMID:26398249

  16. Power plant wastes capitalization as geopolymeric building materials

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  17. From Waste to Watts: The fermentation of animal waste occuring in a digester producing methane gasses as a side product and converted to energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2015-12-01

    The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  18. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  19. Trend of Mathematical Models in Microbial Fuel Cell for Environmental Energy Refinery from Waste/Water

    NASA Astrophysics Data System (ADS)

    Oh, Sung Taek

    A microbial fuel cell (MFC) is a device to use for bio electrochemical energy production. Electrophilic bacteria produce electrons in their metabolic pathway and the electrons can be extracted and concentrated on electrode by the electric potential difference (i.e. Galvanic cell). The bio-electrode may provide new opportunities for the renewable energy in waste water/swage treatment plants.

  20. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have

  1. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion.

    PubMed

    Nayal, Figen Sisman; Mammadov, Aydin; Ciliz, Nilgun

    2016-12-15

    While Turkey is one of the world's largest producers and exporters of agricultural goods, it is also, at the same time a net importer of energy carriers. This dichotomy offers a strong incentive to generate energy from agricultural and farming waste; something which could provide energy security for rural areas. Combined with the enhanced energy security for farming areas, the production of energy in this manner could conceivably contribute to the overall national effort to reduce the Turkey's carbon footprint. This study explores the environmental benefits and burdens of one such option, that is, biogas production from a mixture of agricultural and animal waste through anaerobic digestion (AD), and its subsequent use for electricity and heat generation. A life-cycle assessment methodology was used, to measure the potential environmental impact of this option, in terms of global warming and total weighed impact, and to contrast it with the impact of producing the same amount of energy via an integrated gasification combined cycle process and a hard coal power plant. This study concentrates on an AD and cogeneration pilot plant, built in the Kocaeli province of Turkey and attempts to evaluate its potential environmental impacts. The study uses laboratory-scale studies, as well as literature and LCI databases to derive the operational parameters, yield and emissions of the plant. The potential impacts were calculated with EDIP 2003 methodology, using GaBi 5 LCA software. The results indicate that N 2 O emissions, resulting from the application of liquid and solid portions of digestate (a by-product of AD), as an organic fertilizer, are by far the largest contributors to global warming among all the life cycle stages. They constitute 68% of the total, whereas ammonia losses from the same process are the leading cause of terrestrial eutrophication. The photochemical ozone formation potential is significantly higher for the cogeneration phase, compared to other life

  2. Making Plant-Support Structures From Waste Plant Fiber

    NASA Technical Reports Server (NTRS)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  3. Fossil energy waste management. Technology status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less

  4. Energy conservation in solid waste management in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, M.H.

    1994-12-31

    Recycling of solid wastes has a characteristic pattern in Bangladesh in the context of the general habits and socio-economic status of the population. Extensive resource recovery from solid wastes is being carried out at various stages of disposal. The characteristics of solid wastes at the final disposal site indicate that they contain more than 90% of organic wastes. Hence, anaerobic digestion of these wastes serves a dual purpose in the conservation of energy and of valuable crop nutrients for efficient recycling especially in an agriculture-based economy. This also improves overall environmental sanitation and reduces environmental degradation. In this paper, differentmore » recycling and reuse options for solid wastes are critically discussed from the energy recovery and energy conservation point of view. It has been shown that the resource recovery from solid wastes would minimize the energy problem and would lead to a net reduction of greenhouse gases, particularly in the developing world.« less

  5. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  7. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    NASA Technical Reports Server (NTRS)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  8. Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences.

    PubMed

    Koch, Konrad; Plabst, Markus; Schmidt, Andreas; Helmreich, Brigitte; Drewes, Jörg E

    2016-01-01

    The effects of co-digestion of food waste in a municipal wastewater treatment plant (WWTP) were studied in batch tests. The results obtained were compared with the mass balance of a digester at a full-scale WWTP for a one-year period without and with the addition of co-substrate. The specific methane yield calculated from the balance was 18% higher than the one in the batch tests, suggesting a stimulation of methane generation by co-digestion. It was hypothesized that this increase was caused by shifting the C/N ratio of raw sludge (8.8) to a more favourable ratio of the added food waste (17.7). In addition, potential benefits by adding food waste for energy autarky was investigated. While just 25% of the total energy demand of the plant could be recovered by biogas generation when no co-substrate was fed, this percentage has more than doubled when food waste was added at a ratio of 10% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  10. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  11. Strain and electric-field tunable valley states in 2D van der Waals MoTe2/WTe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Zhida; Wang, Xiaocha; Mi, Wenbo

    2016-12-01

    The strain and electric-field effects on the electronic structure of MoTe2/WTe2 van der Waals heterostructures are investigated by first-principles calculations. The MoTe2/WTe2 heterostructures are indirect band gap semiconductors under different strains except for 2%. At a strain from  -6% to 6% under a zero electric field, the band gap is 0.56, 0.62, 0.69, 0.62, 0.46, 0.37 and 0.29 eV, respectively. Meanwhile, spin splitting at the conduction band minimum (CBM) decreases monotonically from 76-1 meV, and that at the valance band maximum (VBM) is 232, 266, 292, 307, 319, 302 and 283 meV. At an electric field from  -0.3 to 0.3 V Å-1 under a 2% strain, VBM splitting decreases from 499-77 meV, but CBM splitting almost remains at 33 meV. A semiconductor-metal transition appears at an electric field of  -0.3 V Å-1. At different electric fields under a  -4% strain, CBM splitting monotonically increases from 37-154 meV, but VBM splitting is 437, 438, 378, 273, 150, 78 and 134 meV, respectively. Our results can provide a more significant basis for spintronic and valleytronic devices.

  12. Geopolymerisation of silt generated from construction and demolition waste washing plants.

    PubMed

    Lampris, C; Lupo, R; Cheeseman, C R

    2009-01-01

    Recycling plants that size, sort and wash construction and demolition waste can produce high quality aggregate. However, they also produce up to 80ton per hour of filter cake waste containing fine (<63mum) silt particles that is classified as inert waste and normally landfilled. This research investigated the potential to form geopolymers containing silt, which would allow this problematic waste to be beneficially reused as aggregate. This would significantly improve the economic viability of recycling plants that wash wastes. Silt filter cakes have been collected from a number of aggregate washing plants operating in the UK. These were found to contain similar aluminosilicate crystalline phases. Geopolymer samples were produced using silt and silt mixed with either metakaolin or pulverised fuel ash (PFA). Silt geopolymers cured at room temperature had average 7-day compressive strengths of 18.7MPa, while partial substitution of silt by metakaolin or PFA increased average compressive strengths to 30.5 and 21.9MPa, respectively. Curing specimens for 24h at 105 degrees C resulted in a compressive strength of 39.7MPa and microstructural analysis confirmed the formation of dense materials. These strengths are in excess of those required for materials to be used as aggregate, particularly in unbound applications. The implications of this research for the management of waste silt at construction and demolition waste washing plants are discussed.

  13. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    NASA Astrophysics Data System (ADS)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  14. High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia.

    PubMed

    Florin, N H; Maddocks, A R; Wood, S; Harris, A T

    2009-04-01

    The high-temperature thermal destruction of poultry derived wastes (e.g., manure and bedding) for energy recovery is viable in Australia when considering resource availability and equivalent commercial-scale experience in the UK. In this work, we identified and examined the opportunities and risks associated with common thermal destruction techniques, including: volume of waste, costs, technological risks and environmental impacts. Typical poultry waste streams were characterised based on compositional analysis, thermodynamic equilibrium modelling and non-isothermal thermogravimetric analysis coupled with mass spectrometry (TG-MS). Poultry waste is highly variable but otherwise comparable with other biomass fuels. The major technical and operating challenges are associated with this variability in terms of: moisture content, presence of inorganic species and type of litter. This variability is subject to a range of parameters including: type and age of bird, and geographical and seasonal inconsistencies. There are environmental and health considerations associated with combustion and gasification due to the formation of: NO(X), SO(X), H(2)S and HCl gas. Mitigation of these emissions is achievable through correct plant design and operation, however, with significant economic penalty. Based on our analysis and literature data, we present cost estimates for generic poultry-waste-fired power plants with throughputs of 2 and 8 tonnes/h.

  15. Environmental Assessment for the Above Ground Storage Capability at the Waste Isolation Pilot Plant Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resultingmore » from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).« less

  16. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    NASA Astrophysics Data System (ADS)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  17. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrild, Hanna; Larsen, Anna W., E-mail: awla@env.dtu.dk; Christensen, Thomas H.

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the casemore » if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.« less

  18. Energy from gasification of solid wastes.

    PubMed

    Belgiorno, V; De Feo, G; Della Rocca, C; Napoli, R M A

    2003-01-01

    Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by "town gas" produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of gasification and therefore allows it to be integrated with several industrial processes, as well as power generation systems. The use of a waste-biomass energy production system in a rural community is very interesting too. This paper describes the current state of gasification technology, energy recovery systems, pre-treatments and prospective in syngas use with particular attention to the different process cycles and environmental impacts of solid wastes gasification.

  19. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.

