Sample records for waste-water treatment plant

  1. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  2. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  3. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    PubMed

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    PubMed

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    PubMed Central

    Pittmann, Timo; Steinmetz, Heidrun

    2017-01-01

    This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants. PMID:28952533

  6. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  7. Scientific approach and practical experience for reconstruction of waste water treatment plants in Russia

    NASA Astrophysics Data System (ADS)

    Makisha, Nikolay; Gogina, Elena

    2017-11-01

    Protection of water bodies has a strict dependence on reliable operation of engineering systems and facilities for water supply and sewage. The majority of these plants and stations has been constructed in 1970-1980's in accordance with rules and regulations of that time. So now most of them require reconstruction due to serious physical or/and technological wear. The current condition of water supply and sewage systems and facilities frequently means a hidden source of serious danger for normal life support and ecological safety of cities and towns. The article reveals an obtained experience and modern approaches for reconstruction of waste water and sludge treatment plants that proved their efficiency even if applied in limited conditions such as area limits, investments limits. The main directions of reconstruction: overhaul repair and partial modernization of existing facilities on the basis of initial project; - restoration and modernization of existing systems on the basis on the current documents and their current condition; upgrade of waste water treatment plants (WWTPs) performance on the basis of modern technologies and methods; reconstruction of sewage systems and facilities and treatment quality improvement.

  8. Benchmarking of municipal waste water treatment plants (an Austrian project).

    PubMed

    Lindtner, S; Kroiss, H; Nowak, O

    2004-01-01

    An Austrian research project focused on the development of process indicators for treatment plants with different process and operation modes. The whole treatment scheme was subdivided into four processes, i.e. mechanical pretreatment (Process 1), mechanical-biological waste water treatment (Process 2), sludge thickening and stabilisation (Process 3) and further sludge treatment and disposal (Process 4). In order to get comparable process indicators it was necessary to subdivide the sample of 76 individual treatment plants all over Austria into five groups according to their mean organic load (COD) in the influent. The specific total yearly costs, the yearly operating costs and the yearly capital costs of the four processes have been related to the yearly average of the measured organic load expressed in COD (110 g COD/pe/d). The specific investment costs for the whole treatment plant and for Process 2 have been related to a calculated standard design capacity of the mechanical-biological part of the treatment plant expressed in COD. The capital costs of processes 1, 3 and 4 have been related to the design capacity of the treatment plant. For each group (related to the size of the plant) a benchmark band has been defined for the total yearly costs, the total yearly operational costs and the total yearly capital costs. For the operational costs of the Processes 1 to 4 one benchmark ([see symbol in text] per pe/year) has been defined for each group. In addition a theoretical cost reduction potential has been calculated. The cost efficiency in regard to water protection and some special sub-processes such as aeration and sludge dewatering has been analysed.

  9. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  10. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  11. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  12. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    USDA-ARS?s Scientific Manuscript database

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  13. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  15. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver-Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-03-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier Transform Infrared (FTIR) spectroscopy and Cavity Ring Down Spectroscopy (CRDS) instruments. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the chamber measurements, provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10% of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant represents a small part (about 1.5%) of the methane emissions of the city of Valence and its surroundings, which is lower than the national inventories.

  16. Estimation of waste water treatment plant methane emissions: methodology and results from a short campaign

    NASA Astrophysics Data System (ADS)

    Yver-Kwok, C. E.; Müller, D.; Caldow, C.; Lebegue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2013-10-01

    This paper describes different methods to estimate methane emissions at different scales. These methods are applied to a waste water treatment plant (WWTP) located in Valence, France. We show that Fourier Transform Infrared (FTIR) measurements as well as Cavity Ring Down Spectroscopy (CRDS) can be used to measure emissions from the process to the regional scale. To estimate the total emissions, we investigate a tracer release method (using C2H2) and the Radon tracer method (using 222Rn). For process-scale emissions, both tracer release and chamber techniques were used. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the Radon tracer method encompasses not only the treatment station but also a large area around. Thus the Radon tracer method is more representative of the regional emissions around the city. Uncertainties for each method are described. Applying the methods to CH4 emissions, we find that the main source of emissions of the plant was not identified with certainty during this short campaign, although the primary source of emissions is likely to be from solid sludge. Overall, the waste water treatment plant represents a small part (3%) of the methane emissions of the city of Valence and its surroundings,which is in agreement with the national inventories.

  17. Monitoring for a specific management objective: protection of shorebird foraging habitat adjacent to a waste water treatment plant.

    PubMed

    Morris, Liz; Petch, David; May, David; Steele, William K

    2017-05-01

    Intertidal invertebrates are often used in environmental monitoring programs as they are good indicators of water quality and an important food source for many species of fish and birds. We present data from a monitoring program where the primary aim is to report on the condition of the potential invertebrate prey abundance, biomass and diversity for migrating shorebirds on mudflats adjacent to a waste water treatment plant in a Ramsar listed wetland in Victoria, Australia. A key threat to the foraging habitat at this site has been assessed as a reduction in potential prey items as a result of the changes to the waste water treatment processes. We use control charts, which summarise data from intertidal mudflats across the whole shoreline of the adjacent waste water treatment plant, to elicit a management response when trigger levels are reached. We then examine data from replicate discharge and control sites to determine the most appropriate management response. The monitoring program sits within an adaptive management framework where management decisions are reviewed and the data is examined at different scales to evaluate and modify our models of the likely outcomes of management actions. This study provides a demonstration of the process undertaken in a year when trigger levels were reached and a management decision was required. This highlights the importance of monitoring data from a range of scales in reducing uncertainty and improving decision making in complex systems.

  18. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  19. Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs).

    PubMed

    Eriksson, Ulrika; Haglund, Peter; Kärrman, Anna

    2017-11-01

    Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in sludge and water from waste water treatment plants, as a result of their incorporation in everyday products and industrial processes. In this study, we measured several classes of persistent PFASs, precursors, transformation intermediates, and newly identified PFASs in influent and effluent sewage water and sludge from three municipal waste water treatment plants in Sweden, sampled in 2015. For sludge, samples from 2012 and 2014 were analyzed as well. Levels of precursors in sludge exceeded those of perfluoroalkyl acids and sulfonic acids (PFCAs and PFSAs), in 2015 the sum of polyfluoroalkyl phosphoric acid esters (PAPs) were 15-20ng/g dry weight, the sum of fluorotelomer sulfonic acids (FTSAs) was 0.8-1.3ng/g, and the sum of perfluorooctane sulfonamides and ethanols ranged from non-detected to 3.2ng/g. Persistent PFSAs and PFCAs were detected at 1.9-3.9ng/g and 2.4-7.3ng/g dry weight, respectively. The influence of precursor compounds was further demonstrated by an observed substantial increase for a majority of the persistent PFCAs and PFSAs in water after waste water treatment. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) had a net mass increase in all WWTPs, with mean values of 83%, 28%, 37% and 58%, respectively. The load of precursors and intermediates in influent water and sludge combined with net mass increase support the hypothesis that degradation of precursor compounds is a significant contributor to PFAS contamination in the environment. Copyright © 2017. Published by Elsevier B.V.

  20. 51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. 2, ELECTRIC POWERHOUSE No. 2, AND OUTDOOR ELECTRICAL SUBSTATION IN BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  2. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  4. Mathematics for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems…

  5. 52. NORTHEASTERN EXTERIOR VIEW OF DOOROLIVER WAST WATER TREATMENT THICKENER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. NORTHEASTERN EXTERIOR VIEW OF DOOR-OLIVER WAST WATER TREATMENT THICKENER No. 1. ELECTRIC POWERHOUSE No. 2 AND BLOW ENGINE HOUSE No. 3 IS IN THE BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  6. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    NASA Astrophysics Data System (ADS)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  7. Detection, composition and treatment of volatile organic compounds from waste treatment plants.

    PubMed

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  8. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  9. Using phytoremediation technologies to upgrade waste water treatment in Europe.

    PubMed

    Schröder, Peter; Navarro-Aviñó, Juan; Azaizeh, Hassan; Goldhirsh, Avi Golan; DiGregorio, Simona; Komives, Tamas; Langergraber, Günter; Lenz, Anton; Maestri, Elena; Memon, Abdul R; Ranalli, Alfonso; Sebastiani, Luca; Smrcek, Stanislav; Vanek, Tomas; Vuilleumier, Stephane; Wissing, Frieder

    2007-11-01

    One of the burning problems of our industrial society is the high consumption of water and the high demand for clean drinking water. Numerous approaches have been taken to reduce water consumption, but in the long run it seems only possible to recycle waste water into high quality water. It seems timely to discuss alternative water remediation technologies that are fit for industrial as well as less developed countries to ensure a high quality of drinking water throughout Europe. The present paper discusses a range of phytoremediation technologies to be applied in a modular approach to integrate and improve the performance of existing wastewater treatment, especially towards the emerging micro pollutants, i.e. organic chemicals and pharmaceuticals. This topic is of global relevance for the EU. Existing technologies for waste water treatment do not sufficiently address increasing pollution situation, especially with the growing use of organic pollutants in the private household and health sector. Although some crude chemical approaches exist, such as advanced oxidation steps, most waste water treatment plants will not be able to adopt them. The same is true for membrane technologies. Incredible progress has been made during recent years, thus providing us with membranes of longevity and stability and, at the same time, high filtration capacity. However, these systems are expensive and delicate in operation, so that the majority of communities will not be able to afford them. Combinations of different phytoremediation technologies seem to be most promising to solve this burning problem. To quantify the occurrence and the distribution of micropollutants, to evaluate their effects, and to prevent them from passing through wastewater collection and treatment systems into rivers, lakes and ground water bodies represents an urgent task for applied environmental sciences in the coming years. Public acceptance of green technologies is generally higher than that of

  10. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    PubMed

    Marathe, Nachiket P; Shetty, Sudarshan A; Shouche, Yogesh S; Larsson, D G Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  11. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production

    PubMed Central

    Shouche, Yogesh S.; Larsson, D. G. Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  12. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Warm water aquaculture using waste heat and water from zero discharge power plants in the Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckmann, R.A.; Winget, R.N.; Infanger, R.C.

    1984-01-31

    Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less

  14. Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant.

    PubMed

    Pittmann, T; Steinmetz, H

    2014-09-01

    This work describes the production of polyhydroxyalkanoates (PHAs) as a side stream process on a municipal waste water treatment plant (WWTP) at different operation conditions. Therefore various tests were conducted regarding a high PHA production and stable PHA composition. Influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were investigated. The results demonstrated a strong influence of the operating conditions on the PHA production. Lower substrate concentration, 20°C, neutral pH-value and a 24h cycle time are preferable for high PHA production up to 28.4% of cell dry weight (CDW). PHA composition was influenced by cycle time only and a stable PHA composition was reached. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Waste Water Plant Operators Manual.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual for sewage treatment plant operators was prepared by a committee of operators, educators, and engineers for use as a reference text and handbook and to serve as a training manual for short course and certification programs. Sewage treatment plant operators have a responsibility in water quality control; they are the principal actors in…

  16. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    PubMed

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  17. CONTROL OF CHELATOR-BASED UPSETS IN SURFACE FINISHING SHOP WASTE WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Actual surface finishing shop examples are used to illustrate the use of process chemistry understanding and analyses to identify immediate, interim and permanent response options for industrial waste water treatment plant (IWTP) upset problems caused by chelating agents. There i...

  18. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  19. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  20. Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin

    USGS Publications Warehouse

    Grant, R. Stephen

    1976-01-01

    A waste-load-assimilation study of a reach of Koshkonong Creek below the Sun Prairie, Wisconsin, sewage-treatment-plant outfall indicated that a high level of treatment would be required to meet Wisconsin water-quality standards. To maintain a minimum dissolved-oxygen concentration of 5 mg/liter during the critical summer low-flow period, 5-day carbonaceous biochemical-oxygen demand in waste discharges should not exceed 5 mg/liter and ammonium nitrogen should not exceed 1.5 mg/liter. Advanced treatment with denitrification is required because stream-reaeration coefficients are not high enough to offset deoxygenation caused by an abundance of attached biological slimes. The slimes apparently consumed dissolved oxygen at a rate of about 110 mg/liter per day at the time of the stream survey. During the critical summer low-flow period, natural stream discharge is very small compared to waste-water discharge , so benefits of dilution are insignificant. An evaluation of two proposed alternative waste-water discharge sites indicated that the present discharge site is hydraulically superior to these sites. Stream-reaeration coefficients used in the study were based on measurements using the radioactive-tracer method. (Woodard-USGS)

  1. [Measurement and analysis of micropore aeration system's oxygenating ability under operation condition in waste water treatment plant].

    PubMed

    Wu, Yuan-Yuan; Zhou, Xiao-Hong; Shi, Han-Chang; Qiu, Yong

    2013-01-01

    Using the aeration pool in the fourth-stage at Wuxi Lucun Waste Water Treatment Plant (WWTP) as experimental setup, off-gas method was selected to measure the oxygenating ability parameters of micropore aerators in a real WWTP operating condition and these values were compared with those in fresh water to evaluate the performance of the micropore aerators. Results showed that the micropore aerators which were distributed in different galleries of the aeration pool had significantly different oxygenating abilities under operation condition. The oxygenating ability of the micropore aerators distributed in the same gallery changed slightly during one day. Comparing with the oxygenating ability in fresh water, it decreased a lot in the real aeration pool, in more details, under the real WWTP operating condition, the values of oxygen transfer coefficient K(La) oxygenation capacity OC and oxygen utilization E(a) decreased by 43%, 57% and 76%, respectively.

  2. N-SINK - reduction of waste water nitrogen load

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  3. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  4. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  5. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  6. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  7. Waste water biological purification plants of dairy products industry and energy management

    NASA Astrophysics Data System (ADS)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  8. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  9. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    PubMed

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  10. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    PubMed

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  11. Co-digestion of domestic kitchen waste and night soil sludge in a full-scale sludge treatment plant.

    PubMed

    Yoneyama, Y; Takeno, K

    2002-01-01

    A study was made on the domestic kitchen waste and night soil treatment performance of a full-scale sludge treatment plant. The sludge treatment at this plant was by thermophilic methane fermentation. The initial treatment, mesophilic to thermophilic fermentation, was able to be started up within a short time by adjusting the amount of influent waste. Thermophilic methane fermentation was carried out for five months (May-October) and the performance under a mean residual time of 22 days indicated a VTS decomposition of 42%, gas generation of 54-1,610 m3/day (average: 755 m3/day), and a mean methane concentration of 60%. The methane gas was used to generate power in the plant and the amount of power generated by methane gas was highest in October (average of 1,200 kWh/day). This was equivalent to about 7% of the power consumed at the entire sludge treatment plant. The BOD/NH4-N of the activated sludge influent water was lower, compared to a case where there is no recycle flow, due to the recycle flow from the methane fermentation process. There was, therefore, a tendency for an increase in the amount of methanol charged into the secondary denitrification tank. However, the quality of the effluent was satisfactory (BOD< 10 mg/L, SS< 5 mg/L, and T-N< 25 mg/L). Study results indicated that it was possible to implement a full-scale plant for recovering organic waste.

  12. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    PubMed

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  13. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  14. Waste stream recycling: Its effect on water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornwell, D.A.; Lee, R.G.

    1994-11-01

    Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.

  15. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke

    2016-04-01

    The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the

  16. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  17. VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. THE ROCKY FLATS PLANT WATER SUPPLY, TREATMENT, STORAGE, AND DISTRIBUTION SYSTEM HAS OPERATED CONTINUOUSLY SINCE 1953 - Rocky Flats Plant, Water Treatment Plant, West of Third Street, north of Cedar Avenue, Golden, Jefferson County, CO

  18. Combining physico-chemical analysis with a Daphnia magna bioassay to evaluate a recycling technology for drinking water treatment plant waste residuals.

    PubMed

    Chen, Ting; Xu, Yongpeng; Zhu, Shijun; Cui, Fuyi

    2015-12-01

    Recycling water treatment plant (WTP) waste residuals is considered to be a feasible method to enhance the efficiency of pollutant removal. This study also evaluated the safety and water quality of a pilot-DWTP waste residuals recycling technology by combining physical-chemistry analysis with a Daphnia magna assay. The water samples taken from each treatment step were extracted and concentrated by XAD-2 resin and were then analyzed for immobilization and enzyme activity with D. magna. The measured parameters, such as the dissolve organic carbon (DOC), UV254 and THM formation potential (THMFPs) of the recycling process, did not obviously increase over 15 days of continuous operation and were even lower than typical values from a conventional process. The extract concentration ranged from 0 to 2 Leq/ml as measured on the 7th and 15th days and the immobilization of D. magna exposed to water treated by the recycling process was nearly equivalent to that of the conventional process. Both the superoxide dismutase (SOD) and the catalase (CAT) activity assay indicated that a lower dose of water extract (0.5, 1, 1.5 Leq/ml) could stimulate the enzyme activity of D. magna, whereas a higher dose (2 Leq/ml at the sampling point C3, R3, R4 ) inhibits the activity. Moreover, the SOD and CAT activity of D. magna with DOC and UV254 showed a strong concentration-effect relationship, where the concentration range of DOC and UV254 were 4.1-16.2 mg/L and 0.071-4.382 cm(-1), respectively. The results showed that there was no statistically significant difference (p>0.05) between the conventional and recycling treatment processes and the toxicity of water samples in the recycling process did not increase during the 15-day continuous recycling trial. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    NASA Astrophysics Data System (ADS)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  20. Assessing Waste Water Treatment Plant Effluents For Thyroid Hormone Disrupting Activity

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two ass...

  1. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  2. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.

  3. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  4. Plant growth in amended molybdenum mine waste rock.

    PubMed

    Burney, Owen T; Redente, Edward F; Lambert, Charles E

    2017-04-01

    This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.

  5. Identification of Entamoeba moshkovskii in Treated Waste Water Used for Agriculture.

    PubMed

    Fonseca, Jairo Andres; Heredia, Rubén Darío; Ortiz, Carolina; Mazo, Martín; Clavijo-Ramírez, Carlos Arturo; Lopez, Myriam Consuelo

    2016-03-01

    We conducted an observational study to determine the prevalence of Entamoeba spp., in samples collected in a waste water treatment plant that provides water for agricultural irrigation. Samples were collected weekly over a period of 10 weeks at representative contamination stages from within the treatment plant. Protozoan identification was performed via light microscopy and culture. PCR amplification of small subunit rRNA gene sequences of E. histolytica/dispar/moshkovskii was performed in culture positive samples. Light microscopy revealed the presence of Entamoeba spp., in 70% (14/20) of the raw waste water samples and in 80% (8/10) of the treated water samples. PCR amplification after culture at both 24 and 37°C revealed that 100% (29/29) of the raw waste water samples and 78.6% (11/14) of the treated waste water were positive for E. moshkovskii. We report the first isolation of E. moshkovskii in Colombia, confirmed by PCR. Recent reports of E. moshkovskii pathogenic potential suggest this finding could constitute a public health risk for people exposed to this water.

  6. Water Treatment Technology - General Plant Operation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  7. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Sumanjeet; Wilson, Aaron; Wendt, Daniel

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but wemore » also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.« less

  8. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without

  9. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  10. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  11. Treatment of industrial effluent water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskii, Yu.N.

    1982-09-01

    This article reports on a thematic exhibition on ''New Developments in Treatment of Natural and Effluent Water'' in the Sanitary-Technical Construction Section at the Exhibition of Achievements of the National Economy of the USSR. The exhibition acquainted visitors with the achievements of leading organizations in different branches of industry with respect to treatment of natural and industrial effluent water. The Kharkov ''Vodkanalproekt'' Institute and the Kharkov affiliate of the All-Union Scientific-Research Institute of Water and Geodesy has jointly developed a ''Polymer-25'' filter for removal of oil products from nonexplosive effluent water discharged by machine building plants. A Baku affiliate hasmore » developed a new ShFP-1 screw-type press filter for dewatering the sediments from water treatment plants as well as for sediments from chemical, food, and other types of plants. The State Institute for Applied Chemistry has designed a continuous process plant for treating effluent water and removing toxic organic waste by converting them into mineral salts with high efficiency.« less

  12. Changes in water quality in the Owabi water treatment plant in Ghana

    NASA Astrophysics Data System (ADS)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2017-03-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity ( r = 0.730), TSS ( r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  13. Iminodiacetic acid modified kenaf fiber for waste water treatment.

    PubMed

    Razak, Muhammad Raznisyafiq; Yusof, Nor Azah; Haron, Mohammad Jelas; Ibrahim, Norazowa; Mohammad, Faruq; Kamaruzaman, Sazlinda; Al-Lohedan, Hamad A

    2018-06-01

    In the present study, iminodiacetic acid (IDA)-modified kenaf fiber, K-IDA formed by the chemical modification of plant kenaf biomass was tested for its efficacy as a sorbent material towards the purification of waste water. The K-IDA fiber was first characterized by the instrumental techniques like Fourier transform infrared (FTIR) analysis, elemental analysis (CHNSO), and scanning electron microscopy (SEM). On testing for the biosorption, we found that the K-IDA has an increment in the adsorption of Cu 2+ ions as compared against the untreated fiber. The Cu 2+ ions adsorption onto K-IDA fits very well with the Langmuir model and the adsorption maximum achieved to be 91.74mg/g. Further, the adsorption kinetics observed to be pseudo second-order kinetics model and the Cu 2+ ions adsorption is a spontaneous endothermic process. The desorption study indicates a highest percentage of Cu 2+ of 97.59% from K-IDA under 1M HCl solution against H 2 SO 4 (72.59%) and HNO 3 (68.66%). The reusability study indicates that the efficiency did not change much until the 4th cycle and also providing enough evidence for the engagement of our biodegradable K-IDA fiber towards the removal of Cu 2+ ions in real-time waste water samples obtained from the electroplating and wood treatment industries. Copyright © 2018. Published by Elsevier B.V.

  14. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  15. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    PubMed

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  16. Treatment of waste water by coagulation and flocculation using biomaterials

    NASA Astrophysics Data System (ADS)

    Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh

    2017-11-01

    The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.

  17. INORGANIC CHEMICAL CHARACTERIZATION OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    The study obtained field data on the inorganic contaminants and constituents in residuals produced by Water Treatment Plants (WTPs). Eight WTPs were studied based on treatment technology, contamination or suspected contamination of raw water, and efficiency in the removal of cont...

  18. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  19. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals - abstract

    EPA Science Inventory

    Phosphates adsorbed on calcium carbonate are environmental friendly, as they do not require further treatment for the phosphate species desorption due to its effectiveness as the plant fertilizer. In this study, an inexpensive calcium carbonate obtained as a waste material from d...

  20. Sludge quantification at water treatment plant and its management scenario.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  1. TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...

  2. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants

    PubMed Central

    Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun

    2015-01-01

    Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant. PMID:26512666

  3. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants.

    PubMed

    Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun

    2015-10-23

    Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.

  4. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding themore » RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d

  5. An Update on Modifications to Water Treatment Plant Model

    EPA Science Inventory

    Water treatment plant (WTP) model is an EPA tool for informing regulatory options. WTP has a few versions: 1). WTP2.2 can help in regulatory analysis. An updated version (WTP3.0) will allow plant-specific analysis (WTP-ccam) and thus help meet plant-specific treatment objectives...

  6. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  7. Cytogenotoxicity screening of source water, wastewater and treated water of drinking water treatment plants using two in vivo test systems: Allium cepa root based and Nile tilapia erythrocyte based tests.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2017-01-01

    Biological effect directed in vivo tests with model organisms are useful in assessing potential health risks associated with chemical contaminations in surface waters. This study examined the applicability of two in vivo test systems viz. plant, Allium cepa root based tests and fish, Oreochromis niloticus erythrocyte based tests for screening cytogenotoxic potential of raw source water, water treatment waste (effluents) and treated water of drinking water treatment plants (DWTPs) using two DWTPs associated with a major river in Sri Lanka. Measured physico-chemical parameters of the raw water, effluents and treated water samples complied with the respective Sri Lankan standards. In the in vivo tests, raw water induced statistically significant root growth retardation, mitodepression and chromosomal abnormalities in the root meristem of the plant and micronuclei/nuclear buds evolution and genetic damage (as reflected by comet scores) in the erythrocytes of the fish compared to the aged tap water controls signifying greater genotoxicity of the source water especially in the dry period. The effluents provoked relatively high cytogenotoxic effects on both test systems but the toxicity in most cases was considerably reduced to the raw water level with the effluent dilution (1:8). In vivo tests indicated reduction of cytogenotoxic potential in the tested drinking water samples. The results support the potential applications of practically feasible in vivo biological test systems such as A. cepa root based tests and the fish erythrocyte based tests as complementary tools for screening cytogenotoxicity potential of the source water and water treatment waste reaching downstream of aquatic ecosystems and for evaluating cytogenotoxicity eliminating efficacy of the DWTPs in different seasons in view of human and ecological safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cost optimisation and minimisation of the environmental impact through life cycle analysis of the waste water treatment plant of Bree (Belgium).

    PubMed

    De Gussem, K; Wambecq, T; Roels, J; Fenu, A; De Gueldre, G; Van De Steene, B

    2011-01-01

    An ASM2da model of the full-scale waste water plant of Bree (Belgium) has been made. It showed very good correlation with reference operational data. This basic model has been extended to include an accurate calculation of environmental footprint and operational costs (energy consumption, dosing of chemicals and sludge treatment). Two optimisation strategies were compared: lowest cost meeting the effluent consent versus lowest environmental footprint. Six optimisation scenarios have been studied, namely (i) implementation of an online control system based on ammonium and nitrate sensors, (ii) implementation of a control on MLSS concentration, (iii) evaluation of internal recirculation flow, (iv) oxygen set point, (v) installation of mixing in the aeration tank, and (vi) evaluation of nitrate setpoint for post denitrification. Both an environmental impact or Life Cycle Assessment (LCA) based approach for optimisation are able to significantly lower the cost and environmental footprint. However, the LCA approach has some advantages over cost minimisation of an existing full-scale plant. LCA tends to chose control settings that are more logic: it results in a safer operation of the plant with less risks regarding the consents. It results in a better effluent at a slightly increased cost.

  9. Reuse of treated wastewater in agriculture: Physicochemical quality and environmental risks. Case of wastewater treatment plant of Baraki and Beni Messous. Algeria

    NASA Astrophysics Data System (ADS)

    Djemil, Wafa; Hannouche, Mani; Belksier, Mohamed Salah

    2018-05-01

    The region of ourstudy has two treatment plants; respectively West and South the Beni Messous and Baraki polluted water treatment plant `PWTP'. Which provide a comprehensive treatment of waste water in the region. The aim of ourworkis to highlight the possibility of reusing the treated waste water from the two Waste water Treatment Plant 'WWTPs' in agriculture. This has been achieved by a comparative study of physicochemical parameters with the WHO and FAO standards recommended for irrigation. Apart from the WWTP Baraki's values of N-NH4, BOD5, COD and Total Chromium for long-term irrigation. Which exceed the standards all other parameters fall in the recommended standards. So It was concluded that the treated waste water from the Beni Messous WWTP isbetter for irrigation than Baraki's. Thus we concluded that the treated waste water from the Beni Messous WWTP is more beneficial for irrigation than Baraki's. The contents of the heavy metals Cr, Pb and Cd recorded in the twotreatment plants do not constitute a danger for the environment. The waste water undergoes different stages of treatment to becomepurified water receivable by the natural environment without environmental impact and to satisfy the strictest ecological constraint. Given the needs and the deficit of the water resources in Algeria. The climatic context, the increasing urbanization and the water stress, some recommendations have been formulated to improve the environmental impact.

  10. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    PubMed

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    PubMed

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  13. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    NASA Astrophysics Data System (ADS)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  14. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  15. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Potential Impacts of Organic Wastes on Small Stream Water Quality

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  17. Bioaccumulation of heavy metals and two organochlorine pesticides (DDT and BHC) in crops irrigated with secondary treated waste water.

    PubMed

    Mishra, Virendra K; Upadhyay, Alka R; Tripathi, B D

    2009-09-01

    Four crop plants Oryza sativa (rice), Solanum melongena (brinjal), Spinacea oleracea (spinach) and Raphanus sativus (radish) were grown to study the impact of secondary treated municipal waste water irrigation. These plants were grown in three plots each of 0.5 ha, and irrigated with secondary treated waste water from a sewage treatment plant. Sludge from the same sewage treatment plant was applied as manure. Cultivated plants were analyzed for accumulation of heavy metals and pesticides. Results revealed the accumulation of six heavy metals cadmium (Cd), chromium (Cr), iron (Fe), copper (Cu), nickel (Ni), and zinc (Zn) as well as two pesticides [1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane; DDT] and benzene hexa chloride (BHC). Order of the plants for the extent of bioaccumulation was S. oleracea > R. sativus > S. melongena > O. sativa. The study has shown the secondary treated waste water can be a source of contamination to the soil and plants.

  18. Revegetation in abandoned quarries with landfill stabilized waste and gravels: water dynamics and plant growth - a case study

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-liang; Feng, Jing-jing; Rong, Li-ming; Zhao, Ting-ning

    2017-11-01

    Large amounts of quarry wastes are produced during quarrying. Though quarry wastes are commonly used in pavement construction and concrete production, in situ utilization during ecological restoration of abandoned quarries has the advantage of simplicity. In this paper, rock fragments 2-3 cm in size were mixed with landfill stabilized waste (LSW) in different proportions (LSW : gravel, RL), which was called LGM. The water content, runoff and plant growth under natural precipitation were monitored for 2 years using a runoff plot experiment. LGM with a low fraction of LSW was compacted to different degrees to achieve an appropriate porosity; water dynamics and plant growth of compacted LGM were studied in a field experiment. The results showed the following: (1) LGM can be used during restoration in abandoned quarries as growing material for plants. (2) RL had a significant effect on the infiltration and water-holding capacity of LGM and thus influenced the retention of precipitation, water condition and plant growth. LGM with RL ranging from 8:1 to 3:7 was suitable for plant growth, and the target species grew best when RL was 5:5. (3) Compaction significantly enhanced water content of LGM with a low RL of 2:8, but leaf water content of plants was lower or unchanged in the more compacted plots. Moderate compaction was beneficial to the survival and growth of Robinia pseudoacacia L. Platycladus orientalis (L.) Franco and Medicago sativa L. were not significantly affected by compaction, and they grew better under a high degree of compaction, which was disadvantageous for the uppermost layer of vegetation.

  19. Iodine-131 in sewage sludge from a small water pollution control plant serving a thyroid cancer treatment facility.

    PubMed

    Rose, Paula S; Swanson, R Lawrence

    2013-08-01

    Iodine-131 (half-life = 8.04 d) is the most widely used radionuclide in medicine for therapeutic purposes. It is excreted by patients and is discharged directly to sewer systems. Despite considerable dilution in waste water and the relatively short half-life of I, it is readily measured in sewage. This work presents I concentrations in sewage sludge from three water pollution control plants (WPCPs) on Long Island, NY. Iodine-131 concentrations ranged from 0.027 ± 0.002 to 148 ± 4 Bq g dry weight. The highest concentrations were measured in the Stony Brook WPCP, a relatively small plant (average flow = 6.8 × 10 L d) serving a regional thyroid cancer treatment facility in Stony Brook, NY. Preliminary radiation dose calculations suggested further evaluation of dose to treatment plant workers in the Stony Brook WPCP based on the recommendations of the Interagency Steering Committee on Radiation Standards.

  20. PLANNING AND ASSESSMENT MEASURES TO UPDATING RESOURCES RECYCLING EQUIPMENTS IN COLLABORATION WITH SEWAGE TREATMENT PLANTS AND WASTE INCINERATION PLANTS

    NASA Astrophysics Data System (ADS)

    Nakakubo, Toyohiko; Tokai, Akihiro; Ohno, Koichi

    This study aims to assess two biomass utilization policies: the integration of food waste treatment in a sewerage treatment plant with an anaerobic digestion tank, and the pruned branch usage as heat source for drying sludge. We focused on two points in our analysis that the impact of the increase of dewatered sludge on sludge treatment processes after digestion and the improvement of the efficiency of waste power generation plants. A developed model was applied to the case study in Kobe city and evaluated the impact until 2030 by four indicators: energy consumption, greenhouse gas (GHG) emission, phosphorus-recovery, and cost. The results showed that case 3-C, which introducing the combined sludge and food waste digestion system, pyrolysis gasification with gas engine and wood-chip boiler, could supply additional 452 TJ/y of energy, recovery 93 t-P/y of phosphorus, and reduce 38 kt-CO2eq./y of GHG while shrinking the cost by 88 million yen/y compared to business as usual types-update case.

  1. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures andmore » are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The

  2. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  3. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  4. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening

    PubMed Central

    Wombacher, William D.; Hornbuckle, Keri C.

    2009-01-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67% to 89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water. PMID:20126513

  5. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening.

    PubMed

    Wombacher, William D; Hornbuckle, Keri C

    2009-11-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67% to 89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water.

  6. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less

  7. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water

    PubMed Central

    Rivera-Vega, Loren J.; Krosse, Sebastian; de Graaf, Rob M.; Garvi, Josef; Garvi-Bode, Renate D.; van Dam, Nicole M.

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4–7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325

  8. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    NASA Astrophysics Data System (ADS)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  9. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.

    PubMed

    Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K

    2016-12-01

    Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .

  10. Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Writer, J. H.; Murphy, S.

    2013-12-01

    The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general

  11. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  12. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department ofmore » Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document.« less

  13. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth.

    PubMed

    González-Alcaraz, María Nazaret; Conesa, Héctor Miguel; Álvarez-Rogel, José

    2013-10-15

    Wetlands are highly effective systems in removing large amounts of N from waters, preventing eutrophication processes. However, when wetlands are polluted by metal-mine wastes their capacity to act as green filters may be diminished. The objective of this study was to evaluate the effect of liming and plants (Sarcocornia fruticosa and Phragmites australis) on the removal of NO3(-) from eutrophic water in slightly acidic, wetland soils polluted by metal-mine wastes. Simulated soil profiles were constructed and six treatments were assayed: (1) no liming + no plant, (2) no liming + S. fruticosa, (3) no liming + P. australis, (4) liming + no plant, (5) liming + S. fruticosa and (6) liming + P. australis. Three horizons were differentiated: A (never under water), C1 (alternating flooding-drying conditions) and C2 (always under water). The eutrophic water used to flood the soil profiles was enriched in N and organic carbon (pH ~ 7.5, electrical conductivity ~ 11 dS m(-1), NO3(-) ~ 234 mg L(-1) and dissolved organic carbon ~ 106 mg L(-1)). The pH, Eh and concentrations of dissolved organic carbon (DOC), N-NO3(-) and N-NH4(+) were measured regularly for 18 weeks. Liming stimulated the growth of plants, especially for S. fruticosa (20-fold more plant biomass than without liming), increased the soil pH and favoured the decline of the Eh values, enhancing the removal of NO3(-) via denitrification. Of all the treatments assayed, liming + S. fruticosa was the only treatment that removed almost completely the high concentration of NO3(-) from the eutrophic flooding water, reaching ~1 mg L(-1) N-NO3(-) at the end of the experiment, at all depths. The higher content of DOC in the pore water of this treatment could explain this behaviour, since more labile carbon was available to the soil microorganisms in the rhizosphere, favouring NO3(-) removal through denitrification processes. However, the treatment liming + P. australis (2-fold more plant biomass that without liming) did not

  14. Individual treatment of hotel and restaurant waste water in rural areas.

    PubMed

    Van Hulle, S W H; Ghyselbrecht, N; Vermeiren, T J L; Depuydt, V; Boeckaert, C

    2012-01-01

    About 25 hotels, restaurants and pubs in the rural community Heuvelland are situated in the area designated for individual water treatment. In order to meet the legislation by the end of 2015, each business needs to install an individual waste water treatment system (IWTS). To study this situation, three catering businesses were selected for further research. The aim of the study was to quantify the effluent quality and to assess IWTS performance for these catering businesses. First of all, the influence of discharging untreated waste water on the receiving surface water was examined. The results showed a decrease in water quality after the discharge point at every business. With the collected data, simulations with the software WEST were performed. With this software two types of IWTSs with different (buffer) volumes were modelled and tested for each catering business. The first type is a completely mixed activated sludge reactor and the second type is a submerged aerobic fixed-bed reactor. The results of these simulations demonstrate that purification with an IWTS is possible if the capacity is large enough and if an adequate buffer volume is installed and if regular maintenance is performed.

  15. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Hadiyanto

    2018-02-01

    Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  16. Risk management in waste water treatment.

    PubMed

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  17. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    PubMed

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  18. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE

    EPA Science Inventory

    The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...

  20. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    PubMed

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  1. Behavior of pharmaceuticals in waste water treatment plant in Japan.

    PubMed

    Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R

    2011-07-01

    The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).

  2. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  3. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    PubMed

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  5. Sterols indicate water quality and wastewater treatment efficiency.

    PubMed

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    treatment in WSPs. They can complement the use of commonly used indicators of water quality, to provide essential information on the overall performance of ponds and whether a pond is underperforming in terms of stabilising human waste. Such a holistic understanding is essential when the aim is to improve the performance of a treatment plant, build new plants or expand existing infrastructure. Future work should aim at further establishing the use of sterols as reliable water quality indicators on a broader scale across natural and engineered systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A&M. Liquid waste treatment plant, TAN616. Plan, elevations, sections, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Liquid waste treatment plant, TAN-616. Plan, elevations, sections, and details. Evaporator pit. Pump room. Room names and numbers. Ralph M. Parsons 902-3-ANP-616-A 297. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index no. 034-0616-00-693-106889 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Electrical efficiency in modern waste to energy plants -- The advanced solutions adopted in a new Italian plant (Milan)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchini, F.M.; Pezzella, B.

    1998-07-01

    The paper has the goal to give a general overview of the current approach for the design of modern Waste to Energy (WtE) plants. The thermal treatment of solid waste is an environmentally sound method to get rid of the garbage produced by everyone and to recover energy simultaneously. A typical waste to energy plant is divided in four segments: incineration/boiler, air pollution control, residues treatment and power generation. Still in the 80's a WtE plant was simply consisting of a these four segments without any particular effort in putting them together into a coordinated plant; therefore the results weremore » very poor in term of overall plant performances even if the single segments were properly designed. This paper shows how this approach is changing and how the synergism between the segments allows to reach interesting performances in term of electric efficiency, always keeping in mind that power must be considered a by-product of the incinerator. Therefore all these efforts have to be done without affecting the burning capacity of the station. The new Milan WtE plant is taken as example throughout the paper. The first section of the paper tries to consider the Municipal Solid Waste as standard fuel; then focal point becomes the electrical efficiency of the plant. In the fourth section the flue gas cleaning system is approached, pointing out the gas quality at stack. Then in the fifth and sixth paragraphs all most important and innovative technical solutions of the Milan plant are shown with some details on water/steam cycle, giving also some availability results. Chapter seven shows some interesting key-figures, related to the combustion of 1,000 kg of MSW at 11 MJ/kg, with also some economical evaluations in term of investment cost per ton of waste per day.« less

  8. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    PubMed

    Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  9. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    PubMed

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  10. Water-level data from wells in the vicinity of the Waste Isolation Pilot Plant, southeastern New Mexico

    USGS Publications Warehouse

    Richey, S.F.

    1987-01-01

    The U.S. Geological Survey monitored water levels in wells in the vicinity of the Waste Isolation Pilot Plant, a storage facility constructed in bedded salts in which defense-associated transuranic wastes will be deposited, in southeastern New Mexico during 1977 to 1985. A variety of methods was used to measure water levels. The particular method utilized at a given time depended on several factors, including the amount of condensation in the well, well-head configuration, depth to water, rate of water level change, and availability of equipment. The five methods utilized were: air line, Lynes pressure sentry system, M-scope, steel tape, and winch. (Lantz-PTT)

  11. Economies of density for on-site waste water treatment.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-09-15

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised

  12. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterisation of medical-waste sterilisation-plant wastewater and a preliminary study of coagulation-flocculation treatment options.

    PubMed

    Ozkan, O; Mihçiokur, H; Azgin, S T; Ozdemir, O

    2010-01-01

    Wastewater from a medical-waste sterilisation plant (MWSP) contains unique pollutants and requires on-site treatment to prevent contamination of the municipal sewage system and receiving water bodies. Therefore, to meet the prescribed discharge standards and comply with the legal regulations, pre-treatment must be applied to MWSP wastewater. In this study, the capabilities of coagulation-flocculation processes were investigated for MWSP wastewater treatment. Processes using ferric chloride, ferrous sulfate and aluminium sulfate as coagulants were characterised. During the coagulation experiments, seven different coagulant dosages and four different pH values were evaluated to determine the optimum coagulant dosage and pH value. The highest removal efficiency of chemical oxygen demand (COD) was obtained using 300 mg/L of ferric chloride at pH 10. A COD removal of about 60% as well as considerable reductions in the amounts of suspended solids, nitrogen and phosphorus were realised.

  14. Problems of reliability and economy work of thermal power plants water treatment based on baromembrane technologies

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Saitov, S. R.

    2017-11-01

    The introduction of baromembrane water treatment technologies for water desalination at Russian thermal power plants was beganed more than 25 years ago. These technologies have demonstrated their definite advantage over the traditional technologies of additional water treatment for steam boilers. However, there are problems associated with the reliability and economy of their work. The first problem is a large volume of waste water (up to 60% of the initial water). The second problem a expensive and unique chemical reagents complex (biocides, antiscalants, washing compositions) is required for units stable and troublefree operation. Each manufacturer develops his own chemical composition for a certain membrane type. This leads to a significant increase in reagents cost, as well as creates dependence of the technology consumer on the certain supplier. The third problem is that the reliability of the baromembrane units depends directly on the water preliminary treatment. The popular pre-cleaning technology with coagulation of aluminum oxychloride proves to be unacceptable during seasonal changes in the quality of the source water at a number of stations. As a result, pollution, poisoning and lesion of the membrane structure or deterioration of their mechanical properties are observed. The report presents ways to solve these problems.

  15. TREATMENT AND PRODUCT RECOVERY: SUPERCRITICAL WATER OXIDATION OF NYLON MONOMER MANUFACTURING WASTE

    EPA Science Inventory

    EPA GRANT NUMBER: R822721C569
    Title: Treatment and Product Recovery: Supercritical Water Oxidation of Nylon Monomer Manufacturing Waste
    Investigator: Earnest F. Gloyna
    Institution: University of Texas at Austin
    EPA Project Officer:<...

  16. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  17. The speciation and subtyping of campylobacter isolates from sewage plants and waste water from a connected poultry abattoir using molecular techniques.

    PubMed Central

    Koenraad, P. M.; Ayling, R.; Hazeleger, W. C.; Rombouts, F. M.; Newell, D. G.

    1995-01-01

    In this study the distribution of phenotypes of campylobacter strains in sewage and surface waters was investigated by subtyping and by speciation of isolates from various aquatic environments. These environments included two municipal sewage plants (SPA and SPB) and waste water from a poultry abattoir (WWA). Both the sewage plants SPA and SPB collected domestic and industrial waste, and SPA received drain water from WWA. SPB received no waste water from any meat-processing plant. The isolates were speciated by PCR and subtyped by PCR/RFLP based on the flagellin PCR products. From all three reservoirs, no Campylobacter lari was isolated, and approximately 80% of the isolates could be identified as C. jejuni and the rest belonged to the C. coli species. The PCR/RFLP typing technique has a high discrimination level and was reproducible between two separate laboratories. The 182 isolates tested yielded 22 distinct Dde I profiles. The results indicate that strains with profiles found in poultry are also detectable in waste water presumed to be solely from domestic and human sources. In addition some strains were unique to the known poultry-related sources, suggesting that avian-specific strains, non-pathogenic to man, may exist in the environment. In contrast some strains were unique to human waste indicating the potential importance of non-poultry sources of infection. No seasonality was observed in the profile distribution. So, at least in the Netherlands, it is unlikely that infections caused by contaminated surface waters contribute to the seasonality of human campylobacteriosis. Images Fig. 1 PMID:8557080

  18. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  19. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  20. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.

    PubMed

    Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).

  1. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    DTIC Science & Technology

    2001-02-01

    Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is

  2. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less

  3. Pollution Impact and Alternative Treatment for Produced Water

    NASA Astrophysics Data System (ADS)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  4. Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Sajidu, S. M. I.; Masamba, W. R. L.; Henry, E. M. T.; Kuyeli, S. M.

    The population of the city of Blantyre has grown rapidly over the past few years without keeping pace with the national economy. The most visibly affected areas of this increase in population are access to adequate clean water, solid waste collection and disposal, sanitary and sewerage facilities. The objective of this study was to evaluate water quality in streams and wastewater treatment plants (WWTP) in the City of Blantyre, Malawi. Study locations included Limbe WWTP, Soche WWTP, Limbe, Mudi and Nasolo streams. Water samples were collected by grab sampling technique in February 2005. Phosphates, nitrates and sulphates were determined by vanadomolybdophosphoric acid colorimetric, salicylate colorimetric and turbidimetric methods, respectively. Metals were analysed using atomic absorption spectroscopy. Concentrations of lead, cadmium, iron, manganese, zinc, chromium and nickel were much higher than the World Health safe limits for drinking water in all the sampled streams after they had passed through industrial areas. Nitrates and sulphates concentrations at all sampling points were found to be lower than the safe limits for drinking water of 50 mg/l and 250 mg/l, respectively. However, phosphate concentrations were above the safe limit of 0.5 mg/l. It was also observed that biochemical oxygen demand (BOD 5) levels were above the World Health Organisation limit of 20 mg/l at all sites except Mudi and Limbe streams before passing through industrial areas. This was an indication of pollution in the streams. Values of pH and total dissolved solids (TDS) were within the recommended standards. The results suggest that streams in Blantyre City get polluted by heavy metals and nutrients which could be due to uncontrolled industrial waste disposal, vehicular emissions and agricultural activities. Regular monitoring of the water quality and enforcement of environmental protection laws are needed in order to control pollution in the city.

  5. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  6. Tracing Waste Water with Li isotopes

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  7. Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.

    2012-12-01

    The University of Colorado-Boulder is one of a few universities in the country that has a licensed Treatment, Storage, and Disposal Facility (TSDF) for hazardous waste on campus. This facility, located on the bottom floor of the Environmental Health and Safety (EH&S) building, allows CU to more economically treat hazardous waste by enabling treatment specialists on staff to safely collect and organize the hazardous waste generated on campus. Hazardous waste is anything that contains a regulated chemical or compound and most chemicals used in engineering labs (e.g., acids, solvents, metal solutions) fall into this category. The EH&S staff is able to treat close almost 33% of the waste from campus and the rest is packed for off-site treatment at various places all over the country for disposal (e.g., Sauget, IL, Port Aurthor, TX). The CU-Boulder campus produced over 50 tons of hazardous waste in 2010 costing over $300,000 in off-campus expenses. The EH&S staff assigns one of over 50 codes to the waste which will determine if the waste can be treated on campus of must be shipped off campus to be disposed of. If the waste can be treated on campus, it will undergo one of three processes: 1) neutralization, 2) UV-ozone oxidation, or 3) ion exchange. If the waste is acidic but contains no heavy metals, the acid is neutralized with sodium hydroxide (a base) and can be disposed "down the drain" to the Boulder Wastewater Treatment Plant. If the waste contains organic compounds and no metals, a UV-ozone oxidation system is used to break down the organic compounds. Silver from photography wastewater can be removed using ion exchange columns. Undergraduate and graduate students worked with the hazardous waste treatment facility at the Environmental Health and Safety (EH&S) building on the CU-Boulder campus during the fall of 2011 and fall of 2012. Early in the semester, students receive a tour of the three batch treatment processes the facility is equipped with. Later in the

  8. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  9. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolvanen, Outi K.; Haenninen, Kari I.

    2006-07-01

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxinsmore » and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment.« less

  10. The cost benefit and efficiency of waste water treatment using domestic ponds—the ultimate solution in Southern Africa

    NASA Astrophysics Data System (ADS)

    Ntengwe, F. W.

    Wastewater treatment has become a challenge to most countries in Southern Africa because of the fluctuating economies that have been hit by high levels of debts. The treatment of domestic wastewater using ponds, if carefully utilized, as has been observed in most countries in the world, is the most cost effective means of handling wastewaters. When compared to the conventional use of treatment plants, the ponds have been observed to be the ultimate solution for the countries in Southern Africa especially those that are classified as Highly Indebted Poor Countries (HIPC) because of little or no operating costs associated with the treatment. The study conducted on Kitwe Waste Water Treatment Ponds to evaluate the cost benefit and efficiencies has revealed low levels of operating cost and high removal efficiencies of oxygen demanding wastes (BOD removal of 86% and TSS removal of 75%), pH values ranged from 7 to 8 indicating an increasing alkalinity from facultative to maturation ponds while other parameters such as nitrates, phosphates and temperature were found to be within acceptable levels thereby releasing effluent that makes the environment sustainable. The overall social benefit was found to be much higher than the operating costs.

  11. A Study of Ballast Water Treatment Using Engine Waste Heat

    NASA Astrophysics Data System (ADS)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  12. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    PubMed

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Laboratory tests on heat treatment of ballast water using engine waste heat.

    PubMed

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B

    2018-05-01

    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  14. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  15. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  16. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  17. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.

    PubMed

    Helftewes, Markus; Flamme, Sabine; Nelles, Michael

    2012-04-01

    This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.

  18. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  19. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241more » in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to

  20. Treatment of hospital waste water by ozone technology

    NASA Astrophysics Data System (ADS)

    Indah Dianawati, Rina; Endah Wahyuningsih, Nur; Nur, Muhammad

    2018-05-01

    Conventional treatment hospital wastewater need high cost, large area, long time and the final result leaves a new waste known as sludge. Alternative to more efficient and new technologies for treated hospital wastewaters was ozonation. Ozonation is able to oxidized pollutant materials in wastewater. This research is to know the decrease of COD and TDS levels with ozone. Waste water samples used by dr. Adhyatma, MPH Hospitals Semarang. Kruskal-Wallis test for COD and TDS with variation of concentration p-value = 0,029 and 0,001 (p≤0,05) or there is significantly difference between COD and TDS with level of concentration but there were no different between levels of COD, and TDS with reactions time variations p-value = 0,735, and 0,870 (p≥0.05). Ozone efficiently reduction of COD and TDS at a concentration of 100 mg/liter, the lowest mean value at COD 17.47 mg/liter and TDS 409.75 mg/liter.

  1. Risk assessment of waste-water disinfection. Report for October 1979-January 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubly, D.; Chappell, W.; Lanning, J.

    A risk-assessment data base is presented for several waste-water disinfection alternatives, including chlorination, ozonation, chlorination/dechlorination, and ultraviolet radiation. The data base covers hazards and consequences related to onsite use and transportation of the disinfectants and ultimate disposal of disinfected effluents. A major segment of the data base deals with the effects of chlorination products in aquatic ecosystems. Energy consumption and cost analyses are also presented for chlorination and ozonation. Example risk calculations are presented for two hypothetical waste-water treatment plants. The usefulness of the data base for risk assessment is also discussed.