    PubMed

    Panepinto, D; Zanetti, M C

    2018-03-01

    This study proposes a multi-step approach to evaluating the environmental and economic aspects of a thermal treatment plant with an energy-recovery configuration. In order to validate the proposed approach, the Turin incineration plant was analyzed, and the potential of the incinerator and several different possible connections to the district heating network were then considered. Both local and global environmental balances were defined. The global-scale results provided information on carbon dioxide emissions, while the local-scale results were used as reference values for the implementation of a Gaussian model that could evaluate the actual concentrations of pollutants released into the atmosphere. The economic aspects were then analyzed, and a correspondence between the environmental and economic advantages defined. The results showed a high energy efficiency for the combined production of heat and electricity, and the opportunity to minimize environmental impacts by including cogeneration in a district heating scheme. This scheme showed an environmental advantage, whereas the electricity-only configuration showed an economic advantage. A change in the thermal energy price (specifically, to 40 €/MWh), however, would make it possible to obtain both environmental and economic advantages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Recovery of Energy from Waste.

    ERIC Educational Resources Information Center

    Baxter, Zeland L.; And Others

    This study unit advocates the use of biomass conversion techniques with municipal solid wastes as a viable action for energy development. The unit includes: (1) an introductory section (providing a unit overview and supportive statements for biomass conversion; (2) a historical review of energy use from wastes; (3) a section on design and…

  1. Search for a new economic optimum in the management of household waste in Tiaret city (western Algeria).

    PubMed

    Asnoune, M; Abdelmalek, F; Djelloul, A; Mesghouni, K; Addou, A

    2016-11-01

    In household waste matters, the objective is always to conceive an optimal integrated system of management, where the terms 'optimal' and 'integrated' refer generally to a combination between the waste and the techniques of treatment, valorization and elimination, which often aim at the lowest possible cost. The management optimization of household waste using operational methodologies has not yet been applied in any Algerian district. We proposed an optimization of the valorization of household waste in Tiaret city in order to lower the total management cost. The methodology is modelled by non-linear mathematical equations using 28 variables of decision and aims to assign optimally the seven components of household waste (i.e. plastic, cardboard paper, glass, metals, textiles, organic matter and others) among four centres of treatment [i.e. waste to energy (WTE) or incineration, composting (CM), anaerobic digestion (ANB) or methanization and landfilling (LF)]. The analysis of the obtained results shows that the variation of total cost is mainly due to the assignment of waste among the treatment centres and that certain treatment cannot be applied to household waste in Tiaret city. On the other hand, certain techniques of valorization have been favoured by the optimization. In this work, four scenarios have been proposed to optimize the system cost, where the modelling shows that the mixed scenario (the three treatment centres CM, ANB, LF) suggests a better combination of technologies of waste treatment, with an optimal solution for the system (cost and profit). © The Author(s) 2016.

  2. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    PubMed

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  3. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    PubMed

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  4. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    PubMed

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    PubMed

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  6. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less

  7. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  8. Interactive analysis of waste recycling and energy recovery program in a small-scale incinerator.

    PubMed

    Chen, Jeng-Chung; Chen, Wei-Hsin; Chang, Ni-Bin; Davila, Eric; Tsai, Cheng-Hsien

    2005-09-01

    Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.

  9. Environmental analysis of a construction and demolition waste recycling plant in Portugal--Part I: energy consumption and CO2 emissions.

    PubMed

    Coelho, André; de Brito, Jorge

    2013-05-01

    This work is a part of a wider study involving the economic and environmental implications of managing construction and demolition waste (CDW), focused on the operation of a large scale CDW recycling plant. This plant, to be operated in the Lisbon Metropolitan Area (including the Setúbal peninsula), is analysed for a 60 year period, using primary energy consumption and CO2eq emission impact factors as environmental impact performance indicators. Simplified estimation methods are used to calculate industrial equipment incorporated, and the operation and transport related impacts. Material recycling--sorted materials sent to other industries, to act as input--is taken into account by discounting the impacts related to industrial processes no longer needed. This first part focuses on calculating the selected impact factors for a base case scenario (with a 350 tonnes/h installed capacity), while a sensitivity analysis is provided in part two. Overall, a 60 year global primary energy consumption of 71.4 thousand toe (tonne of oil equivalent) and a total CO2eq emission of 135.4 thousand tonnes are expected. Under this operating regime, around 563 thousand toe and 1465 thousand tonnes CO2eq could be prevented by replacing raw materials in several construction materials industries (e.g.: ferrous and non-ferrous metals, plastics, paper and cardboard). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    PubMed

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  12. The use of urban wood waste as an energy resource

    NASA Astrophysics Data System (ADS)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  13. Energy recovery from solid waste. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  14. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    PubMed

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  16. Energy content of municipal solid waste bales.

    PubMed

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  17. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  18. Total energy food plant 21 million gallon ethanol facility

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.

  19. Buying less and wasting less food. Changes in household food energy purchases, energy intakes and energy density between 2007 and 2012 with and without adjustment for food waste.

    PubMed

    Whybrow, Stephen; Horgan, Graham W; Macdiarmid, Jennie I

    2017-05-01

    Consumers in the UK responded to the rapid increases in food prices between 2007 and 2009 partly by reducing the amount of food energy bought. Household food and drink waste has also decreased since 2007. The present study explored the combined effects of reductions in food purchases and waste on estimated food energy intakes and dietary energy density. The amount of food energy purchased per adult equivalent was calculated from Kantar Worldpanel household food and drink purchase data for 2007 and 2012. Food energy intakes were estimated by adjusting purchase data for food and drink waste, using waste factors specific to the two years and scaled for household size. Scotland. Households in Scotland (n 2657 in 2007; n 2841 in 2012). The amount of food energy purchased decreased between 2007 and 2012, from 8·6 to 8·2 MJ/adult equivalent per d (P<0·001). After accounting for the decrease in food waste, estimated food energy intake was not significantly different (7·3 and 7·2 MJ/adult equivalent per d for 2007 and 2012, respectively; P=0·186). Energy density of foods purchased increased slightly from 700 to 706 kJ/100 g (P=0·010). While consumers in Scotland reduced the amount of food energy that they purchased between 2007 and 2012, this was balanced by reductions in household food and drink waste over the same time, resulting in no significant change in net estimated energy intake of foods brought into the home.

  20. Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology.

    PubMed

    Dolan, T; Cook, M B; Angus, A J

    2011-06-01

    Anaerobic digestion (AD) has the potential to support diversion of organic waste from landfill and increase renewable energy production. However, diffusion of this technology has been uneven, with countries such as Germany and Sweden taking the lead, but limited diffusion in other countries such as the UK. In this context, this study explores the financial viability of AD in the UK to offer reasons why it has not been more widely used. This paper presents a model that calculates the Internal Rate of Return (IRR) on a twenty year investment in a 30,000 tonnes per annum wet mesophilic AD plant in the UK for the treatment of source separated organic waste, which is judged to be a suitable technology for the UK climate. The model evaluates the financial significance of the different alternative energy outputs from this AD plant and the resulting economic subsidies paid for renewable energy. Results show that renewable electricity and renewable heat sales supported by renewable electricity and renewable heat tariffs generates the greatest IRR (31.26%). All other uses of biogas generate an IRR in excess of 15%, and are judged to be a financially viable investment. Sensitivity analysis highlights the financial significance of: economic incentive payments and a waste management gate fee; and demonstrates that the fate of the digestate by-product is a source of financial uncertainty for AD investors. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    NASA Technical Reports Server (NTRS)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  2. Barriers on the propagation of renewable energy sources and sustainable solid waste management practices in Greece.

    PubMed

    Boemi, Sn; Papadopoulos, Am; Karagiannidis, A; Kontogianni, S

    2010-11-01

    Renewable energy sources (RES), excluding large hydroelectric plants, currently produce 4.21% of total electricity production in Greece. Even when considering the additional production from large hydroelectric plants, which accounts for some 7.8%, the distance to be covered towards the objective of 20% electricity produced from RES by 2010 and respectively towards 20% of total energy production by 2020 is discouraging. The potential, however, does exist; unfortunately so do serious barriers. On the other hand, solid waste management (SWM) is an issue that generates continuously increasing interest due to the extra amounts of solid waste generated; the lack of existing disposal facilities with adequate infrastructure and integrated management plans, also often accompanied by legislative and institutional gaps. However, socio-economic and public awareness problems are still met in the planning and implementation of RES and SWM projects, together with the lack of a complete national cadastre and a spatial development master plan, specifying areas eligible for RES and SWM development. Specific barriers occur for individual RES and the on-going inclusion of waste-derived renewable energy in the examined palette further increases the complexity of the entire issue. The consolidated study of this broad set of barriers was a main task of the present study which was carried out within the frame of a Hellenic-Canadian research project; the main results will be discussed herein.

  3. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, M.D.; Farrell, R.F.; Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limitmore » the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.« less

  4. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is usedmore » to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.« less

  5. Thermal treatment of solid residues from WtE units: a review.

    PubMed

    Lindberg, Daniel; Molin, Camilla; Hupa, Mikko

    2015-03-01

    Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    PubMed

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. © The Author(s) 2014.

  7. Alternative Fuels Data Center: quasar energy group Turns Organic Waste into

    Science.gov Websites

    Renewable Energy in Ohio quasar energy group Turns Organic Waste into Renewable Energy in Ohio to someone by E-mail Share Alternative Fuels Data Center: quasar energy group Turns Organic Waste group Turns Organic Waste into Renewable Energy in Ohio on Twitter Bookmark Alternative Fuels Data

  8. Information brochure on the Department of Energy's proposed Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. Project overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This project overview comprises the following: project history; WIPP fact sheet; legal actions required; major WIPP milestones; low-level waste volumes; nuclear waste transportation; WIPP site selection; and questions and answers from the Department of Energy request for public input prior to public meetings in Roswell and Hobbs, New Mexico.

  9. Plant growth in amended molybdenum mine waste rock.

    PubMed

    Burney, Owen T; Redente, Edward F; Lambert, Charles E

    2017-04-01

    This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.

  10. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  11. Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Kudenko, Yu. A.; Ushakova, S. A.; Tirranen, L. S.; Gribovskaya, I. A.; Gros, J.-B.; Lasseur, Ch.

    2010-09-01

    To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H 2O 2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H 2O 2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of

  12. Proposal of an environmental performance index to assess solid waste treatment technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulart Coelho, Hosmanny Mauro, E-mail: hosmanny@hotmail.com; Lange, Lisete Celina; Coelho, Lineker Max Goulart

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond wastemore » energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of

  13. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    PubMed

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Waste-to-Energy Systems

    DTIC Science & Technology

    2009-04-01

    at hospitals, at schools,” or wherever there are people creating masses of trash.5 Pyrolytic Gasification Pyrolytic gasification is not a new...prevalent with both. Gasification is . . . the chemical reaction and molecular breakdown or degradation of materials. The first pyrolytic gasification...dealing with about 2 tons of mixed solid waste per day, will destroy wood, paper card, food, plastics, and sanitary, clinical, and oil waste and

  15. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potentialmore » issues associated with recycling.« less

  16. Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment

    NASA Astrophysics Data System (ADS)

    Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.

    2017-12-01

    The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of

  17. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    NASA Astrophysics Data System (ADS)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  18. Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance.

    PubMed

    Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca

    2011-01-01

    An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  20. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  1. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  2. Role of waste management with regard to climate protection: a case study.

    PubMed

    Hackl, Albert; Mauschitz, Gerd

    2008-02-01

    According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.

  3. Final environmental impact statement. Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures aremore » given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)« less

  4. Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less

  5. Interstate waste transport -- Emotions, energy, and environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcock, D.

    1993-12-31

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  6. Interstate waste transport -- Emotions, energy, and environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcock, D.

    1993-01-01

    This report applies quantitative analysis to the debate of waste transport and disposal. Moving from emotions and politics back to numbers, this report estimates potential energy, employment and environmental impacts associated with disposing a ton of municipal solid waste under three different disposal scenarios that reflect interstate and intrastate options. The results help provide a less emotional, more quantitative look at interstate waste transport restrictions.

  7. Introduction to Energy Conservation and Production at Waste Cleanup Sites

    EPA Pesticide Factsheets

    This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.

  8. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    NASA Astrophysics Data System (ADS)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  9. A new process for NOx reduction in combustion systems for the generation of energy from waste.

    PubMed

    Gohlke, Oliver; Weber, Toralf; Seguin, Philippe; Laborel, Yann

    2010-07-01

    In the EU, emissions from energy from waste plants are largely reduced by applying the Waste Incineration Directive with its limit of 200 mg/m3(s) for NO(x) emissions. The need for further improvement is reflected by new German legislation effective as of 27 January 2009, requiring 100 mg/m3(s). Other countries are expected to follow this example due to the national emission ceilings of the Gothenburg protocol and the concluding EU directive 2001/81/EC. On the other hand, an increase in energy efficiency will be encouraged by the EU Waste Framework Directive. This is why there is a need for new technologies that make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. A new process combining the internal recirculation of flue gas with ammonia or urea injection in order to achieve less then 80 mg/m3(s) of NO(x) is described. Important additional features of the process are an R1 efficiency above the required 0.65 of the EU Waste Framework Directive even with standard steam parameters of 40 bar/380 degrees C as well as low ammonia slip in the flue gas at the boiler outlet of below 10 mg/m3(s). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  11. Solidification of Savannah River plant high level waste

    NASA Astrophysics Data System (ADS)

    Maher, R.; Shafranek, L. F.; Kelley, J. A.; Zeyfang, R. W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY-83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quanitity of existing high level nuclear wastes can be safely and permanently immobilized.

  12. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less

  13. Row erupts over US firm's plan to import nuclear waste

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-06-01

    A controversy is brewing in the US over a plan by a firm in Utah to import, process and dispose of 20 000 tonnes of low-level radioactive waste from decommissioned nuclear reactors built in Italy by American companies. EnergySolutions intends to recycle some of this waste at a site near Oak Ridge, Tennessee, so that it can be re-used as shielding blocks in nuclear plants. The firm then wants to dispose of the remaining radioactive material at a site in Clive, Utah, where over 90% of low-level radioactive waste generated in the US is currently buried.

  14. Municipal waste management in Sicily: practices and challenges.

    PubMed

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  15. Energy from waste in Europe: an analysis and comparison of the EU 27.

    PubMed

    Sommer, Manuel; Ragossnig, Arne

    2011-10-01

    This article focuses on analysing the development of waste-generated energy in the countries of the European Union (EU 27). Besides elaborating the relevant legal and political framework in the waste and energy sector as well as climate protection, the results from correlation analyses based on the databases of the energy statistics from Eurostat are discussed. The share of energy from waste is correlated with macro-economic, waste- and energy-sector-related data, which have been defined as potentially relevant for energy recovery from waste in the countries of the European Union. The results show that a single factor influencing the extent of waste-generated energy could not be isolated as it is being influenced not only by the state of economic development and the state of development of waste management systems in the respective countries but also by energy-sector-related factors and the individual priority settings in those countries. Nevertheless the main driving force for an increase in the utilization of waste for energy generation can be seen in the legal and political framework of the European Union leading to the consequence that market conditions influence the realization of waste management infrastructure for waste-generated energy.

  16. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    PubMed

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  17. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    PubMed

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  18. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    PubMed Central

    Cu, T. T. T.; Nguyen, T. X.; Triolo, J. M.; Pedersen, L.; Le, V. D.; Le, P. D.; Sommer, S. G.

    2015-01-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg−1 volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  19. A comparative assessment of waste incinerators in the UK.

    PubMed

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Laboratory plant study on the melting process of asbestos waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown thatmore » melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.« less

  1. Waste biomass-to-energy supply chain management: a critical synthesis.

    PubMed

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Detection, composition and treatment of volatile organic compounds from waste treatment plants.

    PubMed

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  3. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  4. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  5. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    NASA Astrophysics Data System (ADS)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively

  6. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  7. Public Preferences Related to Radioactive Waste Management in the United States: Methodology and Response Reference Report for the 2016 Energy and Environment Survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika

    This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less

  8. Energy recovery from solid waste. [production engineering model

    NASA Technical Reports Server (NTRS)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  9. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than

  10. WASTE REDUCTION PRACTICES AT TWO CHROMATED COPPER ARSENATE WOOD-TREATING PLANTS

    EPA Science Inventory

    Two chromated copper arsenate (CCA) wood-treating plants were assessed for their waste reduction practices. The objectives of this study were to estimate the amount of hazardous wastes that a well-designed and well-main- tained CCA treatment facility would generate and to iden- t...

  11. An overview of metals recovery from thermal power plant solid wastes.

    PubMed

    Meawad, Amr S; Bojinova, Darinka Y; Pelovski, Yoncho G

    2010-12-01

    Thermal power plants (TPPs) that burn fossil fuels emit several pollutants linked to the environmental problems of acid rain, urban ozone, and the possibility of global climate change. As coal is burned in a power plant, its noncombustible mineral content is partitioned into bottom ash, which remains in the furnace, and fly ash, which rises with flue gases. Two other by-products of coal combustion air-pollution control technologies are flue gas desulfurization (FGD) wastes and fluidized-bed combustion (FBC) wastes. This paper analyzed and summarized the generation, characteristics and application of TPP solid wastes and discussed the potential effects of such solid wastes on the environment. On this basis, a review of a number of methods for recovery of metals from TPP solid wastes was made. They usually contain a quantity of valuable metals and they are actually a secondary resource of metals. By applying mineral processing technologies and hydrometallurgical and biohydrometallurgical processes, it is possible to recover metals such as Al, Ga, Ge, Ca, Cd, Fe, Hg, Mg, Na, Ni, Pb, Ra, Th, V, Zn, etc., from TPP solid wastes. Recovery of metals from such wastes and its utilization are important not only for saving metal resources, but also for protecting the environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    PubMed

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    EPA Pesticide Factsheets

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  14. Plant That Makes Fuel Out Of Garbage and Waste Called A Success

    Science.gov Websites

    , to run a turbine to generate electricity or as a transportation fuel. Pathogens in the food municipal solid waste and food processing wastes. The plant was operated close to neighbors in a light market of $1 billion. Other potential customers include food processors and waste haulers, who must now

  15. Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum.

    PubMed

    Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger

    2016-12-01

    In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  17. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  18. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    PubMed

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Current techniques in rice mill effluent treatment: Emerging opportunities for waste reuse and waste-to-energy conversion.

    PubMed

    Kumar, Anuj; Priyadarshinee, Rashmi; Roy, Abhishek; Dasgupta, Dalia; Mandal, Tamal

    2016-12-01

    Rice mills release huge volumes of wastewater and other by-products when processing paddy rice. The wastewater often contains toxic inorganic and organic contaminants which cause environmental damage when released. Accordingly, cost-effective techniques for removing contaminants are needed. This article reviews current processes for curbing pollution and also reusing and recycling waste products. Novel techniques exist for converting waste products into energy and value-added products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Waste: A Hot Item These Days!

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Describes technologies used to conserve energy by using process wastes in the following situations: (1) incineration at a photographic company, (2) wet oxidation at a paper mill, and (3) sewage skimmings fuel at a municipal waste water plant. (MA)

  1. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    PubMed

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    PubMed

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.