  2. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  3. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments

  4. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    PubMed

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  5. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    PubMed

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.

  6. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    EPA Science Inventory

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  7. Evaluation of pharmaceuticals and personal care products with emphasis on anthelmintics in human sanitary waste, sewage, hospital wastewater, livestock wastewater and receiving water.

    PubMed

    Sim, Won-Jin; Kim, Hee-Young; Choi, Sung-Deuk; Kwon, Jung-Hwan; Oh, Jeong-Eun

    2013-03-15

    We investigated 33 pharmaceuticals and personal care products (PPCPs) with emphasis on anthelmintics and their metabolites in human sanitary waste treatment plants (HTPs), sewage treatment plants (STPs), hospital wastewater treatment plants (HWTPs), livestock wastewater treatment plants (LWTPs), river water and seawater. PPCPs showed the characteristic specific occurrence patterns according to wastewater sources. The LWTPs and HTPs showed higher levels (maximum 3000 times in influents) of anthelmintics than other wastewater treatment plants, indicating that livestock wastewater and human sanitary waste are one of principal sources of anthelmintics. Among anthelmintics, fenbendazole and its metabolites are relatively high in the LWTPs, while human anthelmintics such as albendazole and flubendazole are most dominant in the HTPs, STPs and HWTPs. The occurrence pattern of fenbendazole's metabolites in water was different from pharmacokinetics studies, showing the possibility of transformation mechanism other than the metabolism in animal bodies by some processes unknown to us. The river water and seawater are generally affected by the point sources, but the distribution patterns in some receiving water are slightly different from the effluent, indicating the influence of non-point sources. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria

    PubMed Central

    Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  9. Modeling of water treatment plant using timed continuous Petri nets

    NASA Astrophysics Data System (ADS)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  10. Waste Minimization Program. Air Force Plant 4.

    DTIC Science & Technology

    1986-02-01

    incinerator equipped with a secondary combustion chamber and venturi scrubber could serve AFP 4’s needs. As the wastes listed in Table 3-6 contain negligible... scrubber water treatment in the AFP 4eatment. waste treatment system. 2.3 ECONOMICS -Table 2-3 summarizes the projected economics of the recommendations for...control devices. These paint booths are equipped with water curtain air scrubbers which remove solids from the booth exhaust by providing - intimate

  11. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    NASA Astrophysics Data System (ADS)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  12. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    EPA Science Inventory

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  13. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    ERIC Educational Resources Information Center

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  14. Examination of food waste co-digestion to manage the peak in energy demand at wastewater treatment plants.

    PubMed

    Lensch, D; Schaum, C; Cornel, P

    2016-01-01

    Many digesters in Germany are not operated at full capacity; this offers the opportunity for co-digestion. Within this research the potentials and limits of a flexible and adapted sludge treatment are examined with a focus on the digestion process with added food waste as co-substrate. In parallel, energy data from a municipal wastewater treatment plant (WWTP) are analysed and lab-scale semi-continuous and batch digestion tests are conducted. Within the digestion tests, the ratio of sewage sludge to co-substrate was varied. The final methane yields show the high potential of food waste: the higher the amount of food waste the higher the final yield. However, the conversion rates directly after charging demonstrate better results by charging 10% food waste instead of 20%. Finally, these results are merged with the energy data from the WWTP. As an illustration, the load required to cover base loads as well as peak loads for typical daily variations of the plant's energy demand are calculated. It was found that 735 m³ raw sludge and 73 m³ of a mixture of raw sludge and food waste is required to cover 100% of the base load and 95% of the peak load.

  15. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.; Giumanca, R.

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. Inmore » accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to

  16. Packaged Waste Treatment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This Jacksonville, Florida, apartment complex has a wastewater treatment system which clears the water, removes harmful microorganisms and reduces solid residue to ash. It is a spinoff from spacecraft waste management and environmental control technology.

  17. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  18. Sadr City R3 Water Treatment Plant Baghdad, Iraq

    DTIC Science & Technology

    2008-10-29

    Agency for International Development 41 I. Assessment Team Members 47 1 Introduction Background A water treatment plant ( WTP ) is a vital...goals, the responsibility lies not only with the WTP , but also with the community. Community actions include: keeping the water source free of debris...in the distribution system, and most importantly, using this valuable produced resource responsibly. Prior to construction of the Sadr City WTP

  19. Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans in raw and treated water from water treatment plants in Shenzhen, China.

    PubMed

    Lu, Feina; Jiang, Yousheng; Wu, Dongting; Zhou, Jian; Li, Shengnong; Zhang, Jianqing

    2016-04-01

    Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) were analyzed for the first time in raw and treated water from five water treatment plants in Shenzhen, South China. The average PCDD/Fs concentrations were 32.93 pg/L (0.057 pg international toxic equivalent quantity (I-TEQ)/L) and 0.64 pg/L (0.021 pg I-TEQ/L) in raw and treated water, respectively. The removal rate of PCDD/Fs in terms of mass concentration varied from 93.4% to 98.8%, whereas a negative removal rate was observed in one plant in terms of TEQ concentration. The PCDD/Fs concentration in raw water was lower than most of the published data from other countries and regions, and the PCDD/Fs concentration in treated water was below the Maximum Contaminants Level (MCL) of 30 pg/L for dioxin in drinking water set by the US EPA. Historical pentachlorophenol usage, local waste incineration and industrial emissions, as well as surface runoff or even soil erosion, might be the main sources for PCDD/F pollution in water. The daily intake of PCDD/Fs for local residents from drinking water was estimated to be 0.69 fg I-TEQ/kg/day, which is negligible compared with that from food consumption (1.23 pg WHO-TEQ/kg/day) in the local area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  1. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  2. Testing of the cytotoxic effects of sulfate pulp mill waste waters.

    PubMed

    Cernáková, M; Golis, E

    1994-01-01

    The effect of 22 technological waste water samples and of some standards was tested on bacteria, fungi, chlorococcal algae, flagellata, plant cells, cells of Tubifex tubifex, hamster cells V79 and the fish Lebistes reticulatus. Of these 22 samples, some inhibition of cell life processes was displayed by the black liquor formed in the production of paper pulp and viscose pulp, by the waste solution produced during the preparation of bleaching agents for paper pulp and viscose pulp, and by the residual liquor after hypochlorite treatment of paper pulp.

  3. Performance evaluation of water treatment plants based on microfilter technology for rural water supply.

    PubMed

    Reddy, R C; Ravindra Rao, R; Kelkar, P S; Rao, I R; Ramarao, K G; Elyas, S I

    2002-01-01

    Panchayat Raj Engineering Department (PRED), Government of Andhra Pradesh installed package water treatment plants on a trial basis, in some villages in Krishna district of Andhra Pradesh. These plants with a design capacity of 6000-12000 lph were supplied and erected by a firm in Hyderabad. These plants consist of three stage treatment comprising of pulverized quartz filter bed, activated carbon bed and micro filter unit followed by disinfection. At the request of PRED, comprehensive studies were carried on individual plants which includes a detailed appraisal of the performance of the individual components of the plant, infrastructure at the village level for routine O&M of the plants as also views of the community regarding their acceptability of the system. This paper presents the findings and conclusions of the performance evaluation study.

  4. Potential of mosquito fern (Azolla caroliniana Willd.) plants as a biofilter for cadmium removal from waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajwam, K.S.; Ornes, W.H.

    1995-12-31

    The aquatic vascular Mosquito Fern (Azolla Caroliania Willd.) was investigated as a potential biological filter for removal of Cd from waste water. Mosquito Fern plants were grown in and harvested weekly from 0.10 M Hoagland nutrient solutions containing 0.01, 0.04, and 1.03 {mu}g Cd mL{sup -1} or 0.50 M Hoagland nutrient solutions containing 0.02, 1.0, and 9.14,{mu}g Cd mL{sup -1}. Dry weights of plants significantly increased when exposed to all three Cd concentrations in 0. 10 M Hoagland solution through week three then decreased thereafter. However, in plants exposed to Cd treatments in 0.50 M Hoagland solution, dry weights increasedmore » through week one and decreased thereafter. Tissue Cd concentrations in plants grown in 0.10 M Hoagland solution increased during the first two weeks followed by decreases in week 3 and 4. However, tissue Cd increased through week 3 in plants grown in 0.50 M Hoagland solutions. Cadmium exposure to plants grown in 0.10 M Hoagland solution seemed to increase the tissue P concentrations in plants exposed to the lowest concentration of Cd. Tissue P in both control and treated plants in 0.50 M Hoagland solution seemed to increase over time with exception of the medium level (1 {mu}g Cd mL{sup -1}). These results suggest that Mosquito Fern would be useful for absorbing Cd from nutrient-rich water when the solution concentration was in the range of as low as 0.01 and as high as 9.14 {mu}g Cd mL{sup -1}. However, the harvest regime would have to be every one or two weeks to sustain plant vigor and realize maximum uptake of Cd from solution.« less

  5. Waste-water characterization/hazardous-waste survey, Beale Air Force Base, California. Final report, 12-26 September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attebery, C.W.; Zimmer, A.T.; Hedgecock, N.S.

    1989-01-01

    A waste-water characterization hazardous-waste survey was conducted at Beale AFB by USAFOEHL/ECQ personnel to provide the base with sufficient information to address a State of California Notice of Violation concerning excessive discharges of boron and cyanide from the base sewage-treatment plant (STP). The results of the survey showed that the 9th RTS Precision Photo Lab along with other film-processing organizations were major contributors to the boron and cyanide discharge problems being experienced by the base STP. Maintenance organizations that utilize soaps and detergents that contain boron and cyanide also contributed to the problem.

  6. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System

  7. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  8. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT).

    PubMed

    Scheurer, Marco; Brauch, Heinz-J; Lange, Frank T

    2009-07-01

    A method for the simultaneous determination of seven commonly used artificial sweeteners in water is presented. The analytes were extracted by solid phase extraction using Bakerbond SDB 1 cartridges at pH 3 and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in negative ionization mode. Ionization was enhanced by post-column addition of the alkaline modifier Tris(hydroxymethyl)amino methane. Except for aspartame and neohesperidin dihydrochalcone, recoveries were higher than 75% in potable water with comparable results for surface water. Matrix effects due to reduced extraction yields in undiluted waste water were negligible for aspartame and neotame but considerable for the other compounds. The widespread distribution of acesulfame, saccharin, cyclamate, and sucralose in the aquatic environment could be proven. Concentrations in two influents of German sewage treatment plants (STPs) were up to 190 microg/L for cyclamate, about 40 microg/L for acesulfame and saccharin, and less than 1 microg/L for sucralose. Removal in the STPs was limited for acesulfame and sucralose and >94% for saccharin and cyclamate. The persistence of some artificial sweeteners during soil aquifer treatment was demonstrated and confirmed their environmental relevance. The use of sucralose and acesulfame as tracers for anthropogenic contamination is conceivable. In German surface waters, acesulfame was the predominant artificial sweetener with concentrations exceeding 2 microg/L. Other sweeteners were detected up to several hundred nanograms per liter in the order saccharin approximately cyclamate > sucralose.

  9. Radiological Monitoring of Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Y. M.; Nik, H. W.

    2011-03-30

    Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively.more » The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.« less

  10. Plants for water recycling, oxygen regeneration and food production

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  11. The effect of sludge water treatment plant residuals on the properties of compressed brick

    NASA Astrophysics Data System (ADS)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  12. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.

    PubMed

    Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E

    2001-01-01

    Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.

  13. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    EPA Science Inventory

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  14. RECYCLING OF WATER TREATMENT PLANT SLUDGE VIA LAND APPLICATION: ASSESSMENT OF RISK

    EPA Science Inventory

    Water treatment sludges (WTS) offer potential benefits when applied to soil and recycling of the waste stream via land application has been proposed as a management option. Recycling of WTS to the land helps conserve landfill disposal capacity and natural resources, but potential...

  15. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    NASA Technical Reports Server (NTRS)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  16. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    NASA Astrophysics Data System (ADS)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  17. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  18. Wastewater-based epidemiology generated forensic information: Amphetamine synthesis waste and its impact on a small sewage treatment plant.

    PubMed

    Emke, Erik; Vughs, Dennis; Kolkman, Annemieke; de Voogt, Pim

    2018-05-01

    Chemical analysis of domestic wastewater can reveal the presence of illicit drugs either consumed by a population or directly discharged into the sewer system. In the search for causes of a recent malfunctioning of a small domestic wastewater treatment plant aberrantly high loads of amphetamine were observed in the influent of the plant. Direct discharges of chemical waste from illegal production sites were suspected to be the cause. Illegal manufacturing of amphetamines creates substantial amounts of chemical waste. Here we show that fly-tipping of chemical waste originating from an amphetamine synthesis in the catchment of a small sewage treatment plant resulted in failure of the treatment process. Target analysis of drugs of abuse and non-target screening using high resolution mass spectrometry provided evidence for the presence of amphetamine produced from the precursor 1-phenylpropan-2-one by the Leuckart process through specific synthesis markers. Furthermore the identity and presence of the pre-precursor 3-oxo-2-phenylbutanamide was confirmed and a route specific marker was proposed. This is the first study that demonstrates that non-target screening of wastewater can identify intermediates, impurities and by products of the synthesis routes used in illegal manufacturing of amphetamine. The profiles of chemicals thus obtained can be used in tracking productions sites within the corresponding sewer catchment. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Development of a membrane-based process for the treatment of oily waste waters. Final report, March 4, 1992--March 5, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, S.B.

    1994-05-25

    This is a final report from Bend Research, Inc., (BRI) to the U.S. Department of Energy (DOE) for work performed under Contract No. DE-AC22-92MT92005, titled {open_quotes}Development of a Membrane-Based Process for the Treatment of Oily Waste Waters.{close_quotes} This report covers the period from March 4, 1992, to March 5, 1994. The overall goal of this program was to develop an economical oily-water treatment system based on reverse osmosis (RO). The RO system would be used to (1) reduce oil production costs by reducing the volume of waste water that must be disposed of, (2) form the basis of a genericmore » waste-water treatment system that can easily be integrated into oil-field operations, especially at production facilities that are small or in remote locations; and (3) produce water clean enough to meet existing and anticipated environmental regulations. The specific focus of this program was the development of a hollow-fiber membrane module capable of treating oily waste waters.« less

  20. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ..., purification, or distribution of water; and for the collection, treatment, or disposal of waste in rural areas... requirements, Rural areas, Waste treatment and disposal, Water supply, Watersheds. For the reasons discussed in...

  1. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    PubMed

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.

  2. Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continuous feed

    NASA Astrophysics Data System (ADS)

    Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.

    2018-01-01

    Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.

  3. Long-term effect of irrigation with water from sewage treatment plant on AMF biodiversity and microbial activities.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Lozano, Z.; Torres, M. P.; Garcia-Orenes, F.; Roldan, A.

    2012-04-01

    Shortage of water is one of the most important environmental problem in the Mediterranean areas that implicates the search for strategies for saving good quality water. The use of treated waste water for the irrigation of agricultural land can be a good solution for this problem because it reduces the utilization of fresh water and potentially could improve soil key parameters, but can modify physical-chemical and biological properties of the same. The aim of this work was to study the effect of long-term irrigation with treated waste water on microbial diversity, mainly arbuscular mycorrhizal fungi (AMF) of the soil and other properties related with the microbial community. The experiment was developed in an agricultural area with Citrus orchard, located in Alicante in the southeast Spain. Here, we tested whether the communities of AMF as well as soil microbial properties were affected by irrigation with water coming from sewage treatment plant during 40 years in a soil. To carry out this study the soil properties (dehydrogenase, urease, protease-BAA, acid phosphatase, β-glucosidase, glomalin related soil protein, microbial biomass C and aggregate stability) and AMF diversity (the AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses) were analysed in the soil from two different plots with the same soil but with different type of irrigation (irrigated with fresh water and irrigated with treated water). The first results did not show significant differences in some soil properties between soil irrigated with water treated or not.

  4. Aerobic nonaseptic growth of Verticillium on coffee waste waters and cane blackstrap molasses at a pilot plant scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, R.; Maldonado, O.; Menchu, J.F.

    1977-01-01

    An evaluation is made of the pilot plant studies on the biosynthesis of Verticillium sp. both on coffee waste waters and blackstrap molasses. The purpose of the study was two-fold: the first to produce a filamentous fungi as a source of protein and the second to alleviate the serious water pollution resulting from the processing of coffee berries. The molasses was studied as an alternative medium to enable year-round operation of the plant since coffee is a seasonal crop. The results indicated that the growth of Verticillium is technically feasible in a batch operation. (JSR)

  5. Volumetric modeling of two sludge piles from water treatment plants in a Brazilian reservoir.

    PubMed

    Almeida, Aline Mansur; Wada, Eduardo Yukio Basílio; Wasserman, Julio Cesar

    2018-01-01

    Water treatment plants are designed to continuously produce drinkable water, meeting defined criteria of potability. However, besides potable water, these plants produce sludges that are disposed of in the environment. The present work aimed to evaluate the sludges generated in two water treatment plants and disposed of in the margin of the Juturnaíba dam. Since alum has been used as a flocculating agent in these two plants, the concentrations of aluminum were measured in the sludges and in surface sediments. The generated piles are extremely soft to walk on and difficult to measure, so indirect modeling procedures had to be applied. The calculated mass of the sludge piles at each plant are similar and respectively 60,370 and 61,479 tons. The aluminum content of the residues, calculated according to its dosage, was 33.2 and 32.6 g kg -1 in the piles from the two plants. The amount of alum dosed to the water corresponds almost to the excess of aluminum in the sludge, compared to the sediments. It was concluded that regardless of the fact that residues are disposed of in very restricted areas, they are directly in contact with the water and may constitute a threat for the environment and humans' health.

  6. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potentialmore » issues associated with recycling.« less

  7. Centralized waste treatment of industrial wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzberg, E.R.; Cushnie, G.C. Jr.

    1985-01-01

    Centralized waste treatment (CWT) for industrial wastewater is described in this book. With the CWT approach, industrial firms send their wastes to a common processing plant. The book addresses the engineering and business-related problems that are encountered by private CWT firms, local governments, and industry in creating sufficient CWT capacity to meet the growing demand for CWT services.

  8. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.

    PubMed

    Atuanya, Ernest I; Aigbirior, Moses

    2002-07-01

    The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera.

  9. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRAmore » regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.« less

  10. Heterotrophic monitoring at a drinking water treatment plant by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry after different drinking water treatments.

    PubMed

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2017-10-01

    The aim of this work was to assess the suitability of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for routine heterotrophic monitoring in a drinking water treatment plant. Water samples were collected from raw surface water and after different treatments during two campaigns over a 1-year period. Heterotrophic bacteria were studied and isolates were identified by MALDI-TOF MS. Moreover, the diversity index and the coefficient of population similarity were also calculated using biochemical fingerprinting of the populations studied. MALDI-TOF MS enabled us to characterize and detect changes in the bacterial community composition throughout the water treatment plant. Raw water showed a large and diverse population which was slightly modified after initial treatment steps (sand filtration and ultrafiltration). Reverse osmosis had a significant impact on the microbial diversity, while the final chlorination step produced a shift in the composition of the bacterial community. Although MALDI-TOF MS could not identify all the isolates since the available MALDI-TOF MS database does not cover all the bacterial diversity in water, this technique could be used to monitor bacterial changes in drinking water treatment plants by creating a specific protein profile database for tracking purposes.

  11. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    PubMed

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  12. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  13. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  14. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  15. Improved waste water treatment by bio-synthesized Graphene Sand Composite.

    PubMed

    Poornima Parvathi, V; Umadevi, M; Bhaviya Raj, R

    2015-10-01

    The photocatalytic and antibacterial properties of graphene biosynthesized from sugar and anchored on sand particles has been focused here. The morphology and composition of the synthesized Graphene Sand Composite (GSC) was investigated by means of X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDAX), Fourier Transform Infra-red Spectroscopy (FTIR) and UV-Visible spectroscopy. SEM images show wrinkly edges. This is characteristic of graphenic morphology. Three types of waste water samples namely, textile waste (TW), sugarcane industrial waste water (SW) and domestic waste water from a local purification center at Kodaikanal (KWW) were collected and treated. Adsorption experiments showed effective removal of impurities at 0.2 g of GSC. Photocatalytic activity was analyzed under visible and ultraviolet irradiation. The rate constant for TW increased to 0.0032/min for visible light irradiation from 0.0029/min under UV irradiation. SW showed similar improved activity with rate constant as 0.0023/min in visible irradiation compared to 0.0016/min under UV irradiation. For KWW enhanced activity was seen only in visible light irradiation with rate constant 0.0025/min. GSC showed an inhibition zone of 20 mm against the bacterium Escherichia coli. Results suggest development of economic and effective waste water management systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Heat treatment induced bacterial changes in irrigation water and their implications for plant disease management.

    PubMed

    Hao, W; Hong, C X

    2014-05-01

    A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.

  17. NPDES Permit for the Blackfeet Community Water Treatment Plant in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0030643, the Blackfeet Tribe is authorized to discharge from its Blackfoot Community Water Treatment Plant in Glacier County, Montana, to an unnamed intermittent stream which flows to Two Medicine River.

  18. Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J; Liikala, Terry L; Strenge, Dennis L

    PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for ''No Further Action'' by previous investigators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

  19. Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.

    PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

  20. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    PubMed

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  1. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides

  2. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Lyophilization for Water Recovery From Solid Waste

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  4. Determination of estrogenic potential in waste water without sample extraction.

    PubMed

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was

  5. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  6. Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania.

    PubMed

    Lupan, Iulia; Carpa, Rahela; Oltean, Andreea; Kelemen, Beatrice Simona; Popescu, Octavian

    2017-09-27

    The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river.

  7. Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant.

    PubMed

    Neale, Peta A; Antony, Alice; Bartkow, Michael E; Farré, Maria José; Heitz, Anna; Kristiana, Ina; Tang, Janet Y M; Escher, Beate I

    2012-09-18

    Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not

  8. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  9. Trend of Mathematical Models in Microbial Fuel Cell for Environmental Energy Refinery from Waste/Water

    NASA Astrophysics Data System (ADS)

    Oh, Sung Taek

    A microbial fuel cell (MFC) is a device to use for bio electrochemical energy production. Electrophilic bacteria produce electrons in their metabolic pathway and the electrons can be extracted and concentrated on electrode by the electric potential difference (i.e. Galvanic cell). The bio-electrode may provide new opportunities for the renewable energy in waste water/swage treatment plants.

  10. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  11. Making Plant-Support Structures From Waste Plant Fiber

    NASA Technical Reports Server (NTRS)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  12. Mutagenicity and cytotoxicity of liquid waste, press water and pond water, produced in the cassava flour industry, and of antitoxic sodium thiosulfate.

    PubMed

    Viana, Lilian Ávila; Düsman, Elisângela; Vicentini, Veronica Elisa Pimenta

    2014-02-01

    Cassava (Manihot esculenta Crantz), a plant used as food and an ingredient in industry, contains cyanogenic glycosides. The cassava root contains wastewater, popularly known as manipueira, which is a toxic substance. Its ingestion by animals causes poisoning although they react positively to treatment with sodium thiosulfate. The present research evaluates the cytotoxicity and the mutagenicity of liquid waste produced in the process of industrialization of the bitter cassava, olho-junto variety. The liquid wastes are characterized as press water, which is obtained when the cassava roots are pressed; pond water, which is press water stored in impounded ponds; and a solution of sodium thiosulfate, pure and with other waste. The system tests comprised root meristematic cells of Allium cepa L. and bone marrow cells of Rattus norvegicus. Treatment with saline solution was cytotoxic for Allium cepa L. and significantly reduced cell division rate. Although no treatment was cytotoxic in any of the tests with rats, the thiosulfate solution was clastogenic for the chromosomal aberrations test. Since it is harmful to the genetic material submitted within the conditions of current research, sodium thiosulfate should only be used in emergency conditions in which the benefits exceed the risks. © 2013 Society of Chemical Industry.

  13. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  14. Degradation of oxadiazon in a bioreactor integrated in the water closed circuit of a plant nursery.

    PubMed

    Pinilla, Paloma; Ruiz, Juan; Lobo, María Carmen; Martínez-Iñigo, María José

    2008-05-01

    Hardy ornamental nursery stock (HONS) use fertigation as a rational supply of nutrients all along the growth cycle of plants. Nevertheless, that frequency of irrigation increases the risks of nutrient and herbicide leaching and subsequent contamination of the waste water. Therefore, systems of water treatment are required in plant nurseries. Pseudomonas fluorescens strain CG5 cells were immobilized on a ceramic support (sepiolite) contained in a 150 l-bioreactor for the biodegradation of the herbicide oxadiazon in the re-circulated leachates. Percolation and inundation operating processes were assayed in the bioreactor. The levels of oxadiazon in water samples were determined by solid phase extraction on C18 columns and gas chromatography with electron capture detection system. Fifty eight percolation cycles resulted in a significant reduction of oxadiazon up to just 5 microg l(-1) at the outlet. Similar herbicide elimination was achieved after two consecutive 68-h inundation periods. In addition, it was found that the nutrient content in the waste water at the bioreactor outlet was sufficient to support an adequate plant growth.

  15. NPDES Permit for Mesa Verde National Park Water Treatment Plant in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit number CO-0034462, the United States Department of the Interior, National Park Service is authorized to discharge from the Mesa Verde National Park water treatment plant, in Montezuma County, Colo.