  3. Motorcycle waste heat energy harvesting

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.

  4. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  5. ENERGY CONSERVATION AND PRODUCTION AT WASTE CLEANUP SITES (ISSUE PAPER)

    EPA Science Inventory

    Saving energy used by hazardous waste cleanup remediation systems should interest those people working on waste cleanup sites. Presidential Executive Order 13123, "Greening the Government Through Efficient Energy Management", states that each agency shall strive to expand the us...

  6. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  7. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country.

  8. Energy-saving method for technogenic waste processing

    PubMed Central

    Dikhanbaev, Bayandy; Dikhanbaev, Aristan Bayandievich

    2017-01-01

    Dumps of a mining-metallurgical complex of post-Soviet Republics have accumulated a huge amount of technogenic waste products. Out of them, Kazakhstan alone has preserved about 20 billion tons. In the field of technogenic waste treatment, there is still no technical solution that leads it to be a profitable process. Recent global trends prompted scientists to focus on developing energy-saving and a highly efficient melting unit that can significantly reduce specific fuel consumption. This paper reports, the development of a new technological method—smelt layer of inversion phase. The introducing method is characterized by a combination of ideal stirring and ideal displacement regimes. Using the method of affine modelling, recalculation of pilot plant’s test results on industrial sample has been obtained. Experiments show that in comparison with bubbling and boiling layers of smelt, the degree of zinc recovery increases in the layer of inversion phase. That indicates the reduction of the possibility of new formation of zinc silicates and ferrites from recombined molecules of ZnO, SiO2, and Fe2O3. Calculations show that in industrial samples of the pilot plant, the consumption of natural gas has reduced approximately by two times in comparison with fuming-furnace. The specific fuel consumption has reduced by approximately four times in comparison with Waelz-kiln. PMID:29281646

  9. Biogas from bio-waste-potential for an ecological waste and energy management in resort hotels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinbach, D.; Schultheis, A.

    1996-12-31

    This paper gives an overview about waste management in holiday resorts. The objective is to determine the composition of waste and the specific waste quantities per guest. This data represents the basis for planning recycling measures and corresponding treatment facilities. The sorting analyses show the great potential of organic material suitable for biological treatment. Because of the characteristics (water content, structure) of these organic materials, composting is not as suitable as fermentation. Fermentation tests with hotel bio-waste turned out a much higher rate of biogas compared with communal bio-waste. Until now, biogas as a possibility of regenerative energy, has notmore » been taken into consideration for big hotels or holiday resorts. Using biogas as an additional source of energy and the fermentation products as fertilizer would be a further step to an ecologically beneficial tourism.« less

  10. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.

    PubMed

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  12. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants

    NASA Astrophysics Data System (ADS)

    Morstyn, Thomas; Farrell, Niall; Darby, Sarah J.; McCulloch, Malcolm D.

    2018-02-01

    Power networks are undergoing a fundamental transition, with traditionally passive consumers becoming `prosumers' — proactive consumers with distributed energy resources, actively managing their consumption, production and storage of energy. A key question that remains unresolved is: how can we incentivize coordination between vast numbers of distributed energy resources, each with different owners and characteristics? Virtual power plants and peer-to-peer (P2P) energy trading offer different sources of value to prosumers and the power network, and have been proposed as different potential structures for future prosumer electricity markets. In this Perspective, we argue they can be combined to capture the benefits of both. We thus propose the concept of the federated power plant, a virtual power plant formed through P2P transactions between self-organizing prosumers. This addresses social, institutional and economic issues faced by top-down strategies for coordinating virtual power plants, while unlocking additional value for P2P energy trading.

  13. Managing previously disposed waste to today's standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less

  14. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  15. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  16. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  17. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  18. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  19. Strategies to improve energy efficiency in sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Au, Mau Teng; Pasupuleti, Jagadeesh; Chua, Kok Hua

    2013-06-01

    This paper discusses on strategies to improve energy efficiency in Sewage Treatment Plant (STP). Four types of STP; conventional activated sludge, extended aeration, oxidation ditch, and sequence batch reactor are presented and strategized to reduce energy consumption based on their influent flow. Strategies to reduce energy consumption include the use of energy saving devices, energy efficient motors, automation/control and modification of processes. It is envisaged that 20-30% of energy could be saved from these initiatives.

  20. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M.; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less

  1. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.

    PubMed

    Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz

    2014-07-15

    Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Quantifying capital goods for waste incineration.

    PubMed

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tungsten Ditelluride: a layered semimetal

    PubMed Central

    Lee, Chia-Hui; Silva, Eduardo Cruz; Calderin, Lazaro; Nguyen, Minh An T.; Hollander, Matthew J.; Bersch, Brian; Mallouk, Thomas E.; Robinson, Joshua A.

    2015-01-01

    Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We experimentally and theoretically investigate the structure, dynamics and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like transport. Our findings unambiguously confirm the metallic nature of WTe2, introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td-WTe2 is readily oxidized via environmental exposure. Finally, these findings confirm that, in its thermodynamically favored Td form, the utilization of WTe2 in electronic device architectures such as field effect transistors may need to be reevaluated. PMID:26066766

  4. Tungsten Ditelluride: a layered semimetal.

    PubMed

    Lee, Chia-Hui; Silva, Eduardo Cruz; Calderin, Lazaro; Nguyen, Minh An T; Hollander, Matthew J; Bersch, Brian; Mallouk, Thomas E; Robinson, Joshua A

    2015-06-12

    Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We experimentally and theoretically investigate the structure, dynamics and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like transport. Our findings unambiguously confirm the metallic nature of WTe2, introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td-WTe2 is readily oxidized via environmental exposure. Finally, these findings confirm that, in its thermodynamically favored Td form, the utilization of WTe2 in electronic device architectures such as field effect transistors may need to be reevaluated.

  5. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    NASA Astrophysics Data System (ADS)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  6. Municipal solid waste system analysis through energy consumption and return approach.

    PubMed

    Tomić, Tihomir; Schneider, Daniel Rolph

    2017-12-01

    Inappropriate waste management and poor resource efficiency are two of the biggest problems which European Union is trying to solve through Landfill Directive, Waste Framework Directive and Circular Economy Package by increasing recycling and reuse and reducing waste disposal. In order to meet set goals, new European Union member states must quickly change national legislature and implement appropriate solutions. In the circumstances of strong EU resource and energy dependence, decision makers need to analyse which of the considered waste management systems leads to higher overall benefits ie. which is more sustainable. The main problem in this kind of analysis is a wide range of possible technologies and the difference in inputs and outputs. Sustainability of these systems is analysed through single-score LCA based assessment, using primary energy used to produce materials and energy vectors as a common measure. To ensure reliable results, interoperability between different data sources and material flows of waste and its components are monitored. Tracking external and internal material, and energy flows enable modelling of mutual interactions between different facilities. Resulting PERI, primary energy return based index, is used for comparison of different waste management scenarios. Results show that time and legislation dependent changes have great influence on decision making related to waste management and interconnected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    EPA Science Inventory

    Abstract

    Wastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  8. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  9. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  10. Assessing the perception and reality of arguments against thermal waste treatment plants in terms of property prices.

    PubMed

    Phillips, K J O; Longhurst, P J; Wagland, S T

    2014-01-01

    The thermal processing of waste materials, although considered to be an essential part of waste management, is often sharply contested in the UK. Arguments such as health, depletion of resources, cost, noise, odours, traffic movement and house prices are often cited as reasons against the development of such facilities. This study aims to review the arguments and identify any effect on property prices due to the public perception of the plant. A selection of existing energy from waste (EfW) facilities in the UK, operational for at least 7 years, was selected and property sales data, within 5 km of the sites, was acquired and analysed in detail. The locations of the properties were calculated in relation to the plant using GIS software (ArcGIS) and the distances split into 5 zones ranging from 0 to 5 km from the site. The local property sale prices, normalised against the local house price index, were compared in two time periods, before and after the facility became operational, across each of the 5 zones. In all cases analysed no significant negative effect was observed on property prices at any distance within 5 km from a modern operational incinerator. This indicated that the perceived negative effect of the thermal processing of waste on local property values is negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Impact of Corrections to the Spallings Volume Calculation on Waste Isolation Pilot Plant Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kicker, Dwayne Curtis; Herrick, Courtney G; Zeitler, Todd

    2015-11-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant solid waste subject to material failure and transport to the surface (i.e., spallings) as a result of a hypothetical future inadvertent drilling intrusion into the repository. An error in the implementation of the DRSPALL finite difference equations was discovered and documented in a software problem report in accordance with the quality assurance procedure for software requirements. This paper describes the corrections to DRSPALL and documents the impact of the new spallings data from the modified DRSPALL on previous performance assessment calculations.more » Updated performance assessments result in more simulations with spallings, which generally translates to an increase in spallings releases to the accessible environment. Total normalized radionuclide releases using the modified DRSPALL data were determined by forming the summation of releases across each potential release pathway, namely borehole cuttings and cavings releases, spallings releases, direct brine releases, and transport releases. Because spallings releases are not a major contributor to the total releases, the updated performance assessment calculations of overall mean complementary cumulative distribution functions for total releases are virtually unchanged. Therefore, the corrections to the spallings volume calculation did not impact Waste Isolation Pilot Plant performance assessment calculation results.« less

  12. Army Reserve Expands Net Zero Energy, Water, Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  13. Efficient Simulation of Explicitly Solvated Proteins in the Well-Tempered Ensemble.