  16. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  17. Assessment of Two Different Drinking Water Treatment Plants for the Removal of Free-living Amoebae, Egypt.

    PubMed

    Al-Herrawy, Ahmad Z; Gad, Mahmoud A

    2017-01-01

    The aim of this study was to compare between slow and rapid sand filters for the removal of free-living amoebae during drinking water treatment production. Overall, 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow and rapid sand filters) and from inlet and outlet of each plant. Water samples were collected from Fayoum Drinking Water and Wastewater Holding Company, Egypt, during the year 2015. They were processed for detection of FLAs using non-nutrient agar (NNA). The isolates of FLAs were microscopically identified to the genus level based on the morphologic criteria and molecularly confirmed by the aid of PCR using genus-specific primers. The percentage of removal for FLAs through different treatment processes reached its highest rate in the station using slow sand filters (83%), while the removal by rapid sand filter system was 71.4%. Statistically, there was no significant difference ( P =0.55) for the removal of FLAs between the two different drinking water treatment systems. Statistically, seasons had no significant effect on the prevalence of FLAs in the two different drinking water treatment plants. Morphological identification of the isolated FLAs showed the presence of 3 genera namely Acanthamoeba , Naegleria , and Vermamoeba ( Hartmannella ) confirmed by PCR. The appearance of FLAs especially pathogenic amoebae in completely treated drinking water may cause potential health threat although there is no statistical difference between the two examined drinking water filtration systems.

  18. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Treatment of industrial wastes. 35.925... FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs...

  19. COMETABOLISM OF TRIHALOMETHANES BY NITRIFYING BIOFILTERS UNDER DRINKING WATER TREATMENT PLANT CONDITIONS

    EPA Science Inventory

    EPA Identifier: FP916412
    Title: Cometabolism of Trihalomethanes by Nitrifying Biofilters Under Drinking Water Treatment Plant Conditions
    Fellow (Principal Investigator): David G. Wahman
    Institution: University of Texas at Austin
    EPA ...

  20. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  1. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    PubMed

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.

  2. National economic models of industrial water use and waste treatment. [technology transfer

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Calloway, J. A.

    1974-01-01

    The effects of air emission and solid waste restrictions on production costs and resource use by industry is investigated. A linear program is developed to analyze how resource use, production cost, and waste discharges in different types of production may be affected by resource limiting policies of the government. The method is applied to modeling ethylene and ammonia plants at the design stage. Results show that the effects of increasingly restrictive wastewater effluent standards on increased energy use were small in both plants. Plant models were developed for other industries and the program estimated effects of wastewater discharge policies on production costs of industry.

  3. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    PubMed

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  4. Lake Water Quality Improvement by Using Waste Mussel Shell Powder as an Adsorbent

    NASA Astrophysics Data System (ADS)

    Zukri, N. I.; Khamidun, M. H.; Sapiren, M. S.; Abdullah, S.; Rahman, M. A. A.

    2018-04-01

    Lake water in UTHM was slightly greenish in color indicating the eutrophication process. Eutrophication problem is due to excessive amount of nutrient in the lake water which causes nuisance growth of algae and other aquatic plant. The improvement of lake water quality should be conducted wisely in preventing from eutrophication problem by using a suitable water treatment method. Natural materials, agricultural wastes and industrial wastes are locally available sources can be utilized as low-cost adsorbents. The natural abundant source of waste mussel’s shells is advantages to use as basis material to produce the low cost adsorbent for water treatment. Batch experiments were carried out with the preparation 500 ml volume of lake water sample with the dosage of 2.5g, 7.5g and 12.5g. Then the solution shaking in an incubator with 200 rpm shaking speed. The various dosage of mussel shell greatly affected pollutants removal. Both of NH4+ and PO43- have a higher percentage removal with 31.28% and 21.74% at the 7.5g of sample dosage. Other parameters such as COD and TSS also shown good percentage of removal at 7.5g of dosage sample with 44.45% and 25% respectively. While, dosage at 2.5g was performed as a good adsorption capacity of NH4+, PO43-, COD and TSS as high as 0.142, 0.234, 7.6 and 20 mg/g, respectively. These experimental results suggested that the use of mussel shell powder as good basis material in removing pollutants from lake water.

  5. NPDES Draft Permit for City of New Town Water Treatment Plant in North Dakota

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System draft permit number ND0031151, The City of New Town Water Treatment Plant is authorized to discharge from its wastewater treatment facility in Mountrail County, North Dakota.

  6. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    NASA Astrophysics Data System (ADS)

    Bouqbis, Laila; Werner Koyro, Hans; Kammann, Claudia; Zohra Ainlhout, Lalla Fatima; Boukhalef, Laila; Cherif Harrouni, Moulay

    2018-05-01

    Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC), high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L.) nor for barley (Hordeum vulgare) indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  7. A new microbiological risk analysis tool for cryptosporidium to support decision making in drinking water treatment plants

    NASA Astrophysics Data System (ADS)

    Macián-Cervera, Javier; Escuder-Bueno, Ignacio

    2017-04-01

    One of the main hazards over the water quality in the water supply systems from surface raw water is cryptosporidium, considered by World Health Organization, as the most dangerous emergent pathogen. Analitycal methods for cryptosporidium are expensive, laborious and they do not have enough precission, on the other hand, labs analyze discretal samples, while drinking water production is a continuous process. In that point, the introduction of risk models in necessary to check the ability of safety of the water produced. The advances in tools able to quantify risk applied to conventional treatment drinking water treatment plants is quite useful for the operators, able to assess about decisions in operation and in investments. The model is applied into a real facility. With the results, it's possible to conclude interesting guidelines and policies about improving plant's operation mode. The main conclusion is that conventional treatment is able to work as effective barrier against cryptosporidium, but it is necessary to assess the risk of the plant while it is operating. Taking into account limitations of knowledge, risk estimation can rise non tolerable levels. In that situation, the plant must make investments in the treatment improving the operation, to get tolerable risk levels.

  8. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  9. Biofiltration - an innovative approach to vapor phase treatment at the Silvex hazardous waste site in Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartsfield, B.

    1995-12-31

    Biofiltration is an emerging technology that is being used for vapor phase treatment at the Silvex hazardous waste site. Biofiltration works by directing the off-gas from the groundwater treatment system through a bed of soil, compost or other medium that supports the growth of bacteria. Contaminants are absorbed into the water present in the medium, and are subsequently degraded by the microorganisms. The biofiltration system at the Silvex hazardous waste site has been effective in removing contaminants from the off-gas. The biofiltration system has also been effective in minimizing the odor problem resulting from mercaptans in the off-gas. Biofiltration hasmore » been used for many years at wastewater and industrial plants to control odor and remove organic contaminants. This technology has only recently been used for hazardous waste site cleanups. The hazardous waste literature is now listing biofiltration as a vapor phase treatment technology, along with carbon, thermal oxidation and others.« less

  10. Indigenous Halomonas spp., the Potential Nitrifying Bacteria for Saline Ammonium Waste Water Treatment.

    PubMed

    Sangnoi, Yutthapong; Chankaew, Sunipa; O-Thong, Sompong

    2017-01-01

    Toxic nitrogen compounds are one cause decreasing of shrimp production and water pollution. Indigenous Halomonas spp., isolated from Pacific white shrimp farm are benefitted for saline ammonium waste water treatment. This study aimed to isolate the heterotrophic-halophilic Halomonas spp. and investigate their ammonium removal efficiency. Halomonas spp., were isolated by culturing of samples collected from shrimp farm into modified Pep-Beef-AOM medium. Ammonium converting ability was tested and monitored by nitrite reagent. Ammonium removal efficiency was measured by the standard colorimetric method. Identification and classification of Halomonas spp., were studied by morphological, physiological and biochemical characteristics as well as molecular information. There were 5 strains of heterotrophic-halophilic nitrifying bacteria including SKNB2, SKNB4, SKNB17, SKNB20 and SKNB22 were isolated. The identification result based on 16S rRNA sequence analysis indicated that all 5 strains were Halomonas spp., with sequence similarity values of 91-99 %. Ammonium removal efficiency of all strains showed a range of 23-71%. The production of nitrite was low detected of 0.01-0.15 mg-N L-1, while the amount of nitrate was almost undetectable. This might suggest that the indigenous Halomonas spp., as nitrifying bacteria involved biological nitrification process for decreasing and transforming of ammonia. Due to being heterotrophic, halophilic and ammonium removing bacteria, these Halomonas spp., could be developed for use in treatment of saline ammonium waste water.

  11. Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences.

    PubMed

    Koch, Konrad; Plabst, Markus; Schmidt, Andreas; Helmreich, Brigitte; Drewes, Jörg E

    2016-01-01

    The effects of co-digestion of food waste in a municipal wastewater treatment plant (WWTP) were studied in batch tests. The results obtained were compared with the mass balance of a digester at a full-scale WWTP for a one-year period without and with the addition of co-substrate. The specific methane yield calculated from the balance was 18% higher than the one in the batch tests, suggesting a stimulation of methane generation by co-digestion. It was hypothesized that this increase was caused by shifting the C/N ratio of raw sludge (8.8) to a more favourable ratio of the added food waste (17.7). In addition, potential benefits by adding food waste for energy autarky was investigated. While just 25% of the total energy demand of the plant could be recovered by biogas generation when no co-substrate was fed, this percentage has more than doubled when food waste was added at a ratio of 10% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Vulnerability of Quebec drinking-water treatment plants to cyanotoxins in a climate change context.

    PubMed

    Carrière, Annie; Prévost, Michèle; Zamyadi, Arash; Chevalier, Pierre; Barbeau, Benoit

    2010-09-01

    Cyanobacteria are a growing concern in the province of Quebec due to recent highly publicised bloom episodes. The health risk associated with the consumption of drinking water coming from contaminated sources was unknown. A study was undertaken to evaluate treatment plants' capacity to treat cyanotoxins below the maximum recommended concentrations of 1.5 microg/L microcystin-LR (MC-LR) and the provisional concentration of 3.7 microg/L anatoxin-a, respectively. The results showed that close to 80% of the water treatment plants are presently able to treat the maximum historical concentration measured in Quebec (5.35 microg/L MC-LR equ.). An increase, due to climate change or other factors, would not represent a serious threat because chlorine, the most popular disinfectant, is effective in treating MC-LR under standard disinfection conditions. The highest concentration of anatoxin-a (2.3 microg/L) measured in natural water thus far in source water is below the current guideline for treated waters. However, higher concentrations of anatoxin-a would represent a significant challenge for the water industry as chlorine is not an efficient treatment option. The use of ozone, potassium permanganate or powder activated carbon would have to be considered.

  13. Plant Leachate Nutrient Recovery with Biological, Thermal, and Photocatalytic Pretreatments

    NASA Technical Reports Server (NTRS)

    Wong, Les

    2015-01-01

    Plants are ideal for long term space travel: provide essential resources - oxygen, water, food; Water-soaked plants expel soluble nutrients in a leachate solution - toxins and wastes are also expelled and inhibit growth; biological, thermal, photocatalytic coupled with an acid digestion treatment will hopefully maximize recovery and remove wastes

  14. Occurrence and geodatabase mapping of three contaminants of emerging concern in receiving water and at effluent from waste water treatment plants - A first overview of the situation in the Republic of Ireland.

    PubMed

    Tahar, Alexandre; Tiedeken, Erin Jo; Rowan, Neil J

    2018-03-01

    This constitutes the first study to address occurrence and geodatabase mapping of the anti-inflammatory drug diclofenac (DCL) and the natural (17-beta-estradiol or E2) and synthetic (17-alpha-ethynylestradiol or EE2) estrogenic hormones in Republic of Ireland receiving waters over the period 1999 to 2015. Among these data, 317 samples came from concentration studies, while 205 were from effect-based studies. Monitoring data came from 16 waste water treatment plants (WWTPs), 23 water bodies (including rivers, lakes, marine and transitional waters) and 7 from domestic locations. Out of approximately 1000 WWPTs in the Republic of Ireland, only 16 have been monitored for at least one of these compounds of emerging concern (CECs). Diclofenac is found in treated effluents from 5 WWTPs at levels at least as high as other European WWPTs, and sometime higher. Measurements of E2 and EE2 in WWPT effluents were rare and effluents were more often evaluated for total estrogens; these CECs were generally not detected using conventional analytical methods because of limits of detection being too high compared to environmental concentrations and WFD environmental quality standards. There was good agreement between occurrence of these CEC and regional drug dispensing data in Ireland. Mapping the aforementioned data onto appropriate river basin catchment management tools will inform predictive and simulated risk determinations to inform investment in infrastructure that is necessary to protect rivers and beaches and economic activities that rely on clean water. There is a pressing commensurate need to refine/develop new analytical methods with low levels of detection for future CEC intervention. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Falluja Waste Water Treatment System, Falluja, Iraq

    DTIC Science & Technology

    2008-10-27

    NAME(S) AND ADDRESS(ES) Office of the Special Inspector General for Iraq Reconstruction,400 Army Navy Drive,Arlington,VA,22202 8. PERFORMING...waterways. In addition, another problem was the illegal discharge of septic sewage collected from homes into rivers or on land. The nonoperational...and the storm water collection system, which resulted in the disposal of sanitary waste directly into the Euphrates River. The discharge of raw

  16. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M.; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less

  17. WASTE REDUCTION PRACTICES AT TWO CHROMATED COPPER ARSENATE WOOD-TREATING PLANTS

    EPA Science Inventory

    Two chromated copper arsenate (CCA) wood-treating plants were assessed for their waste reduction practices. The objectives of this study were to estimate the amount of hazardous wastes that a well-designed and well-main- tained CCA treatment facility would generate and to iden- t...

  18. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    PubMed

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  19. Community-based wastewater treatment systems and water quality of an Indonesian village.

    PubMed

    Lim, H S; Lee, L Y; Bramono, S E

    2014-03-01

    This paper examines the impact of community-based water treatment systems on water quality in a peri-urban village in Yogyakarta, Indonesia. Water samples were taken from the wastewater treatment plants (WWTPs), irrigation canals, paddy fields and wells during the dry and wet seasons. The samples were tested for biological and chemical oxygen demand, nutrients (ammonia, nitrate, total nitrogen and total phosphorus) and Escherichia coli. Water quality in this village is affected by the presence of active septic tanks, WWTP effluent discharge, small-scale tempe industries and external sources. We found that the WWTPs remove oxygen-demanding wastes effectively but discharged nutrients, such as nitrate and ammonia, into irrigation canals. Irrigation canals had high levels of E. coli as well as oxygen-demanding wastes. Well samples had high E. coli, nitrate and total nitrogen levels. Rainfall tended to increase concentrations of biological and chemical oxygen demand and some nutrients. All our samples fell within the drinking water standards for nitrate but failed the international and Indonesian standards for E. coli. Water quality in this village can be improved by improving the WWTP treatment of nutrients, encouraging more villagers to be connected to WWTPs and controlling hotspot contamination areas in the village.

  20. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  1. Centralized treatment of industrial wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzberg, E.R.

    1982-08-01

    A low-cost and effective alternative to on-site treatment of industrial wastes which can be used by firms in many areas of the country is described. Under the CWT approach, firms send their wastes to a common processing plant. In the right situations and with the proper kind of inexpensive retrofitting measures, CWT can drastically reduce the cost of treating industrial wastewater because of economies of scale. As well as saving money, CWT has several environmental advantages. First, these facilities are operated by professional waste handlers who should be able to treat and manage the waste more effectively than the generatingmore » firms. Second, the CWT can dramatically increase the potential for recovery of chemicals, which not only reduces the firm's wastewater costs but also the burdens of sludge handling and disposal. EPA, consultants, and local communities have been working on this concept for the last three years. During that time, they have been studying the feasibility of several CWT alternatives already in use in foreign countries for treating electroplating wastewater. In addition to waste treatment, CWT can also provide cogeneration of power, common laboratory facilities and, probably a bulk purchasing cooperative. 3 figures. (JMT)« less

  2. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  3. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  4. Laboratory plant study on the melting process of asbestos waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown thatmore » melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.« less

  5. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation wasmore » observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.« less

  6. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    PubMed

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants.

    PubMed

    Blaak, Hetty; de Kruijf, Patrick; Hamidjaja, Raditijo A; van Hoek, Angela H A M; de Roda Husman, Ana Maria; Schets, Franciska M

    2014-07-16

    Outside health care settings, people may acquire ESBL-producing bacteria through different exposure routes, including contact with human or animal carriers or consumption of contaminated food. However, contact with faecally contaminated surface water may also represent a possible exposure route. The current study investigated the prevalence and characteristics of ESBL-producing Escherichia coli in four Dutch recreational waters and the possible role of nearby waste water treatment plants (WWTP) as contamination source. Isolates from recreational waters were compared with isolates from WWTP effluents, from surface water upstream of the WWTPs, at WWTP discharge points, and in connecting water bodies not influenced by the studied WWTPs. ESBL-producing E. coli were detected in all four recreational waters, with an average concentration of 1.3 colony forming units/100ml, and in 62% of all samples. In surface waters not influenced by the studied WWTPs, ESBL-producing E. coli were detected in similar concentrations, indicating the existence of additional ESBL-E. coli contamination sources. Isolates with identical ESBL-genes, phylogenetic background, antibiotic resistance profiles, and sequence type, were obtained from effluent and different surface water sites in the same watershed, on the same day; occasionally this included isolates from recreational waters. Recreational waters were identified as a potential exposure source of ESBL-producing E. coli. WWTPs were shown to contribute to the presence of these bacteria in surface waters, but other (yet unidentified) sources likely co-contribute. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. Themore » CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  9. Potential of Using Solar Energy for Drinking Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  10. Performance of mechanical biological treatment of residual municipal waste in Poland

    NASA Astrophysics Data System (ADS)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  11. NPDES Permit for Crow Municipal Rural & Industrial Pilot Water Treatment Plant in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  12. A bio-hybrid anaerobic treatment of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Chou, C.Y.

    1987-01-01

    Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

  13. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment.

    PubMed

    Agunbiade, Mayowa Oladele; Van Heerden, Esta; Pohl, Carolina H; Ashafa, Anofi Tom

    2017-06-12

    The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.

  14. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westinghouse TRU Solutions

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified inmore » the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.« less

  15. TENORM: Wastewater Treatment Residuals

    EPA Pesticide Factsheets

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  16. Design of patient rooms and automatic radioiodine-131 waste water management system for a thyroid cancer treatment ward: 'Suandok Model'.

    PubMed

    Vilasdechanon, N; Ua-Apisitwong, S; Chatnampet, K; Ekmahachai, M; Vilasdechanon, J

    2014-09-01

    The great benefit of (131)I radionuclide treatment for differentiated thyroid cancer (DTC) was acknowledged by the long survival rate. The main requirements for (131)I therapy in hospital were treatment facilities and a radiation safety plan that assured radiation protection and safety to patient, hospital worker, public, and environment. To introduce the concepts and methods of radiation safety design for a patient's room in a (131)I treatment ward and a system of radioactive waste water management in hospital. The design was based on principles of external and internal radiation protection for unsealed source and radioactive waste management. Planning for treatment facilities was concluded from clinical evidence, physical and physiological information for (131)I, radiation safety criteria, hospital resources and budget. The three phases of the working process were: construction, software development, and radiation safety assessment. The (131)I treatment facility and automatic radioactive waste water management system was completely implemented in 2009. The radiation waste water management system known as the 'Suandok Model' was highly recommended by the national regulator to hospitals who desire to provide (131)I treatment for thyroid cancer. In 2011, the Nuclear Medicine Division, Chiang Mai University was rewarded by the national authority for a very good radiation practice in development of safe working conditions and environment. The Suandok Model was a facility design that fulfilled requirements for the safe use of high radiation (131)I doses for thyroid cancer treatment in hospital. The facility presented in this study may not be suitable for all hospitals but the design concepts could be applied according to an individual hospital context and resources. People who use or gain benefit from radiation applications have to emphasise the responsibility to control and monitor radiation effects on individuals, communities and the environment.

  17. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  18. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review.

    PubMed

    Fonollosa, E; Nieto, A; Peñalver, A; Aguilar, C; Borrull, F

    2015-03-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Kucharski, John; Tkach, Mark; Olszewski, Jennifer; Chaudhry, Rabia; Mendoza, Guillermo

    2016-04-01

    This presentation demonstrates the application of Climate Risk Informed Decision Analysis (CRIDA) at Zambia's principal water treatment facility, The Iolanda Water Treatment Plant. The water treatment plant is prone to unacceptable failures during periods of low hydropower production at the Kafue Gorge Dam Hydroelectric Power Plant. The case study explores approaches of increasing the water treatment plant's ability to deliver acceptable levels of service under the range of current and potential future climate states. The objective of the study is to investigate alternative investments to build system resilience that might have been informed by the CRIDA process, and to evaluate the extra resource requirements by a bilateral donor agency to implement the CRIDA process. The case study begins with an assessment of the water treatment plant's vulnerability to climate change. It does so by following general principals described in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework". By utilizing relatively simple bootstrapping methods a range of possible future climate states is generated while avoiding the use of more complex and costly downscaling methodologies; that are beyond the budget and technical capacity of many teams. The resulting climate vulnerabilities and uncertainty in the climate states that produce them are analyzed as part of a "Level of Concern" analysis. CRIDA principals are then applied to this Level of Concern analysis in order to arrive at a set of actionable water management decisions. The principal goals of water resource management is to transform variable, uncertain hydrology into dependable services (e.g. water supply, flood risk reduction, ecosystem benefits, hydropower production, etc…). Traditional approaches to climate adaptation require the generation of predicted future climate states but do little guide decision makers how this information should impact decision making. In

  20. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review.

    PubMed

    Yang, Yi; Ok, Yong Sik; Kim, Ki-Hyun; Kwon, Eilhann E; Tsang, Yiu Fai

    2017-10-15

    In recent years, many of micropollutants have been widely detected because of continuous input of pharmaceuticals and personal care products (PPCPs) into the environment and newly developed state-of-the-art analytical methods. PPCP residues are frequently detected in drinking water sources, sewage treatment plants (STPs), and water treatment plants (WTPs) due to their universal consumption, low human metabolic capability, and improper disposal. When partially metabolized PPCPs are transferred into STPs, they elicit negative effects on biological treatment processes; therefore, conventional STPs are insufficient when it comes to PPCP removal. Furthermore, the excreted metabolites may become secondary pollutants and can be further modified in receiving water bodies. Several advanced treatment systems, including membrane filtration, granular activated carbon, and advanced oxidation processes, have been used for the effective removal of individual PPCPs. This review covers the occurrence patterns of PPCPs in water environments and the techniques adopted for their treatment in STP/WTP unit processes operating in various countries. The aim of this review is to provide a comprehensive summary of the removal and fate of PPCPs in different treatment facilities as well as the optimum methods for their elimination in STP and WTP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  2. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  3. Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, John C.

    2012-07-01

    A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comesmore » into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically

  4. Drinking water treatment for a rural karst region in Indonesia

    NASA Astrophysics Data System (ADS)

    Matthies, K.; Schott, C.; Anggraini, A. K.; Silva, A.; Diedel, R.; Mühlebach, H.; Fuchs, S.; Obst, U.; Brenner-Weiss, G.

    2016-09-01

    An interdisciplinary German-Indonesian joint research project on Integrated Water Resources Management (IWRM) focused on the development and exemplary implementation of adapted technologies to improve the water supply situation in a model karst region in southern Java. The project involving 19 sub-projects covers exploration of water resources, water extraction, distribution as well as water quality assurance, and waste water treatment. For the water quality assurance, an appropriate and sustainable drinking water treatment concept was developed and exemplarily implemented. Monitoring results showed that the main quality issue was the contamination with hygienically relevant bacteria. Based on the gained results, a water treatment concept was developed consisting of a central sand filtration prior to the distribution network, a semi-central hygienization where large water volumes are needed to remove bacteria deriving from water distribution and a final point-of-use water treatment. This paper focuses on the development of a central sand filtration plant and some first analysis for the development of a recipe for the local production of ceramic filters for household water treatment. The first results show that arsenic and manganese are leaching from the filters made of local raw material. Though discarding the first, filtrates should be sufficient to reduce arsenic and manganese concentration effectively. Moreover, hydraulic conductivities of filter pots made of 40 % pore-forming agents are presented and discussed.

  5. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    NASA Technical Reports Server (NTRS)

    Lunn, Griffin Michael; Spencer, LaShelle E.; Ruby, Anna Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  6. Proposal of an environmental performance index to assess solid waste treatment technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulart Coelho, Hosmanny Mauro, E-mail: hosmanny@hotmail.com; Lange, Lisete Celina; Coelho, Lineker Max Goulart

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond wastemore » energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of

  7. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant.

    PubMed

    Vieno, Niina M; Härkki, Heli; Tuhkanen, Tuula; Kronberg, Leif

    2007-07-15

    The occurrence of four beta blockers, one antiepileptic drug, one lipid regulator, four anti-inflammatories, and three fluoroquinolones was studied in a river receiving sewage effluents. All compounds but two of the fluoroquinolones were observed in the water above their limit of quantification concentrations. The highest concentrations (up to 107 ng L(-1)) of the compounds were measured during the winter months. The river water was passed to a pilot-scale drinking water treatment plant, and the elimination of the pharmaceuticals was followed during the treatment. The processes applied by the plant consisted of ferric salt coagulation, rapid sand filtration, ozonation, two-stage granular activated carbon filtration (GAC), and UV disinfection. Following the coagulation, sedimentation, and rapid sand filtration, the studied pharmaceuticals were found to be eliminated only by an average of 13%. An efficient elimination was found to take place during ozonation at an ozone dose of about 1 mg L(-1) (i.e., 0.2-0.4 mg of O3/ mg of TOC). Following this treatment, the concentrations of the pharmaceuticals dropped to below the quantification limits with the exception of ciprofloxacin. Atenolol, sotalol, and ciprofloxacin, the most hydrophilic of the studied pharmaceuticals, were not fully eliminated during the GAC filtrations. All in all, the treatment train was found to very effectively eliminate the pharmaceuticals from the rawwater. The only compound that was found to pass almost unaffected through all the treatment steps was ciprofloxacin.

  8. Removal naturally occurring radionuclides from drinking water using a filter specifically designed for Drinking Water Treatment Plants.

    PubMed

    Baeza, A; Salas, A; Guillén, J; Muñoz-Serrano, A; Ontalba-Salamanca, M Á; Jiménez-Ramos, M C

    2017-01-01

    The occurrence of naturally occurring radionuclides in drinking water can pose health hazards in some populations, especially taking into account that routine procedures in Drinking Water Treatment Plants (DWTPs) are normally unable to remove them efficiently from drinking water. In fact, these procedures are practically transparent to them, and in particular to radium. In this paper, the characterization and capabilities of a patented filter designed to remove radium from drinking water with high efficiency is described. This filter is based on a sandwich structure of silica and green sand, with a natural high content manganese oxide. Both sands are authorized by Spanish authorities to be used in Drinking Water Treatment Plants. The Mn distribution in the green sand was found to be homogenous, thus providing a great number of adsorption sites for radium. Kinetic studies showed that the 226 Ra adsorption on green sand was influenced by the content of major cations solved in the treated water, but the saturation level, about 96-99%, was not affected by it. The physico-chemical parameters of the treated water were unaltered by the filter. The efficiency of the filter for the removal of 226 Ra remained unchanged with large water volumes passed through it, proving its potential use in DWTP. This filter was also able to remove initially the uranium content due to the presence of Fe 2 O 3 particles in it, although it is saturated faster than radium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quantifying capital goods for biological treatment of organic waste.

    PubMed

    Brogaard, Line K; Petersen, Per H; Nielsen, Peter D; Christensen, Thomas H

    2015-02-01

    Materials and energy used for construction of anaerobic digestion (AD) and windrow composting plants were quantified in detail. The two technologies were quantified in collaboration with consultants and producers of the parts used to construct the plants. The composting plants were quantified based on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest contribution to Global Warming. The total impact on Global Warming from the capital goods compared to the operation reported in the literature on the AD plant showed an insignificant contribution of 1-2%. For the composting plants, the capital goods accounted for 10-22% of the total impact on Global Warming from composting. © The Author(s) 2015.

  10. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.

    PubMed

    Chen, Xi; Chen, Xiuxia; Wan, Xianwei; Weng, Boqi; Huang, Qin

    2010-12-01

    Both live plants and dried straw of water hyacinth were applied to a sequential treatment of swine wastewater for nitrogen and phosphorus reduction. In the facultative tank, the straw behaved as a kind of adsorbent toward phosphorus. Its phosphorus removal rate varied considerably with contact time between the straw and the influent. In the laboratory, the straw displayed a rapid total phosphorus reduction on a KH(2)PO(4) solution. The adsorption efficiency was about 36% upon saturation. At the same time, the water hyacinth straw in the facultative tank enhanced NH(3)-N removal efficiency as well. However, no adsorption was evident. This study demonstrated an economically feasible means to apply water hyacinth phosphorus straw for the swine wastewater treatment. The sequential system employed significantly reduced the land use, as compared to the wastewater stabilization pond treatment, for pollution amelioration of swine waste. 2010 Elsevier Ltd. All rights reserved.

  11. Master Plan Jakarta, Indonesia: The Giant Seawall and the need for structural treatment of municipal waste water.

    PubMed

    van der Wulp, Simon A; Dsikowitzky, Larissa; Hesse, Karl Jürgen; Schwarzbauer, Jan

    2016-09-30

    In order to take actions against the annual flooding in Jakarta, the construction of a Giant Seawall has been proposed in the Master Plan for National Capital Integrated Coastal Development. The seawall provides a combination of technical solutions against flooding, but these will heavily modify the mass transports in the near-coastal area of Jakarta Bay. This study presents numerical simulations of river flux of total nitrogen and N,N-diethyl-m-toluamide, a molecular tracer for municipal waste water for similar scenarios as described in the Master Plan. Model results demonstrate a strong accumulation of municipal wastes and nutrients in the planned reservoirs to extremely high levels which will result in drastic adverse eutrophication effects if the treatment of municipal waste water is not dealt with in the same priority as the construction of the Giant Seawall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    EPA Science Inventory

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...

  13. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    USGS Publications Warehouse

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  14. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    ERIC Educational Resources Information Center

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  15. Detection and quantification of major toxigenic Microcystis genotypes in Moo-Tan reservoir and associated water treatment plant.

    PubMed

    Yen, Hung-Kai; Lin, Tsair-Fuh; Tseng, I-Cheng

    2012-02-01

    Two molecular methods, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time polymerase chain reaction (qPCR) with the Universal ProbeLibrary (UPL) probe, were developed and used for the characterization and quantification of several microcystin producers in Moo-Tan Reservoir (MTR), Taiwan and its associated water treatment plant (Shih-Men Water Treatment Plant, SMWTP). Internal transcribed spacer (ITS) sequence, a highly diversified region between the 16S rRNA and 23S rRNA genes, was used to further identify the isolated strains from MTR and also used in DGGE for the detection of the specific DNA fragments and biomarkers for 11 strains observed in MTR. These ITS-DGGE biomarkers were successfully applied to monitor the community changes of potential toxigenic Microcystis sp. over a period of five years. Two highly specific primers were combined with UPL probes to measure microcystins synthesis gene (mcyB) and phycocyanin intergenic spacer region (cpcB) concentrations in water samples. The copy concentrations of UPL-mcyB and UPL-cpcB correlated well with MC-RR concentrations/water temperature and Microcystis sp. cell numbers in the water samples, respectively. For SMWTP, toxin concentrations were low, but the DGGE bands clearly demonstrated the presence of potential microcystin producers in both water treatment plants and finished water samples. It was demonstrated that toxigenic Microcystis sp. may penetrate through the treatment processes and pose a potential risk to human health in the drinking water systems.

  16. 20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  17. Combined quantity management and biological treatment of sludge liquor at Hamburg's wastewater treatment plants--first experience in operation with the Store and Treat process.

    PubMed

    Laurich, F

    2004-01-01

    Store and Treat (SAT) is a new concept for the management of ammonium-rich process waste waters at wastewater treatment plants. It combines the advantages of quantity management and separate biological treatment, whereby both operations are carried out in the same tank. Now the first full-scale application of that method was realized in Hamburg. As first experience shows the process can help to increase nitrogen removal and to reduce energy consumption.

  18. Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants.

    PubMed Central

    Jofre, J; Ollé, E; Ribas, F; Vidal, A; Lucena, F

    1995-01-01

    The presence of bacteriophages at different stages in three drinking water treatment plants was evaluated to study the usefulness of phages as model organisms for assessing the efficiency of the processes. The bacteriophages tested were somatic coliphages, F-specific coliphages, and phages infecting Bacteroides fragilis. The presence of enteroviruses and currently used bacterial indicators was also determined. Most bacteriophages were removed during the prechlorination-flocculation-sedimentation step. In these particular treatment plants, which include prechlorination, phages were, in general, more resistant to the treatment processes than present bacterial indicators, with the exception, in some cases, of clostridia. Bacteriophages infecting B. fragilis were found to be more resistant to water treatment than either somatic or F-specific coliphages or even clostridia. Enteric viruses were found only in untreated water in low numbers, and consequently, the efficiency of the plants in the removal of viruses could not be evaluated with precision. The numbers and frequencies of detection of the various microorganisms in water samples taken in the distribution network served by the three plants confirm the results found in the finished water at the plants. PMID:7574632

  19. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  20. Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed of Mitilus edulis shells.

    PubMed

    Torretta, Vincenzo; Collivignarelli, Maria Cristina; Raboni, Massimo; Viotti, Paolo

    2015-01-01

    The paper presents the results of a two-stage pilot plant for the removal of benzene, toluene, ethylbenzene and xylene (BTEX) from a waste air stream of a refinery wastewater treatment plant (WWTP). The pilot plant consisted of a water scrubber followed by a biotrickling filter (BTF). The exhausted air was drawn from the main works of the WWTP in order to prevent the free migration to the atmosphere of these volatile hazardous contaminants. Concentrations were detected at average values of 12.4 mg Nm(-3) for benzene, 11.1 mg Nm(-3) for toluene, 2.7 mg Nm(-3) for ethylbenzene and 9.5 mg Nm(-3) for xylene, with considerable fluctuation mainly for benzene and toluene (peak concentrations of 56.8 and 55.0 mg Nm(-3), respectively). The two treatment stages proved to play an effective complementary task: the water scrubber demonstrated the ability to remove the concentration peaks, whereas the BTF was effective as a polishing stage. The overall average removal efficiency achieved was 94.8% while the scrubber and BTF elimination capacity were 37.8 and 15.6 g BTEX d(-1) m(-3), respectively. This result has led to outlet average concentrations of 1.02, 0.25, 0.32 and 0.26 mg Nm(-3) for benzene, toluene, ethylbenzene and xylene, respectively. The paper also compares these final concentrations with toxic and odour threshold concentrations.

  1. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  2. EVALUATING TREATMENT PLANTS FOR PARTICULATE CONTAMINANT REMOVAL

    EPA Science Inventory

    The article is intended to serve as a guide for those who evaluate water treatment plants with the objective of lowering the turbidity of finished water produced from filtration plants in which chemical coagulation is part of the treatment process. Ineffective removal of turbidit...

  3. The public health significance of trace chemicals in waste water utilization

    PubMed Central

    Shuval, Hillel I.

    1962-01-01

    The practice of waste water utilization has grown considerably in recent years, owing to the growing demand for water for agricultural, industrial and domestic purposes. Such utilization presents certain problems in respect of the quality of the reclaimed water, on account of the presence of certain trace chemicals in the waste waters to be re-used. The presence of these trace chemicals may have important consequences in the agricultural or industrial utilization of waste waters, but from the public health point of view it is in the re-use of waste waters for domestic purposes that their presence has most importance, owing to their possible toxic effects. This paper discusses the public health significance of trace chemicals in water, with special reference to some of the newer complex synthetic organic compounds that are appearing in ever-increasing numbers in industrial wastes. Current information on the acute and chronic toxicity of these substances is reviewed and related to possible methods of treatment of waste waters. In conclusion, the author points out that the problem of trace chemicals is not confined only to direct waste-water reclamation projects, but arises in all cases where surface waters polluted with industrial wastes are used as a source of domestic supply. PMID:13988826

  4. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca; Colturato, L.F.; Font, X.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSWmore » under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.« less

  5. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

    PubMed

    Martín-González, L; Colturato, L F; Font, X; Vicent, T

    2010-10-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  7. Fluctuations of dissolved organic matter in river used for drinking water and impacts on conventional treatment plant performance.

    PubMed

    Volk, Christian; Kaplan, Louis A; Robinson, Jeff; Johnson, Bruce; Wood, Larry; Zhu, Hai Wei; LeChevallier, Mark

    2005-06-01

    Natural organic matter (NOM) in drinking water supplies can provide precursors for disinfectant byproducts, molecules that impact taste and odors, compounds that influence the efficacy of treatment, and other compounds that are a source of energy and carbon for the regrowth of microorganisms during distribution. NOM, measured as dissolved organic carbon (DOC), was monitored daily in the White River and the Indiana-American water treatment plant over 22 months. Other parameters were either measured daily (UV-absorbance, alkalinity, color, temperature) or continuously (turbidity, pH, and discharge) and used with stepwise linear regressions to predict DOC concentrations. The predictive models were validated with monthly samples of the river water and treatment plant effluent taken over a 2-year period after the daily monitoring had ended. Biodegradable DOC (BDOC) concentrations were measured in the river water and plant effluent twice monthly for 18 months. The BDOC measurements, along with measurements of humic and carbohydrate constituents within the DOC and BDOC pools, revealed that carbohydrates were the organic fraction with the highest percent removal during treatment, followed by BDOC, humic substances, and refractory DOC.

  8. Sustainable Waste Water Treatment in Developing Countries: A Case Study of IIT Kharagpur Campus

    NASA Astrophysics Data System (ADS)

    Das, Sutapa; Bokshi, Sanjit

    2017-06-01

    Treatment of wastewater and its reuse in irrigation and agriculture can mitigate the inevitable scarcity of safe drinking water in coming decades. For developing countries like India and especially in its under-privileged regions, it is high time to focus on sustainable wastewater treatment which will be economical and easy to construct, operate and maintain by unskilled users without much dependency on electricity. Addressing this issue, various sustainable methods of wastewater treatment was critically analyzed and the Waste Stabilization Pond system was selected. A facility was designed for 20,000 residents of Indian Institute of Technology Kharagpur campus based on its geo-climatic and wastewater characteristics. Detailed calculations were carried out to demonstrate the effluent quality with reduced BOD and E-coli is suitable for unrestricted irrigation. This project with minor customisation can act as a prototype for adjacent vast rural areas where land is available but water, electricity and skilled technicians are not. If implemented, this project will bear social benefits beyond campus such as water supply to drought prone areas, better harvest and rural employment. Moreover, it underpins government' several initiatives to develop rural infrastructure and inclusive growth of the country.

  9. Water-quality and hydrogeologic data for three phosphate industry waste-disposal sites in central Florida, 1979-80

    USGS Publications Warehouse

    Miller, Ronald L.; Sutcliffe, Horace

    1982-01-01

    This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)

  10. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  11. Bioavailability of pharmaceuticals in waters close to wastewater treatment plants: use of fish bile for exposure assessment.

    PubMed

    Lahti, Marja; Brozinski, Jenny-Maria; Segner, Helmut; Kronberg, Leif; Oikari, Aimo

    2012-08-01

    Pharmaceuticals are ubiquitous in surface waters as a consequence of discharges from municipal wastewater treatment plants. However, few studies have assessed the bioavailability of pharmaceuticals to fish in natural waters. In the present study, passive samplers and rainbow trout were experimentally deployed next to three municipal wastewater treatment plants in Finland to evaluate the degree of animal exposure. Pharmaceuticals from several therapeutic classes (in total 15) were analyzed by liquid chromatography-tandem mass spectrometry in extracts of passive samplers and in bile and blood plasma of rainbow trout held at polluted sites for 10 d. Each approach indicated the highest exposure near wastewater treatment plant A and the lowest near that of plant C. Diclofenac, naproxen, and ibuprofen were found in rainbow trout, and their concentrations in bile were 10 to 400 times higher than in plasma. The phase I metabolite hydroxydiclofenac was also detected in bile. Hence, bile proved to be an excellent sample matrix for the exposure assessment of fish. Most of the monitored pharmaceuticals were found in passive samplers, implying that they may overestimate the actual exposure of fish in receiving waters. Two biomarkers, hepatic vitellogenin and cytochrome P4501A, did not reveal clear effects on fish, although a small induction of vitellogenin mRNA was observed in trout caged near wastewater treatment plants B and C. Copyright © 2012 SETAC.

  12. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety.

    PubMed

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    chlorine. These resistant bacteria and, especially potential pathogens should receive more attention. Redundancy analysis (RDA) showed that turbidity, ammonia nitrogen and total organic carbon (TOC) exerted significant effects on community profiles. Overall, this study provides insight into variations of microbial communities in the treatment processes and aids the optimization of drinking water treatment plant design and operation for public health.

  13. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety

    PubMed Central

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    chlorine. These resistant bacteria and, especially potential pathogens should receive more attention. Redundancy analysis (RDA) showed that turbidity, ammonia nitrogen and total organic carbon (TOC) exerted significant effects on community profiles. Overall, this study provides insight into variations of microbial communities in the treatment processes and aids the optimization of drinking water treatment plant design and operation for public health. PMID:29312177

  14. Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants.

    PubMed

    Lou, Jie-Chung; Lin, Chung-Yi; Han, Jia-Yun; Tseng, Wei-Biu; Hsu, Kai-Lin; Chang, Ting-Wei

    2012-06-01

    Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC, UV(254), and AOC) from water, experimental results indicate that the removal rate of AOC at the Cheng Ching Lake water treatment plant (which utilizes advanced water treatment processes, and is hereinafter referred to as CCLWTP) is 54%, while the removal rate of AOC at the Gong Yuan water treatment plant (which uses traditional water treatment processes, and is hereinafter referred to as GYWTP) is 36%. In advanced water treatment units, new coagulation-sedimentation processes, rapid filters, and biological activated carbon filters can effectively remove AOC, total organic carbon (TOC), and dissolved organic carbon (DOC). In traditional water treatment units, coagulation-sedimentation processes are most effective in removing AOC. Simulation results and calculations made using the AutoNet method indicate that TOC, TDS, NH(3)-N, and NO(3)-N should be regularly monitored in the CCLWTP, and that TOC, temperature, and NH(3)-N should be regularly monitored in the GYWTP.

  15. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  16. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  17. Optimization of conventional water treatment plant using dynamic programming.

    PubMed

    Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras

    2015-12-01

    In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants. © The Author(s) 2013.

  18. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Howe, A.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from

  19. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part I--water quality issues.

    PubMed

    Cromar, N J; Sweeney, D G; O'Brien, M J; Fallowfield, H J

    2005-01-01

    This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.

  20. Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.

    PubMed

    Buschini, Annamaria; Carboni, Pamela; Frigerio, Silvia; Furlini, Mariangela; Marabini, Laura; Monarca, Silvano; Poli, Paola; Radice, Sonia; Rossi, Carlo

    2004-09-01

    Chemical analyses and short-term mutagenicity bioassays have revealed the presence of genotoxic disinfection by-products in drinking water. In this study, the influence of the different steps of surface water treatment on drinking water mutagen content was evaluated. Four different samples were collected at a full-scale treatment plant: raw lake water (A), water after pre-disinfection with chlorine dioxide and coagulation (B), water after pre-disinfection, coagulation and granular activated carbon filtration (C) and tap water after post-disinfection with chlorine dioxide just before its distribution (D). Water samples, concentrated by solid phase adsorption on silica C18 columns, were tested in human leukocytes and HepG2 hepatoma cells using the comet assay and in HepG2 cells in the micronuclei test. A significant increase in DNA migration was observed in both cell types after 1 h treatment with filtered and tap water, and, to a lesser extent, chlorine dioxide pre-disinfected water. Similar findings were observed for the induction of "ghost" cells. Overloading of the carbon filter, with a consequent peak release, might explain the high genotoxicity found in water samples C and D. Cell toxicity and DNA damage increases were also detected in metabolically competent HepG2 cells treated with a lower concentration of tap water extract for a longer exposure time (24 h). None of the water extracts significantly increased micronuclei frequencies. Our monitoring approach appears to be able to detect contamination related to the different treatment stages before drinking water consumption and the results suggest the importance of improving the technologies for drinking water treatment to prevent human exposure to potential genotoxic compounds.

  1. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  2. Greenhouse Gas Emissions From Urban Wastewater Treatment Plants

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bellucci, F.; Gonzalez-Meler, M. A.; Heraty, L.; Kozak, J. A.

    2010-12-01

    Wastewater treatment plants are considered the seventh highest contributor of greenhouse gases (GHG) to the atmosphere. For instance, USEPA recently reported (http://epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010_Chapter8-Waste.pdf) that U.S. wastewater treatment released 24.3 Tg CO2e (i.e. CO2 GHG equivalents) via CH4 and 4.9 Tg CO2e via N20 during 2008. Emissions of GHG from wastewater treatment sources are often modeled using algorithms that rely on surrogates such as five-day Biological or Chemical Oxygen Demand [B(C)OD5] for CH4 and protein content of diets for N2O. Unfortunately, empirical validation of these models using field data is lacking. To fill this gap, we measured annual CH4 and N20 emissions from three wastewater treatment plants in the Chicago region that differ in size and design. Plants ranged from serving 0.17 to 2.3 million people, treating from 27 to 751 millions of gallons of wastewater per day, and having BOD5 from 101 to 220 mg/L. Primary settling tanks, exhausts, and aeration basins were the main sources of CH4 emissions, whereas N2O was mainly emitted by aeration basins at the three plants investigated. During 2009, per capita emissions for CH4 and N2O (for every thousand people) ranged from 61 to 1130 kg/yr and from 12 to 226 Kg/yr, respectively. These wide variations were in part due to chemistry of influent waters and plant design. We found that IPCC and USEPA algorithms were good predictors of CH4 emissions but they largely underestimated N20 emissions. Despite the differences in plant design and per capita emissions, we found that all three plants have a similar CH4:N2O flux ratio. If this flux ratio proves to be a general characteristic of wastewater treatment plants, it could provide a more accurate alternative to current models for estimation of N2O emissions.

  3. Effects of deodorants on treatment of boat holding-tank waste

    NASA Astrophysics Data System (ADS)

    Walker, William R.; Haley, Carol J.; Bridgeman, Phyllis; Goldstein, Stephen H.

    1991-05-01

    A literature search and survey of Virginia, USA, campgrounds with RV pump-out stations were used to determine whether boat holding-tank deodorant chemicals would have deleterious effects on marina septic systems or package treatment plants. Laboratory studies reported in the literature indicate that these chemical additives could affect septic system function in three ways: (1) active ingredients in the additives can impair sewage degradation in septic tanks, causing sludge buildup and overflow of solids into the drainfield, (2) additive chemicals might enter the drainfield and, in high enough concentrations, reduce the drainfield's ability to degrade waste, or (3) toxic additive chemicals might migrate from the drainfield to ground or surface water. Laboratory studies also show that some ingredients added to holding tanks interfere with functioning of activated sludge treatment process. Experience in the field and in other laboratory studies suggests that factors such as dilution of treated waste with untreated waste and the characteristics of the sewage to be treated can reduce the possibility of damage to septic and activated sludge systems. The campground owners surveyed indicated that they have few problems with their septic systems in spite of the presence of chemical additives in the RV waste. However, most of them practice good septic system maintenance and have devised other means of ensuring that their systems function efficiently. In addition, the survey indicates that most Virginia campgrounds get only seasonal use (as would marinas in Virginia), allowing their systems to recover between peak seasons.

  4. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelisti, Sara; Tagliaferri, Carla; Advanced Plasma Power

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially formore » biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  5. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.

    PubMed

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2018-04-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of <0.01 mg NH 4 + -N/L at most plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to

  6. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    PubMed

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  7. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Arne; Lidar, Per; Bergh, Niklas

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  8. Ecotoxicity of waste water from industrial fires fighting

    NASA Astrophysics Data System (ADS)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  9. Water recovery in a concentrated solar power plant

    NASA Astrophysics Data System (ADS)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  10. Use of oleaginous plants in phytotreatment of grey water and yellow water from source separation of sewage.

    PubMed

    Lavagnolo, Maria Cristina; Malagoli, Mario; Alibardi, Luca; Garbo, Francesco; Pivato, Alberto; Cossu, Raffaello

    2017-05-01

    Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated. Copyright © 2016. Published by Elsevier B.V.

  11. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water.

    PubMed

    Bergquist, Allison M; Choe, Jong Kwon; Strathmann, Timothy J; Werth, Charles J

    2016-06-01

    Ion exchange (IX) is the most common approach to treating nitrate-contaminated drinking water sources, but the cost of salt to make regeneration brine, as well as the cost and environmental burden of waste brine disposal, are major disadvantages. A hybrid ion exchange-catalyst treatment system, in which waste brine is catalytically treated for reuse, shows promise for reducing costs and environmental burdens of the conventional IX system. An IX model with separate treatment and regeneration cycles was developed, and ion selectivity coefficients for each cycle were separately calibrated by fitting experimental data. Of note, selectivity coefficients for the regeneration cycle required fitting the second treatment cycle after incomplete resin regeneration. The calibrated and validated model was used to simulate many cycles of treatment and regeneration using the hybrid system. Simulated waste brines and a real brine obtained from a California utility were also evaluated for catalytic nitrate treatment in a packed-bed, flow-through column with 0.5 wt%Pd-0.05 wt%In/activated carbon support (PdIn/AC). Consistent nitrate removal and no apparent catalyst deactivation were observed over 23 d (synthetic brine) and 45 d (real waste brine) of continuous-flow treatment. Ion exchange and catalyst results were used to evaluate treatment of 1 billion gallons of nitrate-contaminated source water at a 0.5 MGD water treatment plant. Switching from a conventional IX system with a two bed volume regeneration to a hybrid system with the same regeneration length and sequencing batch catalytic reactor treatment would save 76% in salt cost. The results suggest the hybrid system has the potential to address the disadvantages of a conventional IX treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ruijie

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) tomore » recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.« less

  13. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    PubMed

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.

  14. Characterization of water treatment sludge and its reuse as coagulant.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Ahad, Abdul; Alam, Mehtab

    2016-11-01

    Coagulation-flocculation process results in the generation of large volume of waste or residue, known as water treatment sludge (WTS), in the purification of surface water for potable supplies. Sustainable management of the inevitable waste requires careful attention from the plant operators and sludge managers. In this study, WTS produced with the optimum alum dose of 30 ml/L at the laboratory scale has been treated with sulphuric acid to bring forth a product known as sludge reagent product (SRP). The performance of SRP is evaluated for its efficiency in removing the colloidal suspensions from the Yamuna river water over wide pH range of 2-13. 1% sludge acidified with sulphuric acid of normality 2.5 at the rate of 0.05 ml/ml sludge has been observed as the optimum condition for preparing SRP from WTS. The percentage turbidity removal is greater at higher pH value and increases with increasing the dosage of SRP. The optimum SRP dosage of 8 ml/L in the pH range of 6-8 performed well in removing the colloidal suspension and other impurities from the Yamuna water. The quality of treated water met the prescribed standards for most of the quality parameters. Thus, SRP has the potential to substitute the conventional coagulants partially or completely in the water treatment process, depending on the quality needed at the users end. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.