    PubMed

    Deighan, Michael; Bonomi, Massimiliano; Pfaendtner, Jim

    2012-07-10

    Herein, we report significant reduction in the cost of combined parallel tempering and metadynamics simulations (PTMetaD). The efficiency boost is achieved using the recently proposed well-tempered ensemble (WTE) algorithm. We studied the convergence of PTMetaD-WTE conformational sampling and free energy reconstruction of an explicitly solvated 20-residue tryptophan-cage protein (trp-cage). A set of PTMetaD-WTE simulations was compared to a corresponding standard PTMetaD simulation. The properties of PTMetaD-WTE and the convergence of the calculations were compared. The roles of the number of replicas, total simulation time, and adjustable WTE parameter γ were studied.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, Stefano, E-mail: stefano.consonni@polimi.it; Giugliano, Michele; Massarutto, Antonio

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW)more » in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.« less

  15. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from amore » beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex

  16. Thermoelectric energy harvesting for a solid waste processing toilet

    NASA Astrophysics Data System (ADS)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  17. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less

  18. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    PubMed

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  19. Assessing the perception and reality of arguments against thermal waste treatment plants in terms of property prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K.J.O.; Longhurst, P.J.; Wagland, S.T., E-mail: s.t.wagland@cranfield.ac.uk

    Highlights: • Previous research studies have shown that EfW facilities negatively impact the local house prices. • In this study property prices surrounding 3 operational EfW plants were analysed. • No significant negative effect on property prices due to an incinerator was found. - Abstract: The thermal processing of waste materials, although considered to be an essential part of waste management, is often sharply contested in the UK. Arguments such as health, depletion of resources, cost, noise, odours, traffic movement and house prices are often cited as reasons against the development of such facilities. This study aims to review themore » arguments and identify any effect on property prices due to the public perception of the plant. A selection of existing energy from waste (EfW) facilities in the UK, operational for at least 7 years, was selected and property sales data, within 5 km of the sites, was acquired and analysed in detail. The locations of the properties were calculated in relation to the plant using GIS software (ArcGIS) and the distances split into 5 zones ranging from 0 to 5 km from the site. The local property sale prices, normalised against the local house price index, were compared in two time periods, before and after the facility became operational, across each of the 5 zones. In all cases analysed no significant negative effect was observed on property prices at any distance within 5 km from a modern operational incinerator. This indicated that the perceived negative effect of the thermal processing of waste on local property values is negligible.« less

  20. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24more » figures, 60 tables.« less

  1. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.

  2. Solid Waste/Energy Curriculum.

    ERIC Educational Resources Information Center

    Vivan, V. Eugene; And Others

    Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…

  3. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department ofmore » Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document.« less

  4. The presence of zinc in Swedish waste fuels.

    PubMed

    Jones, Frida; Bisaillon, Mattias; Lindberg, Daniel; Hupa, Mikko

    2013-12-01

    Zinc (Zn) is a chemical element that has gained more attention lately owing to its possibility to form corrosive deposits in large boilers, such as Waste-to-Energy plants. Zn enters the boilers in many different forms and particularly in waste, the amount of Zn is hard to determine due to both the heterogeneity of waste in general but also due to the fact that little is yet published specifically about the Zn levels in waste. This study aimed to determine the Zn in Swedish waste fuels by taking regular samples from seven different and geographically separate waste combustion plants over a 12-month period. The analysis shows that there is a relation between the municipal solid waste (MSW) content and the Zn-content; high MSW-content gives lower Zn-content. This means that waste combustion plants with a higher share of industrial and commercial waste and/or building and demolition waste would have a higher share of Zn in the fuel. The study also shows that in Sweden, the geographic location of the plant does not have any effect on the Zn-content. Furthermore, it is concluded that different seasons appear not to affect the Zn concentrations significantly. In some plants there was a clear correlation between the Zn-content and the content of other trace metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Impact of imidacloprid residues on the development of Eisenia fetida during vermicomposting of greenhouse plant waste.

    PubMed

    Fernández-Gómez, Manuel J; Romero, Esperanza; Nogales, Rogelio

    2011-09-15

    Pesticide application in agriculture causes residues in post-harvest plant waste at different concentrations. Knowledge concerning how pesticide concentrations in such waste affect earthworms is essential for recycling greenhouse plant debris through vermicomposting. Here, we have evaluated the effects of imidacloprid (IMD) residues on earthworms (Eisenia fetida) during the vermicomposting of plant waste from greenhouse crops in Spain. Before, the effect of different IMD concentrations on earthworms was tested using cattle manure as an optimum waste for worm development. The results after using cattle manure indicate that IMD dose ≥ 5 mg kg(-1) hinders worm growth and even causes death, whereas IMD dose ≤ 2 mg IMD kg(-1) allows worm growth similar to control but impedes reproduction. The results from the vermicomposting of plant waste reveal that IMD inhibits adequate worm growth and increases mortality. Although 89% worms became sexually mature in substrate containing 2 mg IMD kg(-1), they did not produce cocoons. IMD also affected microorganisms harboured in the substrates for vermicomposting, as indicated by the reduction in their dehydrogenase activity. This enzyme activity was restored after vermicomposting. This study provides a sound basis for the vermicomposting of pesticide-contaminated plant waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.

    PubMed

    Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay

    2018-03-06

    Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

  7. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    PubMed

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.; Warwick, William M.; Orrell, Alice C.

    This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options,more » and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.« less

  9. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  10. Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.

    PubMed

    García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R

    2007-08-15

    Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes.

  11. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  12. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  13. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  14. Substituting energy crops with organic wastes and agro-industrial residues for biogas production.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Adani, Fabrizio

    2009-06-01

    In this study, industrial and agro-industrial by-products and residues (BRs), animal manures (AMs), and various types of organic wastes (OWs) were analyzed to evaluate their suitability as substitutes for energy crops (ECs) in biogas production. A comparison between the costs of the volume of biogas that can be produced from each substrate was presented with respect to the prices of the substrates in the Italian market. Furthermore, four different feeding mixtures were compared with a mixture of EC and swine manure (Mixture A) used in a full-scale plant in Italy. Swine manure is always included as a basic substrate in the feeding mixtures, because many of the Italian biogas plants are connected to farms. When EC were partially substituted with BR (Mixture B), the cost (0.28 euro Nm(-3)) of the volume of biogas of Mixture A dropped to 0.18 euro Nm(-3). Furthermore, when the organic fraction of municipal solid waste (OFMSW) and olive oil sludge (OS) were used as possible solutions (Mixtures C and D), the costs of the volume of biogas were -0.20 and 0.11euroNm(-3), respectively. The negative price signifies that operators earn money for treating the waste. For the fifth mix (Mixture E) of the OFMSW with a high solid substrate, such as glycerin from biodiesel production, the resulting cost of the volume of biogas produced was -0.09 euro Nm(-3). By comparing these figures, it is evident that the biogas plants at farm level are good candidates for treating organic residues of both municipalities and the agro-industrial sector in a cost-effective way, and in providing territorially diffused electric and thermal power. This may represent a potential development for agrarian economy.

  15. Issues in establishing an aerosol radiological baseline for the waste isolation pilot plant near Carlsbad, New Mexico.

    PubMed

    Rodgers, J C; Kenney, J W

    1997-02-01

    The Department of Energy has constructed a deep geologic repository for defense transuranic waste disposal. The Waste Isolation Pilot Plant, located in Southeastern New Mexico, is slated to receive transuranic waste by truck delivery beginning in 1998. The Environmental Evaluation Group (EEG) provides an independent evaluation of the impact on the health and environment in New Mexico of the WIPP project. Since 1985, the EEG has operated a network of air monitoring sites around WIPP and in nearby communities. The radionuclide concentration data from these air samples have been assembled into a useful baseline data base after resolution of a number of methodological and quality assurance issues. Investigation thresholds for the principal radionuclides have been calculated from combined data collected from several sites. These action levels will provide a critical quantitative basis for decisions of whether future airborne radionuclide measurements are attributable to accidental releases.

  16. The role of transporters in supplying energy to plant plastids.

    PubMed

    Flügge, Ulf-Ingo; Häusler, Rainer E; Ludewig, Frank; Gierth, Markus

    2011-04-01

    The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.

  17. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.

    PubMed

    Bigot, M; Guterres, J; Rossato, L; Pudmenzky, A; Doley, D; Whittaker, M; Pillai-McGarry, U; Schmidt, S

    2013-03-15

    Soil contaminants are potentially a major threat to human and ecosystem health and sustainable production of food and energy where mineral processing wastes are discharged into the environment. In extreme conditions, metal concentrations in wastes often exceed even the metal tolerance thresholds of metallophytes (metal-tolerant plants) and sites remain barren with high risks of contaminant leaching and dispersion into the environment via erosion. A novel soil amendment based on micron-size thiol functional cross-linked acrylamide polymer hydrogel particles (X3) binds toxic soluble metals irreversibly and significantly reduces their concentrations in the soil solution to below the phytotoxicity thresholds. X3 mixed into the top 50mm of phytotoxic mine waste materials in pots in glasshouse conditions reduced total soluble concentrations of toxic contaminants by 90.3-98.7% in waste rock, and 88.6-96.4% in tailings immediately after application. After 61 days, quality of unamended bottom layer of X3-treated pots was also significantly improved in both wastes. Combination of X3 and metallophytes was more efficient at improving soil solution quality than X3 alone. Addition of X3 to substrates increased substrate water retention and water availability to plants by up to 108% and 98% for waste rock and tailings respectively. Soil quality improvement by X3 allowed successful early establishment of the native metallophyte grass Astrebla lappacea on both wastes where plants failed to establish otherwise. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1975-01-01

    A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.