    PubMed

    Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay

    2018-03-06

    Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

  16. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    NASA Astrophysics Data System (ADS)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  17. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.

    PubMed

    Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant.

    PubMed

    Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Henderson, Alden K; Reissman, Dori B

    2004-08-15

    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal

  19. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant

    USGS Publications Warehouse

    Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.

    2004-01-01

    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal

  20. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS

    NASA Astrophysics Data System (ADS)

    Kudenko, Yu A.; Gribovskaya, I. V.; Zolotukhin, I. G.

    2000-05-01

    "Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O 2, N 2, CO 2, NH 3, H 2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH 3 was converted in a water trap into NH 4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components.

  1. Notification: Hotline Complaint – Drinking Water Treatment Plant at the Fort Belknap Indian Community

    EPA Pesticide Factsheets

    Project #OA-FY13-0076, November 13, 2012. On March 22, 2012, the Office of Inspector General (OIG) received a hotline complaint on the construction of the Drinking Water Treatment Plant (DWTP) at the Fort Belknap Indian Community.

  2. Treatment of batik waste using distillation method

    NASA Astrophysics Data System (ADS)

    Riyanto, Sidiq, Nurma Yunita; Hidayah, Nailil

    2017-12-01

    In this study has been the treatment of batik waste using distillation method. This study aims to the treatment of batik waste using distillation method. Batik is a world heritage that has an impact on economic improvement and environmental damage. Batik waste is a hazardous and toxic waste material. Batik waste in this research has been taken from Batik Industry in Yogyakarta, Indonesia. Batik waste of 5 L is included in the distillation apparatus, then the distillation run for 4 hours. The distillation product of solids and liquids is collected and analyzed. The solid produced at the distillation boiler was analyzed by FTIR. The distillation liquid was analyzed ammonia and COD concentration using UV-Vis Spectrophotometer. The result of the analysis showed that based on FTIR spectra obtained by dye with high purity. The analysis results shown are of ammonia, COD and pH were 0.652 mg/L, 238.31 mg/L, and 7.306, respectively. The compounds produced by boiler are the azo dye based on the spectrum at wave numbers 1554.07 cm-1. The conclusion of this research is that the distillation method is very suitable for the treatment of the batik waste at small batik industry. Advantages of distillation techniques that can be obtained two products are water and dye that can be used in batik industry.

  3. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistentmore » with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.« less

  4. Treatment of Refinery Waste Water Using Environmental Friendly Adsorbent

    NASA Astrophysics Data System (ADS)

    Devi, M. Geetha; Al-Moshrafi, Samira Mohammed Khamis; Al Hudaifi, Alaa; Al Aisari, Buthaina Hamood

    2017-12-01

    This research evaluates the effectiveness of activated carbon prepared from walnut shell in the removal of pollutants from refinery waste water by adsorption technique. A series of batch experiments were carried out by varying the effluent solution pH, stirring time, stirring speed and adsorbent dosage in the reduction of pollutants from refinery effluent. Characterization of the adsorbent was performed using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) isotherm and Fourier Transform Infrared (FTIR) Spectroscopy. The best quality activated carbon was obtained with a particle size of 0.75 µm, activation temperature of 800 °C and activation time 24 h. The maximum BET surface area obtained was 165.2653 m2/g. The experimental results demonstrates that the highest percentage reduction in COD was 79%, using 0.6 g walnut shell powder at an optimum stirring speed of 100 rpm, at pH 6 and 120 min of contact time. The outcome of the result shows that walnut shell carbon is a potentially useful adsorbent for the removal of pollutants from refinery waste water.

  5. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    NASA Astrophysics Data System (ADS)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  6. Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants.

    PubMed

    Corsaro, Daniele; Pages, Gemma Saucedo; Catalan, Vicente; Loret, Jean-François; Greub, Gilbert

    2010-06-01

    In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems. Copyright 2010 Elsevier GmbH. All rights reserved.

  7. A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes.

    PubMed

    Domínguez-Tello, Antonio; Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2017-10-01

    The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance <17%). The new model was applied to three different supply systems with different treatment processes and different characteristics. Acceptable predictions were obtained in the three distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.

  8. Exploring the under-investigated "microbial dark matter" of drinking water treatment plants.

    PubMed

    Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio

    2017-03-14

    Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term "microbial dark matter" was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water.

  9. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  10. Water-quality data for water- and wastewater-treatment plants along the Red River of the North, North Dakota and Minnesota, January through October 2006

    USGS Publications Warehouse

    Damschen, William C.; Hansel, John A.; Nustad, Rochelle A.

    2008-01-01

    From January through October 2006, six sets of water-quality samples were collected at 28 sites, which included inflow and outflow from seven major municipal water-treatment plants (14 sites) and influent and effluent samples from seven major municipal wastewater treatment plants (14 sites) along the Red River of the North in North Dakota and Minnesota. Samples were collected in cooperation with the Bureau of Reclamation for use in the development of return-flow boundary conditions in a 2006 water-quality model for the Red River of the North. All samples were analyzed for nutrients and major ions. For one set of effluent samples from each of the wastewater-treatment plants, water was analyzed for Eschirichia coli, fecal coliform, 20-day biochemical oxygen demand, 20-day nitrogenous biochemical oxygen demand, total organic carbon, and dissolved organic carbon. In general, results from the field equipment blank and replicate samples indicate that the overall process of sample collection, processing, and analysis did not introduce substantial contamination and that consistent results were obtained.

  11. A Review on overboard CEOR discharged produced water treatment and remediation

    NASA Astrophysics Data System (ADS)

    Rawindran, H.; Krishnan, S.; Sinnathambi, C. M.

    2017-06-01

    Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.

  12. Pickering Particles Prepared from Food Waste

    PubMed Central

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-01-01

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings. PMID:28773909

  13. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Fowley, M. D.; Miller, D. H.

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer atmore » the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.« less

  14. Antibiotics elimination and risk reduction at two drinking water treatment plants by using different conventional treatment techniques.

    PubMed

    Li, Guiying; Yang, Huan; An, Taicheng; Lu, Yujuan

    2018-04-20

    Safe drinking water is essential for the wellbeing of people around the world. In this work, the occurrence, distribution, and elimination of four groups of antibiotics including fluoroquinolones, sulfonamides, chloramphenicols and macrolides (21 antibiotics total), were studied in two drinking water treatment plants during the wet and dry seasons. In the drinking water source (river), the most abundant group was fluoroquinolones. In contrast, chloramphenicols were all under the limitation of detection. Total concentration of all investigated antibiotics was higher in dissolved phase (62-3.3 × 10 2 ng L -1 ) than in particulate phase (2.3-7.1 ng L -1 ) during both wet and dry seasons in two plants. With the treatment process of flocculation → horizontal flow sedimentation → V type filtration → liquid Cl 2 chlorination, approximately 57.5% (the dry season) and 73.6% (the wet season) of total antibiotics in dissolved phase, and 46.3% (the dry season) and 51.0% (the wet season) in particulate phase were removed. In contrast, the removal efficiencies of total antibiotics were obtained as -49.6% (the dry season) and 52.3% (the wet season) in dissolved phase, and -15.5% (the dry season) and 44.3% (the wet season) in particulate phase, during the process of grille flocculation→ tube settler sedimentation → siphon filtration → ClO 2 chlorination. Sulfonamides were found to be typically easily removed antibiotics from the dissolved and particulate phases during both seasons. Through a human health risk assessment, we found that the former treatment technologies were much better than the later for risk reduction. Overall, it can be concluded that the treatment processes currently used should be modified to increase emerging contaminant elimination efficiency and ensure maintenance of proper water quality. Copyright © 2018. Published by Elsevier Inc.

  15. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A million gallon-a-day sewage treatment plant in Huntington Beach, CA converts solid sewage to activated carbon which then treats incoming waste water. The plant is scaled up 100 times from a mobile unit NASA installed a year ago; another 100-fold scale-up will be required if technique is employed for widespread urban sewage treatment. This unique sewage-plant employed a serendipitous outgrowth of a need to manufacture activated carbon for rocket engine insulation. The process already exceeds new Environmental Protection Agency Standards Capital costs by 25% compared with conventional secondary treatment plants.

  16. [Seroprevalence of brucelosis in the workers of a plant of treatment of sanitary wastes].

    PubMed

    López Hernández, Begoña; Almagro Nievas, Diego; Cabrera Castillo, María José

    2003-03-22

    The management of biosanitary (hospital) waste, while being a key issue in the prevention of public health risks, involves professional risks as well. The objective of this study was to analyze the risks of infection and their relation with the various works within a cluster of brucellosis detected in an infectious waste plant. Cross-descriptive study of the total of 24 employees at the waste plant. A survey was carried out taking into account personal as well as professional items and serological tests. Both bivariant (contingency charts and mean comparison) and multivariant (logistic regression) analyses were carried out. The seroprevalence of brucella infection was 45.93% (CI95%, 26.17-66.76). The estimated risk (OR) for processing workers was 33.72 (CI95%, 2.73-415.96). The permanence within the posts was not different among groups. Infection seroprevalence was higher than that found in endemic populations. The post of processing was found to hold a relation with the contact with Brucella sp.

  17. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  18. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  19. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  20. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  1. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners.

    PubMed

    Scheurer, Marco; Storck, Florian R; Brauch, Heinz-J; Lange, Frank T

    2010-06-01

    Due to incomplete removal of artificial sweeteners in wastewater treatment plants some of these compounds end up in receiving surface waters, which are used for drinking water production. The sum of removal efficiency of single treatment steps in multi-barrier treatment systems affects the concentrations of these compounds in the provided drinking water. This is the first systematic study revealing the effectiveness of single treatment steps in laboratory experiments and in waterworks. Six full-scale waterworks using surface water influenced raw water were sampled up to ten times to study the fate of acesulfame, saccharin, cyclamate and sucralose. For the most important treatment technologies the results were confirmed by laboratory batch experiments. Saccharin and cyclamate proved to play a minor role for drinking water treatment plants as they were eliminated by nearly 100% in all waterworks with biologically active treatment units like river bank filtration (RBF) or artificial groundwater recharge. Acesulfame and sucralose were not biodegraded during RBF and their suitability as wastewater tracers under aerobic conditions was confirmed. Sucralose proved to be persistent against ozone and its transformation was < 20% in lab and field investigations. Remaining traces were completely removed by subsequent granular activated carbon (GAC) filters. Acesulfame readily reacts with ozone (pseudo first-order rate constant k = 1.3 x 10(-3) s(-1) at 1 mg L(-1) ozone concentration). However, the applied ozone concentrations and contact times under typical waterworks conditions only led to an incomplete removal (18-60%) in the ozonation step. Acesulfame was efficiently removed by subsequent GAC filters with a low throughput of less than 30 m(3) kg(-1), but removal strongly depended on the GAC preload. Thus, acesulfame was detected up to 0.76 microg L(-1) in finished water. 2010 Elsevier Ltd. All rights reserved.

  2. Removal of nitrosamines from waste water by potassium ferrate oxidation.

    PubMed

    Bartzatt, R; Nagel, D

    1991-01-01

    Potassium ferrate (K2FeO4) is useful in the advanced treatment of waste water. Additional evidence of this capability is presented in this study. Potassium ferrate is a very strong oxidant and is highly soluble in water. The nitrosamine studied in this work was toxic and was a potent pancreatic tumorigen in laboratory animals. Nitrosamines, which are potent carcinogens, are widespread throughout the environment and can be eliminated from waste water effluent by the action of potassium ferrate. Potassium ferrate and the nitrosamine was placed in aqueous solution and allowed to react to completion. Analysis by photospectroscopy revealed that the nitrosamine was completely degraded. This result suggests that potassium ferrate is useful for decontamination of some waste water collections.

  3. A pilot plant for removing chromium from residual water of tanneries.

    PubMed

    Landgrave, J

    1995-02-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.

  4. A pilot plant for removing chromium from residual water of tanneries.

    PubMed Central

    Landgrave, J

    1995-01-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented. PMID:7621802

  5. Occurrence Characteristics of Microplastic in Secondary Sewage Treatment Plant in Shanghai,China.

    NASA Astrophysics Data System (ADS)

    Bai, M.; Zhao, S.; Li, D.

    2017-12-01

    As emerging pollutants, microplastics (MPs) are of concern worldwide. Due to plenty of microbeads and synthetic fibers presenting in the effluent of waste water treatment plants (WWTPs), WWTPs have been regarded as important point sources of MP into the sea. Currently, information of microplastics from WWTPs in China is limited. Herein, we studied the MP contamination of a sewage plant in Shanghai by analyzing water and sludge samples with fourier transform infrared spectroscopy. The abundances of MP in the influent, mixed water, effluent and sludge four stages are respectively 117 n/L, 90 n/L, 52 n/L and 181 n/50g(wet weight). The removal efficiency of MP in the current WWTP is 55.6%. Fiber is the most common shape type. Rayon is the most type in effluent and mixed water while synthetic leather account for the largest percentage in influent and sludge. This study firstly discussed the occurrence characteristics of microplastics in the WWTP of China and confirmed that WWTP is a source of MPs inputting into aquatic environments.

  6. Economic evaluation of radiation processing in urban solid wastes treatment

    NASA Astrophysics Data System (ADS)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  7. International water and steam quality standards on thermal power plants at all-volatile treatment

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Orlov, K. A.; Dooley, R. B.

    2016-12-01

    One of the methods for the improvement of reliability and efficiency of the equipment at heat power plants is the decrease in the rate of corrosion of structural materials and sedimentation in water/steam circuit. These processes can be reduced to minimum by using the water with low impurity content and coolant treatment. For many years, water and steam quality standards were developed in various countries (United States, Germany, Japan, etc.) for specific types of equipment. The International Association for the Properties of Water and Steam (IAPWS), which brings together specialists from 21 countries, developed the water and steam quality standards for various types of power equipment based on theoretical studies and long-term operating experience of power equipment. Recently, various water-chemistry conditions are applied on heatpower equipment including conventional boilers and HRSGs with combined cycle power plants (Combined Cycle Power Plants (CCPP)). In paper, the maintenance conditions of water chemistry with ammonia or volatile amine dosing are described: reducing AVT(R), oxidizing AVT(O), and oxygen OT. Each of them is provided by the water and steam quality standards and recommendations are given on their maintenance under various operation conditions. It is noted that the quality control of heat carrier must be carried out with a particular care on the HPPs with combined cycle gas turbine units, where frequent starts and halts are performed.

  8. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  9. Technoeconomic aspects of alternative municipal solid wastes treatment methods.

    PubMed

    Economopoulos, Alexander P

    2010-04-01

    This paper considers selected treatment technologies for comingled domestic and similar wastes and provides technoeconomic data and information, useful for the development of strategic management plans. For this purpose, treatment technologies of interest are reviewed and representative flow diagrams, along with material and energy balances, are presented for the typical composition of wastes in Greece; possible difficulties in the use of treatment products, along with their management implications, are discussed, and; cost functions are developed, allowing assessment of the initial capital investment and annual operating costs. Based on the latter, cost functions are developed for predicting the normalized treatment costs of alternative methods (in euro/t of MSW treated), as function of the quantity of MSW processed by plants built and operated (a) by municipality associations, and (b) by private enterprises. Finally, the alternative technologies considered are evaluated on the basis of their cost aspects, product utilization and compatibility with the EU waste framework Directive 2008/98. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. WATER TREATMENT

    DOEpatents

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  11. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.

    PubMed

    Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter

    2018-01-01

    Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.

  12. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  13. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    PubMed

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants.

    PubMed

    Arriaga, Sonia; de Jonge, Nadieh; Nielsen, Marc Lund; Andersen, Henrik Rasmus; Borregaard, Vibeke; Jewel, Kevin; Ternes, Thomas A; Nielsen, Jeppe Lund

    2016-12-15

    Organic micropollutants (OMPs) such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous OMPs. Ibuprofen and naproxen had the highest degradation rates with values of 248 μg/g VSS ·h and 71 μg/g VSS ·h, whereas diclofenac was a more persistent OMP (7.28 μg/g VSS ·h). Mineralization of 14 C-labeled OMPs in batch kinetic experiments indicates that higher removal rates (∼0.8 ng/mg T SS ·h) with a short lag phase can be obtained when artificial addition of organic micropollutants was performed. Similar microbial populations dominated S1 and S2, despite the independent operations. Hydrogenophaga, Nitrospira, p55-a5, the actinobacterial Tetrasphaera, Propionicimonas, Fodinicola, and Candidatus Microthrix were the most abundant groups in the polishing MBR. Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines.

    PubMed

    Flores, Cintia; Ventura, Francesc; Martin-Alonso, Jordi; Caixach, Josep

    2013-09-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two emerging contaminants that have been detected in all environmental compartments. However, while most of the studies in the literature deal with their presence or removal in wastewater treatment, few of them are devoted to their detection in treated drinking water and fate during drinking water treatment. In this study, analyses of PFOS and PFOA have been carried out in river water samples and in the different stages of a drinking water treatment plant (DWTP) which has recently improved its conventional treatment process by adding ultrafiltration and reverse osmosis in a parallel treatment line. Conventional and advanced treatments have been studied in several pilot plants and in the DWTP, which offers the opportunity to compare both treatments operating simultaneously. From the results obtained, neither preoxidation, sand filtration, nor ozonation, removed both perfluorinated compounds. As advanced treatments, reverse osmosis has proved more effective than reverse electrodialysis to remove PFOA and PFOS in the different configurations of pilot plants assayed. Granular activated carbon with an average elimination efficiency of 64±11% and 45±19% for PFOS and PFOA, respectively and especially reverse osmosis, which was able to remove ≥99% of both compounds, were the sole effective treatment steps. Trace levels of PFOS (3.0-21 ng/L) and PFOA (<4.2-5.5 ng/L) detected in treated drinking water were significantly lowered in comparison to those measured in precedent years. These concentrations represent overall removal efficiencies of 89±22% for PFOA and 86±7% for PFOS. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study.

    PubMed

    Heddam, Salim; Bermad, Abdelmalek; Dechemi, Noureddine

    2012-04-01

    Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.

  17. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    PubMed

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    PubMed

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  20. Nitrogen removal by recycle water nitritation as an attractive alternative for retrofit technologies in municipal wastewater treatment plants.

    PubMed

    Gil, K I; Choi, E

    2004-01-01

    The recycle water from sludge processing in municipal wastewater treatment plants causes many serious problems in the efficiency and stability of the mainstream process. Thus, the design approach for recycle water is an important part of any biological nutrient removal system design when a retrofit technology is required for upgrading an existing plant. Moreover, the application of nitrogen removal from recycle water using the nitritation process has recently increased due to economic reasons associated with an effective carbon allocation as well as the minimization of aeration costs. However, for the actual application of recycle water nitritation, it has not been fully examined whether or not additional volume would be required in an existing plant. In this paper, the addition of recycle water nitritation to an existing plant was evaluated based on a volume analysis and estimation of final effluent quality. It was expected that using the reserve volume of the aeration tank in existing plants, recycle water nitritation could be applied to a plant without any enlargement. With the addition of recycle water nitritation, it was estimated that the final effluent quality would be improved and stabilized, especially in the winter season.

  1. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, A.; Djinovic, J.

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and leadmore » are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.« less

  2. Utilization of Waste Materials for the Treatment of Waste Water Contaminated with Sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2014-01-01

    The activities were carried out to develop potential adsorbents from waste material and employ them for the removal of hazardous antibacterial, Sulphamethoxazole from the wastewater by adsorption technique. The selection of this method was done because of its economic viability. The method has the potency of eradicating the perilous chemicals which make their appearance in water and directly or indirectly into the whole biological system, through the ejection of effluents by the industries in flowing water. The adsorption technique was used to impound the precarious antibiotics from wastewater using Deoiled Soya an agricultural waste and Water Hyacinth a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10% to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents i.e. Deoiled Soya, Alkali treated Deoiled Soya, Water Hyacinth and Alkali treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. Deoiled Soya (DOS) showed sorption capacity of 0.0007 mol g(-1) while Alkali treated Deoiled Soya (ADOS) exhibited 0.0011 mol g(-1) of sorption capacity which reveals that the adsorption is higher in case of alkali treated adsorbent. The mean sorption energy (E) was obtained between 9 to 12 kJ/mol which shows that the reaction proceeds by ion exchange reaction. Various kinetic studies like order of reaction, mass transfer studies, mechanism of diffusion were also performed for the ongoing processes. The mass transfer coefficient obtained for alkali treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90% to 98%. Moreover the

  3. Radioactive waste management treatments: A selection for the Italian scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locatelli, G.; Mancini, M.; Sardini, M.

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less

  4. Co-digestion of organic solid waste and sludge from sewage treatment.

    PubMed

    Edelmann, W; Engeli, H; Gradenecker, M

    2000-01-01

    Solid organic wastes were codigested together with sludge of a sewage treatment plant (STP). In the practical part of the study, a plant to pretreat the organic solid wastes provided by local super markets was constructed at the STP of Frutigen, Switzerland. Up to more than 1 cubic metre of wastes was added to the fermenter of the STP every day. Data collected during 14 months of practical works, showed that for raw fruit and vegetable wastes a two step pretreatment is necessary: First the wastes were chopped and afterwards reduced to a size of 1-2 millimetres, in order to get a homogeneous suspension together with the primary sludge. The vegetable wastes showed excellent digestibility: They seemed to accelerate the digestion process as well as to increase the degree of the anaerobic degradation of the sludge. The energy demand for both, pretreatment and digestion, was 85 kWh/ton of fresh wastes. 20% of the energy was used for the hygienization, a step which does not seem to be necessary for this kind of waste in most of the cases, however. After using the gas for energy conversion, a net yield of 65 kWh/ton of electricity and 166 kWh/ton of heat was measured. Treating cooked kitchen wastes, the net energy production will be higher, because in this case a one step pretreatment will be sufficient. The pretreatment and treatment costs for codigestion on STP's were calculated to be in the range of 55 US$/ton treating half a ton per day and 39 US$/ton treating one ton, respectively. A theoretical feasibility study showed that in Switzerland there is a short term potential on STP's for the codigestion of about 120,000 tons of biogenic wastes per year without big investments. Economic studies about codigestion on agricultural biogas plants showed that the codigestion is a must at the current energy prices, which are far too low for agricultural AD without an additional income by treating solid wastes for third parties.

  5. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Mcclane, D.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter

  6. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the nationalmore » geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as

  7. Determination of PCDF/PCDD in sludges from a drinking water treatment plant influence of chlorination treatment.

    PubMed

    Rivera, J; Eljarrat, E; Espadaler, I; Martrat, M G; Caixach, J

    1997-01-01

    A preliminary study to assess the origin and evolution of polichlorodibenzofurans (PCDFs) and polichlorodibenzo-p-dioxins (PCDDs) in a drinking water treatment plant (DWTP) was undertaken. Samples of coagulation sludges and exhausted granular activated carbon (GAC) were collected from a DWTP. Owing to the similar congener profiles obtained from sludges and GAC, a subsequent study of chlorination influence was carried out. Sludge samples from a treatment with and without the chlorination step were analysed. A complementary study of the PCB content was made. The results obtained did not reveal a marked influence of chlorination in the formation of PCDFs/PCDDs.

  8. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less

  9. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW

  10. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging.

    PubMed

    Mintenig, S M; Int-Veen, I; Löder, M G J; Primpke, S; Gerdts, G

    2017-01-01

    The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the environment. This study investigated MP in the effluents of 12 WWTPs in Lower Saxony, Germany. Samples were purified by a plastic-preserving enzymatic-oxidative procedure and subsequent density separation using a zinc chloride solution. For analysis, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR) and focal plane array (FPA)-based transmission micro-FT-IR imaging were applied. This allowed the identification of polymers of all MP down to a size of 20 μm. In all effluents MP was found with quantities ranging from 0 to 5 × 10 1  m -3  MP > 500 μm and 1 × 10 1 to 9 × 10 3  m -3  MP < 500 μm. By far, polyethylene was the most frequent polymer type in both size classes. Quantities of synthetic fibres ranged from 9 × 10 1 to 1 × 10 3  m -3 and were predominantly made of polyester. Considering the annual effluxes of tested WWTPs, total discharges of 9 × 10 7 to 4 × 10 9  MP particles and fibres per WWTP could be expected. Interestingly, one tertiary WWTP had an additionally installed post-filtration that reduced the total MP discharge by 97%. Furthermore, the sewage sludge of six WWTPs was examined and the existence of MP, predominantly polyethylene, revealed. Our findings suggest that WWTPs could be a sink but also a source of MP and thus can be considered to play an important role for environmental MP pollution. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    PubMed

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  12. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    PubMed

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  13. Waste treatment by bacterial additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, D.J.; Stigall, E.; Barth, E.