  20. Vascular plants of waste storage sites in the 200 areas of the Hanford reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, K.R.; Rickard, W.H.

    1973-12-01

    A brief accounting of terrestrial, riparian and semi-aquatic plants known to be associated with radioactive waste storage sites in the 200 Areas of the Hanford Reservation is given. In most cases the species are characteristic of those which generally inhabit the reservation, but some plants are restricted to specialized habitats provided by particular waste storage sites. It is impractical to list all species growing at each waste storage site because of seasonal variation and changes brought about by environmental management practices. An alpbabetical listing has been prepared with an example of where each species is known to occur. The listmore » will be updated as needed and expanded to include other waste storage areas. Plant specimens were collected during spring and fall when flowering material was available. Herbarium mounts were prepared of many specimens and have been retained as part of the Hanford Reservation herbarium collection. Identification to species level was made whenever possible. Color photographs of the specimen mounts are used as training aids and demonstration material by ARHCO Radiation Monitoring personnel. (auth)« less

  1. Nuclear energy and radioactive waste disposal in the age of recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James L.; Apted, Michael

    2007-07-01

    The magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. For a variety of reasons, nuclear energy must be a major portion of the distribution, at least one third. The often-cited strategic hurdle to this approach is nuclear waste disposal. Present strategies concerning disposal of nuclear waste need to be changed if the world is to achieve both a sustainable energy distribution by 2040 and solve the largest environmental issue of the 21. century - global warming. It is hoped that ambitious proposals to replace fossil fuel power generation by alternatives willmore » drop the percentage of fossil fuel use substantially, but the absolute amount of fossil fuel produced electricity must be kept at or below its present 10 trillion kW-hrs/year. Unfortunately, the rapid growth in consumption to over 30 trillion kW-hrs/year by 2040, means that 20 trillion kW-hrs/yr of non-fossil fuel generated power has to come from other sources. If half of that comes from alternative non-nuclear, non-hydroelectric sources (an increase of 3000%), then nuclear still needs to increase by a factor of four worldwide to compensate. Many of the reasons nuclear energy did not expand after 1970 in North America (proliferation, capital costs, operational risks, waste disposal, and public fear) are no longer a problem. The WIPP site in New Mexico, an example of a solution to the nuclear waste disposal issue, and also to public fear, is an operating deep geologic nuclear waste repository in the massive bedded salt of the Salado Formation. WIPP has been operating for eight years, and as of this writing, has disposed of over 50,000 m{sup 3} of transuranic waste (>100 nCi/g but <23 Curie/liter) including high activity waste. The Salado Formation is an ideal host for any type of nuclear waste, especially waste from recycled spent fuel. (authors)« less

  2. Kinetic study of solid waste pyrolysis using distributed activation energy model.

    PubMed

    Bhavanam, Anjireddy; Sastry, R C

    2015-02-01

    The pyrolysis characteristics of municipal solid waste, agricultural residues such as ground nut shell, cotton husk and their blends are investigated using non-isothermal thermogravimetric analysis (TGA) with in a temperature range of 30-900 °C at different heating rates of 10 °C, 30 °C and 50 °C/min in inert atmosphere. From the thermograms obtained from TGA, it is observed that the maximum rate of degradation occurred in the second stage of the pyrolysis process for all the solid wastes. The distributed activation energy model (DAEM) is used to study the pyrolysis kinetics of the solid wastes. The kinetic parameters E (activation energy), k0 (frequency factor) are calculated from this model. It is found that the range of activation energies for agricultural residues are lower than the municipal solid waste. The activation energies for the municipal solid waste pyrolysis process drastically decreased with addition of agricultural residues. The proposed DAEM is successfully validated with TGA experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.

  4. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease.

    PubMed

    Fouque, D; Kalantar-Zadeh, K; Kopple, J; Cano, N; Chauveau, P; Cuppari, L; Franch, H; Guarnieri, G; Ikizler, T A; Kaysen, G; Lindholm, B; Massy, Z; Mitch, W; Pineda, E; Stenvinkel, P; Treviño-Becerra, A; Trevinho-Becerra, A; Wanner, C

    2008-02-01

    The recent research findings concerning syndromes of muscle wasting, malnutrition, and inflammation in individuals with chronic kidney disease (CKD) or acute kidney injury (AKI) have led to a need for new terminology. To address this need, the International Society of Renal Nutrition and Metabolism (ISRNM) convened an expert panel to review and develop standard terminologies and definitions related to wasting, cachexia, malnutrition, and inflammation in CKD and AKI. The ISRNM expert panel recommends the term 'protein-energy wasting' for loss of body protein mass and fuel reserves. 'Kidney disease wasting' refers to the occurrence of protein-energy wasting in CKD or AKI regardless of the cause. Cachexia is a severe form of protein-energy wasting that occurs infrequently in kidney disease. Protein-energy wasting is diagnosed if three characteristics are present (low serum levels of albumin, transthyretin, or cholesterol), reduced body mass (low or reduced body or fat mass or weight loss with reduced intake of protein and energy), and reduced muscle mass (muscle wasting or sarcopenia, reduced mid-arm muscle circumference). The kidney disease wasting is divided into two main categories of CKD- and AKI-associated protein-energy wasting. Measures of chronic inflammation or other developing tests can be useful clues for the existence of protein-energy wasting but do not define protein-energy wasting. Clinical staging and potential treatment strategies for protein-energy wasting are to be developed in the future.

  5. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    PubMed

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Conversion of finished leather waste incorporated with plant fibers into value added consumer products - An effort to minimize solid waste in Ethiopia.

    PubMed

    Teklay, A; Gebeyehu, G; Getachew, T; Yaynshet, T; Sastry, T P

    2017-10-01

    Presently, the leftovers from leather product industries are discarded as waste in Ethiopia. The objective of the present study was therefore, to prepare composite sheets by incorporating various plant fibers like enset (Ensete ventricosum), hibiscus (Hibiscus cannabinus), jute (Corchorus trilocularis L.), palm (Phoenix dactylifera) and sisal (Agave sisal) in various proportions into the leather waste. Resin binder (RB) and natural rubber latex (NRL) were used as binding agents for the preparation of the composite sheets. The composite sheets prepared were characterized for their physicochemical properties (tensile strength, elongation at break, stitch tear strength, water absorption, water desorption and flexing strength). Composite sheets prepared using RB having 10% hibiscus, 20% palm and 40% sisal fibers showed better mechanical properties than their respective controls. In composite sheets prepared using NRL having 30% jute fiber exhibited better mechanical properties than its control. Most of the plant fibers used in this study played a role in increasing the performance of the sheets. However, as seen from the results, the contribution of these plant fibers on performance of the composite sheets prepared is dependent on the ratio used and the nature of binder. The SEM studies have exhibited the composite nature of the sheets and FTIR studies have shown the functional groups of collagen protein, cellulose and binders. The prepared sheets were used as raw materials for preparation of items like stiff hand bags, ladies' purse, keychain, chappal upper, wallet, wall cover, mouse pad and other interior decorating products. By preparing such value added products, we can reduce solid waste; minimize environmental pollution and thereby securing environmental sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    PubMed

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Co-digestion of organic solid waste and sludge from sewage treatment.

    PubMed

    Edelmann, W; Engeli, H; Gradenecker, M

    2000-01-01

    Solid organic wastes were codigested together with sludge of a sewage treatment plant (STP). In the practical part of the study, a plant to pretreat the organic solid wastes provided by local super markets was constructed at the STP of Frutigen, Switzerland. Up to more than 1 cubic metre of wastes was added to the fermenter of the STP every day. Data collected during 14 months of practical works, showed that for raw fruit and vegetable wastes a two step pretreatment is necessary: First the wastes were chopped and afterwards reduced to a size of 1-2 millimetres, in order to get a homogeneous suspension together with the primary sludge. The vegetable wastes showed excellent digestibility: They seemed to accelerate the digestion process as well as to increase the degree of the anaerobic degradation of the sludge. The energy demand for both, pretreatment and digestion, was 85 kWh/ton of fresh wastes. 20% of the energy was used for the hygienization, a step which does not seem to be necessary for this kind of waste in most of the cases, however. After using the gas for energy conversion, a net yield of 65 kWh/ton of electricity and 166 kWh/ton of heat was measured. Treating cooked kitchen wastes, the net energy production will be higher, because in this case a one step pretreatment will be sufficient. The pretreatment and treatment costs for codigestion on STP's were calculated to be in the range of 55 US$/ton treating half a ton per day and 39 US$/ton treating one ton, respectively. A theoretical feasibility study showed that in Switzerland there is a short term potential on STP's for the codigestion of about 120,000 tons of biogenic wastes per year without big investments. Economic studies about codigestion on agricultural biogas plants showed that the codigestion is a must at the current energy prices, which are far too low for agricultural AD without an additional income by treating solid wastes for third parties.

  9. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  10. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress.

    PubMed

    Pu, Xiaojun; Lv, Xin; Tan, Tinghong; Fu, Faqiong; Qin, Gongwei; Lin, Honghui

    2015-09-01

    Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Reuse of waste materials as growing media for ornamental plants.