    1979-04-23

    Companies such as General Environmental Science Corp. and Polybac Corp., which market specialized bacterial cultures for treating industrial wastes, claim that the cultures improve the operation of activated-sludge, trickling-filter, and lagoon-treatment plants, and provide faster system response to startups, variable and shock loads, and cold weather. The effectiveness of the special cultures is difficult to verify and has been questioned by environmental experts, including R. L. Raymond (Suntech Inc.) and E. Barth (EPA), although E. Stigall (EPA) believes they may aid plant recovery after upsets. A study by Business Communications Co. has predicted that the market for such additives willmore » reach $50 million by 1987, from $5 million in 1979. The use of such cultures in Exxon Corp.'s 1 million gal/day activated sludge system at the Benicia, Calif., oil refinery improved the system's performance by 32Vertical Bar3<, resulted in faster unit startups and more stable operation, and reduced foaming. J. T. Baker Co. has used successfully two broad-spectrum dried additives for ammonia removal and hydrocarbon degradation at its 3 million gal/day secondary treatment plant at Phillipsburg, N.J.« less

  14. Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system

    EPA Science Inventory

    Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contam...

  15. Advanced wastewater treatment simplified through research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souther, R.H.

    A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less

  16. [Wet oxidation of toxic industrial waste with oxygenated water].

    PubMed

    Alfieri, M; Colombo, G; Velotti, R

    1991-01-01

    The industrial toxic waste streams hot treatment technology with hydrogen peroxide and catalysts, developed by the research laboratories of Montefluos in Bollate, allows the abatement of many organic and bio-toxic pollutants. Some treatment examples are here reported. The examples, performed on a laboratory scale, relate to industrial waste streams with a high COD (100000-200000 mg/l) in which it was possible to obtain an abatement over the 90% of pollutants like phenols, formaldehyde, dimethylformamide and phenyl acetate. The application range of this technology is similar to that of oxygen or air wet oxidation, but it has remarkable advantages due to the lower plant, maintenance and energy costs, because the treatment is performed using much more bland conditions (atmospheric pressure and 90-100 degrees C of temperature). The aim of the bio-toxic pollutants abatement and COD reduction (70-80%) is to allow the final bio-digestion waste streams with high organic content, but too diluted to be directly incenerated at a suitable cost.

  17. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  18. Nitrification in Water and Wastewater Treatment

    EPA Science Inventory

    This chapter discusses available information on the occurrence of nitrification in water treatment plants and its potential impact on distribution system water quality. Nitrification as part of the water treatment process can occur whenever ammonia is present in or added to the s...

  19. Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants.

    PubMed

    Mo, Weiwei; Zhang, Qiong

    2013-09-30

    Wastewater treatment consumes large amounts of energy and materials to comply with discharge standards. At the same time, wastewater contains resources, which can be recovered for secondary uses if treated properly. Hence, the goal of this paper is to review the available resource recovery methods onsite or offsite of municipal wastewater treatment plants. These methods are categorized into three major resource recovery approaches: onsite energy generation, nutrient recycling and water reuse. Under each approach, the review provides the advantages and disadvantages, recovery potentials and current application status of each method, as well as the synthesized results of the life cycle studies for each approach. From a comprehensive literature review, it was found that, in addition to technology improvements, there is also a need to evaluate the applications of the resource recovery methods in wastewater treatment plants from a life cycle perspective. Future research should investigate the integration of the resource recovery methods to explore the combined benefits and potential tradeoffs of these methods under different scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  1. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2014-03-15

    The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. [Purification of waste water from olive-oil pressing plants using hydrophytes. Preliminary study on the use of Eichornia crassipes].

    PubMed

    Ferrara, L; Forgione, P; Schettino, O; Rullo, V

    1989-04-01

    The use of Eichornia crassipes has been tested in order to depurate the waste water from olive oil factories. The control of some parameter variations during the treatment, such as COD, total azote, dissolved oxygen and pH, has given encouraging results about the depurative efficacy of employed hydrophytae. Particularly indicative is, in this regard, COD rejection of about 60%.

  3. Proposal of an environmental performance index to assess solid waste treatment technologies.

    PubMed

    Coelho, Hosmanny Mauro Goulart; Lange, Liséte Celina; Coelho, Lineker Max Goulart

    2012-07-01

    Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Maintenance of CO2 level in a BLSS by controlling solid waste treatment unit

    NASA Astrophysics Data System (ADS)

    Dong, Yingying; Li, Leyuan; Liu, Hong; Fu, Yuming; Xie, Beizhen; Hu, Dawei; Liu, Dianlei; Dong, Chen; Liu, Guanghui

    A bioregenerative life support system (BLSS) is an artificial closed ecosystem for providing basic human life support for long-duration, far-distance space explorations such as lunar bases. In such a system, the circulation of gases is one of the main factor for realizing a higher closure degree. O2 produced by higher plants goes to humans, as well as microorganisms for the treatment of inedible plant biomass and human wastes; CO2 produced by the crew and microorganisms is provided for plant growth. During this process, an excessively high CO2 level will depress plant growth and may be harmful to human health; and if the CO2 level is too low, plant growth will also be affected. Thus, keeping the balance between CO2 and O2 levels is a crucial problem. In this study, a high-efficiency, controllable solid waste treatment unit is constructed, which adopts microbial fermentation of the mixture of inedible biomass and human wastes. CO2 production during the fermentation process is controlled by adjusting fermentation temperature, aeration rate, moisture, etc., so as to meet the CO2 requirement of plants

  5. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  6. Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques.

    PubMed

    Vesga, Fidson-Juarismy; Moreno, Yolanda; Ferrús, María Antonia; Campos, Claudia; Trespalacios, Alba Alicia

    2018-05-01

    Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, and a predisposing factor for peptic ulcer and gastric cancer. The infection has been consistently associated with lack of access to clean water and proper sanitation. H. pylori has been detected in surface water, wastewater and drinking water. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in influent and effluent water from drinking water treatment plants (DWTP). A total of 310 influent and effluent water samples were collected from three drinking water treatment plants located at Bogotá city, Colombia. Specific detection of H. pylori was achieved by culture, qPCR and FISH techniques. Fifty-six positive H. pylori cultures were obtained from the water samples. Characteristic colonies were covered by the growth of a large number of other bacteria present in the water samples, making isolation difficult to perform. Thus, the mixed cultures were submitted to Fluorescent in situ Hybridization (FISH) and qPCR analysis, followed by sequencing of the amplicons for confirmation. By qPCR, 77 water samples, both from the influent and the effluent, were positive for the presence of H. pylori. The results of our study demonstrate that viable H. pylori cells were present in both, influent and effluent water samples obtained from drinking water treatment plants in Bogotá and provide further evidence that contaminated water may act as a transmission vehicle for H. pylori. Moreover, FISH and qPCR methods result rapid and specific techniques to identify H. pylori from complex environmental samples such as influent water. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRIGNANO, A.L.

    2003-06-25

    This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility.more » Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only

  8. Exploring the under-investigated “microbial dark matter” of drinking water treatment plants

    PubMed Central

    Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio

    2017-01-01

    Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term “microbial dark matter” was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water. PMID:28290543

  9. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Treatment of industrial wastes. 35.925-15 Section 35.925-15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act...

  10. 78 FR 34380 - Biennial Determination of the Waste Isolation Pilot Plant's Compliance With Applicable Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... documentation submitted by the U.S. Department of Energy (DOE) for the Waste Isolation Pilot Plant (WIPP), the U... requirements designated in Section 9(a)(1) of the WIPP Land Withdrawal Act, as amended. The Secretary of Energy... Act; (3) the Solid Waste Disposal Act; (4) the Safe Drinking Water Act; (5) the Toxic Substances...

  11. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    NASA Astrophysics Data System (ADS)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  12. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. SUMMARY REPORT: SMALL COMMUNITY WATER AND WASTE- WATER TREATMENT

    EPA Science Inventory

    This summary report presents information on the unique needs of small communities facing new water and wastewater treatment requirements. t contains three main sections: technology overviews (each presents a process description, O&M requirements, technology limitations, and finan...

  14. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site.more » The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA

  15. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants.

    PubMed

    Kot-Wasik, A; Jakimska, A; Śliwka-Kaszyńska, M

    2016-12-01

    Thousands of tons of pharmaceuticals are introduced into the aqueous environment due to their incomplete elimination during treatment process in wastewater treatment plants (WWTPs) and water treatment plants (WTPs). The presence of pharmacologically active compounds in the environment is of a great interest because of their potential to cause negative effects. Furthermore, drugs can undergo different processes leading to the formation of new transformation products, which may be more toxic than the parent compound. In light of these concerns, within the research a new, rapid and sensitive analytical procedure for the determination of a wide range of pharmaceuticals from different classes using solid phase extraction (SPE) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) technique in different water samples was developed. This methodology was applied to investigate the occurrence, removal efficiency of 25 pharmaceuticals during wastewater and drinking water treatment, and seasonal variability in the amount of selected pharmaceuticals in WWTP and WTP over a year. The most often detected analytes in water samples were carbamazepine (100 % of samples) and ibuprofen (98 % of samples), concluding that they may be considered as pollution indicators of the aqueous environment in tested area. Highly polar compound, metformin, was determined at very high concentration level of up to 8100 ng/L in analyzed water samples. Drugs concentrations were much higher in winter season, especially for non-steroidal inflammatory drugs (NSAIDs) and caffeine, probably due to the inhibited degradation related to lower temperatures and limited sunlight. Carbamazepine was found to be the most resistant drug to environmental degradation and its concentrations were at similar levels during four seasons.

  16. 10 years of operation of an integrated nutrient removal treatment plant: ups and downs. Background and water treatment.

    PubMed

    Sagberg, P; Ryrfors, P; Berg, K G

    2006-01-01

    Water retention times less than 3 h from inlet to outlet were necessary to meet new effluent requirements without extending the footprint of the existing plant. Nitrogen removal was required at the existing, high loaded, direct precipitation plant and space was not readily available. The staff at the VEAS WWTP took on the task to design a new process at their own risk. Selected solutions and ups and downs in the water treatment during the past 10 years of operations and further developments are presented in this paper. Always asking for well-proven solutions might make life easy. The intent of this paper is to encourage some of our colleagues to be more daring in their approach to new challenges. However, expect sleepless nights in order to solve the unexpected problems along the way.

  17. Emissions of OTNE (Iso-E-super) - mass flows in sewage treatment plants.

    PubMed

    Bester, Kai; Klasmeier, Jörg; Kupper, Thomas

    2008-05-01

    The fate and mass flows of OTNE ([1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethylnaphthalen-2yl]ethan-1-one) which is commercialized as Iso-E-Super were studied in three large scale sewage treatment plants (STPs) in detail. The results are compared to 14 smaller ones located in Germany and Switzerland. OTNE inflow concentrations ranged from 4000 to 13,000 ngl(-1) while the effluent concentrations ranged from 500 to 6,900 ngl(-1). It is eliminated from the waste water with 56-64% during waste water treatment. High OTNE concentrations in sewage sludge showed that the elimination was mainly driven by sorption to sludge. This complies with major elimination in the first settling basins (primary settling tanks) while it was removed to a lesser extent in the aeration basin of the activated sludge treatment or in successive biofilters. The mass flows of OTNE in the influent of the German STPs were between 0.9 and 1.9 g per inhabitant and year. In the annual effluents mass flows of OTNE ranged between 0.2 and 0.8 g per inhabitant which complies with data measured in 13 smaller STPs from Switzerland. The similarity of data suggests that the observed mass flow data might be extrapolated to other European regions.

  18. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penzin, R.A.; Sarychev, G.A.

    ', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including

  19. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less

  20. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  1. 76 FR 31611 - Biennial Determination of the Waste Isolation Pilot Plant's Compliance with Applicable Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... documentation submitted by the U.S. Department of Energy (DOE) for the Waste Isolation Pilot Plant (WIPP), the U... requirements designated in Section 9(a)(1) of the WIPP Land Withdrawal Act, as amended. The Secretary of Energy...) the Clean Air Act; (3) the Solid Waste Disposal Act; (4) the Safe Drinking Water Act; (5) the Toxic...

  2. Impact of Raw and Bioaugmented Olive-Mill Wastewater and Olive-Mill Solid Waste on the Content of Photosynthetic Molecules in Tobacco Plants.

    PubMed

    Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero

    2016-08-03

    Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules.

  3. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less

  4. Multi isotopic characterization (Li-Cu-Zn-Pb) of waste waters pollution in a small watershed (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Perret, S.; Bourrain, X.

    2016-12-01

    The goal of this study is to use multi-isotopic signature to track the pollution in surface waters, and to understand the complex processes causing the metals mobilization and transport in the environment. In the present study, we investigate waste water releases from a hospital water treatment plant and its potential impact in a small river basin near Orléans in France (Egoutier watershed: 15 km²and 5 km long). We decided to monitor this small watershed which is poorly urbanized in the Loire river basin. Its spring is located in a pristine area (forested area), while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. A sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Isotopic ratios were measured using a MC-ICP-MS at BRGM, after a specific protocol of purification for each isotopic systematics. Lithium isotopic compositions are rather homogeneous in river waters along the main course of the stream. The waste water signal is very different from the natural background with significant heavy lithium contribution (high δ7Li). Lead isotopic compositions are rather homogenous in river waters and sediments with values close to geologic background. For Zn, the sediments with high concentrations and depleted isotopic compositions (low δ66Zn), typical of an anthropic pollution, are strongly impacted. The analyses of Cu isotopes in sediments show the impact of waster waters, but also isotopic fractionations due to redox processes in the watershed. To better understand these processes controlling the release of metals in water, sequential extractions on sediments are in progress under laboratory conditions and will provide important constraints for metal distribution in this river basin.

  5. Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2012-09-15

    The occurrence of 24 amines within a full scale drinking water treatment plant that used chlorinated agents as disinfectants was evaluated for the first time in this research. Prior to any treatment (raw water), aniline, 3-chloroaniline, 3,4-dichloroaniline and N-nitrosodimethylamine were detected at low levels (up to 18 ng/L) but their concentration increased ∼10 times after chloramination while 9 new amines were produced (4 aromatic amines and 5 N-nitrosamines). Within subsequent treatments, there were no significant changes in the amine levels, although the concentrations of 2-nitroaniline, N-nitrosodimethylamine and N-nitrosodiethylamine increased slightly within the distribution system. Eleven of the 24 amines studied were undetected either in the raw and in the treatment plant samples analysed. There is an important difference in the behaviour of the aromatic amines and N-nitrosamines with respect to water temperature and rainfall events. Amine concentrations were higher in winter due to low water temperatures, this effect being more noticeable for N-nitrosamines. Aromatic amines were detected at their highest concentrations (especially 3,4-dichloroaniline and 2-nitroaniline) in treated water after rainfall events. These results may be explained by the increase in the levels of amine precursors (pesticides and their degradation products) in raw water since the rainfall facilitated the transport of these compounds from soil which was previously contaminated as a result of intensive agricultural practices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Utilization of immobilized urease for waste water treatment

    NASA Technical Reports Server (NTRS)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  7. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants.

    PubMed

    Gray, Neil D; Miskin, Ian P; Kornilova, Oksana; Curtis, Thomas P; Head, Ian M

    2002-03-01

    The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.

  8. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  9. Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, D.; Leavitt, M.; Moss, D.

    1997-03-01

    Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses onmore » collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.« less

  10. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  11. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying themore » feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].« less

  12. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation?

    PubMed

    Filipovic, Marko; Berger, Urs

    2015-06-01

    Wastewater treatment plants (WWTP) have been suggested to be one of the major pathways of perfluoroalkyl acids (PFAAs) from the technosphere to the aquatic environment. The origin of PFAAs in WWTP influents is either from current primary emissions or a result of recirculation of PFAAs that have been residing and transported in the environment for several years or decades. Environmental recirculation can then occur when PFAAs from the environment enter the wastewater stream in, e.g., tap water. In this study 13 PFAAs and perfluorooctane sulfonamide were analyzed in tap water as well as WWTP influent, effluent and sludge from three Swedish cities: Bromma (in the metropolitan area of Stockholm), Bollebygd and Umeå. A mass balance of the WWTPs was assembled for each PFAA. Positive mass balances were observed for PFHxA and PFOA in all WWTPs, indicating the presence of precursor compounds in the technosphere. With regard to environmental recirculation, tap water was an important source of PFAAs to the Bromma WWTP influent, contributing >40% for each quantified sulfonic acid and up to 30% for the carboxylic acids. The PFAAs in tap water from Bollebygd and Umeå did not contribute significantly to the PFAA load in the WWTP influents. Our results show that in order to estimate current primary emissions from the technosphere, it may be necessary to correct the PFAA emission rates in WWTP effluents for PFAAs present in tap water, especially in the case of elevated levels in tap water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparing drinking water treatment costs to source water protection costs using time series analysis

    NASA Astrophysics Data System (ADS)

    Heberling, Matthew T.; Nietch, Christopher T.; Thurston, Hale W.; Elovitz, Michael; Birkenhauer, Kelly H.; Panguluri, Srinivas; Ramakrishnan, Balaji; Heiser, Eric; Neyer, Tim

    2015-11-01

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reduction in the watershed rather than pay for treatment on site. To illustrate, we use daily observations from 2007 to 2011 for the Bob McEwen Water Treatment Plant, Clermont County, Ohio, to understand the relationship between treatment costs and water quality and operational variables (e.g., turbidity, total organic carbon [TOC], pool elevation, and production volume). Part of our contribution to understanding drinking water treatment costs is examining both long-run and short-run relationships using error correction models (ECMs). Treatment costs per 1000 gallons (per 3.79 m3) were based on chemical, pumping, and granular activated carbon costs. Results from the ECM suggest that a 1% decrease in turbidity decreases treatment costs by 0.02% immediately and an additional 0.1% over future days. Using mean values for the plant, a 1% decrease in turbidity leads to $1123/year decrease in treatment costs. To compare these costs with source water protection costs, we use a polynomial distributed lag model to link total phosphorus loads, a source water quality parameter affected by land use changes, to turbidity at the plant. We find the costs for source water protection to reduce loads much greater than the reduction in treatment costs during these years. Although we find no incentive to protect source water in our case study, this framework can help DWTPs quantify the trade-offs.

  14. The use of fly larvae for organic waste treatment.

    PubMed

    Čičková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

    2015-01-01

    The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and

  15. Hanford Facility Dangerous Waste Permit Application for T Plant Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARNES, B.M.

    2002-09-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less

  16. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    NASA Astrophysics Data System (ADS)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  17. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.E.

    1997-12-31

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands ofmore » perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.« less

  18. Influence of supercritical water treatment on heavy metals in medical waste incinerator fly ash.

    PubMed

    Bo, Da; Zhang, Fu-Shen; Zhao, Lijuan

    2009-10-15

    In this work, medical waste (MW) incinerator fly ashes from different types of incinerators were subjected to supercritical water (SCW) and SCW+H(2)O(2) (SCWH) treatments. Sequential extraction experiments showed that, after SCW treatment, heavy metals in exchangeable and carbonate forms in the ashes could be transferred into other relatively stable forms, e.g., Ba and Cr into residual fraction, Cu and Pb into organic matter fraction. SCWH treatment could stabilize heavy metals in Fe-Mn oxides and residual fractions. However, the behavior of As was quite different from heavy metals, which could be leached out from residue fraction after SCW and SWCH treatments. The leached As tended to absorb onto Fe-Mn oxides and organic matters under near neutral environment, but it could react with Ca(2+) at lower pH, increasing the mobility of this element. Therefore, it is necessary to neutralize acidic ash to near neutral condition before subjecting it to SCW and SCWH treatments so as to effectively stabilize hazardous elements in the ash. Consequently, it is believed that SCWH treatment is an effective alternative for hazardous elements detoxification in MW fly ash.

  19. Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

    PubMed

    Farré, Maria José; Döderer, Katrin; Hearn, Laurence; Poussade, Yvan; Keller, Jurg; Gernjak, Wolfgang

    2011-01-30

    N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently <10 ng/L during these early stages of disinfection, regardless of the disinfection strategy. The reduction of the contact time was implemented in Bundamba AWTP (Queensland, Australia), where NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Managing peatland vegetation for drinking water treatment.

    PubMed

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  1. Managing peatland vegetation for drinking water treatment

    PubMed Central

    Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.

    2016-01-01

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision. PMID:27857210

  2. Compliance to Oseltamivir among Two Populations in Oxfordshire, United Kingdom Affected by Influenza A(H1N1)pdm09, November 2009 – A Waste Water Epidemiology Study

    PubMed Central

    Singer, Andrew C.; Järhult, Josef D.; Grabic, Roman; Khan, Ghazanfar A.; Fedorova, Ganna; Fick, Jerker; Lindberg, Richard H.; Bowes, Michael J.; Olsen, Björn; Söderström, Hanna

    2013-01-01

    Antiviral provision remains the focus of many pandemic preparedness plans, however, there is considerable uncertainty regarding antiviral compliance rates. Here we employ a waste water epidemiology approach to estimate oseltamivir (Tamiflu®) compliance. Oseltamivir carboxylate (oseltamivir's active metabolite) was recovered from two waste water treatment plant (WWTP) catchments within the United Kingdom at the peak of the autumnal wave of the 2009 Influenza A (H1N1)pdm09 pandemic. Predictions of oseltamivir consumption from detected levels were compared with two sources of national government statistics to derive compliance rates. Scenario and sensitivity analysis indicated between 3–4 and 120–154 people were using oseltamivir during the study period in the two WWTP catchments and a compliance rate between 45–60%. With approximately half the collected antivirals going unused, there is a clear need to alter public health messages to improve compliance. We argue that a near real-time understanding of drug compliance at the scale of the waste water treatment plant (hundreds to millions of people) can potentially help public health messages become more timely, targeted, and demographically sensitive, while potentially leading to less mis- and un-used antiviral, less wastage and ultimately a more robust and efficacious pandemic preparedness plan. PMID:23613721

  3. Wool-waste as organic nutrient source for container-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) inmore » pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.« less

  4. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    NASA Astrophysics Data System (ADS)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  5. An Annotated Bibliography for Cleanup of Hazardous Waste Disposal Sites

    DTIC Science & Technology

    1982-10-01

    H., and Zaidi, T. H. 1981. "The Adsorption Character- istics of Soils and Removal of Cadmium and Nickel from Waste- waters," Water, Air, and Soil Poll... Wabash Avenue, Chicago, IL. Subject: Neutralization. Description: This article describes treatment of acidic wastes such as those from coke plants...greater than 85 percent of the aluminum, barium, cadmium , mercury, nickel, and zinc and from 40 to 70 percent of the chro- mium, copper, lead, and

  6. Inclusion of human mineralized exometabolites and fish wastes as a source of higher plant mineral nutrition in BTLSS mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Ushakova, Sofya; Anischenko, Olesya; Trifonov, Sergey V.

    Human exometabolites inclusion into an intrasystem mass exchange will allow increasing of a closure level of a biological-technical life support system (BTLSS). Previously at the IBP SB RAS it was shown that human mineralized exometabolites could be incorporated in the BTLSS mass exchange as a mineral nutrition source for higher plants. However, it is not known how that combined use of human mineralized exometabolites and fish wastes in the capacity of nutrient medium, being a part of the BTLSS consumer wastes, will affect the plant productivity. Several wheat vegetations were grown in an uneven-aged conveyor on a neutral substrate. A mixture of human mineralized exometabolites and fish wastes was used as a nutrient solution in the experiment treatment and human mineralized exometabolites were used in the control. Consequently, a high wheat yield in the experiment treatment practically equal to the control yield was obtained. Thus, mineralized fish wastes can be an additional source of macro-and micronutrients for plants, and use of such wastes for the plant mineral nutrition allows increasing of BTLSS closure level.

  7. Arsenic Treatment Technologies for Soil, Waste, and Water

    DTIC Science & Technology

    2002-09-01

    and Contaminants Treated Phytoremediation has been applied to contaminants from soil, surface water, groundwater, leachate , and municipal and...ELECTROKINETIC TREATMENT OF ARSENIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 - 1 15.0 PHYTOREMEDIATION ...14 - 5 15.1 Phytoremediation Treatment Performance Data for Arsenic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 - 5 16.1

  8. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    NASA Astrophysics Data System (ADS)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  9. Endotoxin contamination and control in surface water sources and a drinking water treatment plant in Beijing, China.

    PubMed

    Can, Zhang; Wenjun, Liu; Wen, Sun; Minglu, Zhang; Lingjia, Qian; Cuiping, Li; Fang, Tian

    2013-07-01

    In this paper, endotoxin contamination was determined in treated water following each unit of a drinking water treatment plant (WTP) in Beijing, China and its source water (SW) from a long water diversion channel (Shijiazhuang-Beijing) originating from four reservoirs in Hebei province, China. The total-endotoxin activities in SW ranged from 21 to 41 EU/ml at five selected cross sections of the diversion channel. The total-endotoxin in raw water of the WTP ranged from 11 to 16 EU/ml due to dilution and pretreatment during water transportation from Tuancheng Lake to the WTP, and finished water of the WTP ranged from 4 to 10 EU/ml, showing a 49% decrease following the full-scale treatment process at the WTP. Compared with the 31% removal of free-endotoxin, the WTP removed up to 71% of bound-endotoxin in raw water. The traditional treatment processes (coagulation, sedimentation and filtration) in the WTP removed substantial amounts of total-endotoxin (up to 63%), while endotoxin activities increased after granular activated carbon (GAC) adsorption and chlorination. The total-endotoxin in the actual water was composed of free-endotoxin and bound-endotoxin (endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins). The endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins co-exist as suspended particles in water, and only the bacteria-bound endotoxins were correlated with bacterial cells suspended in water. The particle distribution of endotoxin aggregates in ultrapure water was also tested and the results showed that the majority (64-89%) of endotoxin aggregates had diameters <2 μm. The endotoxin contamination and control in treated water following each unit of the WTP processes and its SW from reservoirs are discussed and compared with regard to bacterial cell counts and particle characteristics, which were dependent, to a certain extent, on different flow rates and turbulence of the water environments. Copyright

  10. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    PubMed

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management ofmore » vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.« less

  12. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado.