    PubMed

    Hernández-Apaolaza, Lourdes; Gascó, Antonio M; Gascó, José M; Guerrero, Francisca

    2005-01-01

    The use of different waste materials: pine bark, coconut fibre and sewage sludge as substrates in the production of ornamental plants was studied, with an special interest on the suitability of coconut fibre as growing substrate for conifer plants. The plant species tested were Pinus pinea, Cupressus arizonica and C. sempervirens and the substrate mixtures were: (1) pine bark, (2) pine bark with 15% of sewage sludge compost, (3) pine bark with 30% of sewage sludge compost, (4) coconut fibre, (5) coconut fibre with 15% of sewage sludge compost and (6) coconut fibre with 30% of sewage sludge compost. Substrates were physically and chemically well characterized, and 75-cm plants were grown on them for one year. Plant and substrate status were periodically tested along the experiment. As biosolid recycling is the main objective of the present work, the mixtures with 30% of composted sewage sludge will be the most convenient substrate to use. For C. sempervirens and C. arizonica, a mixture between pine bark or coconut fibre and 30% of biosolid compost in volume gave the best results, but the lower cost of the pine bark than the coconut fibre substrate indicated the use of the PB+30% CSS. For P. pinea the research of new combinations between waste products is recommended to attain better results.

  12. RESEARCH TO IDENTIFY COMPONENTS OF ENERGY-RELATED WASTES: A STATE-OF-THE-ART REPORT

    EPA Science Inventory

    Pertinent abstracts from a survey of current (post-1976) research projects are categorized according to energy-related activity. Subjects include coal strip mines, oil refineries, oil shale operations, coal-fired power plants, geothermal energy production, coal liquefaction plant...

  13. Energy waste in a university building

    NASA Astrophysics Data System (ADS)

    Numark, Neil J.; Bartlett, Albert A.

    1982-04-01

    Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ``state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of a megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of 40 000 in current energy costs.

  14. Energy waste in a university building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Numark, N.J.; Bartlett, A.A.

    1982-04-01

    Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ''state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of amore » megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of $40 000 in current energy costs.« less

  15. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    DTIC Science & Technology

    2016-06-01

    ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a

  16. Enhanced Sampling in the Well-Tempered Ensemble

    NASA Astrophysics Data System (ADS)

    Bonomi, M.; Parrinello, M.

    2010-05-01

    We introduce the well-tempered ensemble (WTE) which is the biased ensemble sampled by well-tempered metadynamics when the energy is used as collective variable. WTE can be designed so as to have approximately the same average energy as the canonical ensemble but much larger fluctuations. These two properties lead to an extremely fast exploration of phase space. An even greater efficiency is obtained when WTE is combined with parallel tempering. Unbiased Boltzmann averages are computed on the fly by a recently developed reweighting method [M. Bonomi , J. Comput. Chem. 30, 1615 (2009)JCCHDD0192-865110.1002/jcc.21305]. We apply WTE and its parallel tempering variant to the 2d Ising model and to a Gō model of HIV protease, demonstrating in these two representative cases that convergence is accelerated by orders of magnitude.

  17. Enhanced sampling in the well-tempered ensemble.

    PubMed

    Bonomi, M; Parrinello, M

    2010-05-14

    We introduce the well-tempered ensemble (WTE) which is the biased ensemble sampled by well-tempered metadynamics when the energy is used as collective variable. WTE can be designed so as to have approximately the same average energy as the canonical ensemble but much larger fluctuations. These two properties lead to an extremely fast exploration of phase space. An even greater efficiency is obtained when WTE is combined with parallel tempering. Unbiased Boltzmann averages are computed on the fly by a recently developed reweighting method [M. Bonomi, J. Comput. Chem. 30, 1615 (2009)]. We apply WTE and its parallel tempering variant to the 2d Ising model and to a Gō model of HIV protease, demonstrating in these two representative cases that convergence is accelerated by orders of magnitude.

  18. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  19. Sewage sludge drying by energy recovery from OFMSW composting: preliminary feasibility evaluation.

    PubMed

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo

    2014-05-01

    In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    PubMed

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Warm water aquaculture using waste heat and water from zero discharge power plants in the Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckmann, R.A.; Winget, R.N.; Infanger, R.C.

    1984-01-31

    Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less

  2. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  3. Collection of low-grade waste heat for enhanced energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less

  4. Proposal of an environmental performance index to assess solid waste treatment technologies.

    PubMed

    Coelho, Hosmanny Mauro Goulart; Lange, Liséte Celina; Coelho, Lineker Max Goulart

    2012-07-01

    Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Energy analysis of coal, fission, and fusion power plants

    NASA Astrophysics Data System (ADS)

    Tsoulfanidis, N.

    1981-04-01

    The method of net energy analysis has been applied to coal, fission, and fusion power plants. Energy consumption over the lifetime of the plants has been calculated for construction, operation and maintenance, fuel, public welfare, and land use and restoration. Thermal and electric energy requirements were obtained separately for each energy consuming sector. The results of the study are presented in three ways: total energy requirements, energy gain ratio, and payback periods. All three types of power plants are net producers of energy. The coal and fusion power plants are superior to fission plants from the energy efficiency point of view. Fission plants will improve considerably if the centrifuge replaces the gaseous diffusion as a method of enrichment.

  6. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.

    PubMed

    Helftewes, Markus; Flamme, Sabine; Nelles, Michael

    2012-04-01

    This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.

  7. Historical Background on Assessment the Performance of the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, R.P.

    1999-06-01

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the US Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a research and development facility for the safe management, storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and 25 years after site selection, the US Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance assessment conducted in 1996. This performance assessment wasmore » the culmination of four preliminary performance assessments conducted between 1989 and 1992. This report provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project. For example, the federal requirement to provide environmental impact statements and negotiated agreements with the State of New Mexico influenced the type of scientific areas that were investigated and the engineering analysis prior to 1989 for the WIPP.« less

  8. Hanford Facility Dangerous Waste Permit Application for T Plant Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARNES, B.M.

    2002-09-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less

  9. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations.

    PubMed

    Weidemann, E; Allegrini, E; Fruergaard Astrup, T; Hulgaard, T; Riber, C; Jansson, S

    2016-03-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD/F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - <0.09 mm, 0.09-0.355 mm, and >0.355 mm - and analysed for PCDD/F. The coarse fraction (>0.355 mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5 kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered a wide size range (0.09-0.355 mm) and possibly a low toxicity fraction could be identified by splitting this fraction into more narrow size ranges. The ashes exhibited uniform PCDD/F homologue patterns which suggests a stable and continuous generation of PCDD/F. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Economic aspects of thermal treatment of solid waste in a sustainable WM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massarutto, Antonio

    2015-03-15

    Highlights: • Provides a comprehensive review of the applied economic literature dedicated to WtE. • Offers a detailed discussion of the main assumptions that characterize alternative positions. • Highlights the most robust achievements obtained by the applied economic research in this field. • Compares economic and non-economic valuation techniques. - Abstract: This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, withmore » particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.« less

  11. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    PubMed Central

    Pittmann, Timo; Steinmetz, Heidrun

    2017-01-01

    This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants. PMID:28952533

  12. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter Andrew

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less

  13. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  14. Plants for water recycling, oxygen regeneration and food production

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  15. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  16. Impact of Raw and Bioaugmented Olive-Mill Wastewater and Olive-Mill Solid Waste on the Content of Photosynthetic Molecules in Tobacco Plants.

    PubMed

    Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero

    2016-08-03

    Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules.

  17. Chemical and radiological risk factors associated with waste from energy production.

    PubMed

    Christensen, T; Fuglestvedt, J; Benestad, C; Ehdwall, H; Hansen, H; Mustonen, R; Stranden, E

    1992-04-01

    We have tried to estimate the toxic potential of waste from nuclear power plants and from power plants burning fossil fuels. The potential risks have been expressed as 'risk potentials' or 'person equivalents.' These are purely theoretical units and represent only an attempt to quantify the potential impact of different sources and substances on human health. Existing concentration limits for effects on human health are used. The philosophy behind establishing limits for several carcinogenic chemicals is based on a linear dose-effect curve. That is, no lower concentration of no effect exists and one has to accept a certain small risk by accepting the concentration limit. This is in line with the establishment of limits for radiation. Waste products from coal combustion have the highest potential risk among the fossil fuel alternatives. The highest risk is caused by metals, and the fly ash represents the effluent stream giving the largest contribution to the potential risk. The waste from nuclear power production has a lower potential risk than coal if today's limit values re used. If one adjusts the limits for radiation dose and the concentration limit values so that a similar risk is accepted by the limits, nuclear waste seems to have a much higher potential risk than waste from fossil fuel. The possibility that such risk estimates may be used as arguments for safe storage of the different types of waste is discussed. In order to obtain the actual risk from the potential risk, the dispersion of the waste in the environment and its uptake and effects in man have to be taken into account.

  18. Plasma ARC/SCWO Sysems for Waste-to-Energy Applications Utilizing Milwaste Fuels

    DTIC Science & Technology

    2013-07-01

    configuration and physics 4. Gasification and pollution abatement systems 5. Slag chemistry, refractory design, and glass and metal pouring 6. Energy...Manganese (g/L) 0.07 Nickel (g/L) 0.05 Zinc (g/L) 0.49 GA successfully processed the simulated waste for 6 hours at steady state flow

  19. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-16; NRC-2009-0073] DTE ENERGY; Enrico Fermi Atomic... License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit 1 (Fermi-1), located in Monroe County... undue hazard to life or property. There are no provisions in the Atomic Energy Act (or in any other...

  20. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    PubMed

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Waste heat recovery on multiple low-speed reciprocating engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, R.E.

    1982-09-01

    With rising fuel costs, energy conservation has taken on added significance. Installation of Waste Heat Recovery Units (WHRU) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines has also been identified as having energy conservation potential. This paper reviews the development and implementation of a Waste Heat Recovery Unit (WHRU) for multiple low speed engines at the Katy Gas Plant. WHRU's for these engines should be differentiated from high speed engines and gas turbines in that low speed engines produce low frequency, highmore » amplitude pulsating exhaust. The design of a waste heat system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high amplitude frequencies and then used to design structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less

  2. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    NASA Astrophysics Data System (ADS)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost

  3. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  4. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    NASA Astrophysics Data System (ADS)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and

  5. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  6. Succession change of microorganisms on plant waste decomposition in simulation modelling field experiment

    NASA Astrophysics Data System (ADS)

    Vinogradova, Julia; Perminova, Evgenia; Khabibullina, Fluza; Kovaleva, Vera; Lapteva, Elena

    2016-04-01

    Plant waste decomposition processes are closely associated with living activity of soil microbiota in aboveground ecosystems. Functional activity of microorganisms and soil invertebrates determines plant material transformation rate whereby changes in plant material chemical composition during destruction - succession change of soil biota. The purpose of the work was revealing the mechanism of microorganisms succession change during plant waste decomposition in middle-taiga green-moss spruce forests and coniferous-deciduous secondary stands formed after earlier cut bilberry spruce forests. The study materials were undisturbed bilberry spruce forest (Sample Plot 1 - SP1) and coniferous-deciduous secondary stands which were formed after tree cutting activities of 2001-2002 (SP2) and 1969 and 1970 (SP3). Plant material decomposition intensity was determined in microcosms isolated into kapron bags with cell size of 1 mm. At SP1 and SP2, test material was living mosses and at SP3 - fallen birch and aspen leaves. Every test material was exposed for 2 years. Destruction rate was calculated as a weight loss for a particular time period. Composition of micromycetes which participated in plant material decomposition was assessed by the method of inoculation of soil extract to Getchinson's medium and acidified Czapek's medium (pH=4.5). Microbe number and biomass was analyzed by the method of luminescent microscopy. Chemical analysis of plant material was done in the certified Ecoanalytical Laboratory of the Institute of Biology Komi SC UrD RAS. Finally, plant material destruction intensity was similar for study plots and comprised 40-44 % weight loss for 2 years. The strongest differences in plant material decomposition rate between undisturbed spruce forests and secondary after-cut stands were observed at first stages of destruction process. In the first exposition year, mineralizing processes were most active in undisturbed spruce forest. Decomposition rate in cuts at that

  7. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.

    This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amendedmore » digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.« less

  8. Electrical and electronic plastics waste co-combustion with municipal solid waste for energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Mark, F.E.

    1997-12-01

    The recovery or disposal of end-of-life electrical and electronic (E+E) equipment is receiving considerable attention from industry organisations such as APME in order to supply factual information which can be used in the development of a clear industry strategy. It is hoped that such information will persuade EU member states to define the best management practices for this waste stream. One of the difficulties regarding the recovery or disposal of E+E waste is a lack of data regarding its behaviour when incinerated. This lack of data has led to unfounded conclusions by sonic parties that plastic wastes contain harmful halogenatedmore » species which are difficult to treat and remove, and when incinerated contribute to the emission of halogenated species and are responsible for the major portion of emissions. APME has a comprehensive testing program investigating the impact of plastics on municipal solid waste (MSW) incineration. APME`s previous work has demonstrated the positive, beneficial effects of mixed waste plastics in the MSW energy recovery process as well as studying halogen behaviour during the combustion of packaging plastics waste and construction foam from the building industry. The current study was designed to evaluate the incineration of MSW containing typical levels of electrical and electronic (E+E) plastic waste, as well as MSW containing E+E waste in amounts up to 12%.« less

  9. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants.

    PubMed

    Bravo, Miguel; Santos Silva, António; de Brito, Jorge; Evangelista, Luís

    2016-02-01

    This paper intends to analyze the microstructure of concrete with recycled aggregates (RA) from construction and demolition waste from various Portuguese recycling plants. To that effect, several scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed. Various concrete mixes were evaluated in order to analyze the influence of the RA's collection point and consequently of their composition on the mixes' characteristics. Afterward all the mixes were subjected to the capillary water absorption test in order to quantitatively evaluate their porosity. Results from the SEM/EDS analysis were compared with those from capillary water absorption test. The SEM/EDS analysis showed that the bond capacity of aggregates to the new cement paste is greatly influenced by the RA's nature. On the other hand, there was an increase in porosity with the incorporation of RA.

  10. New materials for thermal energy storage in concentrated solar power plants

    NASA Astrophysics Data System (ADS)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  11. Full-scale experimental investigation of deposition and corrosion of pre-protector and 3rd superheater in a waste incineration plant.

    PubMed

    Ma, Wenchao; Wenga, Terrence; Zhang, Nan; Chen, Guanyi; Yan, Beibei; Zhou, Zhihua; Wu, Xiao

    2017-12-13

    Municipal solid waste (MSW) incineration is widely adopted as a waste management strategy and for the energy production. However, this technology experience grave deposition and corrosion of the boiler tubes due to high chlorine (~1.09wt.%) and alkali metal (Na, K) content in MSW. Little is known about the concentration profile of these corrosive elements in the deposits at different boiler locations. Therefore, a full-scale experimental investigation was conducted to determine the concentration profile of Cl, K, Na, S, and Ca in the deposits at pre-protector and compare with those at 3 rd superheater during MSW combustion at a 36 MWe waste incineration plant (WIP) in Chengdu, China. The deposit samples were analyzed using wet chemical techniques, scanning electron microscope coupled with energy dispersive spectroscopy (SEM/EDS), and X-ray diffraction (XRD). The concentrations of Na, K, and Cl were high in the deposits at pre-protector while S and Ca concentrations were high on the 3 rd superheater. The pre-protector was severely corroded than the 3 rd superheater. The governing mechanisms for the deposition and corrosion on these boiler locations were elucidated.

  12. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    Must Be Reliable, Robust, Flexible, and Durable 6 EM Is Piloting the TRA/AD2 Process Hanford Waste Treatment Plant ( WTP ) – The Initial Pilot Project...Evaluation WTP can only treat ~ ½ of the LAW in the time it will take to treat all the HLW. • There is a need for tank space that will get more urgent with...Facility before the WTP Pretreatment and High-Level Waste (HLW) Vitrification Facilities are available (Requires tank farm pretreatment capability) TRAs

  13. Nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less

  14. Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, G., E-mail: buonanno@unicas.i; Stabile, L.; Avino, P.

    2010-07-15

    In the last years numerous epidemiological studies were carried out to evaluate the effects of particulate matter on human health. In industrialized areas, anthropogenic activities highly contribute to the fine and ultrafine particle concentrations. Then, it is important to characterize the evolution of particle size distribution and chemical composition near these emission points. Waste incineration represents a favorable technique for reducing the waste volume. However, in the past, municipal waste incinerators (MWIs) had a bad reputation due to the emission of toxic combustion byproducts. Consequently, the risk perception of the people living near MWIs is very high even if inmore » Western countries waste incineration has nowadays to be considered a relatively clean process from a technical point of view. The study here presented has an exemplary meaning for developing appropriate management and control strategies for air quality in the surrounding of MWIs and to perform exposure assessment for populations involved. Environment particles were continuously measured through a SMPS/APS system over 12 months. The monitoring site represents a downwind receptor of a typical MWI. Furthermore, elements and organic fractions were measured by means of the Instrumental Neutron Activation Analysis and using dichotomous and high volume samplers. Annual mean values of 8.6 x 10{sup 3} +- 3.7 x 10{sup 2} part. cm{sup -3} and 31.1 +- 9.0 mug m{sup -3} were found for number and mass concentration, typical of a rural site. Most of the elements can be attributed to long-range transport from other natural and/or anthropogenic sources. Finally, the Polycyclic Aromatic Hydrocarbons present low concentrations with a mean value of 24.6 ng m{sup -3}.« less

  15. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  16. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals - abstract

    EPA Science Inventory

    Phosphates adsorbed on calcium carbonate are environmental friendly, as they do not require further treatment for the phosphate species desorption due to its effectiveness as the plant fertilizer. In this study, an inexpensive calcium carbonate obtained as a waste material from d...

  17. Energy saving and consumption reducing evaluation of thermal power plant

    NASA Astrophysics Data System (ADS)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  18. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    NASA Astrophysics Data System (ADS)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  19. Developing Primary School Children's Understanding of Energy Waste.

    ERIC Educational Resources Information Center

    Kruger, Colin; Summers, Mike

    2000-01-01

    Studies 34 elementary school children's understanding of five aspects of energy waste and the ways in which these conceptions develop following teaching. Concludes that the children had good prior awareness of some behaviors that save energy, but their reasons for thinking this were based largely on everyday intuitive ideas that involved…

  20. Small-Scale Waste-to-Energy Technology for Contingency Bases

    DTIC Science & Technology

    2012-05-24

    Expedient, No Waste Sorting Technology Readiness Level High Fuel Demand Water Required Steam Infrastructure Required Air Emissions Gasification ...Full gasification system • Costs $26K • GM Industrial Engine (GM 4 Cylinder, 3.00 L) • MeccAlte Generator Head • Imbert type downdraft reactor...Solid waste volume reduction − Response to waste streams  biomass , refuse-derived fuel, shredded waste − Operation and maintenance requirements