    PubMed

    Verplanck, Philip L; Taylor, Howard E; Nordstrom, D Kirk; Barber, Larry B

    2005-09-15

    In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceuticals, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban

  13. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado

    USGS Publications Warehouse

    Verplanck, P.L.; Taylor, Howard E.; Nordstrom, D. Kirk; Barber, L.B.

    2005-01-01

    In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceutical, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban

  14. Pepper mild mottle virus as a process indicator at drinking water treatment plants employing coagulation-sedimentation, rapid sand filtration, ozonation, and biological activated carbon treatments in Japan.

    PubMed

    Kato, Ryuichi; Asami, Tatsuya; Utagawa, Etsuko; Furumai, Hiroaki; Katayama, Hiroyuki

    2018-04-01

    To assess the potential of pepper mild mottle virus (PMMoV) as a viral process indicator, its reduction through coagulation-sedimentation (CS) and rapid sand filtration (RSF) were compared with those of Escherichia coli, previously used viral indicators, and norovirus genotype II (NoV GII; enteric virus reference pathogen) in a bench-scale experiment. PMMoV log 10 reductions in CS (1.96 ± 0.30) and RSF (0.26 ± 0.38) were similar to those of NoV GII (1.86 ± 0.61 and 0.28 ± 0.46). PMMoV, the most abundant viruses in the raw water, was also determined during CS, RSF, and advanced treatment processes at two full-scale drinking water treatment plants under strict turbidity management over a 13-month period. PMMoV was concentrated from large-volume water samples (10-614 L) and quantified by Taqman-based quantitative polymerase chain reaction. The PMMoV log 10 reduction in CS (2.38 ± 0.74, n = 13 and 2.63 ± 0.76, n = 10 each for Plant A and B) and in ozonation (1.91 ± 1.18, n = 5, Plant A) greatly contributed to the overall log 10 reduction. Our results suggest that PMMoV can act as a useful treatment process indicator of enteric viruses and can be used to monitor the log 10 reduction of individual treatment processes at drinking water treatment plants due to its high and consistent copy numbers in source water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Water reclamation during drinking water treatments using polyamide nanofiltration membranes on a pilot scale.

    PubMed

    Kukučka, Miroslav; Kukučka, Nikoleta; Habuda-Stanić, Mirna

    2016-09-01

    The aim of this study was to investigate the performances of polyamide nanofiltration membranes during water reclamation. The study was conducted using nanofiltration concentrates obtained from two different nanofiltration drinking water treatment plants placed in the northern part of Serbia (Kikinda and Zrenjanin). Used nanofiltration concentrates contained high concentrations of arsenic (45 and 451 μg/L) and natural organic matter (43.1 and 224.40 mgKMnO4/L). Performances of polyamide nanofiltration membranes during water reclamation were investigated under various fluxes and transmembrane pressures in order to obtain drinking water from nanofiltration concentrates and, therefore, reduce the amount of produced concentrates and minimize the waste that has to be discharged in the environment. Applied polyamide nanofiltration membranes showed better removal efficiency during water reclamation when the concentrate with higher content of arsenic and natural organic matter was used while the obtained permeates were in accordance with European regulations. This study showed that total concentrate yield can be reduced to ~5 % of the optimum flux value, in both experiments. The obtained result for concentrate yield under the optimum flux presents considerable amount of reclaimed drinking water and valuable reduced quantity of produced wastewater.

  16. Anaerobic on-site black water and kitchen waste treatment using UASB-septic tanks at low temperatures.

    PubMed

    Luostarinen, S; Rintala, J

    2006-01-01

    Anaerobic on-site treatment of black water (BW) and a mixture of black water and kitchen waste (BWKW) was studied in a two-phased upflow anaerobic sludge blanket septic tank (UASBst) at 10-20 degrees C. The processes were fed either continuously or discontinuously (twice per weekday). Moreover, BWKW was post-treated for nitrogen removal in an intermittently aerated moving bed biofilm reactor (MBBR) at 20 degrees C. Removal of total chemical oxygen demand (COD1) was efficient at minimum 90% with all three UASBst at all temperatures. Removal of dissolved COD (CODdis) was also high at approx. 70% with continuously fed BW and discontinuously fed BWKW, while with discontinuous BW feeding it was 20%. Temperature decrease had little effect on COD removals, though the need for phase 2 increased with decreasing temperature, especially with BWKW. Post-treatment of BWKW in MBBR resulted in approx. 50% nitrogen removal, but suffered from lack of carbon for denitrification. With carbon addition, removal of ca. 83% was achieved.

  17. Contribution of Wastewater Treatment Plants to Concentrations of PBDEs, PFCs, PCBs, DDT and Synthetic Musks in Fish Tissue from U.S. Urban Waters

    EPA Science Inventory

    Wastewater treatment plants (WWTPs) are tasked with removing a wide variety of contaminants from influents, including BOD and nutrients from human waste as well as any and all other compounds that emanate from homes and commercial facilities in the communities they serve. Traces ...

  18. Integrated water and waste management system for future spacecraft

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  19. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  20. Performance evaluation of vinasse treatment plant integrated with physico-chemical methods.

    PubMed

    Ojha, Sanjay Kumar; Mishra, Snehasish; Kumar, Satish; Mohanty, Shakti Shankar; Sarkar, Biplab; Singh, Monika; Chaudhury, Gautam Roy

    2015-11-01

    With an objective to assess environmental management criteria of a vinasse treatment plant (VTP) and to evaluate the critical environmental parameters, a study was undertaken in a multi-product (packaged apple juice, distillery, brewery, packaged drinking water) brewery-cum-distillery unit. The facility with a volumetric loading rate of 11-15 kg COD m(-3).day, 3.6-4.5 h hydraulic retention time and 20 g l(-1) VSS had a scientifically managed technically sound effluent treatment system. While the water quality parameters were found within the acceptable limits, there was 99.07% reduction in BOD, from 43140.0 to 398.0 mg l(-1) and 98.61% reduction in COD from 98003.0 to 1357.0 mg l(-1). There was appreciable improvement in mixed liquor suspended solids (MLSS), mixed liquorvolatile suspended solids (MLVSS) and sludge volume index (SVI). A striking feature was the integrated aerobic-anaerobic highly efficient Up-flow Anaerobic Sludge Blanket (UASB) treatment for biodegradation and energy production that reduced energy and space needs, producing utilisable end-products and net savings on the operational cost. The end-point waste management included terminal products such as fertile sludge, cattle feed supplement, recyclable water and biogas. Vast lagoons with combined aerobic-anaerobic approaches, biogasification unit, sludge recovery, remediated irrigable water were the notable attributes.

  1. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  2. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries.

    PubMed

    Aleluia, João; Ferrão, Paulo

    2017-11-01

    The management of municipal solid waste (MSW) is one of the main costs incurred by local authorities in developing countries. According to some estimates, these costs can account for up to 50% of city government budgets. It is therefore of importance that policymakers, urban planners and practitioners have an adequate understanding of what these costs consist of, from collection to final waste disposal. This article focuses on a specific stage of the MSW value chain, the treatment of waste, and it aims to identify cost patterns associated with the implementation and operation of waste treatment approaches in developing Asian countries. An analysis of the capital (CAPEX) and operational expenditures (OPEX) of a number of facilities located in countries of the region was conducted based on a database gathering nearly 100 projects and which served as basis for assessing four technology categories: composting, anaerobic digestion (AD), thermal treatment, and the production of refuse-derived fuel (RDF). Among these, it was found that the least costly to invest, asa function of the capacity to process waste, are composting facilities, with an average CAPEX per ton of 21,493 USD 2015 /ton. Conversely, at the upper end featured incineration plants, with an average CAPEX of 81,880 USD 2015 /ton, with this treatment approach ranking by and large as the most capital intensive of the four categories assessed. OPEX figures of the plants, normalized and analyzed in the form of OPEX/ton, were also found to be higher for incineration than for biological treatment methods, although on this component differences amongst the technology groups were less pronounced than those observed for CAPEX. While the results indicated the existence of distinct cost implications for available treatment approaches in the developing Asian context, the analysis also underscored the importance of understanding the local context asa means to properly identify the cost structure of each specific plant

  3. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  4. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  5. Occurrence of Mycobacteria in Water Treatment Lines and in Water Distribution Systems

    PubMed Central

    Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique

    2002-01-01

    The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature. PMID:12406720

  6. Multi-objective Optimization for the Robust Performance of Drinking Water Treatment Plants under Climate Change and Climate Extremes

    NASA Astrophysics Data System (ADS)

    Raseman, W. J.; Kasprzyk, J. R.; Rosario-Ortiz, F.; Summers, R. S.; Stewart, J.; Livneh, B.

    2016-12-01

    To promote public health, the United States Environmental Protection Agency (US EPA), and similar entities around the world enact strict laws to regulate drinking water quality. These laws, such as the Stage 1 and 2 Disinfectants and Disinfection Byproducts (D/DBP) Rules, come at a cost to water treatment plants (WTPs) which must alter their operations and designs to meet more stringent standards and the regulation of new contaminants of concern. Moreover, external factors such as changing influent water quality due to climate extremes and climate change, may force WTPs to adapt their treatment methods. To grapple with these issues, decision support systems (DSSs) have been developed to aid WTP operation and planning. However, there is a critical need to better address long-term decision making for WTPs. In this poster, we propose a DSS framework for WTPs for long-term planning, which improves upon the current treatment of deep uncertainties within the overall potable water system including the impact of climate on influent water quality and uncertainties in treatment process efficiencies. We present preliminary results exploring how a multi-objective evolutionary algorithm (MOEA) search can be coupled with models of WTP processes to identify high-performing plans for their design and operation. This coupled simulation-optimization technique uses Borg MOEA, an auto-adaptive algorithm, and the Water Treatment Plant Model, a simulation model developed by the US EPA to assist in creating the D/DBP Rules. Additionally, Monte Carlo sampling methods were used to study the impact of uncertainty of influent water quality on WTP decision-making and generate plans for robust WTP performance.

  7. Liquid secondary waste: Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic

  8. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water...

  9. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water...

  10. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    USGS Publications Warehouse

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  11. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China.

    PubMed

    Guo, Xueping; Li, Jing; Yang, Fan; Yang, Jie; Yin, Daqiang

    2014-09-15

    The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Assessing pollutions of soil and plant by municipal waste dump

    NASA Astrophysics Data System (ADS)

    Liu, Changli; Zhang, Yun; Zhang, Feng'e.; Zhang, Sheng; Yin, Miying; Ye, Hao; Hou, Hongbing; Dong, Hua; Zhang, Ming; Jiang, Jianmei; Pei, Lixin

    2007-04-01

    Research is few in the literature regarding the investigation and assessment of pollutions of soil and plant by municipal waste dumps. Based upon previous work in seven waste dumping sites (nonsanitary landfills) in Beijing, Shanghai and Shijiazhuang, this study expounds the investigation and assessment method and report major pollutants. Using relative background values, this study assesses soil pollution degree in the seven dumping sites. Preliminary conclusions are: (1) pollution degrees are moderate or heavy; (2) pollution distance by domestic waste that is dumped on a plane ground is 85 m; (3) the horizontal transport distance of pollutants might be up to 120 m if waste leachates are directly connected with water in saturated soils; (4) vertical transport depth is about 3 m in unsaturated silty clayey soils. Furthermore, using relative background values and hygiene standards of food and vegetable this study assesses the pollutions of different parts of reed, sorghum, watermelon and sweet-melon. It is found: (1) in comparison with the relative background values in a large distance to the waste dumping sites, domestic wastes have polluted the roots and stems of reed and sorghum, whereas fine coal ash has polluted the leaves, rattans and fruits of watermelon and sweet-melon; (2) domestic wastes and fine coal ash have heavily polluted the edible parts of sorghum, water melon and sweet-melon. As, Hg, Pb and F have far exceeded standard values, e.g., Hg has exceeded the standard value by up to 650 1,700 times and Cd by 120 275 times, and the comprehensive pollution index is up to 192.9 369.7; (3) the polluted sorghum, watermelon and sweet-melon are inedible.

  13. Bisphenol A emission factors from industrial sources and elimination rates in a sewage treatment plant.

    PubMed

    Fuerhacker, M

    2003-01-01

    Bisphenol A (BPA) is widely used for the production of epoxy resins and polycarbonate plastics and is considered an endocrine disruptor. Special in vitro test systems and animal experiments showed a weak estrogenic activity. Aquatic wildlife especially could be endangered by waste water discharges. To manage possible risks arising from BPA emissions the major fluxes need to be investigated and the sources of the contamination of municipal treatment plants need to be determined. In this study, five major industrial point sources, two different household areas and the influent and effluent of the corresponding treatment plant (WWTP) were monitored simultaneously at a plant serving 120,000 population equivalents. A paper producing plant was the major BPA contributor to the influent load of the wastewater treatment plant. All the other emissions from point sources, including the two household areas, were considerably lower. The minimum elimination rate in the WTTP could be determined at 78% with an average of 89% of the total BPA-load. For a possible pollution-forecast, or for a comparison between different point sources, emission factors based on COD-emissions were calculated for industrial and household point sources at BPA/COD-ratios between 1.4 x 10(-8) - 125 x 10(-8) and 1.3 x 10(-6) - 6.3 x 10(-6), respectively.

  14. Mass transfer resistance in ASFF reactors for waste water treatment.

    PubMed

    Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M

    1996-01-01

    Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.

  15. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harendra, Sivaram; Oryshcyhn, Danylo; Ochs, Thomas

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulatemore » water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.« less

  16. Technology Readiness Assessment of a Large DOE Waste Processing Facility

    DTIC Science & Technology

    2007-09-12

    Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters

  17. Hazardous Waste Water Remediation by Ecoresin-Dry Cow Dung Powder

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    Water, the matter, matrix, medium and the mother of our life, is indeed one of the drivers of Nature. Through water cycle only the intra and inter equilibrium is maintained constantly between entire 'green' and 'blue'. Unfortunately, with each successive epoch of industrialization and urbanization, human societies have produced non-biodegradable waste hulk with far beyond handling capacities of mankind. At this juncture the very need is to appreciate and move towards the cost as well as time effective scientific alternatives for the removal of aqueous heavy metal pollutants. Green chemistry advocates the utilization of naturally available bio-resins which are environmentally benign alternative to current synthetic materials and technologies employed for waste water treatment. This explicit investigation aims to explore Dry Cow dung powder, DCP, a natural biosorbent as a green and clean alternative for the aqueous waste water treatment. It is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid'(HA). The HA has been successfully extracted by authors from DCP and this piece of work has been published in the International Journal [1]. We have developed simple, efficient and eco-friendly method for the removal of aqueous heavy metal pollutant such as Cr(VI) [2], Cd(II), Cr(III) [3] and Hg(II) as well radiotoxic 90Sr(II) [4], employing DCP. DCP is employed without any pre or post treatment. Being freely and easily available DCP has an edge over processed natural adsorbent considering their cost, time and energy efficiency. In nutshell we have to remember that prevention is better than the cure. If we fail to meet this, the situation will surely augment which will drain our water, our life, to slaughters knife..! Reference: 1. H.K.Bagla, N.S.Barot, Soil Amendement by Green Supplement: Dry Cowdung powder, EGUGA - 11

  18. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant.

    PubMed

    Oh, Seungdae; Hammes, Frederik; Liu, Wen-Tso

    2018-01-01

    Microorganisms inhabiting filtration media of a drinking water treatment plant can be beneficial, because they metabolize biodegradable organic matter from source waters and those formed during disinfection processes, leading to the production of biologically stable drinking water. However, which microbial consortia colonize filters and what metabolic capacity they possess remain to be investigated. To gain insights into these issues, we performed metagenome sequencing and analysis of microbial communities in three different filters of a full-scale drinking water treatment plant (DWTP). Filter communities were sampled from a rapid sand filter (RSF), granular activated carbon filter (GAC), and slow sand filter (SSF), and from the Schmutzdecke (SCM, a biologically active scum layer accumulated on top of SSF), respectively. Analysis of community phylogenetic structure revealed that the filter bacterial communities significantly differed from those in the source water and final effluent communities, respectively. Network analysis identified a filter-specific colonization pattern of bacterial groups. Bradyrhizobiaceae were abundant in GAC, whereas Nitrospira were enriched in the sand-associated filters (RSF, SCM, and SSF). The GAC community was enriched with functions associated with aromatics degradation, many of which were encoded by Rhizobiales (∼30% of the total GAC community). Predicting minimum generation time (MGT) of prokaryotic communities suggested that the GAC community potentially select fast-growers (<15 h of MGT) among the four filter communities, consistent with the highest dissolved organic matter removal rate by GAC. Our findings provide new insights into the community phylogenetic structure, colonization pattern, and metabolic capacity that potentially contributes to organic matter removal achieved in the biofiltration stages of the full-scale DWTP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.

    PubMed

    Martínez-García, C; Eliche-Quesada, D; Pérez-Villarejo, L; Iglesias-Godino, F J; Corpas-Iglesias, F A

    2012-03-01

    The main aim of this study is to assess the effect of incorporating waste sludge on the properties and microstructure of clay used for bricks manufacturing. Wastewater treatment plants produce annually a great volume of sludge. Replacing clay in a ceramic body with different proportions of sludge can reduce the cost due to the utilization of waste and, at the same time, it can help to solve an environmental problem. Compositions were prepared with additions of 1%, 2.5%, 5%, 7.5%, 10% and 15% wt% waste sludge in body clay. In order to determine the technological properties, such as bulk density, linear shrinkage, water suction, water absorption and compressive strength, press-moulded bodies were fired at 950 °C for coherently bonding particles in order to enhance the strength and the other engineering properties of the compacted particles. Thermal heating destroys organic remainder and stabilizes inorganic materials and metals by incorporating oxides from the elemental constituent into a ceramic-like material. Results have shown that incorporating up to 5 wt% of sludge is beneficial for clay bricks. By contrast, the incorporation of sludge amounts over 5 wt% causes deterioration on the mechanical properties, therefore producing low-quality bricks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants.

    PubMed

    Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle

    2014-02-01

    The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.

  1. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    NASA Astrophysics Data System (ADS)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  2. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  3. Exploration on the technology for ozone reduction in urban sewage treatment

    NASA Astrophysics Data System (ADS)

    Yang, Min; Sun, Yi; Han, Zhicheng; Liu, Jun

    2017-05-01

    With the rapid development of China’s economy, urban water consumption is increasing. However, sewage treatment plants will produce large amounts of sludge after treatment of sewage. Generally, and the sludge treatment costs are relatively high. Therefore, the problem about how to deal with the sewage sludge becomes the hot issues. Municipal waste water treatment plant produces a lot of sludge. This paper summarized the abroad study of ozonation minimization technology. Introduction and discussion were made on the principle of ozonated efficiency of sludge minimization, the efficiency of sludge minimization and the relationship between efficiency and ozone dosage, as well the effect of return sludge ozonated on waste water treatment running and the sludge setting and the dewatering characteristic. The economic estimation was also made on this technology. It’s showed that sludge minimization technology exhibits extensive application foreground.

  4. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of

  5. Hazard Identification and Risk Assessment in Water Treatment Plant considering Environmental Health and Safety Practice

    NASA Astrophysics Data System (ADS)

    Falakh, Fajrul; Setiani, Onny

    2018-02-01

    Water Treatment Plant (WTP) is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.

  6. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants.

    PubMed

    Campos, Inmaculada; Alcañiz, Miguel; Aguado, Daniel; Barat, Ramón; Ferrer, José; Gil, Luis; Marrakchi, Mouna; Martínez-Mañez, Ramón; Soto, Juan; Vivancos, José-Luis

    2012-05-15

    The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH(4)-N), orthophosphate (PO(4)-P), Sulphate (SO(4)-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH(4)-N, PO(4)-P, SO(4)-S, and Alk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    PubMed Central

    Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2016-01-01

    Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions. PMID:28773875

  8. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water.

    PubMed

    Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A

    2016-09-03

    Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance-a mixture of Cr 3+ enriched with Cr₂O₃ and Cr-hydroxide in inner and Fe 3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  9. Agronomic assessment of pyrolysed food waste digestate for sandy soil management.

    PubMed

    Opatokun, Suraj Adebayo; Yousef, Lina F; Strezov, Vladimir

    2017-02-01

    The digestate (DFW) of an industrial food waste treatment plant was pyrolysed for production of biochar for its direct application as bio-fertilizer or soil enhancer. Nutrient dynamics and agronomic viability of the pyrolysed food waste digestate (PyD) produced at different temperatures were evaluated using germination index (GI), water retention/availability and mineral sorption as indicators when applied on arid soil. The pyrolysis was found to enrich P, K and other micronutrients in the biochar at an average enrichment factor of 0.87. All PyD produced at different temperatures indicated significantly low phytotoxicity with GI range of 106-168% and an average water retention capacity of 40.2%. Differential thermogravimetric (DTG) thermographs delineated the stability of the food waste digestate pyrolysed at 500 °C (PyD500) against the degradation of the digestate food waste despite the latter poor nutrient sorption potential. Plant available water in soil is 40% when treated with 100 g of digestate per kg soil, whereas PyD500 treated soil indicated minimal effect on plant available water, even with high application rates. However, the positive effects of PyD on GI and the observed enrichment in plant macro and micronutrients suggest potential agronomic benefits for PyD use, in addition to the benefits from energy production from DFW during the pyrolysis process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cost effective modular unit for cleaning oil and gas field waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

    1996-12-31

    Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less

  11. Innovative bioresource management technologies for recovery of ammonia and phosphorus from livestock and municipal wastes

    USDA-ARS?s Scientific Manuscript database

    The recovery of nutrients from wastes for re-use as concentrated plant fertilizers is a new paradigm in agricultural and municipal waste management. Nutrient pollution has diverse and far-reaching effects on the economy, impacting many sectors that depend on clean water. Treatment technologies have ...

  12. Investigation of Pharmaceutical Residues in Hospital Effluents, in Ground- and Drinking Water from Bundeswehr Facilities, and their Removal During Drinking Water Purification (Arzneimittelrueckstaende in Trinkwasser(versorgungsanlagen) und Krankenhausabwaessern der Bundeswehr: Methodenentwicklung - Verkommen - Wasseraufbereitung)

    DTIC Science & Technology

    1999-11-01

    Drinking water processing plant , Analysis, Calculation model, Field experiment 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION...sewage effluents and from the sewer of the municipal sewage treatment plant in Berlin-Ruhleben. In the field trials, the MDWPUs that both apply reverse...waste water samples, along the municipal sewer system and In the influents and effluents of the receiving sewage treatment plants . To estimate the

  13. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  14. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  15. Study on Influence Factors and Governance Countermeasures of Movable Gel Prepared with Backfilling Waste Water

    NASA Astrophysics Data System (ADS)

    Gao, Shanshan; Zhang, Jianzhong; Zhang, Tiantian; Cui, Yanjie; Wang, Zhiqiang; Sun, Xinrui; Li, Jing; Zhang, Lianchao

    2018-05-01

    Movable gel as profile control and flooding is one of the main measures in tertiary oil recovery in Huabei Oilfield. Many blocks have tight fresh water supplies, but produced waste water can not be discharged. Therefore, preparing movable gel with backfilling waste water has become an inevitable development trend of profile control and flooding. Three different quality of sewage water named SW, YW and ZW were used to prepare gel and then compared with gel prepared clean water. The results showed that the gel viscosity prepared with clean water was 1.5-5.6 times of sewage water at the same formula concentration. For this reason, the effect of Na+, Ca2+, Fe2+ on the gel performance were analyzed. The above ions lead to a decrease in the gel viscosity and poor stability, which can not even be crosslinked. According to the sewage water characteristics, corresponding treatment measures were developed respectively. The best treatment of SW and ZW was increasing polymer concentration followed by the addition of thiourea. The best treatment of YW was also increasing polymer concentration followed by stirring and aeration. The gel viscosity reached to 1800-2500mPaṡs and maintained at 800-1200mPaṡs after 90 days at formation temperature. It showed that the treatment can effectively improve the gel viscosity and stability prepared with sewage water. The results provide valuable experiences for the preparation of movable gel with different quality waste water.

  16. Characterizing variable biogeochemical changes during the treatment of produced oilfield waste.

    PubMed

    Hildenbrand, Zacariah L; Santos, Inês C; Liden, Tiffany; Carlton, Doug D; Varona-Torres, Emmanuel; Martin, Misty S; Reyes, Michelle L; Mulla, Safwan R; Schug, Kevin A

    2018-09-01

    At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  18. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes δ18O, δ2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 μgL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 μgL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination

  19. Integration of Power to Methane in a waste water treatment plant - A feasibility study.

    PubMed

    Patterson, Tim; Savvas, Savvas; Chong, Alex; Law, Ian; Dinsdale, Richard; Esteves, Sandra

    2017-12-01

    The integration of a biomethanation system within a wastewater treatment plant for conversion of CO 2 and H 2 to CH 4 has been studied. Results indicate that the CO 2 could be utilised to produce an additional 13,420m 3 /day of CH 4 , equivalent to approximately 133,826kWh of energy. The whole conversion process including electrolysis was found to have an energetic efficiency of 66.2%. The currently un-optimised biomethanation element of the process had a parasitic load of 19.9% of produced energy and strategies to reduce this to <5% are identified. The system could provide strategic benefits such as integrated management of electricity and gas networks, energy storage and maximising the deployment and efficiency of renewable energy assets. However, no policy or financial frameworks exist to attribute value to these increasingly important functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.